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Abstract

The caudal �n of swimming animals can be modelled as a thrust-producing
�apping foil. When considered alone, such a foil produces on average a jet
wake with a positive net momentum. It has been argued that the insta-
bility characteristics of these averaged wakes are linked to the propulsion
e�ciency of swimming animals. Here, we reconsider this question by taking
into account both the thrust and the drag exerted on a self-propelled swim-
ming body. To do so, we study the stability of a family of momentumless
wakes, constructed as the Oseen approximation of a force doublet moving
at constant velocity. By performing a local stability analysis, we �rst show
that these wakes undergo a transition from absolute to convective instability.
Then, using the time-stepper approach by integrating the linearised Navier-
Stokes system, we investigate the global stability and reveal the in�uence of
a non-parallel base �ow as well as the role of the locally absolutely unstable
upstream region in the wake. Finally, to complete the global scenario, we ad-
dress the nonlinear evolution of the wake disturbance. These results are then
discussed in the context of aquatic locomotion. According to the present sta-
bility results, the momentumless wake of aquatic animals is generally stable,
whereas the corresponding thrust part is unstable. It is therefore essential
to consider all forces exerted on a self-propelled animal when discussing its
wake stability and its propulsion e�ciency.
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Résumé

La nageoire caudale des animaux aquatiques peut être modélisée par un foil
oscillant qui produit de la poussée. Le sillage moyen d'un tel foil oscillant
est un jet de quantité de mouvement nette positive. Il a été proposé que les
caractéristiques de stabilité de ces sillages moyens sont liées à l'e�cacité de
la propulsion des animaux aquatiques. Dans cet étude, nous reprenons cette
question en tenant compte à la fois de la poussée et de la traînée exercée
sur un corps auto-propulsé lorsqu'il nage. Pour ce faire, nous étudions la
stabilité d'une famille de sillages ayant une quantité de mouvement nulle,
construit comme l'approximation d'Oseen d'un doublet de force se déplaant
à vitesse constante. En e�ectuant une analyse de stabilité locale, nous mon-
trons d'abord que ces sillages subissent une transition convectif-absolu. Puis,
en utilisant une approche �time-stepper� et intégrant le système de Navier-
Stokes linéarisé, nous étudions la stabilité globale et mettons en évidence des
e�ets non-parallèles de l'écoulement principal, ainsi que le rle de la région
absolument instable dans l'écoulement. En�n, pour compléter le scénario
d'instabilité globale, nous abordons l'évolution non linéaire d'une pertur-
bation injectée dans le sillage. Ces résultats sont ensuite discutés dans le
contexte de la nage d'un animal aquatique. Selon les résultats de stabilité,
les sillages de quantité de mouvement nulle produit par les animaux aqua-
tiques sont généralement stables, tandis que le sillage qui correspondrait à la
pousse seule est instable. Il est donc essentiel de considérer toutes les forces
exercées sur un animal auto-propulsé lors de l'examen de la stabilité de son
sillage et l'e�cacité de sa propulsion.

5





Acknowledgements

I would like to express my sincere gratitude to my advisors Christophe Eloy
and Uwe Ehrenstein for their all time support and guidance. Their patience
and deep knowledge helped me through my study and the writing of this
thesis. It has always been a great opportunity and honour having both
of them as advisors and mentors. I have always been grateful with their
encouragements, insightful warm discussions which widened my perspective
about the very matter of the research and about research itself.

I am truly grateful being entrusted by Christophe Eloy with this doctoral
position (I still remember how happy I was when he o�ered me to pursue
my doctoral study at IRPHE) which I had never imagined when I was still
an intern at IRPHE. It was a great experience having him as an advisor
since my master's degree internship about architecture of tree (an exciting
topic which showed me the importance of free thinking in research) until my
doctoral study.

My sincere thanks to Uwe Ehrenstein for his encouragement, warm dis-
cussion and talk not only about research but also some other interesting yet
important thing (literature, history, language) and some aspects of life which
gave much more value to my study.

I would also like to thank the rest of the committee of jury for their in-
sightful comments and questions which expanded my perspective and opened
further possibility for improvement and development on my work.

Big thanks also goes to all sta� of IRPHE for their help during my stay
in France, for making things comfortable and easier (especially for immigra-
tion). I thank my fellow doctoral students for the fun chat which helped me
enjoy my time (although I'm not good at making conversation, but still, they
helped me go through the conversation).

Besides my advisors, I would like to thank Thomas Leweke for his help,
warm discussion, and personal teachings that helped me through my early
time in France as a master student which was an important step to come to
this doctoral study.

Last but not the least, I would like to thank my parents, my brothers

7



and sisters for their continuous support, to my Indonesian friends who also
do their study in Marseille, to Adnya, Audy, Halik, and those who I can not
mention one by one.

8



Contents

1 Introduction 19

1.1 Swimming modes of aquatic animals . . . . . . . . . . . . . . . 19
1.2 Forces in swimming . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Theoretical approaches . . . . . . . . . . . . . . . . . . . 22
1.2.2 Experimental measurements . . . . . . . . . . . . . . . . 24

1.3 Wake behind swimming body . . . . . . . . . . . . . . . . . . . 33

2 Family of momentumless wakes 39

2.1 Point-like forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Pro�le non-dimensionalisation . . . . . . . . . . . . . . . . . . . 41
2.3 Doublet model and swimming . . . . . . . . . . . . . . . . . . . 47

3 Stability of momentumless wakes 51

3.1 Local linear stability analysis . . . . . . . . . . . . . . . . . . . . 52
3.1.1 Absolute versus convective instability . . . . . . . . . . 53
3.1.2 Discretisation of the stability system . . . . . . . . . . . 57

3.2 Local analysis of momentumless wake . . . . . . . . . . . . . . 60
3.3 Global momentumless wake dynamics . . . . . . . . . . . . . . 65

3.3.1 Global linear stability . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Matrix-free method . . . . . . . . . . . . . . . . . . . . . 67
3.3.3 Numerical method . . . . . . . . . . . . . . . . . . . . . . 69
3.3.4 Global linear stability results . . . . . . . . . . . . . . . 70

3.4 Nonlinear disturbance evolution . . . . . . . . . . . . . . . . . . 76
3.5 The Oseen solution . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Application to swimming animals 85

4.1 Absolute instability . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Momentumless wake vs. jet wake . . . . . . . . . . . . . . . . . 88
4.3 Limit of validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9



CONTENTS CONTENTS

5 Conclusions and perspectives 95

5.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendices 99

A Validation 101

B Details of numerical procedures 105

B.1 Discretisation in the streamwise direction . . . . . . . . . . . . 105
B.2 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10



List of Figures

1.1 Hydrodynamics regime in terms of Reynolds number. V and
I stand for �Viscous� and �Inertial� respectively. . . . . . . . . 20

1.2 Classi�cations of swimming modes for family of �sh taken from
Sfakiotakis et al. (1999). (a) Body/caudal �n (BCF) class and
(b) median/paired �n (MPF) class. . . . . . . . . . . . . . . . . 21

1.3 Forces interaction between �uid and swimmer. . . . . . . . . . 23
1.4 Hydrodynamic models with their corresponding swimming

modes by Lighthill (1975). . . . . . . . . . . . . . . . . . . . . . 25
1.5 Schematic view of the measurement apparatus mounted on a

blue�sh and the measurements of pressures on the tail, lateral
and forward accelerations. Two pressure gauges (for measur-
ing forces) mounted on an Aluminium plate are attached on
the right (PR) and left (PL) side of the upper caudal �n and
are connected to the three wire leads (W ) by compensating
resistors (C) and epoxy coated juctions in heat shrink tubing
(J). Forward (AF ) and lateral (AL) accelerometers are placed
in front of the anterior dorsal �n of the �sh. Following the
notation used in Dubois and Ogilvy (1978), the forward force
of the tail is calculated by F = (PR − PL)A sin θ where A is
the area of the tail, (PR − PL) is the pressure di�erence, and θ
is the angle between the tail and the �ow. This �gure is taken
from Dubois and Ogilvy (1978). . . . . . . . . . . . . . . . . . . 27

1.6 Stereo-DPIV measurement of the wake in the immediate
downstream of the caudal �n of a rainbow trout (On-

corhynchus mykiss) having 16.5 cm bodylength (L∗) swim-
ming at 1.2 L∗/s. The coordinates x, y, and z correspond
to the streamwise, vertical, and lateral directions respectively.
Here, the lateral component of the wake is 10-60% greater in
magnitude with respect to the streamwise velocity component.
This �gure is taken from Nauen and Lauder (2002). . . . . . . 29

11



LIST OF FIGURES LIST OF FIGURES

1.7 Schematic view of the �sh-like robot tethered to a car-
riage along with the results showing drag reduction in self-
propulsion as a percentage of rigid-body drag with respect to
tail phase angle, tail angle of attack, backbone wavelength,
total tail lateral excursion, and Strouhal number. This �gure
is taken from Barrett et al. (1999). . . . . . . . . . . . . . . . . 31

1.8 Illustration of ctenoid scales (CT) on the surface of �sh body
which used as vortex generators. They facilitate the transition
from laminar to turbulent boundary layer and thus the drag
crisis may occur at lower Reynolds number compare to smooth
surface. This �gure is taken from Bone and Moore (2008). . . 32

1.9 (a)Mean velocity pro�les in the wake of an oscillating foil with
a maximum angel of 2 degree sampled at distance-chord length
ratio of x/L = 1. (b) Vortex pattern of an airfoil pitching
sinusoidally at frequency of 4 Hz and angle of attack of 4 deg,
at which the wake has neither a momentum de�cit nor excess.
Both pictures are taken from Koochesfahani (1989). . . . . . . 34

1.10 Illustration of development of wake produced by a force dou-
blet Q∗ acting continuously in time on a uniform �ow velocity
U∗. The wake width increases further downstream while the
amplitude variation decreases showing the e�ect of viscous dif-
fusion in the �ow. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1 An example of a non-dimensionalised streamwise velocity pro-
�le behind a force dipole at Re = 20 and Q = 1.9 × 105. . . . . 44

2.2 An example of a non-dimensionalised lateral velocity pro�le
behind a force dipole at Re = 20 and Q = 1.9 × 105. . . . . . . . 44

2.3 Two dimensional vorticity �eld generated by a force doublet
situated at the origin of a Cartesian coordinate showing a
quadruple vortex pattern (x∗ and y∗ are in cm scale). This
�gure is taken from Afanasyev (2004). . . . . . . . . . . . . . . 45

2.4 Dimensionless wake pro�les behind a force doublet at Q =
1.52 × 105 for Re = 20, red; Re = 24.5, green; Re = 28.3, light-
blue; Re = 31.6, purple. . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Examples of the determined parameters Q and Re for 1 cm
and 10 cm �sh swimming with U∗ ∼ L∗s−1. . . . . . . . . . . . 48

12



LIST OF FIGURES LIST OF FIGURES

3.1 Evolution of an impulse disturbance triggered at t = 0: (a)
Stable, disturbance propagates downstream while being at-
tenuated so the system relaxes to its unperturbed state at any
point in space. (b) Convective instability, disturbance propa-
gates downstream so for any �xed point in space, the distur-
bance decays in time but grows as being observed in a moving
coordinate system. (c) Absolute instability, disturbance grows
in time while being spread in space. . . . . . . . . . . . . . . . 56

3.2 Distribution of points after applying the mapping (3.33) for
di�erent choice of a. . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 The convergence of computed most unstable mode as we in-
crease the number of discretization in transverse y-direction
for Q = 1000 and Re = 1: (a) imaginary part of the frequency
and (b) its corresponding real part show convergency. . . . . . 61

3.4 Temporal stability for the case of Q = 105 and Re = 30. (a)
Ampli�cation rate (ωi) of the most unstable mode for α ∈ R.
(b) Vorticity perturbation of the most ampli�ed mode over
one wavelength with α = 0.663. . . . . . . . . . . . . . . . . . . . 63

3.5 Mapping from (a) the α-plane to (b) the ω-plane for a wake
pro�le with Re = 1 and Q = 1000 (each line corresponds to a
di�erent value of αi). This mapping shows a cusp (marked by
the circle) on the upper-half of the ω-plane, thus indicating an
absolute instability. . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Absolute instability to convective instability at Q = 571.37 for
three di�erent values of Reynolds number: ♦, Re = 2.3827; ●,
Re = 2.6458; ◯, Re = 2.8849. . . . . . . . . . . . . . . . . . . . . 65

3.7 (a) Instability map in the Re�Q plane for a momentumless
wake. AU, CU and S stand respectively for absolutely un-
stable, convectively unstable and stable. (b) Dimensionless
frequency ω0,r at the convective-absolute transition. (c) Ab-
solutely unstable pro�le for Q = 105, Re = 10 (solid line), and
convectively unstable pro�le for Q = 105, Re = 30 (dashed
line). Parameters of the two pro�les are marked by coloured
rectangles in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 (a) Set of non-parallel pro�les at Q0 = 1.9 × 105 on the Q-Re-
plane that ilustrates our system. I is the inlet at Re0 = 20

while IV is the outlet at Re = 36.87. (b) Streamwise variation
of the base �ow used in the direct numerical simulation at 3
di�erent locations marked on (a). . . . . . . . . . . . . . . . . . 71

3.9 Variation of the streamwise velocity component and its �rst
derivative with respect to X along the centerline of the domain. 72

13



LIST OF FIGURES LIST OF FIGURES

3.10 Convergence towards the most unstable global mode: (a) real
part (σr = 0.027) and (b) imaginary part (σi = 0.63) of the
global eigenvalue. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.11 Most ampli�ed global mode : real part of the streamwise and
cross-stream velocity perturbation. . . . . . . . . . . . . . . . . 75

3.12 Instantaneous �eld structures: (a) vorticity of the perturba-
tion and (b) total vorticity at t = 1140. . . . . . . . . . . . . . . 78

3.13 Instantaneous �eld structures: (a) streamwise velocity pertur-
bation and (b) cross-stream velocity perturbation at t = 1140. 79

3.14 Evolution of vorticity perturbation in time recorded at (a)(X,Y ) = (20,1.06) and (b) (X,Y ) = (40,1.06). Both signals
exhibit the same fundamental frequency σi = 0.646 (�gure 3.15). 81

3.15 Frequency spectra of the vorticity perturbation shown in �g-
ure 3.14 for the time range 400 ≤ t ≤ 1200. . . . . . . . . . . . . 82

3.16 Frequency spectra of vorticity perturbation for the time range
400 ≤ t ≤ 1200 recorded at (X,Y ) = (0.4,1.06). Almost no
harmonic observed. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.17 Evolution of the steady Oseen solution from t = 0 (solid line)
to a new pro�le at t = 20 (dashed line) for Re = 20.78. . . . . . 83

3.18 Instantaneous vorticity �eld structure at t = 750. . . . . . . . . 83
3.19 Frequency spectra of the vorticity in time recorded at two

stations o�-center: (a) (X,Y ) = (30,−2.2) and (b) (X,Y ) =(40,−2.2), for the time range 750 ≤ t ≤ 1200. . . . . . . . . . . . 84

4.1 Stability diagram for the determined parameters Q and Re for
1 cm and 10 cm �sh swimming with U∗ ∼ L∗s−1. . . . . . . . . 87

4.2 Kinematic decomposition of drag-causing motion and thrust-
causing motion and the superposition of the two of them re-
sulting the generic undecomposed kinematic. This �gure is
taken from Bale et al. (2014). . . . . . . . . . . . . . . . . . . . 90

4.3 Stability diagram of a jet wake pro�le of intensity J (dashed
line) and a momentumless wake pro�le of intensity Q (solid
line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 (a) Jet wake pro�les of extracted thrust for three di�erent
values of ϵ and (b) their �rst derivative with respect to y.
(c) Most unstable modes of the three Jet wake pro�les. The
parameters used are Re = 103, Q = 106, and J = Q/(ϵ Re). . . 93

A.1 Singlet force pro�le (dashed line) �tted to a generic blu�-body
wake pro�le proposed by Monkewitz (1988) (solid line). . . . . 102

14



LIST OF FIGURES LIST OF FIGURES

A.2 Stability region of the Monkewitz pro�le in parameter space
Re-N−1 for di�erent values of Λ (Monkewitz (1988), �gure 2,
page 1001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

15



LIST OF FIGURES LIST OF FIGURES

16



List of Tables

3.1 Stability conditions of a �ow system subjected to an impulsive
initial perturbation. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Global linear eigenvalue σ = σr ±σi for 3 di�erent inlets : inlet
I (Re0 = 20), inlet II (Re0 = 21.83), and inlet III (Re0 = 22.44). 73

17





Chapter 1

Introduction

1.1 Swimming modes of aquatic animals

The large diversity of aquatic animals has given rise to scienti�c studies con-
cerning swimming mechanisms provided by nature and their applications to
man-made vehicles. Numerous studies have been performed on body shapes,
body kinematics and its interactions with the surrounding �uid, wake struc-
tures, corresponding energy input and output, etc. Review for some of these
important aspects are discussed by Lauder (2011).

Hydrodynamics of swimming depend on the size of the swimming or-
ganisms. Small organisms deal mostly with viscous e�ects while big organ-
isms deal mostly with inertial e�ects. A dimensionless parameter called the
Reynolds number may help one to make a quantitative classi�cation for the
terms �viscous dominant� and �inertial dominant�. This quantity is de�ned
as

Re =
U∗ l∗

ν∗
(1.1)

where U∗, l∗, and ν∗ are the characteristic velocity, the characteristic length,
and the kinematic viscosity of the surrounding �uid. In the case of a swim-
ming organism, U∗ can be taken as the swimming speed of the corresponding
organism while l∗ can be taken as the body length. For small Reynolds num-
ber, that is Re≪ 1, the viscous e�ect determines the forces involved. On the
contrary for large Reynolds number, that is Re ≫ 1, the inertia dominates.
Thus, the swimming mechanisms are also di�erent. Some organisms, how-
ever, operates in an intermediate range. Daniel et al. (1992) referred to the
range 1 < Re < 103 as the intermediate range in which the hydrodynamics can
be in�uenced by both viscous and inertial e�ects. Further studies are needed
for this regime since there is no clear boundaries between this regime and
the other two regimes. Reynolds number regimes from three di�erent sources
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Swimming modes of aquatic animals Introduction

Figure 1.1: Hydrodynamics regime in terms of Reynolds number. V and I
stand for �Viscous� and �Inertial� respectively.

are shown in �gure 1.1. By examining the changes of inertial drag coe�cient
and viscous drag coe�cient of anchovy following their growth, Weihs (1980)
proposed that in larval stage, anchovy swim in viscous regime of Re < 10

while in adult stage, they swim in an inertial regime of Re > 200. McHenry
and Lauder (2005) de�ned the viscous regime as Re < 300 and the inertial
regime as Re > 1000 by examining �dead� drag of various zebra�sh (Danio
Rerio) ranging from larvae to adult �sh.

However, one should note that although this classi�cation is useful in
order to obtain a general idea about the regime of a swimming organism, it
does not provide a detailed physical descriptions of swimming hydrodynamics
since viscous e�ects still contribute in inertial regime, for example in the
boundary layer, which is crucial for drag and wake development.

Besides the �ow regime in which aquatic animals operate, it is also impor-
tant to know how they produce thrust forces, that is the mechanism of active
swimming. This is very important since it determines the �ow regime, how to
approximate forces involved, energetic cost, wake dynamics, etc. In terms of
swimming kinematics, aquatic animals employ very diverse modes. Based on
the parts of body involved in propulsion, swimming mode have been divided
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Introduction Swimming modes of aquatic animals

Figure 1.2: Classi�cations of swimming modes for family of �sh taken from
Sfakiotakis et al. (1999). (a) Body/caudal �n (BCF) class and (b) me-
dian/paired �n (MPF) class.

into three classes which are �body and/or caudal �n� (BCF) propulsion, �me-
dian and/or paired �n� (MPF) propulsion, and jet propulsion (squids, jelly
�sh). The majority of �sh use BCF propulsion (Videler, 1993; Borazjani
and Sotiropoulos, 2009; Sfakiotakis et al., 1999). Based on the movement of
body parts imposed by the swimmer, one may identify two di�erent swim-
ming styles: undulatory and oscillatory motion. In undulatory motion, a
swimming organism bends its body to create backward moving wave along
its body to produce propulsion. In oscillatory motion, �sh impose a back-
and-forth motion of its propellers (can be the caudal or pectoral �ns). These
classi�cations are summarised in �gure 1.2. One should note that �sh, or
aquatic animal in general, may employ more than one swimming mode dur-
ing their lifetime or throughout their daily activities (unsteady swimming,
cruising, and manoeuvring). The swimming mode likely determines their
body morphology since form and function are probably correlated. Further
description on functional morphology for swimming can be found in Webb
(1984), Lindsey (1978), and Helfman et al. (2009).

The term anguiliform in �gure 1.2 was named after the eel (anguilla
genus). Eel is a slender �sh which creates body waves moving backward
with small increase in amplitude to propel forward. This swimming mode is
also employed by larvae such as ascidian larvae (McHenry et al., 2003) and
microorganisms which operates in the low Reynolds number regime (Azuma,
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Forces in swimming Introduction

1992). Ostraciiform, named after the ostraciidae family (box�sh), is a mode
of swimming in which only the tail is used to produce propulsion. This mode,
unlike anguiliform swimming, seems to be useless for swimming in crowded
environment (for example in the presence of surrounding corals) but is very
useful at maintaining motion against currents. Fish, such as tuna, employ the
thunniform mode (named after thunnus genera) which is considered as the
most e�cient locomotion mode that allows tuna to maintain relatively high
swimming speed for long periods (Sfakiotakis et al., 1999) which is useful for
migration. Amongst these di�erent modes of swimming which involve body
bending, anguiliform is supposed to be the least e�cient compared to the
rest since it has more moving anterior part which also contributes to more
drag generation and therefore more waste of energy. One may consider to
visit several literatures (Helfman et al. (2009), Vogel (1994), Lindsey 1978)
for extended description over these broad range of swimming modes.

1.2 Forces in swimming

1.2.1 Theoretical approaches

Despite the di�erent modes employed by swimming animals, all have some-
thing in common: an organism must generate thrust to overcome drag in
order to propel through �uid. Here, we summarise the forces involved in
swimming and how they are estimated both experimentally and theoretically.
In the framework of continuum mechanics, the behaviour of an incompress-
ible Newtonian �uid is described by the Navier-Stokes equations

( ∂
∂t∗
+ u∗ ⋅ ∇∗)u∗ = −∇∗p∗

ρ∗
+ ν∗∇∗

2
u∗ , (1.2)

∇
∗
⋅ u∗ = 0 , (1.3)

where u∗ and p∗ are respectively the velocity and pressure �eld of the �uid
having density ρ∗ and kinematic viscosity ν∗. Boundary and initial conditions
are then assigned depending on the problem under consideration. By solving
(1.2) and (1.3) to obtain (u∗, p∗), one can then obtain obtain the force F∗

and torque L∗ acting on a body submerged in the �uid by integrating all
forces and torques along the surface of the body as the following

F∗(t∗) =∬
S∗

τ
∗
⋅ n∗ dS∗ , (1.4)

L∗(t∗) =∬
S∗

x∗ × (τ ∗ ⋅ n∗) dS∗ , (1.5)
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Introduction Theoretical approaches

Figure 1.3: Forces interaction between �uid and swimmer.

where τ
∗ is the stress tensor given by τ

∗
= −p∗I + η∗ (∇∗u∗ + (∇∗u∗)⊺) with

η∗ the dynamic viscosity. From (1.4) one can de�ne the terms �form (or
pressure) drag� and �skin friction�. Form drag is given by the normal com-
ponents of F∗(t∗) projected in the direction opposite to swimming motion.
Note however that, when the body is moving, form drag and thrust forces
cannot be easily separated since they both originate from normal forces. Skin
friction, on the other hand, is given by the parallel components of F∗(t∗), i.e.
by integration of the shear stress distribution along the surface of the body.

As mentioned before, an aquatic organism activates various portions of
its body when swimming. This activation being itself dependent on the
body deformation and motion, there is a strong interaction between the body
movement and the surrounding �uid. For instance, in the inertial regime, the
body movement will transfer momentum and displace certain amount of mass
of the surrounding �uid. Inertia implies opposite reaction from �uid to the
body and thus pushes the body into movement. This reaction of the �uid is
called thrust. Force interactions between �uid and swimmer is illustrated in
�gure 1.3.

Mathematical models have been developed to �nd analytical expressions
of the forces produced by body deformations. Lighthill (1960) considered
the case of slender �sh in the framework of inviscid �ow (known as the
elongated-body theory) where the �ow consists of the steady �ow in the
vicinity of a stretched straight body and the �ow due to the displacement of
the body cross-section from its straight position from which mean thrust can
be inferred. The variation of the body cross-section is however gradual and
smooth giving no possibility for vortex separation but at the end section of the
body. As an improvement, Lighthill (1970) took into account large-amplitude
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deformations of the body (large amplitude elongated-body theory). A more
general case was addressed by Wu (1971) where the cross section was taken
as a lenticular cross section with pointed edges shedding vorticity along the
slender body. Candelier et al. (2011) extended the large amplitude elongated-
body theory to arbitrary complex three-dimensional motions.

Since Lighthill's elongated-body theory considers the inertial �ow regime
where the body parts interact in reactive manner (by Newton's 3rd law of mo-
tion) with the surrounding �uid by pushing away a certain mass of �uid, this
theory is termed as reactive theory. For animal swimming at low Reynolds
number, the viscous e�ect is however dominant. An early study in the viscous
regime was performed by Taylor (1951). By imposing undulatory motion on
a sheet, he demonstrated that a propulsive tail animated with a backward
propagating bending wave can push a body forward even in the absence
of inertial e�ect. He also extended this concept in the case of two bodies
swimming side by side. Various hydrodynamic models for di�erent Reynolds
number regime and di�erent modes of swimming are summarised in �gure 1.4
taken from Lighthill (1975).

1.2.2 Experimental measurements

Motivated by the ability to determine energetic costs and e�ciency of swim-
ming, methods for force measurement have been developed through several
studies. Examining steadily swimming �sh and assuming that thrust and
drag have to balance each other, approximation of swimming e�ciency, the
Froude e�ciency, can be calculated by the ratio of useful power (thrust times
velocity) and input power (Lighthill, 1970). It is however di�cult to measure
either thrust or power output in real �sh (Webb, 1971).

On the contrary, the measurement of drag appears to be easier. Earlier
methods involve measurements of �dead body� drag, that is assuming that
drag of a swimming organism can be approached by drag of a rigid body.
Doing so, contributions from body movements are indeed neglected. Usually,
freshly killed or anaesthetised �sh are used in dead body drag measurements.
Dead drag measurements can also be performed by using a technique called
the terminal velocity technique, this technique consists of dropping dead �sh
in a large vertical water container until it reaches terminal velocity, the falling
�sh is then �lmed with a grid on the background so distance in time can be
determined (e.g. Richardson, 1936; Blake 1979). Other dead drag measure-
ments consists of placing dead �sh in a water tunnel as performed by Brett
(1963) or by towing experiments. Towing experiments is reported to give
highest drag coe�cients (Kent et al. 1961). Although for most cases the
results deviates from theoretical models, it provides good estimations for low
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Figure 1.4: Hydrodynamic models with their corresponding swimming modes
by Lighthill (1975).
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speeds and is consistent with drag estimated during deceleration. Possible
errors may arise from neglecting the active parts of �sh such as undulating
body and �apping �ns which can contribute in drag or thrust generation.
Webb (1971) investigated drag and thrust of rainbow trout by cleverly plac-
ing additional drag loads on the �sh in order to obtain frequency and tail
beat amplitude variation from which swimming speed and thus drag could
be inferred. A di�erent method, which exploits the use of accelerometers
planted in the �sh body of 1 cm depth, was performed by Dubois and Ogilvy
(1978). This allowed them to deduce forces from the body acceleration. They
also used pressure transducers attached to the two sides of the caudal �n's
upper part which allow them to perform both lateral and forward forces
measurement on the tail. The illustration of the experimental setup and the
measurement results are given in �gure 1.5.

More convincing attempts to estimate forces in swimming have also been
done by means of visualisations and analysis of the wake structure behind a
swimming organism, since downstream vortex shedding is a result of momen-
tum transfer to the �uid. This can be performed on live �sh. A moving part
of the swimming organism applies contact forces given by ∫ τ ∗ ⋅n∗dS∗ to its
neighbouring �uid element which is equal to ∫ (∇ ⋅ τ ∗)dV ∗ where τ

∗ is the
stress tensor, while dS∗ and dV ∗ are the surface area and the volume of the
�uid element. Since the rate of change of momentum (of the �uid element) is
∫ (∂/∂t∗ + u∗ ⋅ ∇)u∗ρ∗dV ∗ and considering that the �uid element undergoes
body forces of ∫ a∗ρ∗dV ∗ where a∗ corresponds to acceleration due to body
force (e.g. gravitational acceleration), then the momentum balance for the
�uid element is given by

∫ ( ∂
∂t∗
+ u∗ ⋅ ∇)u∗ρ∗dV ∗ = ∫ a∗ρ∗dV ∗ +∫ (∇ ⋅ τ ∗)dV ∗ (1.6)

which governs the �uid motion because of the momentum transfer. There-
fore, the wake structure may give hints on the kinematics of the body that
produces the wake. This was demonstrated by Godoy-Diana et al. (2008):
they showed that frequency and amplitude of a �apping foil, as parameters
of the foil kinematics, may determine the type of wakes generated. Consid-
ering di�erent values of frequency and amplitude, they obtained the �apping
frequency-amplitude phase diagram, which allows one to identify the transi-
tion from the Bénard-von Kármán vortex street to the reversed Bénard-von
Kármán vortex street and the transition from drag to thrust generating kine-
matics.

Some studies used dyes as �ow marker to visualise the boundary layer on
swimming �sh and determine whether there exists boundary layer separation
or not in order to have insight into the magnitude of drag which could not
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Figure 1.5: Schematic view of the measurement apparatus mounted on a
blue�sh and the measurements of pressures on the tail, lateral and forward
accelerations. Two pressure gauges (for measuring forces) mounted on an
Aluminium plate are attached on the right (PR) and left (PL) side of the upper
caudal �n and are connected to the three wire leads (W ) by compensating
resistors (C) and epoxy coated juctions in heat shrink tubing (J). Forward
(AF ) and lateral (AL) accelerometers are placed in front of the anterior dorsal
�n of the �sh. Following the notation used in Dubois and Ogilvy (1978), the
forward force of the tail is calculated by F = (PR − PL)A sin θ where A is
the area of the tail, (PR − PL) is the pressure di�erence, and θ is the angle
between the tail and the �ow. This �gure is taken from Dubois and Ogilvy
(1978).
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be measured accurately in some cases by the dead drag approaches. Par-
ticle image velocimetry (PIV) have been used to construct wake structures
(Müller et al., 1997; Lauder and Drucker, 2002; Fish et al., 2014) as well as
the boundary layer around �sh body (Anderson et al., 2001). Force in the
wake can be calculated from this velocity �eld by considering three di�er-
ent orientations of the laser sheet to obtain the three velocity components
(Drucker and Lauder, 1999). Images from these three di�erent light sheet
orientations are not taken simultaneously for several planar sections from the
�n base to the �n tip. Taking the images nonsimultaneously is accompanied
by an assumption that there is a low variation of �n stroke. Propulsive forces
calculated from velocity �eld produced by the digital PIV are then compared
with total body drag and weight obtained empirically. In their study, body
drag is measured via towing experiment.

This standard PIV technique has recently been extended to volumetric
imaging which is capable of measuring the three dimensional wake structure
produced by a swimming �sh (for instance in Drucker and Lauder (1999)).
However, constructing three dimensional wake structure from sequential two
dimensional PIV image still needs improvement. Nauen and Lauder (2002)
used a stereoscopic digital PIV instead by using two cameras with di�erent
angle of view to produce two simultaneous image recordings with one single
laser light sheet. This method allows one to recover the three velocity com-
ponents. This stereo imaging is used to study wake structure produced by
a freely swimming salmoniform �sh such as rainbow trout. They reported
that the wake produced by the rainbow trout has a strong oscillating jet with
large lateral component as the rainbow trout swam in steady motion (shown
in �gure 1.6).

Flammang et al. (2011) performed also volumetric imaging technique to
construct instantaneous three dimensional structures of the wake behind a
freely swimming �sh. This technique consists of seeding 50 µm plastic tracer
particles in the �ow to be visualised. 3-components velocimetry is then
achieved by tracking particle positions between two laser pulses. This volu-
metric method is capable of capturing vortical wakes produced by the �ns of
freely swimming bluegill sun�sh eliminating the need to record multiple two
dimensional planar �elds (Drucker and Lauder, 1999).

The idea of having better techniques, which are capable of constructing
instantaneous three dimensional wake structures of freely swimming �sh, is
often motivated by possible mechanisms for drag reduction. Barrett et al.
(1999) performed an experimental measurement of force and power on an
�sh-like robot having streamlined body design and actively swimming. An
illustration of the setup and the drag reduction as a function of swimming
kinematics parameters are given in �gure 1.7. A backward travelling wave
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Figure 1.6: Stereo-DPIV measurement of the wake in the immediate down-
stream of the caudal �n of a rainbow trout (Oncorhynchus mykiss) having
16.5 cm bodylength (L∗) swimming at 1.2 L∗/s. The coordinates x, y, and
z correspond to the streamwise, vertical, and lateral directions respectively.
Here, the lateral component of the wake is 10-60% greater in magnitude
with respect to the streamwise velocity component. This �gure is taken from
Nauen and Lauder (2002).
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is imposed on the �sh-like body (robotic �sh-like mechanism with �exible
skin covering the body and equipped with a tail �n) with smoothly vary-
ing amplitude from the head to the tail. The structure of the outer part
of the �sh-like mechanism at rest is an exact replica of blue�n tuna. They
showed that the power requirement for propulsion is reduced and is signi�-
cantly smaller than the power requirement on towed rigid body for a same
value of forward velocity. They also showed that phase velocity of the back-
ward travelling wave imposed on the body should necessarily be greater than
the forward movement speed suggesting that a controlled lateral movement of
body parts during propulsion serves a great deal in reducing drag. Swimming
�sh is expected to employ drag reduction mechanisms based on the observa-
tion of certain behaviour of �sh such as long distance migration and the need
to reach high speed within short periods (for instance to catch prey) as part
of survival needs. Several drag reduction mechanisms have been proposed
(see for instance Fish (2006)).

Fish streamlined body design has the advantage of minimizing pressure
drag. Drag can also be reduced by minimizing the portion of body involved
in thrust generation and thus reducing the amount of lateral movement.
Lateral movements reduce the boundary layer thickness resulting in sharper
velocity gradients and consequently larger skin friction. This argument is
supported by the observation that fastest swimmers use only caudal peduncle
and caudal �n to produce propulsion while the rest of the anterior part is
held still (Bone and Moore, 2008).

Another proposed mechanism for drag reduction is based on the following
idea: drag can be reduced by maintaining laminar �ow since drag of laminar
boundary layer is smaller than drag of turbulent boundary layer (Barrett
et al., 1999). It is suggested that �sh, especially in the case of large or
fast swimming �sh, have a mechanism to control boundary layer over the
body, since for large or fast swimming �sh, the boundary layer can be highly
turbulent. Certain �sh such as sharks have dermal denticle parallel to the
�ow across their skin which can reduce microturbulence and thus preventing
laminar-turbulent transition of boundary layer to exist at the anterior part
of the body. Barracuda and many other �sh control the boundary layer
by secretion of mucus containing long chain polymer that can stabilize the
turbulent boundary layer and again delay boundary layer separation. It
should be noted that boundary layer separation should be avoided in order
to prevent pressure drag build up which resist the propulsion greatly.

Other �sh, however, are observed to have mechanisms that trigger transi-
tion to turbulent boundary layer and maintain it. The advantage of turbulent
boundary layer is that it is less sensitive to disturbance and it may delay sep-
aration as it is the case for the so-called �drag crisis� of a sphere (Lautrup,
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Figure 1.7: Schematic view of the �sh-like robot tethered to a carriage along
with the results showing drag reduction in self-propulsion as a percentage of
rigid-body drag with respect to tail phase angle, tail angle of attack, backbone
wavelength, total tail lateral excursion, and Strouhal number. This �gure is
taken from Barrett et al. (1999).

31



Experimental measurements Introduction

Figure 1.8: Illustration of ctenoid scales (CT) on the surface of �sh body
which used as vortex generators. They facilitate the transition from laminar
to turbulent boundary layer and thus the drag crisis may occur at lower
Reynolds number compare to smooth surface. This �gure is taken from
Bone and Moore (2008).

2011). It may also be more favourable for certain �sh to have higher drag
caused by turbulent boundary layer rather than having pressure drag by
boundary separation. For those �sh, boundary layer separation is more likely
to happen at higher Reynolds number so they have body parts that may help
them induce turbulent boundary layer and maintain it such as the idea of
vortex generator in terms of ctenoid scales (Bone and Moore, 2008) as shown
in �gure 1.8. This conjecture still needs to be proven however. More com-
prehensive description of these mechanisms and other proposed mechanisms
can be found in Bone and Moore (2008) and Bone (1975).

Other proposed mechanisms of drag reduction are related to �sh be-
haviour, for instance schooling. Some �sh tend to swim in group of similar
body size. Each individual is then likely to take advantage of the energy of
the wakes shed by its neighbours in a similar way as �drafting� is used by
cyclists (see for instance Morrison (2013)). This behaviour can reduce drag
forces. Other behaviour including smaller �sh swimming nearby a bigger �sh
is also suggested as a drag reduction mechanism with the same idea of prof-
iting from hydrodynamic interactions. It has also been proposed that drag is
not reduced by �sh, but on the contrary enhanced by the swimming motion.
This is the Bone-Lighthill hypothesis (Lighthill, 1971).
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1.3 Wake behind swimming body

Numerous undulatory swimming animals such as tuna, salmons, and ceta-
ceans produce thrust with their caudal �ns, while the anterior part of their
body remains almost rigid (Lauder and Tytell, 2005). Motivated by applica-
tions to arti�cial propellers, these caudal �ns have inspired studies on thrust
generation by oscillating rigid foils (Freymouth, 1988; Koochesfahani, 1989;
Schouveiler et al., 2005; Godoy-Diana et al., 2008), and oscillating �exible
foils (Moored et al., 2012; Alben et al., 2012; Dewey et al., 2013; Quinn et al.,
2014; Paraz et al., 2016).

The study of Koochesfahani (1989) is of interest since it inspired the
idea of �wake resonance� (Triantafyllou et al., 1993) discussed below: beat
frequency of oscillating foil should be tuned to the frequency of the most
unstable mode of the wake instability to maximise e�ciency. In this study,
the vortical �ow patterns produced by a pitching foil have been investigated
with �ow visualisation by injecting dye in the �ow. Both sinusoidal and non-
sinusoidal oscillations have been imposed to the foil. Mean velocity pro�le
is constructed with a laser Doppler velocimetry apparatus in order to inves-
tigate whether the oscillation of the foil is drag producing or rather thrust
producing for di�erent frequencies and amplitudes of oscillation. It was also
shown that the wake structure can be signi�cantly altered by the choice of fre-
quency, amplitude, and form of oscillation imposed on the foil. For instance,
for a sinusoidal oscillation, a small frequency of oscillation gives a velocity
de�cit in the mean wake pro�le, while high frequency of oscillation gives a
velocity excess. It could then be concluded that for frequency higher than a
certain threshold, the jet with velocity excess is related to thrust-generating
foil. It was also shown that for a value of frequency near the threshold, the
wake has neither momentum de�cit nor excess, that is the velocity pro�le is
nearly uniform and the velocity gradient is nearly zero, which indicates that
the wake has no momentum. In this case, the wake structure is neither a
Bénard-von Kármán vortex street nor a reversed Bénard-von Kármán one,
but is in the form of well-aligned alternating vortices. This is shown in �gure
1.9

In these studies of oscillationg rigid foil, the thrust production and the
propulsion e�ciency are often linked to the characteristics of the wake, with
the idea that most of the dynamical information is contained in the �sh
�footprint� (Müller et al., 1997). Investigation of the wake via visualisation
and construction of the velocity �eld by means of particle image velocimetry
on an undulatory swimmer, mullet in their case, allowed the authors to infer
quantitative description of vorticity and momentum shed in the wake by
the swimmer, which therefore allowed them to estimate the energetic cost.
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(a)

(b)

Figure 1.9: (a)Mean velocity pro�les in the wake of an oscillating foil with a
maximum angel of 2 degree sampled at distance-chord length ratio of x/L = 1.
(b) Vortex pattern of an airfoil pitching sinusoidally at frequency of 4 Hz and
angle of attack of 4 deg, at which the wake has neither a momentum de�cit
nor excess. Both pictures are taken from Koochesfahani (1989).
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This analysis by Müller et al. (1997) on body kinematic and vortical �ow
pattern indicated an undulatory pumping mechanism during half-cycle of
the tail (one stroke) by forming a vortex �ow near the in�ection point of the
undulating body via suction and pressure �ows. This vortex is shed when the
in�ection point reaches the tip of the tail (when the tail reaches its maximum
stroke amplitude). As the stroke changes direction, a new opposite vortex
build up takes place at the opposite side of the vortex about to be shed.
Therefore a vortex ring is formed at each half-stroke.

The question of whether the oscillating frequency of a foil, or in the
context of �sh swimming the tailbeat frequency, is somehow related to the
wake instability frequency has �rst been addressed by Triantafyllou et al.
(1993). In their seminal paper, they considered the stability of the average
experimental �ow behind a pitching foil as reported by Koochesfahani (1989).
A local linear stability analysis is performed by using the average thrust
pro�le as a base pro�le to show that this pro�le is convectively unstable. They
argued that, since thrust is obtained above a certain frequency threshold
with the generation of a wake pattern in the form of a reversed Bénard-
von Kármán vortex street, then the frequencies of the most unstable mode
in the wake must be related to maximum e�ciency of thrust production.
The dimensionless parameter related to frequency is the Strouhal number,
St = f∗A∗/U∗, with f∗ the oscillating frequency, U∗ the �ow velocity, and
A∗ the width of the wake, taken to be the peak-to-peak amplitude of the
foil trailing edge. From linear stability analyses, they found that the jet
wake pro�le is likely to behave as a noise ampli�er when excited close to the
resonance frequency and the maximum ampli�cation is obtained for St = 0.25.
This value is compared with various Strouhal number from several �sh and
cetaceans, from which they conclude that optimal e�ciency (and therefore
the maximum ampli�cation of perturbation in wake) is obtained when the
Strouhal number falls within the range of 0.25 < St < 0.35 (see also Huerre
and Monkewitz (1990)).

Studying experimentally rigid foils activated in pitch and heave, Tri-
antafyllou et al. (1993), and later Schouveiler et al. (2005), also showed that
the Froude e�ciency (i.e. the ratio between thrust power and input power)
reaches a maximum within the same range of Strouhal number. They argued
that swimming performance is intimately linked to the characteristics of the
wake instability. Similar correlations between the �apping frequency and
the frequency associated with the maximum ampli�cation of the jet wake
have also been reported in numerical simulations (e.g. Lewin and Haj-Hariri
(2003)). It has also been claimed that swimming animals bene�t from this
e�ciency peak by swimming within the same range of Strouhal number:
0.25 < St < 0.35 (Triantafyllou et al., 1993; Taylor et al., 2003), although this
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argument is still debated today (Eloy, 2012; van Leeuwen et al., 2015).
More recently this so-called �wake resonance theory� has been reexam-

ined by Moored et al. (2012, 2014), who performed stability analyses on av-
eraged experimental pro�les using a locally parallel �ow assumption. They
concluded that not only one but multiple local maximal e�ciencies can be
achieved, where each local maximum corresponds to a frequency of a di�er-
ent unstable mode of the average wake pro�le. They also extended the wake
resonance theory to �exible propulsor suggesting that aquatic animal may be
able to achieve peak e�ciency with the same mechanism, even with �exible
appendage. However, despite correlations between these two frequencies, the
causal link between the stability properties of the averaged wake pro�le and
the swimming performances has proved di�cult to establish so far. In partic-
ular, one can argue that the wake instability does not a�ect the momentum
in the wake and therefore will not enhance thrust production.

It should be noted that the wake resonance theory is based on a simplify-
ing assumption: both the stability analysis and the experimental studies on
pitching only consider the wake generated by a thrust-producing foil while
most �shes or aquatic animals have both thrust generating parts and rigid
parts that contribute to drag. Some of them even have thrust and drag in-
termingled: most body parts produce both thrust and drag simultaneously
(for instance in the case of anguiliform swimmers). Therefore wake reso-
nance theory neglects the in�uence of the rest of the body. Yet, when a
self-propelled body swims at constant speed, thrust and drag over the body
balance on average, and the wake produced behind such a body has no net
momentum.

Considering that the features of wakes behind swimming bodies can be
reduced to a combination of spatially localised forces acting on the �uid,
a family of momentumless wakes has been proposed by Afanasyev (2004).
It is worth mentioning that such consideration may be applicable for the
case of small �sh and insects or for even more smaller organisms such as
microorganisms. In this work, the �ow induced by non-translating impulsive
localised forces described, for instance, by Cantwell (1986) is generalised to
the case of forces translating at constant velocity acting continuously on the
�uid. In this consideration, drag and thrust form a force doublet. When
a doublet of such translating forces is considered, a family of momentum-
less wakes parametrised by the intensity of the force doublet, the swimming
velocity, and the Reynolds number is obtained (�gure 1.10). The objective
of the present work is to address the stability of such momentumless wakes.
Firstly, we describe the doublet model proposed by Afanasyev (2004) in chap-
ter 2. Secondly, we examine the local stability analysis from which we may
obtain the stability diagram on the parameter space of the momentumless
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Figure 1.10: Illustration of development of wake produced by a force doublet
Q∗ acting continuously in time on a uniform �ow velocity U∗. The wake
width increases further downstream while the amplitude variation decreases
showing the e�ect of viscous di�usion in the �ow.

wake in chapter 3. Thirdly, we address its stability globally in both linear
and nonlinear case also in chapter 3. Finally in chapter 4, we discuss the
relation between the stability results with possible application in swimming
of animals in.
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Chapter 2

Family of momentumless wakes

Studies concerning wakes produced by self-propelled bodies have been moti-
vated by applications to the design and the detection of man-made vehicle
and �sh robot. Schooley and Stewart (1963) studied experimentally the tur-
bulent wake produced by a self-propelled body (represented by a tube having
permanent-magnet-�eld motor) in a strati�ed �uid. More recently, Voro-
payev et al. (2007) used a radio-controlled submarine model to represent a
momentum source moving through strati�ed �uid in order to study the prop-
agation of momentum disturbance in the presence of buoyancy force. Meu-
nier and Spedding (2006) performed an experimental study on the wake of a
blu� body towed in a linearly strati�ed �uid. In this study, they considered
three di�erent wake regimes, which are a wake with strong momentum �ux,
vanishing momentum �ux, and zero momentum �ux. When a self-propelled
body is moving steadily, that is with a constant velocity, drag exerted on
the body and thrust must be in balance resulting in a momentumless wake.
Meunier and Spedding (2006) showed that small deviations from momen-
tumless (small momentum wake), can cause the expected behaviour to be
qualitatively di�erent from momentumless wake, suggesting that having a
momentumless wake is practically rare.

Afanasyev and Korabel (2006) performed an experimental study on a
translating force singlet and force doublet in �uid for a moderate Reynolds
number. In their study, the forcing is generated electromagnetically. Perma-
nent magnets (one magnet for single force and two magnets for force doublet)
are translated near the surface of �uid having two layers of salt water with
di�erent concentrations. Electric current is then imposed in the �uid. The
interaction between magnetic �eld produced by each magnet gives a local
force as a consequence of Lorentz interaction between moving charged parti-
cles and the magnetic �eld. By this experiment they were able to recover a
quantitative similarity between the �ow of single force and �ow around cylin-
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der. They were also able to recover the reversed Bénard-von Kármán vortex
street (typical for a self-propelled object). The case of localised forcing was
studied experimentally by Voropayev and Smirnov (2003) in which the lo-
calised force was represented by a moving jet. The size of the jet source is of
0.12 cm in diameter which can be considered as point-like momentum source
compared to the size of the experimental setup (a long rectangular water tank
of 30× 40× 400 cm3). Although, both studies stated the importance of body
size in the characteristics of vortex formation behind the body, Voropayev
and Smirnov (2003) however concluded that localised momentum source may
generate a similar vortex structures (both qualitatively and quantitatively)
as a �nite body size source in the far �eld.

2.1 Point-like forcing

An asymptotic model of momentumless wake in the moderately low Reynolds
number regime (without turbulence) is given by Afanasyev (2004) based on
the formulation of transient �ow produced by a moving force doublet. For a
single point force, the formulation of the �ow as an axisymmetric round jet
can be found in Sozou (1979) while a more general family of solutions (for
both three dimensional axisymmetric and planar cases) which describes the
�ow produced by a point source is described in Cantwell (1986). Note that
these single force �ow formulations are derived by considering the Stokes �ow
approximation, while boundary layer approximation of such localised forces
can be found in Smirnov and Voropayev (2003).

As already mentioned earlier, a self-propelled body moving at constant
speed experiences a drag equal and opposite to the thrust produced. Both
thrust and drag trigger a momentum transfer between the self-propelled body
and the �uid. In the �uid this momentum is evidenced by the emission of
vortex dipoles in two dimensions and vortex rings in three dimensions. If
one considers a streamwise distance of several body length (in the far �eld)
these two opposite forces can be reduced to a translating force doublet as
described by Afanasyev (2004).

In the Stokes approximation, as given by Cantwell (1986) and Afanasyev
(2004), the two-dimensional stream function of a single impulsive force lo-
cated at the origin of the coordinate system (x∗, y∗) (noting dimensional
quantities with asterisks) is

ψ∗I∗(I∗, x∗, y∗, t∗) = I∗y∗

2π (x∗2 + y∗2) (1 − exp (−ξ2)) , (2.1)
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with

ξ =

√
x∗2 + y∗2

4 ν∗t∗
, (2.2)

I∗ the impulsive force intensity ([I∗]=L3T−1) and ν∗ the kinematic viscosity.
Note that in the above equations x∗ is the streamwise coordinate while y∗

is the transverse coordinate. The stream function of two opposite forces
separated by distance ϵ∗ is

ψ∗(x∗, y∗, t∗) = ψ∗I∗(x∗ + ϵ∗/2, y∗, t∗) −ψ∗I∗(x∗ − ϵ∗/2, y∗, t∗). (2.3)

Performing Taylor's expansion in the limit ϵ∗ → 0 and neglecting second and
higher order terms, (2.3) reduces to

ψ∗M∗(M∗, x∗, y∗, t∗) = ϵ∗∂ψ∗I∗
∂x∗

=
M∗x∗y∗

π (x∗2 + y∗2)2 (1 − (1 + ξ2) exp (−ξ2)) ,
(2.4)

with M∗ ([M∗]=L4T−1) the doublet intensity

M∗
= lim

ϵ∗→0,I→∞
I∗ϵ∗. (2.5)

Since distribution of forces is not important, this limiting procedure is nec-
essary when one takes ϵ∗ → 0 in order to keep the doublet intensity �nite.

Let a force, either a single force or a force doublet, moves with a constant
speed U∗ in the negative x∗ direction. By solving the di�usion-advection
equation corresponding to the Oseen approximation, one can obtain the
stream function of a moving force with intensity J∗ ([J∗]=L3T−2) for a single
force or Q∗ ([Q∗]=L4T−2) for a force doublet

ψ∗J∗ or Q∗(x∗, y∗, t∗) = ∫ t∗

0

ψ∗I∗ or M∗(x∗ −U∗(t∗ − τ∗), y∗, t∗ − τ∗)dτ∗. (2.6)

In other words, by performing such integration in time, the impulsive force
intensities (I∗ and M∗) become continuous force intensities (J∗ and Q∗),
which start to act constantly on the �uid from time 0 to t∗. Taking the
derivative of (2.6) with respect to y∗, one obtains the expression for the
steady streamwise velocity u∗(x∗, y∗, t∗).
2.2 Pro�le non-dimensionalisation

The wake behind an object moving in a �uid is a consequence of the bound-
ary layer's development and separation along the surface of the object. At
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the rear end, the boundary layers of all sides of the body detach and the
velocity pro�le of the wake can partly be viewed as a consequence of this
detachment. By viscous di�usion, �uid elements with higher velocity trans-
fer their momentum to slower �uid, which in turn slows down faster �uid
elements. This di�usive process results in an increase width of wake and
a decrease of velocity deviations as one observes the velocity pro�le further
from the body. By imposing equilibrium of inertial and frictional forces, one
obtains that the boundary layer thickness is proportional to the square-root
of distance (in the streamwise direction).Therefore, the wake's width should
also vary proportional to the square-root of distance from the object. Since in
this case, forces distributions is not important, i.e. considering point source
forcing, the appropriate choice for characteristic length of the problem is the
wake width instead of the usual body length. Therefore, to make the problem
dimensionless, we choose the constant swimming speed U∗ as the reference
velocity, and

δ∗ =

√
ν∗x∗

U∗
, (2.7)

as the reference length, which is analogous to a boundary-layer reference
length giving Re = U∗δ∗/ν∗ as the Reynolds number.

Noting dimensionless variables without stars, the relation between dimen-
sional variables and dimensionless variable is given by

x∗ = δ∗ x y∗ = δ∗ y t∗ =
δ∗

U∗
t . (2.8)

Subtituting (2.8) into relation (2.2) one obtains

ξ =
1

2

√
Re

√
x2 + y2

t
. (2.9)

The same procedure can be performed for the streamfunction given by (2.4).
Noting that [ψ∗] = L2T −1, one then needs to make ψ∗ dimensionless by
multiplying it with 1

δ∗U
which now gives

ψ (x, y, t) = M∗xy

πU∗δ∗3 (x2 + y2)2 (1 − (1 + ξ2) e−ξ2) . (2.10)

As stated earlier, to obtain the expression for the streamwise velocity com-
ponent, one needs to perform the �rst derivative of ψ with respect to y which
will give

∂ψ

∂y
=

M∗

πU∗δ∗3
xe−ξ

2

(x2 + y2)3 ((x2 − 3y2) eξ2 − (x2 − 3y2) (1 + ξ2) + 2ξ4y2) . (2.11)
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Note that here we have

x =
x∗

δ∗
= Re =

U∗δ∗

ν∗
=

√
U∗x∗

ν∗
. (2.12)

Now, according to the expression of the streamfunction (2.6), for su�ciently
large integration time, one obtains a steady-state solution with dimension-
less streamwise velocity pro�les for the single force and force doublet given
respectively by (in the framework attached to the translating body)

uJ(Re, y) = 1 +
J

2πRe
∫
∞

0

ΦJ[Re − (t − τ), y, t − τ]dτ, (2.13)

uQ(Re, y) = 1 +
Q

πRe2
∫
∞

0

ΦQ[Re − (t − τ), y, t − τ]dτ (2.14)

with

ΦJ(Re, y, t) = e−ξ
2

(Re2 + y2)2 ((eξ2 − 1)(Re2 + y2) + 2y2(1 + ξ2 − eξ2)) , (2.15)

ΦQ(Re, y, t) = Re e−ξ
2

(Re2 + y2)3 ((Re2 − 3y2)eξ2
− (Re2 − 3y2)(1 + ξ2) + 2ξ4y2), (2.16)

and

ξ =
1

2

√
Re

√
Re2 + y2

t
. (2.17)

The dimensionless intensities of the single force and doublet are given by

J =
J∗

U∗ν∗
and Q =

Q∗

ν∗2
, (2.18)

these two quantities being connected via the doublet size ϵ∗ through

Q =
ϵ∗J∗

ν∗2
= ϵ Re J, (2.19)

where ϵ = ϵ∗/δ∗. The expression (2.14) describes a family of momentumless
wakes, parametrised by the dimensionless force doublet intensity Q and the
Reynolds number Re (Re can also be viewed as a dimensionless streamwise
distance). In the same manner, (2.13) is a family of jet wakes parametrised
by the force intensity J and Re. Figure 2.1 shows the streamwise velocity
component with respect to the transverse y-coordinate. In Chapter 3,
we will study the linear stability of the momentumless wakes with a locally
parallel �ow assumption. We will also consider a non-parallel case for global
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Figure 2.1: An example of a non-dimensionalised streamwise velocity pro�le
behind a force dipole at Re = 20 and Q = 1.9 × 105.
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Figure 2.2: An example of a non-dimensionalised lateral velocity pro�le be-
hind a force dipole at Re = 20 and Q = 1.9 × 105.
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Figure 2.3: Two dimensional vorticity �eld generated by a force doublet
situated at the origin of a Cartesian coordinate showing a quadruple vortex
pattern (x∗ and y∗ are in cm scale). This �gure is taken from Afanasyev
(2004).

considerations (in both linear and nonlinear cases) in which we also need
the lateral velocity component. Performing similar procedures as for the
streamwise velocity component, with the only di�erence is that one needs
the �rst derivative of ψ with respect to x, the lateral velocity is given by

vQ(Re, y) = − Q

πRe2
∫
∞

0

φQ[Re − (t − τ), y, t − τ]dτ, (2.20)

with

φQ(Re, y, t) = y e−ξ
2

(Re2 + y2)3 (−(3Re2 − y2)eξ2
+ (3Re2 − y2)(1 + ξ2) + 2ξ4Re2). (2.21)

Figure 2.2 shows this lateral velocity component with respect to the trans-
verse y coordinate.

It should be noted that the doublet is a positive force-dipole which induces
a �ow directed away from the doublet on x-axis, while it attracts �ow on both
its lateral sides which forms a vortex quadruple around it which is shown in
�gure 2.3. This can be thought as a typical pusher. Taking the negative sign
of doublet gives a negative force-dipole which induces a �ow attracted to the
doublet on its longitudinal direction while repelling �ow on both its lateral
side which forms also a vortex quadruple around it but in reversed sense of
the �rst one. This can be thought as typical puller.

Examples of velocity pro�les of momentumless wake for di�erent Re val-
ues are given in �gure 2.4. The wake width appears to be not varying here.
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Figure 2.4: Dimensionless wake pro�les behind a force doublet at Q = 1.52×
105 for Re = 20, red; Re = 24.5, green; Re = 28.3, light-blue; Re = 31.6,
purple.

This can be understood since the choice of characteristic length implies that
any position along the tranverse y coordinate is always normalised by the cor-
responding wake width at each streamwise distance. Variation of wake width
would be obvious when we consider the non-parallel case where the charac-
teristic length has to be chosen at a �x streamwise distance. One should note
also that the multiplication factor Q/Re2 in equation (2.14) gives di�erent
amplitude as we consider di�erent streamwise distances. Equation (2.14)
also shows that any two pro�les taken at di�erent streamwise distances (or
di�erent Re) are not self-similar. This is di�erent from the Blasius bound-
ary layer problem where the base pro�le is self-similar. Here, the maximum
and minimum values are gradually attenuated in a nontrivial way as one
considers higher value of Reynolds number, keeping dimensionless doublet
intensity constant. This is what one would expect since viscosity results in
energy dissipation as the wake travels downstream.

Both the jet and the momentumless wake pro�les are parametrised by
their impulsive force or doublet strength and Reynolds number. In chapter 3,
the stability of both wake pro�les will be investigated in this two-dimensional
parameter space. We also introduce concepts which will be useful for the
stability analysis. For the momentumless wakes, the role of these parameters
is investigated not only in the local regime but also in the global regime, in
which these parameters are replaced by the inlet parameters that controls
the stability of the global structure. The linear stability of the jet-wake
pro�les (2.13) will be considered in Chapter 5, in connection with results
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from literature and with the momentumless wake instability results.

2.3 Doublet model and swimming

In this section, we will see how we can interpret the doublet model in the
context of swimming animals. In active swimming, an aquatic organism
applies thrust to the surrounding �uid to produce propulsion, while being
subjected to the �uid drag due to its motion through �uid. The parameter Q
in this model can be regarded as a representation of the forcing being applied
to the surrounding �uid by the swimmer (see �gure 1.3). In this model, the
forcing term appears as a multiplication factor as being shown in equation
(2.14) and thus it is a major parameter which controls the magnitude of
the velocity pro�le. But how can one determine its value for a particular
swimming case?

Consider an aquatic animal of body length L∗ swimming with a constant
velocity U∗ (typically 1 to 10 L∗s−1 for �sh) when subjected to skin fric-
tion. McHenry et al. (2003) showed that for Reynolds number based on the
body length ReL∗ at the order of magnitude of 10 or less, drag is primarily
generated by skin friction. However, they also showed that the role of form
force in generating drag is increasingly important for greater ReL∗ . Here we
neglect the contribution of the form force. Now, the animal will experience
drag proportional to U∗2 which allows one to estimate the drag forces (here
we neglect the contribution of form drag to the total drag). This skin friction
drag per unit length is F ∗ ∼ ρ∗U∗2L∗Re−1/2L∗ which is a boundary-layer scaling
(Schlichting and Gersten, 2003) where ReL∗ is the Reynolds number based
on the body length. Since in constant swimming, drag is balanced by the
thrust, the thrust would have the same magnitude in the opposite direction
of this drag. Now, the doublet intensity Q∗ can be estimated as the multi-
plication of this drag force per unit density and a length (which is equivalent
to relation (2.5), that is I∗ϵ∗), which will give Q∗ ∼ U∗3/2L∗3/2ν∗1/2.

Therefore, if one has the information of typical swimming parameters,
such as the typical swimming speed and body length, or even the total drag
(or thrust) estimated from measurements, one can estimate the parameter Q,
while the Reynolds number Re (recall that this is the local Reynolds number
in the wake) is determined by choosing how far from the forcing one would
like to investigate the wake as being shown in �gure 2.5 for two cases of 1 cm
and 10 cm �sh. Figure 2.5 may help one to imagine the order of magnitude
of the parameters for other cases.

Before we go any further in addressing the stability of momentumless
wakes, other remarks should be made regarding the doublet model. Since
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Figure 2.5: Examples of the determined parameters Q and Re for 1 cm and
10 cm �sh swimming with U∗ ∼ L∗s−1.

the doublet is derived by considering the far �eld, the forcing can be regarded
as an arti�cial source situated at a certain distance in front of the actual body.
To imagine this, let us consider the case of an aquatic animal swimming by
performing tail beating movement to produce propulsion. In the viscinity of
the beating tail of the swimmer, the wake half-width should approximately
be the amplitude of the tail beating itself. However, in order to construct
a wake pro�le having half-width equals to the tailbeat amplitude, one may
consider a certain distance from the doublet, which may not be likely in the
vicinity of the doublet. Nevertheless, not every self-propulsion is produced by
tail-beating mechanism. In some other cases, such as in the case of man made
object producing propulsion with a turbine, the wake width can be narrower
suggesting a smaller distance between the arti�cial source of forcing and the
actual body. It has also been explained earlier that the doublet model is
obtained in the Oseen approximation. One may expect that the doublet
model is a good approximation for small Reynolds numbers based on the
body length. For larger ReL∗ , there is no simple wake family corresponding
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to self-propelled objects. However, one may still use the wake family obtained
in the Oseen approximation and �t any wake pro�le to �nd the corresponding
doublet intensity Q∗ and distance from the source.

Some cases relevant to the small ReL∗ limit may be worth mentioning:
swimming microorganisms (at 100 µm to 1 mm large which gives ReL∗ of the
order of 1), swimming larvae with undulating tail (where drag and thrust are
intermingled since the undulatory motion produce thrust while generating
drag at the same time), or �sh producing propulsion by using paired �n in
which thrust and drag can be produced at small distance in the anterior part
of its body.

We will revisit this applicability issue in chapter 4 when we will try to
interpret our stability results with regard to for real swimming cases by con-
sidering two examples having di�erent Reynolds regime, which are a typical
swimming of 10 cm �sh and a swimming larva.
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Chapter 3

Stability of momentumless wakes

Stability analysis can be regarded in local and global contexts. Since the
study covers both local stability analysis and the global dynamics of the
momentumless wake, we introduce some basic concepts related to stability
analysis of a �ow. Particular techniques for handling the full global dynamics
are also introduced. Applying non-dimensionalisation to the Navier-Stokes
system (1.2) by using a characteristic velocity U∗, a characteristic length l∗,
and kinematic viscosity ν∗, one has

∂Ũ

∂t
+ (Ũ ⋅ ∇)Ũ = −∇P̃ + 1

Re
∆Ũ

∇ ⋅ Ũ = 0

(3.1)

where Ũ is the velocity �eld, P̃ is the pressure �eld, and Re is the Reynolds
number. Note that the dimensionless quantities are without the asterisks
sign.

To study the linear stability of a particular �ow, one can investigate the
dynamics of a perturbation around the steady solutions of (3.1) which will
be termed as base �ow. In this study, we consider two dimensional �ow.
Suppose that one has a steady solution U(x) and P (x) of the Navier-Stokes
equation. The steady solution is not always convenient to �nd, it is sometimes
approximated by �nding a mean velocity pro�le or rather by taking limits of
particular Reynolds number regime (based on a certain characteristic length).
For instance, in our case, we construct a base �ow resulting from the Oseen
approximation. Now, by writing the total �ow as

Ũ(x, t) =U(x) + u(x, t)
P̃(x, t) = P(x) + p(x, t) , (3.2)

the dynamic around the steady solution is given by the following perturbation
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equation

∂u

∂t
+ (U ⋅ ∇)u + (u ⋅ ∇)U + (u ⋅ ∇)u = −∇p + 1

Re
∆u

∇ ⋅ u = 0 .

(3.3)

In linear stability analysis the perturbation u and p are considered to be
in�nitesimal. Thus, the term (u ⋅ ∇)u disappears resulting in the following
linear perturbation equation

∂u

∂t
+ (U ⋅ ∇)u + (u ⋅ ∇)U = −∇p + 1

Re
∆u

∇ ⋅ u = 0 .

(3.4)

3.1 Local linear stability analysis

Here we make the assumption that the �ow is locally parallel. It means
that, in the present case, at each streamwise location x∗ we consider the
base �ow as to be locally independent of x∗. The base �ow is given by
(2.14). Here the lateral velocity component (2.20) is neglected. It should be
noted that the �ow we consider, which is a momentumless wake produced
by a doublet forcing, is in fact non-parallel. Its degree of non-parallelism
will however decrease with the distance from the doublet and the locally
parallel assumption will be more relevant. The reliability of the local parallel
assumption will be visited later as we consider the �ow globally.

Now, by taking the local parallel �ow assumption, one may write the �ow
as the following

U(x) = (U(y),0) . (3.5)

We will brie�y visit the basic concept of local linear stability analysis. Subti-
tuting the basic �ow into the linear perturbation equation (3.4), one obtains
the following equations

∂u

∂t
+U

∂u

∂x
+ v

∂U

∂y
= −

∂p

∂x
+

1

Re
∆u

∂v

∂t
+U

∂v

∂x
= −

∂p

∂y
+

1

Re
∆v

∂u

∂x
+
∂v

∂y
= 0 .

(3.6)

Expressing the in�nitesimal perturbation in terms of normal modes, that is

⎛⎜⎝
u

v

p

⎞⎟⎠ =
⎛⎜⎝
û(y)
v̂(y)
p̂(y)
⎞⎟⎠ ei(αx−ωt), (3.7)
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with ω ∈ C their frequency and α ∈ R their wavenumber in the conventional
temporal theory, one obtains the following equations

[−iω + iαU − 1

Re
( ∂2
∂y2
− α2)] û = −iαp̂ − v̂ ∂U

∂y

[−iω + iαU − 1

Re
( ∂2
∂y2
− α2)] v̂ = −∂p̂

∂y

i(αû) + ∂v̂
∂y
= 0 .

(3.8)

This is equivalent to applying a Fourier transform to the linear perturbation
equations. The stability problem in terms of normal modes is to be solved
numerically (the discretisation procedure will be described later) with the
boundary conditions such that the perturbation vanishes when ∣y∣ tends to
in�nity. This gives rise to the following dispersion relation

D(α,ω(α),Re) = 0 (3.9)

as solution of a generalised large matrix eigenvalue problem. Here Reynolds
number Re appears as a control parameter. The complex frequency can be
written as ω = ωr + iωi, the �ow being unstable when ωi > 0.

3.1.1 Absolute versus convective instability

Here we visit the absolute and convective instability nature of a perturbation.
The stability problem given by (3.6) can be written formally as

L( ∂
∂x
,
∂

∂y
,
∂

∂t
,Re)u(x, y, t) = 0 . (3.10)

In general, the linear perturbation will be a wave packet triggered by an
initial condition, for instance a localised impulsive initial perturbation. We
refer to the review of Huerre and Rossi (1998) for a more comprehensive
description on the fundamental concept of absolute and convective instability.
Applying Fourier transform on (3.6) with respect to x together with Laplace
transform in time as well, the system given by (3.10) becomes the following
non-homogeneous equation

L(α,ω, y,Re)û(α,ω, y) = Ŝ(α, y) . (3.11)

where Ŝ(α, y) is the Fourier transform of an initial perturbation S(x, y).
One may imagine for instance a localised impulsive perturbation as Dirac
type impulse at t = 0.
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This system may formally be solved by introducing a Green's function and
the asymptotic behaviour is determined by the poles ω(α) of the dispersion
relation D(α,ω(α),Re) = 0, in particular those which correspond to the
most unstable modes (or the least stable ones) which will give dominant
contributions in the inverse Laplace transform. Applying the inverse Fourier
transform as well, the dominant perturbation will be in the form of a wave
packet given by

I ∼ ∫
Fα

G(α,ω(α), y,Re)ei(α(x)−ω(α)t) (3.12)

where Fα is the Fourier integral path (α ∈ R, Fα =] −∞,∞[). We emphasize
that ω(α) is such that D(α,ω(α),Re) = 0.

Introducing x = vt, one may write ei(αx−ω(α)t) ∼ eiρ(α)t where ρ(α) =
αv − ω(α). Considering the asymptotic behaviour t → ∞, evaluation of the
integral (3.12) results in

I ∼ G(α0, ω(α0), y,Re)eiρ(α0)t (3.13)

where α0 ∈ C such that

dρ

dα
(α0) = 0 which gives v =

dω

dα
(α0). (3.14)

This asymptotic expansion may be derived by the method of stationary phase
(see for instance Bender and Orszag (2013)). The time asymptotic behaviour
is therefore governed by α0 and ω0 where ω0 = ω(α0) and the ampli�cation
rate being γv = −ρi = −vα0,i + ωi(α0). Absolute instability occurs when v = 0

which corresponds to an unstable direction in the (x, t)-plane. Therefore one
looks for α0 such that

dω

dα
(α0) = 0. (3.15)

The base �ow is said to be absolutely unstable if ω0i > 0 and convectively
unstable when ω0i < 0.

Let us now summarise the stability properties of a given base pro�le (in
the framework of local stability analysis). Suppose that a system is sub-
jected to a localized impulsive initial perturbation. Considering the time-
asymptotic (t → ∞) behaviour of the perturbation, di�erent stability sit-
uations along a �xed spatio-temporal ray v = x/t are given in tabel 3.1.
According to table 3.1, a basic �ow is said to be absolutely unstable if the
impulse disturbance grows in time and spread around a point in a �xed space
coordinate where it was initially triggered. It is said to be convectively un-
stable if the impulse disturbance is convected away by the �ow so the �ow
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Stability of a system Condition

Linearly stable limt→∞u(x, t) = 0 along all rays
x/t = const.

Linearly unstable limt→∞u(x, t) = ∞ along at least
one ray x/t = const.

Linearly convectively unstable limt→∞u(x, t) = 0 along the ray
x/t = 0

Linearly absolutely unstable limt→∞u(x, t) = ∞ along the ray
x/t = 0

Table 3.1: Stability conditions of a �ow system subjected to an impulsive
initial perturbation.

relaxes to its unperturbed state at any �x point in space when t→∞ but the
disturbance grows in time as one observes its evolution in a frame moving,
for instance, with a group velocity of the convected disturbance. Graphic
representations of these di�erent stability situations is given in �gure 3.1.

Here, we brie�y illustrate the spatio-temporal stability analysis by con-
sidering the celebrated Ginzburg-Landau equation

∂u

∂t
+U

∂u

∂x
= µu +

∂2u

∂x2
− ∣u∣2u (3.16)

Although only one dimensional, this equation serves as a model having in-
gredients of �uid �ow equations with an advection term U∂u/∂x, a control
parameter µ, a di�usion terme ∂2u/∂x2, and a nonlinear term ∣u∣2u. This
equation is often used to model wide variety of physical phenomena such
as nonlinear waves, phase transition, etc. The equation (3.16) is linearised
around the trivial solution of u = 0. Now, consider an initial condition in the
form of Dirac delta function

u(x, t = 0) = δ(x). (3.17)

The Fourier transform on this function is a constant function of 1. Performing
the combined Laplace-Fourier transformation on the linearised equation one
arrives at the following expression

û =
1

−iω +Uiα + α2 − µ
(3.18)

and the dispersion relation is given by

D(ω,α) = −iω +Uiα + α2
− µ = 0. (3.19)
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Figure 3.1: Evolution of an impulse disturbance triggered at t = 0: (a)
Stable, disturbance propagates downstream while being attenuated so the
system relaxes to its unperturbed state at any point in space. (b) Convec-
tive instability, disturbance propagates downstream so for any �xed point in
space, the disturbance decays in time but grows as being observed in a mov-
ing coordinate system. (c) Absolute instability, disturbance grows in time
while being spread in space.
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One can then obtain the expression of ω as a function of α

ω(α) = Uα + i (µ − α2) . (3.20)

The �ow is unstable for µ > 0 and ∣α∣ < √µ. Looking for α0 such that
dω(α0)/dα = 0, one may perform the inverse Laplace and Fourier transform
and the following expression is obtained

u(x, t) = 1

2π
∫
∞

−∞

eiα(x−Ut)e(µ−α
2)tdα. (3.21)

The asymptotic t→∞ behaviour of this integral is given by

1

4
√
πt
eiπ/4eiρ(α0)t (3.22)

where ρ(α) = αv − ω(α), x = vt, and α0 is the value of α such that

dρ

dα
(α0) = v − dω

α
(α0) = v −U + 2iα0 = 0 . (3.23)

Maximum ampli�cation is obtained for α ∈ R such that dωi

dα
(αmax) = 0 and by

(3.20), we obtain αmax = 0 and the group velocity is given by vg = U . More
generally

α0 =
i(v −U)

2
(3.24)

and of course the ampli�cation rate (γv) is given by

−ρi(α0) = γv = (µ − (v −U)2
4

) . (3.25)

The nature of absolutely unstable dictates that v = 0 and we obtain that the
absolute frequency is given by

ω0 = i(µ − U2

4
) . (3.26)

Since the ampli�cation rate of the �ow is determined by ωi, then the �ow is
absolutely unstable if µ > U2/4 so ωi > 0 and convectively unstable if µ < U2/4
so ωi < 0.

3.1.2 Discretisation of the stability system

Spectral methods are conventionally used for discretisation of �ow stability
problem. In the class of spectral approximations, functions or solutions of a
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partial di�erential equation is approximated by a �nite series of orthogonal
functions, that is a sum of N + 1 terms of orthogonal functions fk(y) as in
the following

u(y) ≈ N

∑
k=1

akfk(y). (3.27)

Some orthogonal functions which can be chosen are the Fourier series, Bessel,
Legendre, and Chebyshev. The choice depends on the case being considered.
For example, when considering a problem with periodic domain, Fourier
series can be a good choice. Here we used the Chebyshev polynomials

When solving a partial di�erential equation, the solution can be evaluated
at speci�c points in space, that is at the interpolation points which is the
Gauss-Lobatto points. For Chebyshev polynomials which is represented as

Tk(y) = cos(k arccos(y)) (3.28)

these points are

yj = cos(jπ
N
) , j = 0,1, ...,N. (3.29)

This set of points are more concentrated near the boundary of the domain
which is [−1,1], making it suitable for certain case where details near bound-
aries are important such as boundary layer problems and con�ned �ows. The
values of derivatives of the Chebyshev polynomial at this set of points can
be obtained easily by means of matrix-vector multiplication, that is by mul-
tiplying the vector containing the values of function at the set of points by a
derivative matrix D. Fortunately, for the Chebyshev Gauss-Lobatto points,
explicit expressions for every component of the derivative matrix do exist.
For the �rst derivative, the components of the derivative matrix is given by

Dj,k =
cj(−1)j+k
ck(yj − yk) (j, k = 0,1, ..,N ; j ≠ k)

Dj,j = −
yj

1 − y2j
(j ≠ 0,N)

DN,N =
2N2 + 1

6

D0,0 = −
2N2 + 1

6

(3.30)

where

cj =

⎧⎪⎪⎨⎪⎪⎩
2, for j = 0 or j = N
1, j = 1,2, ...,N − 1.

(3.31)
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The derivative for higher order m, can be obtained by taking simply

D(m) =Dm. (3.32)

Particular care needs to be taken when using the Chebyshev collocation
method for sti� problem where the solution exhibits large variation in a
narrow region. The collocation points should be clustered carefully in the
narrow region where the large variation takes place since smoothness and
regularity of the solution to be approximated are important aspects in any
spectral method. For the Chebyshev collocation method, it is natural that
the method can nicely handle sti� problems where the large variation is
situated close to y = ±1. If however the sti� region is situated at the center
of the computational domain, one has to use a coordinate transformation to
cluster the collocation points in the region of strong variation.

A coordinate transformation in the form y = f(η) (where η is the Cheby-
shev collocation points) has to ful�ll some requirements. The �rst require-
ment is that the inversion can easily be performed. The choice of f(η) should
be chosen such that the new coordinates should represent the solution ap-
proximation better than the original one. The last requirement is, of course,
that the coordinate mapping should cluster the points yj = f(ηj) in the
narrow sti� region. Detail description of some typical mappings and the con-
siderations regarding their applicabilities are discussed in a comprehensive
manner in Peyret (2002).

In our problem, the domain is within the interval ] − ∞,∞[ in the y-
direction and signi�cant variation of the velocity pro�le under consideration
is situated around the center line (y = 0). Since we want to account both
these two constraints in our eigenvalue problem, we use the following mapping
Peyret (2002)

y =
aη√

1 + (a/H)2 − η2 , −H ≤ y ≤H, (3.33)

with η ∈ [−1,1] is now the Chebyshev collocation points.
Figure 3.2 illustrates how the distribution of points change for di�erent

values of parameter a in (3.33). It can be seen that as we increase the
value of a, the points become less clustered around y = 0. The value of
a = 1.5 appears to be appropriate to obtain a distribution of points which
concentrate near the center line of the velocity pro�le (see �gure 2.1 for an
example of a pro�le) while conveniently approximating the �ow quantities
for the rest of the domain. The parameter H has been chosen large enough
for the perturbation to vanish at y = ±H. We found that for H larger
than 30 the unstable modes could be captured accurately and in order to
guarantee the absence of �nite height e�ects we used H = 100. In order
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Figure 3.2: Distribution of points after applying the mapping (3.33) for dif-
ferent choice of a.

to guarantee the curve smoothness over the entire domain and to obtain a
good convergence, we use 1000 discretisation points. Discretisation of the
linearised Navier-Stokes system by using the Chebyshev collocation points
in y-direction results in a generalised eigenvalue problem. This generalised
eigenvalue problem can be solved by using standard method.

3.2 Local analysis of momentumless wake

In this part, we will use the momentumless wake given by (2.14) as base �ow
and examine its local stability in its parameter space of Re and Q. Using
the numerical procedure described earlier, we �rst validate the convergence
of the computed most unstable mode. The convergence of the computed
most unstable mode for varying number of discretisation points is shown in
�gure 3.3. It can be seen from �gure 3.3 that the errors for both the real
and the imaginary parts of frequency exponentially decrease as we increase
the number of the discretisation points which indicates the spectral accuracy
before they reach the limit of round-o� error for N > 500.
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Figure 3.3: The convergence of computed most unstable mode as we increase
the number of discretization in transverse y-direction forQ = 1000 andRe = 1:
(a) imaginary part of the frequency and (b) its corresponding real part show
convergency.
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Starting form temporal stability, that is for α ∈ R, one may obtain the
frequency spectrum related to the most unstable mode as shown in �gure 3.4
a for the case of Q = 105 and Re = 30 (the corresponding velocity pro�le
is shown in �gure 3.7(c)). In this case the base pro�le is unstable in the
range of 0.1 < α < 1.1. the most ampli�ed mode is given by α = 0.663,
ω = 0.698 + i0.068 and its corresponding vorticity perturbation is shown in
�gure 3.4 (b). Absolute and convective instability can be identi�ed by seeking
for what is called the absolute frequency ω0, which is the solution of the
dispersion relation, and such that dω0(α0)/dα = 0 with α0 ∈ C. This may be
achieved using the so-called cusp map procedure described in Kupfer et al.
(1987) where one evaluates the mapping of a varying path in complex α-
plane to �nd a cusp or pinch point in the ω-plane (which ful�ls the condition
dω0(α0)/dα = 0).

A systematic way to perform the cusp map procedure is as follows: �rst,
we consider the temporal stability by varying αr for αi = 0, and evaluate ω(α)
values. Then we evaluate another line with αi < 0 and compute again ω(α).
This procedure is repeated by successively decreasing αi until we �nd a cusp
as shown in �gure 3.5. Absolute instability occurs when the imaginary part
of the absolute frequency ω0,i > 0, and convective instability occurs when
ω0,i < 0. This procedure is demonstrated for the case of Re = 1 and Q = 1000.
Figure 3.5 shows that the corresponding momentumless wake is absolutely
unstable since the cusp appears on the upper half of the complex ω-plane,
i.e. for ω0,i > 0.

To �nd the transition between absolute and convective instability, we look
for wake parameters Re and Q, such that the cusp appears for real frequency,
i.e. ω0,i = 0. An example of transition from convective to absolute instability
for low Reynolds number is given by �gure 3.6, where the cusp moves from
the upper half to the lower half of the complex ω-plane. Therefore, in order
to have the stability diagram of the momentumless wake in its parameter
space (Re,Q), we located the cusp by varying Re at each value of Q. By
tracing the neutral curve and the absolute-convective transition curve to-
gether in the (Re,Q)�plane, we obtain the instability map shown in �gure
3.7(a). The (Re,Q)�plane is divided into three regions: a stable region, a
convectively unstable region, and an absolutely unstable region. As an ex-
ample, two pro�les corresponding respectively to an absolutely unstable and
a convectively unstable wake are shown in �gure 3.7(c).

For larger Reynolds numbers Re (i.e. Re ≳ 20), it is found that the
transition from absolute to convective instability occurs for Q = 18.4 Re3,
while the neutral curve satis�es Q = 35.22 Re2. In this framework of the lo-
cally parallel �ow assumption, we also obtain the dimensionless frequency at
the convective�absolute transition, which seems to converge asymptotically
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Figure 3.4: Temporal stability for the case of Q = 105 and Re = 30. (a)
Ampli�cation rate (ωi) of the most unstable mode for α ∈ R. (b) Vorticity
perturbation of the most ampli�ed mode over one wavelength with α = 0.663.
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Figure 3.5: Mapping from (a) the α-plane to (b) the ω-plane for a wake
pro�le with Re = 1 and Q = 1000 (each line corresponds to a di�erent value
of αi). This mapping shows a cusp (marked by the circle) on the upper-half
of the ω-plane, thus indicating an absolute instability.
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Figure 3.6: Absolute instability to convective instability at Q = 571.37 for
three di�erent values of Reynolds number: ♦, Re = 2.3827; ●, Re = 2.6458;
◯, Re = 2.8849.

to 0.93 as both the doublet intensity and the Reynolds number increase as
shown in �gure 3.7(b).

3.3 Global momentumless wake dynamics

Given the non-parallelism of the wakes described by (2.6), a question nat-
urally arises: are the stability predictions based on the locally parallel �ow
assumption reliable? Is it necessary to have local absolutely unstable region
in order to have a global instability (as discussed for instance in Chomaz
(2005) for open �ows problems)? To address these questions, we perform a
global linear stability analysis of the non-parallel base �ow. The nonlinear
behaviour is also visited to see how an initial perturbation evolves in the full
Navier-Stokes system.

3.3.1 Global linear stability

In the previous section, we considered the basic �ow as to be locally parallel,
even though it depends of course on both the sreamwise and cross-stream
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Figure 3.7: (a) Instability map in the Re�Q plane for a momentumless wake.
AU, CU and S stand respectively for absolutely unstable, convectively unsta-
ble and stable. (b) Dimensionless frequency ω0,r at the convective-absolute
transition. (c) Absolutely unstable pro�le for Q = 105, Re = 10 (solid line),
and convectively unstable pro�le for Q = 105, Re = 30 (dashed line). Param-
eters of the two pro�les are marked by coloured rectangles in (a).
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coordinates. We hence consider now that the base �ow is

U(x) = (U(x, y), V (x, y)) . (3.34)

The linearised Navier-Stokes system given by (3.4) can be written in the
following matrix form

Jq = B
∂q

∂t
(3.35)

where

J = [ −(U ⋅ ∇) −∇U + ∆

Re
−∇

∇⋅ 0
] , B = [ I 0

0 0
] (3.36)

where q = [u, v, p]⊺. The global stability analysis of the �ow consists of
�nding global mode solutions q̂(x, y)e−iωGt. The global stability properties
can then be categorised as linearly stable for Im(ωG) < 0 and linearly unstable
for Im(ωG) > 0.

In the case of weakly non-parallel �ows, the studies of Chomaz et al.
(1991) and Monkewitz et al. (1993) show that the presence of a �nite region
being locally absolutely unstable is a necessary condition for an unstable
global mode to arise through a continuously self-triggering perturbation (in
terms of travelling wave in both downstream and upstream direction) and the
asymptotic analysis, as demonstrated in local stability analysis, gives a good
prediction of the corresponding unstable global mode. Le Dizès et al. (1996)
and Hammond and Redekopp (1997) showed that, in the weakly non-parallel
setting, the unstable global frequency is given by the local absolute frequency
which satis�es dω/dx = 0, where x being the streamwise coordinate extended
in complex plane. It is also shown in Marquillie and Ehrenstein (2003) for
a separated boundary layer that the appearance of �nite amplitude global
mode can be predicted by applying the local absolute instability concept.

3.3.2 Matrix-free method

The attempts to study the stability of a �ow, with a strong non-parallelism,
has been increasingly progressing by the availability of more powerful com-
puter capacities. On the following, a brief discussion of a matrix-free method
is presented which is very useful from practical point of view to study the
global instability of a non-parallel �ow (see for instance Bagheri et al. (2009)).

The linearised Navier-Stokes system can be recast as

∂q

∂t
=Aq. (3.37)
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The solution at time T for any initial condition q0 can formally be written
as

q(T ) = eATq0. (3.38)

In practical �uid �ow problems, the explicit exponentiation is of course not
tractable computationally. However, the action of the exponential matrix
on the vector q0 can be computed by simply time-marching the discretised
linearised Navier-Stokes system from the initial state whatever method of
time-integration for the linearised Navier-Stokes system is used.

We are seeking for eigenvalues σ of A, or equivalently eigenvalues λ = eσT

of eAT . The time-stepping matrix free method consists precisely of computing
the signi�cant, with respect to stability, eigenvalue of eAT . One may apply
the so-called Rayleigh iteration by computing q(k+1) = eATq(k) and it is well
known that the quotient q(k+1)i /q(k)i (with q(k)i a non-zero component of q(k))
converges towards the maximum (in modulus) eigenvalue λ of eAT , which
provides the global leading stability eigenvalue

σ = (logλ)/T. (3.39)

For real operators, the standard Rayleigh iteration converges under the as-
sumption that there is one leading eigenvalue which is hence necessarily real.
However, in �uid �ow stability problems, complex leading eigenvalue are
expected and the Rayleigh iteration procedure has to be adapted.

Suppose that λ1 and λ2 are eigenvalues that form a complex conjugate
pair (λ2 = λ̄1). To obtain both the instability ampli�cation rate and the
frequency, a variant of the simple Rayleigh iteration has been considered, by
computing the coe�cients γ0,k and γ1,k for every three steps in the procedure
such that

1∣∣q(k)∣∣ (γ0,kq(k)j + γ1,kq
(k+1)
j + q

(k+2)
j ) = 0 (3.40)

(by selecting two components qj, j = j1, j2 of the vector �elds to compute
γ0,k, γ1,k). Convergence implies that γ0,k → γ0, γ1,k → γ1. The complex
conjugate pair of λ can then be obtained by solving

γ0 + γ1λ + λ
2
= 0 (3.41)

while the leading stability eigenvalue σ = σr ± iσi is calculated by using the
relation (3.39). The choice of T is important in this matter since it is related
to the oscillation of the perturbation and so the characteristic of the �ow
structure. The Nyquist criterion can give the maximum time interval between
two successive sampling, i.e. there should be at least two sampling points in
one period must be captured by the time interval (Bagheri et al., 2009). We
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will show in section 3.34 how this procedure is applied on the momentumless
wake pro�les considered in our stability problem and how this procedure
converge.

3.3.3 Numerical method

By the time-stepper procedure, recall that the exponential matrix can be ap-
proximated by simply time-marching the discretised linearised Navier-Stokes
system from an initial state. Here, we brie�y introduce the numerical method
used to solve the full Navier-Stokes system. It is documented in Marquillie
and Ehrenstein (2002) for the study of a two-dimensional boundary layer
�ow over a bump. This code was adapted to our open �ow case to study
the global stability and the nonlinear behaviour of the momentumless wake.
The streamwise direction is discretised by high order �nite di�erence schemes
(the details are given in the Appendix B), while the transverse direction is
discretised by the Chebyshev collocation method. The Chebyshev colloca-
tion approach has already been described previously. The open domain of] −∞,∞[ in y coordinate is mapped onto a �nite domain of [−1,1] by using
the same transformation given by (3.33).

A semi-implicit second-order backward Euler method is used to integrate
the Navier-Stokes system in time. The Laplacian term is taken implicitly,
whereas the nonlinear and convective terms are evaluated explicitly using a
second-order Adams-Bashforth scheme. The discretised formulation of the
linearised Navier-Stokes system is then

(∆ − 3τ)u(n+1) = Re ∇p(n+1) + f (n,n−1) (3.42)

∇ ⋅ u(n+1) = 0 (3.43)

where f (n,n−1) is given by

f (n,n−1) = −4τu(n) + τu(n−1) +Re [(U ⋅ ∇)u + (u ⋅ ∇)U](n,n−1) . (3.44)

In the above equations τ = Re/(2∆t) while the superscript (n,n−1) denotes
the explicit Adams-Bashforth time di�erencing where [⋅](n,n−1) = 2[⋅](n) −[⋅](n−1). At both inlet and outlet, the following advective boundary condition
is used

∂u

∂t
+Uad

∂u

∂X
= 0 (3.45)

in order to allow the perturbation to escape the computational domain with
Uad being a conveniently chosen convective velocity. A zero Dirichlet bound-
ary conditions are imposed at in�nity in Y -coordinate. This is to be solved
using the projection method in order to recover divergence-free velocity �eld
which is recalled in the Appendix B.
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3.3.4 Global linear stability results

For some inlet position x∗
0
, we de�ne Re0 as the Reynolds number formed

with the reference length δ∗
0
=

√
ν∗x∗

0
/U∗ at in�ow. We de�ne X as the

dimensionless (using δ∗
0
) distance from in�ow and the corresponding local

Reynolds number may be written as

Re = Re0

√
1 +

X

Re0
. (3.46)

The non-parallel evolution of the base �ow may be taken into account by
simply using (3.46) in the base-�ow (2.14) formula. The transverse coordinate
Y made dimensionless with δ∗

0
is then

Y = y

√
1 +

X

Re0
. (3.47)

The domain we consider is shown by a straight dashed line in �gure 3.8(a)
where I, II, III (corresponding to Re0 = 20,21.83,22.4 respectively) are the 3
di�erent upstream in�ow boundaries which have been used to solve the lin-
earised Navier-Stokes system, for the force doublet intensity Q0 = 1.9 × 105.
The in�ow position I has been chosen to be inside the absolutely unstable
parameter region, whereas III is inside the convectively unstable domain, II
being approximately on the absolute-convective transition boundary. In all
the computations performed the out�ow boundary corresponds to the point
IV on the dashed line. The streamwise velocity pro�les at the positions I,
III and IV are shown in �gure 3.8(b) while the streamwise velocity variation
along the centerline is shown in �gure 3.9 which illustrates the important
non-parallelism. The non-parallelism is naturally stronger for small X and
diminishes further downstream. Also, the pro�les exhibit strong variations
in Y as in the local stability which makes it necessary to use a high discreti-
sation when aiming at solving the linearised Navier-Stokes system (3.4). In
order to obtain a fully resolved �ow �eld, the transverse Y -direction is dis-
cretised with 600 points in the range −40 ≤ Y ≤ 40, which extends su�ciently
far from the region with signi�cant variations of the base �ow pro�les (cf.
�gure 3.8(b)). Note that in the direct numerical simulation the coordinate
system is now normalised by δ∗

0
. The streamwise direction is therefore dis-

cretised using ∆X = ∆x/δ∗
0
= 0.02. Since we used 2400 discretisation points

in the streamwise direction for the largest domain from I to IV, the distance
from I to IV in the direct numerical simulation coordinate system is X = 48.

The initial (divergence free) �ow �eld q(0) considered is a Gaussian func-
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Figure 3.8: (a) Set of non-parallel pro�les at Q0 = 1.9×105 on the Q-Re-plane
that ilustrates our system. I is the inlet at Re0 = 20 while IV is the outlet
at Re = 36.87. (b) Streamwise variation of the base �ow used in the direct
numerical simulation at 3 di�erent locations marked on (a).
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Figure 3.9: Variation of the streamwise velocity component and its �rst
derivative with respect to X along the centerline of the domain.

tion

(u
v
) = A( −(Y − Y0)(X −X0)σ2

Y /σ2

X

) exp( − (X −X0)2
2σ2

X

−
(Y − Y0)2

2σ2

Y

), (3.48)

centred at Y0 = 0 and located relatively close to the inlet (with X0 = 8

for the inlet at I). Note that since the initial condition is a Gaussian like
perturbation, the two parameters σX and σY controls the variance of the
perturbation in streamwise X- and cross-stream Y -direction. Since strong
�ow is expected to be in the streamwise direction, σX should be chosen as
small as possible in order to excite wider range of spatial modes. Here, we
choose σX = 0.5 and σY = 1. At outlet, the advective boundary condition
given by (B.6) has been considered. The value of Uad = 0.12 proved to be
appropriate to let the pertubation leave the domain without re�ection. Also,
the computed frequency of oscillation of the global structure appeared to
be fairly insensitive to the exact choice of Uad (the values 0.12 or 0.06 for
Uad giving the same global eigenvalue results). A zero Dirichlet boundary
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Inlet σr σi

I 0.027 0.63

II 3.82 × 10−3 0.51

III −3.57 × 10−3 0.52

Table 3.2: Global linear eigenvalue σ = σr ± σi for 3 di�erent inlets : inlet I
(Re0 = 20), inlet II (Re0 = 21.83), and inlet III (Re0 = 22.44).

condition proved to be appropriate for the inlet positions II and III since the
corresponding velocity pro�le is at the margin of local absolute instability for
position II and locally convectively unstable for position III indicating that
no upstream propagations of perturbation were encountered.

For the inlet I, inside the absolutely unstable region, upstream propagat-
ing perturbations are expected and indeed the use of a Dirichlet condition led
to spurious re�ections at in�ow and ultimately divergence was encountered.
An advective boundary condition (4.6) has therefore also been applied at
in�ow in this case, with a negative advective velocity. Given the weak ab-
solute instability, a small (in absolute value) advective velocity proved to be
suitable and Uad = −10−3 has been chosen as about the smallest value such
that no perturbation wave re�ections were encountered at in�ow. The time
interval T for the successive �ow snapshots has to be appropriately chosen
such that it satis�es the Nyquist criterion Bagheri et al. (2009), i.e. there
should be at least two sampling points in one period of oscillation. The value
T = 1.1 has been considered, which is small enough given that the period at
the absolute-convective transition is roughly 7.7.

Considering the in�ow at I, The modi�ed Rayleigh iteration is shown
to converge towards an eigenvalue pair after 300 iterations as shown in �g-
ure 3.10. The value of σr is positive and a globally unstable mode is hence
found. The real part of the eigenfunction's streamwise and cross-stream ve-
locity component in the (X,Y )�plane is shown in �gure 3.11. It is obtained
that the corresponding frequency of oscillation, given by σi = 0.63, is di�er-
ent from the frequency at the absolute�convective transition calculated by
considering the local stability analysis of the previous section. The abso-
lute frequency of the local pro�le of approximately position II (the transition
point from convective to absolute instability) is found to be σi ≈ 0.8 which
would be the expected instability frequency of the global mode if the basic
�ow were only weakly non-parallel (Chomaz, 2005). This discrepancy illus-
trates the in�uence of the base �ow's non-parallelism in the present problem.
Interestingly, for the inlet II very close to the location of the local absolute�
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Figure 3.10: Convergence towards the most unstable global mode: (a) real
part (σr = 0.027) and (b) imaginary part (σi = 0.63) of the global eigenvalue.
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Figure 3.11: Most ampli�ed global mode : real part of the streamwise and
cross-stream velocity perturbation.
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convective transition, the global mode is only weakly ampli�ed while for the
inlet III in the convectively unstable region, σr < 0 and the leading global
mode is damped. This provides evidence that the existence of a �nite region
of absolute instability is also necessary in this highly non-parallel case for a
global unstable mode to emerge.

3.4 Nonlinear disturbance evolution

The study of Marquillie and Ehrenstein (2003) showed that self-sustained
oscillation of perturbation in the case of boundary layer separation over a
double-bump structure results in the appearance of �nite amplitude global
mode, that is the global structure of the self-sustained perturbation satu-
rates to a nonlinear oscillation of a �nite amplitude. As well as the concept
of absolute and convective instability for the local linear stability, a nonlinear
instability can be either nonlinearly stable, nonlinearly convectively unstable,
and nonlinearly absolutely unstable. A �ow system is said to be nonlinearly
stable if a system undergoes a �nite initial perturbation relaxes back to its
unperturbed state everywhere in the �ow domain whatever moving frame
of observation is considered. A �ow system is said to be nonlinearly con-
vectively unstable if a system undergoes a �nite initial perturbation relaxes
ultimately back to its unperturbed state at every �xed location in the �ow
domain, while the perturbation evolves to a nonlinear saturation in a mov-
ing frame of observation being convected downstream, that is the upstream
front of the traveling wave has a positive velocity (positive in the sense of the
downstream direction). It is nonlinearly absolutely unstable if the perturba-
tion having negative upstream front velocity grows and reaches a nonlinear
saturation. A nonlinear self-sustained oscillations may be triggered by having
a �nite domain of locally absolutely unstable region. Couairon and Chomaz
(1996) demonstrate the relation between nonlinear global mode and local in-
stabilities of a basic state by considering a one dimensional Ginzburg-Landau
system in a semi-in�nite domain. They showed that a nonlinear global mode,
which a nonlinear saturated steady solution, may exist even the basic state
is stable or rather convectively unstable.

For the case of �nite region of local absolute instability in a �ow domain,
Pier and Huerre (2001) performed a study on the linear as well as the nonlin-
ear stability behaviour of a synthetic wake �ow. They showed, by examining
the associated frequency spectra of the developed self-sustained nonlinear
travelling wave at three di�erent stations in the domain, that any station
in the �ow domain is tuned to a same global fundamental frequency. While
the station closer to the absolute instability region (according to the locally
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parallel linear stability analysis) shows an almost sinusoidal time variation,
the other stations o� center situated further downstream show the excitation
of harmonics. This case demonstrate the role of locally absolute region as a
wave maker.

To asses how the global instability evolves when considering the full non-
linear Navier-Stokes equations for the present momentumless wake, the same
numerical procedure as described above has been used, only now we have the
following nonlinear Navier-Stokes equation

∂

∂t
u = − (u ⋅ ∇)u − (U ⋅ ∇)u − (u ⋅ ∇)U −∇p + 1

Re0
∇

2u , (3.49)

that is by adding the nonlinear term − (u ⋅ ∇)u to the right-hand side of the
linearised Navier stokes system. Consequently, the time integration described
in Appendix B needs to be adapted, that is the term f (n,n−1) given by relation
(B.5) becomes now

f (n,n−1) = −4τu(n) + τu(n−1) +Re [(U ⋅ ∇)u + (u ⋅ ∇)U + (u ⋅ ∇)u](n,n−1) .
(3.50)

The same Gaussian-type initial condition (3.48) is considered, choosing an
amplitude A = 10−2. The inlet corresponds to Re0 = 20 and the domain is
reaching from I to IV (cf. �gure 3.8(a)). The spatial discretizations are cho-
sen to be the same as for the global stability analysis and a semi-implicit time
marching is used. The position in space where the initial perturbation is trig-
gered is the same as in the global linear computation. In its initial stage, the
perturbation grows while spreading in the �ow domain. The initial perturba-
tion then evolves and eventually reaches a globally tuned structure having a
fundamental frequency. It has been assessed by performing additional direct
numerical simulation, that when triggering the initial perturbation right in-
side the locally absolutely unstable region, the same nonlinear structure and
fundamental frequency along with its harmonics are recovered.

The instantaneous vorticity perturbation and the total vorticity in the
fully nonlinear regime (at t = 1140) is shown in �gure 3.12 while images of in-
stantaneous streamwise and cross-stream velocity perturbation are depicted
in �gure 3.13. They show a small amplitude perturbation near the inlet
suggesting the wave maker role of the locally absolutely unstable region. In
�gure 3.12(b), alternating vortices array with upper vortices having positive
sign (counter clockwise circulation) and lower vortices having negative sign
(clockwise circulation), which is a typical wake pattern called the reversed
Bénard-von Kármán vortex street, can be observed in the second half of the
�ow domain. This is very di�erent from the resulting wake pattern in the
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Figure 3.12: Instantaneous �eld structures: (a) vorticity of the perturbation
and (b) total vorticity at t = 1140.
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Figure 3.13: Instantaneous �eld structures: (a) streamwise velocity pertur-
bation and (b) cross-stream velocity perturbation at t = 1140.
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case of velocity de�cit �ow as shown for instance in Pier & Huerre (2001)
which takes the form of a Bénard-von Kármán vortex street.

From the time evolution of the perturbation (�gure 3.14), frequency spec-
tra associated to the nonlinear dynamics can be calculated. The frequency
spectra have been computed at two di�erent locations slightly o� the cen-
terline: (X,Y ) = (20,1.06) and (X,Y ) = (40,1.06). Figure 3.15 shows that
the global nonlinear structure is tuned to a unique fundamental frequency
of σi = 0.646 (the harmonics being visible as well), which is in agreement
with the frequency of the linear global mode (with a frequency of σi = 0.63).
At a station (X,Y ) = (0.4,1.06) near the inlet, the �uctuations of the per-
turbation are however nearly sinusoidal. This can be shown by computing
its frequency spectra (given by �gure 3.16) from its time evolving pertur-
bation. It is now apparent that the global nonlinear structure in terms of
the reversed Bénard-von Kármán vortex street is determined by the imposed
locally absolutely unstable basic �ow pro�le at in�ow. Some other Navier-
Stokes computations have been performed by considering the domain's inlet
inside the convectively (according to the local stability analysis) unstable re-
gion. In these simulations no wave maker type behaviour was encountered,
the initially triggered perturbation being washed away. This clearly shows
that in the present case, an upstream �nite absolutely unstable region is
necessary for a self-sustained oscillation dynamics.

3.5 The Oseen solution

In the present analysis, the base �ow is obtained in the Stokes approxima-
tion and using the Oseen assumption. This may be debatable at �rst glance
since the underlying base �ow is not the solution to the full Navier-Stokes
equations. One may expect that the Oseen solution may undergo transient
development when it is used as an initial condition for the full Navier-Stokes
system. To assess the reliability of this approximation, the Oseen solution
has been considered as the initial condition for the full Navier-Stokes system
which has been integrated in time. The Oseen solution pro�le is held �xed
at the inlet as a Dirichlet boundary condition and at out�ow an advective
boundary condition (similar to that for the �ow perturbation in �3) is con-
sidered. It is observed that inside the domain, the Oseen solution slightly
evolves from t = 0 to t = 20 (see �gure 3.17), but then the pro�le undergoes
no signi�cant change any more until t = 165. These quasi-steady pro�les
slightly di�erent from the steady Oseen solution have been considered for
local stability computations, focusing in particular on position of absolute
to convective instability transition. This new transition is found roughly at
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Figure 3.14: Evolution of vorticity perturbation in time recorded at (a)(X,Y ) = (20,1.06) and (b) (X,Y ) = (40,1.06). Both signals exhibit the
same fundamental frequency σi = 0.646 (�gure 3.15).
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Figure 3.15: Frequency spectra of the vorticity perturbation shown in �g-
ure 3.14 for the time range 400 ≤ t ≤ 1200.

0 1 2 3 4
0

50

100

ω

0.646

Figure 3.16: Frequency spectra of vorticity perturbation for the time range
400 ≤ t ≤ 1200 recorded at (X,Y ) = (0.4,1.06). Almost no harmonic ob-
served.
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Figure 3.17: Evolution of the steady Oseen solution from t = 0 (solid line) to
a new pro�le at t = 20 (dashed line) for Re = 20.78.

Figure 3.18: Instantaneous vorticity �eld structure at t = 750.

Re = 20.8 which is quite close to the value of Re = 21.83 (cf. �gure 3.8(a))
for the pure Oseen pro�le.

Pursuing the time integration of the Navier-Stokes system where the Os-
een solution has been used as initial condition, the �ow starts to oscillate (for
t > 165) and ultimately the �ow dynamics reaches nonlinear saturation. The
vorticity pattern is shown in �gure 3.18 and the reverse von Karman vortex
street similar to �gure 3.12(b) is observed. Frequency spectra of the �ow are
depicted in �gure 3.19 which shows that the �ow is tuned to a frequency of
0.66. This frequency is close to 0.646 found in the analysis of section �4 with
the Oseen approximation as the base �ow.
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Figure 3.19: Frequency spectra of the vorticity in time recorded at two sta-
tions o�-center: (a) (X,Y ) = (30,−2.2) and (b) (X,Y ) = (40,−2.2), for the
time range 750 ≤ t ≤ 1200.
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Chapter 4

Application to swimming animals

In this part, we will see how the results we have obtained from previous chap-
ters may be put in the context of swimming animals. Firstly, we discuss the
transition from absolute to convective instability and what it implies. Two
di�erent cases with di�erent Reynolds number regime (based on the body
length) are discussed for this particular matter. Secondly, we discuss the
comparison of the present momentumless wakes with velocity excess pro�les
usually used in connection with the �wake resonance theory� (Triantafyllou
et al., 1993). The velocity excess pro�le we consider is no other than the
thrust component extracted from the momentumless wake. Then we discuss
the limit of validity of the present results by considering the doublet model
as a momentumless wake generator.

4.1 Absolute instability

Figure 3.7(a) shows that, when the force doublet intensity is large enough
(Q ≳ 100), the near wake (corresponding to small Re) is always absolutely
unstable. Moving further away from the doublet, there is �rst a transition
from absolute to convective instability, and then to stability. The existence of
an absolute region is important, because, in that case, the wake is expected
to behave like an oscillator triggering a self-sustained instability process.

To examine the consequences of the present stability analyses on a swim-
ming animal, we consider a self-propelled body of length L∗ and moving at
a constant speed U∗. In two dimensions, the skin friction drag (per unit
length) exerted on this swimmer is of the order of

F ∗ ∼ ρ∗U∗
2
L∗Re

−1/2
L∗ , (4.1)

which is nothing else than the Blasius boundary layer law (Schlichting and
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Gersten, 2003), where ReL∗ = U∗L∗/ν∗ is the Reynolds number based on
body length.

For a constant swimming speed, this drag has to be balanced by an equal
but opposite thrust. Assuming that the points of application of these two
forces are separated by a distance of order L∗, the dimensional force doublet
intensity can be estimated to be

Q∗ =
F ∗L∗

ρ∗
∼ U∗

3/2
L∗

3/2
ν∗

1/2
. (4.2)

At the transition from absolute to convective instability, recall that we found
Q = 18.4Re3 for Re > 20. By recalling that Re = U∗δ∗/ν∗ and by using the
de�nition of Q in (2.18), we can infer the following relation

δ∗ac =
0.38

U∗
(Q∗ν∗) 13 , (4.3)

which states that the value of δ∗ corresponding to the absolute�convective
transition (denoted by δ∗ac), can be estimated from Q∗, U∗ and ν∗. Following
the same line of reasoning, the neutral stability curve corresponds to Q =
35.22Re2 for Re > 10 (�gure 3.7a) and is associated to a critical δ∗ above
which the wake is stable

δ∗c =
0.17

U∗
Q∗

1

2 . (4.4)

Let us �rst consider a �sh swimming in water (ν∗ = 10−6m2 s−1) having
body length L∗ = 10 cm and moving with a velocity U∗ = L∗ s−1. Based
on (4.2), we have Q∗ ≈ 10−6m4 s−2. By substituting these values into (4.3)
and (4.4), we �nd δ∗ac = 0.38mm and δ∗c = 1.6mm. These values are far
smaller than the width of the wake right behind the beating tail or even
the tailbeat amplitude itself, which is generally about one �fth of the body
length (Videler, 1993). For a 1 cm �sh moving with U∗ = L∗ s−1 we have
Q∗ ≈ 10−9m4 s−2. Thus we obtain δ∗ac = 0.38mm (3.8% L∗) and δ∗c = 1.6mm
(5.4% L∗) which are more reasonable. This means that, for a �sh, the wake
is likely to lie entirely in the stable region as shown in �gure 4.1.

Now consider the case of a swimming ascidian larva. The hydrodynamics
of locomotion for these small swimmers has for instance been addressed in
McHenry et al. (2003), focusing in particular on the relative contribution of
viscous and inertial forces for the production of thrust and drag during steady
undulatory swimming. The larva's body is divided into a spherical trunk and
a tail with a rectangular cross section, modelling the skin friction of the trunk
using the Stokes law (Batchelor 1967), valid for very low Reynolds numbers,
the skin friction of the tail being modelled using the Blasius boundary layer
law with a correction taking into account the wall normal velocity of the
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Figure 4.1: Stability diagram for the determined parameters Q and Re for 1
cm and 10 cm �sh swimming with U∗ ∼ L∗s−1.

undulatory swimming. The authors provide evidence, that only for small
Reynolds numbers (Re∗L < 10) the drag is almost entirely due to skin friction.
However, the contribution of form drag is becoming increasingly important
as one considers cases corresponding to higher Reynolds numbers.

In McHenry et al. (2003), the model is validated by comparisons with
measurements of thrust produced by ascidian larvae of body length L∗ = 1.9
mm, the provided thrust value being approximately 6 × 10−6 N for a mean
swimming speed of about 31 mm s−1. The corresponding Reynolds is
Re∗L = 58.9 and the two-dimensional skin friction Blasius drag formula (4.1)
used here would predict a drag force (per unit length) of ∼ 2.4×10−4 N/m. Al-
though the extrapolation of a two-dimensional model to a three dimensional
body geometry is problematic, one may consider the analysis in Ehrenstein
et al. (2014), who addressed numerically the boundary layer of a periodically
�apping plate with �nite width in uniform incoming �ow, assessing the longi-
tudinal skin friction force (per unit length) expression, at the plate's section
normal to the uniform �ow, F ∗

3D = C3D

√
r < ∣U⊥∣ >ρ∗U∗2L∗Re−1/2L , with r the
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plate's width to length ratio and < ∣U⊥∣ > the mean absolute value of the
dimensionless (with the swimming speed) periodic wall-normal velocity, the
coe�cient C3D being ≈ 1.8. This expression is hence equivalent to (4.1), for
a conveniently chosen coe�cient of proportionality (assuming a simple plate
motion with a constant value < ∣U⊥∣ >).

It is however hardly possible to precisely connect this formula to the larva
case, given that in Ehrenstein et al. (2014) only simple �apping motions have
been considered and it is also questionable whether these results (obtained
for Reynolds numbers higher than 100) can be extrapolated to the present
low Reynolds number regime. Furthermore, in McHenry et al. (2003) it is
shown that for Reynolds numbers Re > 10 inertial (form) forces absent in
our model increasingly contribute to the drag. Assuming nevertheless this
drag force law and multiplying the above expression by the larva's measured
length, one gets the skin friction drag force of C4.6 × 10−7 N, which is to be
compared to the measured thrust of 6 × 10−6 N, given the uncertainty of the
value of the unknown multiplicative constant C.

Subtituting the measured larva data into formula (4.2), one �nds a value
Q∗ ≈ 4.5 × 10−10m4 s−2. Using (4.3), we then �nd δ∗ac ≈ 0.094mm and
δ∗c = 0.12mm, which correspond to about 5% and 6.3% of the body length
respectively. In this particular case, the wake is thus likely to be unstable
and there may even be an absolute-convective transition in the near wake,
provided that our model applies at least qualitatively to this swimming as-
cidian larva case. It is however unclear whether the instability properties of
the wake will a�ect the swimmer performance since the instability cannot
produce momentum.

4.2 Momentumless wake vs. jet wake

Triantafyllou et al. (1993) proposed that the swimming e�ciency of a self-
propelled body reaches a maximum when there is a resonance between the
frequency of the wake instability and the tailbeat frequency. As it has already
been noted in the introduction, the wake pro�les considered by Triantafyllou
et al. (1993) are jets with a net positive momentum. In the case of animal
swimming with constant velocity, the balance between thrust and drag results
in momentumless wakes. The separation between thrust and drag often
becomes di�cult, especially in the case of anguiliform swimmers such as
eels where almost all body parts produce drag and thrust simultaneously.

Bale et al. (2014) proposed a drag-thrust decomposition which shows that
this separation can be performed. Although Tytell and Lauder (2004) sug-
gested the idea of temporal and spatial separation of thrust and drag which
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gives zero total force on average since drag and thrust may appear to be
intermingled, the drag-thrust decomposition proposed by Bale et al. (2014)
does not rely on spatio-temporal decomposition. The idea is to separate body
movements that produce drag and those that produce thrust such that the
combination of resulting forces gives back the original observed value and
while the combination of the decomposed movements recovers the observed
movement. The proposed decomposition procedure is as follows. Suppose
that one observes a swimming body with generic wave in the form of back-
ward travelling wave of velocity cw and lateral movement velocity of U⊥ with
no amplitude variation in longitudinal direction. The body swims with a
constant velocity U . This generic wave can be decomposed into two kinds of
movement. The �rst one is the slithering movement where any point on the
body appears to follow a sinusoidal path. This movement occurs when the
the swimming velocity matches the wave velocity of the backward travelling
wave. Bale et al. (2014) used the term drag-causing slithering for this motion
since �uid is dragged forward by the lateral movement of every point on the
body. The second one is the backward frozen movement. It can be imag-
ined as the wavy body is frozen and being drifted backward with a velocity
equal to the di�erence between the velocity of the backward travelling wave
and the forward velocity of the body. This movement is apparent when the
velocity of the backward travelling wave is greater than the forward velocity
of the body. This movement is thrust-causing motion since it causes �uid to
be pushed backward and the reaction of �uids pushes the body forward. If
we superimpose the two motions, we obtain the undecomposed generic body
wave motion described earlier. Figure 4.2 shows the drag-causing and the
thrust-causing motions along with their resultant.

The constant amplitude assumption used in this proposed drag-thrust
decomposition however poses problem when one tries to apply it in the case
of swimming animals. Swimming animals have amplitude variation as they
form a wavy motion to create propulsion and this amplitude variation is dif-
ferent between every mode of swimming imposed by aquatic animals (see
chapter �1 for the classi�cation of swimming mode). However, Bale et al.
(2014) shows, by examining four di�erent animal, that the decomposition
procedure can still be carried out for swimmers with small rate of ampli-
tude change such as in the case of eel, larval zebra�sh, and knife�sh. Small
rate of amplitude change means that the deviation from slithering motion is
small rendering the decomposition is still meaningful for anguiliform and sub-
carangiform swimmers. In the case of Mackerel (carangiform swimmer), they
found a discrepancy between the expected undecomposed force and resultant
of force obtained from the decomposition. This means that the decomposi-
tion does not apply to such carangiform swimmers since they have large rate
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Figure 4.2: Kinematic decomposition of drag-causing motion and thrust-
causing motion and the superposition of the two of them resulting the generic
undecomposed kinematic. This �gure is taken from Bale et al. (2014).

of amplitude change at the rear end (caudal part). Deviation from slithering
motion is therefore large in this case.

In the present study, we consider momentumless wake pro�les that can
be decomposed into one part due to the thrust and one due to the drag.
The decomposition however can be performed in a straightforward manner.
The doublet model is derived from two opposite forces as given by (2.3) and
obtained by taking the limit given by (2.5). Back to the formula of single force
given by (2.13) and (2.15) we can construct the drag and thrust parts of their
corresponding momentumless wake by considering �nite separation distance
between the two forces. To compare our results with those of Triantafyllou
et al. (1993), we propose to use this decomposition and to extract the thrust
part of our family of momentumless wakes and assess its stability properties.

We consider a swimming �sh of body length L∗ and wake half-width or
tailbeat amplitude of about δ∗ ≈ 0.1L∗ (which is approximately the case for
most undulatory swimmers). Thrust is generally produced by the caudal �n
or by the posterior part of the body Lighthill (1969), while skin friction is
expected to decrease along the length of the body as boundary layer thickness
increases. We can thus safely assume that the separation distance between
the points of application of thrust and drag is in the interval 0.1L∗ < ϵ∗ < L∗,
which means that the dimensionless doublet size is in the interval 1 < ϵ < 10.
Now, using (2.19), we �nd that the force doublet intensity Q is connected to
the thrust intensity J through the relation: J = Q/(ϵ Re).

We now compare the stability properties of the momentumless pro�les
and jet pro�les. To do so, we have performed a linear stability analysis of
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Figure 4.3: Stability diagram of a jet wake pro�le of intensity J (dashed line)
and a momentumless wake pro�le of intensity Q (solid line).

the jet wake pro�le of intensity J given by (2.13), using a method similar to
that explained in �3.1 for the momentumless wake pro�les. The result of this
analysis is shown in �gure 4.3 together with the results of the momemtumless
wake. In these stability diagrams plotted in the (Re,Q) or (Re,J)�plane,
for a given doublet intensity Q and Reynolds number Re, the corresponding
jet thrust intensity (for a speci�c ϵ) has to be chosen on the ordinate as
J = Q/(ϵ Re) and the stability property may be inferred.

Using again the example of a L∗ = 10 cm �sh swimming at constant speed
U∗ = L∗ s−1, we have Re = U∗δ∗/ν∗ ≈ 103 and Q = Q∗/(ν∗2) ≈ 106. In
that case, the momentumless wake is stable according to �gure 4.3. Yet, its
jet counterpart associated to the production of thrust only has an intensity
102 < J < 103 (with 1 < ϵ < 10), which corresponds to an unstable wake
pro�le. The same holds for larger or faster �sh. Hence, for most �sh, the
momentumless wake is stable while the jet pro�le due to the thrust alone is
unstable.

To go further, we plot in �gure 4.4 three jet pro�les for di�erent values of
ϵ together with their stability properties. As stated above, for these values
of ϵ, the pro�les are unstable (ωi > 0). Moreover, the (real) frequency ωr

associated to the maximum of ωi is almost constant: ωr ≈ 0.5. This frequency
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correspond to a Strouhal number based on the wake width Awake,

St ≈
Awake ωr

2π
, (4.5)

where Awake is estimated as the y-distance between the two in�ection points of
the thrust pro�les. By substituting the value of Awake (Awake ≈ 3.2 for all val-
ues of ϵ) and ωr into (4.5), the Strouhal number is found to be St ≈ 0.25. This
results is similar to the range of Strouhal number found by Triantafyllou et al.
(1993) from stability analyses of experimental jet pro�les: 0.25 < St < 0.35.
However, as it has already been noted above, the corresponding momentum-
less pro�les, found when both thrust and drag forces are taken into account,
are stable (and therefore Strouhal number can not be de�ned in that case).
The physical basis for this di�erence is however unclear. It may be due to
the fact that velocity gradients are smaller in norm for the momentumless
wakes since the velocity increase due to the thrust tends to be compensated
by the velocity de�cit due to the drag. Indeed, computing the maximum, in
norm, of the velocity gradient for the three jet pro�les (�gure 4.4), one �nds
approximately the values 0.12, 0.06, 0.01, for respectively ϵ = 1,2,10, and the
maximum values of the gowth rates decrease accordingly, as seen in �gure
4.4(c). The maximum of the velocity gradient for the corresponding stable
momentumless pro�le, not shown here, is however much smaller (≈ 1.5×10−4).

4.3 Limit of validity

We will now examine the limit of validity of the present results. We will �rst
discuss the validity of the Oseen approximation. We will then examine if the
exchange of momentum between the swimming body and the �ow can be
described by a force doublet. Finally, we will discuss how three-dimensional
e�ects may a�ect the results.

It has been shown before that using the Oseen solution as an initial con-
dition in the direct numerical simulation gives a similar results to that of
perturbed Oseen base �ow. The similarity of the results clearly lends credit
to the justi�cation of the Oseen assumption, at least for the relatively low
Reynolds number considered.

The Oseen approximation has also been addressed in Gustafsson and
Protas (2012), who performed a detail study on the solutions of the two-
dimensional Oseen equations for the �ow behind an obstacle for a broad range
of Reynolds number (here, Reynolds number is based on the characteristic
dimension of the obstacle). They compared their study with numerical simu-
lations of Fornberg (1985) on a steady viscous �ow around a two-dimensional
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Figure 4.4: (a) Jet wake pro�les of extracted thrust for three di�erent values
of ϵ and (b) their �rst derivative with respect to y. (c) Most unstable modes
of the three Jet wake pro�les. The parameters used are Re = 103, Q = 106,
and J = Q/(ϵ Re).
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cylinder. They concluded that the �ow structures have a number of similari-
ties with that of Oseen �ow in terms of recirculation length, drag coe�cient,
and separation angle. However, these similarities can only be observed up to
a Reynolds number of about 100. For higher Reynolds number, the Oseen
approximation is therefore debatable. In the present context, we make the as-
sumption that the family of momentumless wakes still qualitatively describe
the �ow even for large Reynolds number. This assumption could however
be assessed in the future by performing stability analyses of di�erent fami-
lies of momentumless wakes (e.g. pro�les obtained from averaged nonlinear
numerical simulations).

The family of momentumless wake pro�les used in the present study is
obtained by assuming that the contribution of thrust (resp. drag) forces
can be reduced on average to a point force. Further, we assume that the
�ow �eld is that of a force doublet, which means that we consider the far
�eld, i.e. distances large compared to the separation distance between the
points of application of thrust and drag. Yet, as we saw above, most of the
instability properties of the �ow are related to the near wake, where these
hypotheses do not hold. Nevertheless, the family of wake pro�les used here
captures qualitatively the principal features of momentumless wakes: no net
momentum, pro�les parametrised by their amplitude and width. As already
proposed above, it would be interesting to extend the present investigation by
studying the stability of average pro�les obtained from numerical simulations
of self-propelled bodies.

Finally, one may wonder how the present two-dimensional results may
generalise to three dimensions. First, it should be noted that the �ow behind
swimming animals is generally �very three-dimensional�, or said di�erently,
the wake in a given horizontal slice may appear to have a positive or neg-
ative momentum depending on its depth (Nauen and Lauder, 2002; Müller
et al., 1997; Drucker and Lauder, 2000; Lauder and Drucker, 2002). The only
exception seems to be the �ow behind eels Tytell and Lauder (2004) and,
of course, two-dimensional numerical simulations. An interesting avenue for
future works would be to extend the stability analyses to three dimensions.
But, at the present time, it is di�cult to extrapolate our two-dimensional
results to three dimensions. It is however safe to assume that the stability
properties of a momentumless wake and its jet part will still be very di�erent,
even in three dimensions.
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Chapter 5

Conclusions and perspectives

5.1 General conclusions

In this study, a linear stability analysis of a family of momentumless wake
pro�les has been performed. As a base �ow, we used the �ow generated by
a translating force doublet in the Oseen approximation, as initially proposed
by Afanasyev (2004). This �ow takes into account the opposite drag and
thrust that are exerted on average on a self-propelled body swimming at
constant speed U∗. For this family of momentumless wakes, a transition
from absolute to convective instability has been found, in contrast with the jet
pro�les usually considered for bio-inspired wakes, which are only convectively
unstable. Within the locally parallel �ow assumption, it has been found that
this absolute-convective transition occurs at

δ∗ac =
0.38

U∗
(Q∗ν∗) 13 , (5.1)

where δ∗ is a measure of the wake half-width and Q∗ is the intensity of
the force doublet. This value is too small to be meaningful for �sh longer
than about 1 cm. It may however be relevant for swimming organisms with
low Reynolds number (based on the body length of the swimmers) such as
tadpoles or larvae.

In this study, we also performed a global stability analysis in both linear
and nonlinear regime for the family of momentumless wakes that exhibit
relatively strong non-parallelism. The time-stepper technique, along with the
modi�ed Rayleigh iteration, proved to be quite successful to isolate the most
unstable global mode. The existence of a global instability behaviour tuned
at a speci�c frequency has been found whenever the wake's in�ow boundary
is chosen in the local absolute instability region. Having in�ow boundary
close to the transition from local absolute to convective instability, the �ow is
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weakly unstable, while the �ow is damped when the in�ow boundary is chosen
in the local convective instability region. The self-sustained structure have
been shown to be a reversed Bénard-von Kármán vortex street and resulting
from the locally absolutely unstable region. This absolutely unstable region
acts as a wavemaker creating waves that will in turn develop downstream
into a nonlinear wavetrain. The nonlinear development of the wake showed
a nonlinear saturation in which harmonics are excited in the wake further
downstream, while the local dynamic is almost sinusoidal near the inlet.
The fundamental frequency in the nonlinear stability regime matches the
frequency of oscillation obtained from the global linear stability analysis.

For a speci�c dimensionless intensity of the force doublet, possibly in
the range of centimetre size swimming organisms, the Oseen approximation
used has been validated by performing a direct numerical simulation where
the Oseen solution was considered as an initial condition for the full Navier-
Stokes system. For the boundary conditions, the Oseen solution at the inlet
was held �x as a Dirichlet boundary coundition and an advective boundary
condition was used for the outlet. After long-time evolution, using this Oseen
solution as an initial condition, the wake also evolved into a nonlinear wave
train. The transition from absolute to convective instability however moved
closer to the inlet. It has also been shown that this setting shows a transient
evolution of the Oseen solution to a new quasi-steady state before oscilla-
tions took place. Eventually a nonlinear saturation was also reached and the
frequency spectra (showing the fundamental frequency and its harmonics)
could be obtained. The fundamental frequency has a value close to the case
where the Oseen solution was used as a base �ow. The reversed Bénard-von
Kármán vortex street was also observed.

From the momentumless wake pro�les the thrust part can be extracted.
By performing a local stability analysis on the thrust wake, when the thrust
is intense enough, the corresponding jet pro�le is found to be (convectively)
unstable, even though the momentumless wake from which it has been ex-
tracted may well be stable. Although further investigations on the Oseen ap-
proximation, di�erent wake pro�les, and three dimensions may be required,
the present analysis demonstrates that physical interpretations of swimming
e�ciency based on jet wakes have to be taken with great care and cannot be
easily transposed to a whole self-propelled body. In other words, for swim-
ming animals, the selection of Strouhal number through a �wake resonance�,
as originally proposed by Triantafyllou et al. (1993) and later revisited by
Moored et al. (2014), seems to be unlikely.
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5.2 Perspectives

The model used in this study is derived by considering a force doublet in
the Oseen approximation which limit its applicability. Deriving a force for-
mulation from the full Navier-Stokes equations is tantalizing since it would
lead to various applications in a wide range of Reynolds numbers. One other
interesting way would be to construct the average wake pro�le from a direct
numerical simulation or from measurements to assess its stability locally and
globally both in linear and nonlinear regime. Full three-dimensional direct
numerical simulations, however, require large computational resource and
may be challenging.

Standard PIV techniques, which in principle measures �ow �eld on a
plane, requires assumptions one tries to avoid for a full 3D reconstruction of
the wake. However, the volumetric imaging technique described in chapter 1
used by Flammang et al. (2011) may be useful for this purpose. The momen-
tumless wake may then provide drag and thrust simultaneously. However,
another problem would naturally follows once the full three dimensional wake
structure is obtained. It is the problem of extracting thrust and drag from
the wake (drag-thrust separation). More appropriate method to separate
both forces is required and needs to be con�rmed by direct numerical simu-
lation. Although, Bale et al. (2014) had proposed a kinematic decomposition
of drag and thrust which does not rely on spatio-temporal separation, many
�sh swim by imposing body movements that deviate form perfect slither-
ing, rendering the proposed separation has also been limited to small rate of
amplitude change.

The wake unsteadiness has also been beyond the scope of this study. Al-
though, in the context of swimming animals, the average forces can be seen
to be in equilibrium for an animal moving with constant velocity, producing
a momentumless wake, thrust generation however varies during strokes. For
a sinusoidal stroke, maximum thrust generation is achieved when the tail is
in its zero amplitude position while minimum thrust generation is achieved
when the tail reaches its maximum amplitude and changes its direction. One
may say that a swimming activity can be seen to have short period of ac-
celeration and deceleration. Therefore to take into account the unsteadiness
in swimming, one might want to revisit a spatio-temporal separation of drag
and thrust.
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Appendix A

Validation

As a comparison and validation to our procedure, here we brie�y address,
whether single force pro�les of type (2.13) may capture conventional mean
wake pro�le characteristics taken from literatures by appropriately tuning the
parameters. As an example, we consider the pro�le proposed by Monkewitz
(1988) and given by

U(y) = 1 −Λ + 2ΛF (y) (A.1)

Λ = (U∗c −U∗max)/(U∗c +U∗max) (A.2)

F (y) = (1 + sinh2N(y sinh−1(1)))−1. (A.3)

For particular values of the parameters (Λ = −1.105 and N = 1.34, at
Re = 12.5) the stability characteristics of the Monkewitz's pro�le have been
recomputed, showing that the �ow is absolutely unstable, the absolute fre-
quency and wavenumber being

ω0 = 0.952 + i0.058, α0 = 0.8 − i0.505. (A.4)

These values are approximately equal to the values computed by Monkewitz
(1988) (see table I, page 1004), the small di�erences being probably due to
a better convergence here.

A single force streamfunction given by (2.6) can be, by appropriately
choosing the parameters, �tted to the generic pro�le proposed by Monke-
witz (1988) (Figure A.1), by following the same non-dimensionalisation as
in this latter paper. We �nd that the best �t is obtained for x = 5 and
J = J∗/(2πl∗U∗2) = −0.804 (l∗ being the reference length), when a constant
velocity equal to 2 is added to the streamwise velocity.

We then performed the local stability analysis of this single force pro�le
and found that the absolutely unstable mode corresponds to

ω0 = 0.956 + i0.031, α0 = 0.8 − i0.505. (A.5)
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Figure A.1: Singlet force pro�le (dashed line) �tted to a generic blu�-body
wake pro�le proposed by Monkewitz (1988) (solid line).

These values are quite close to what was found for the generic pro�le proposed
by Monkewitz (1988), the ampli�cation rate being slightly lower. Treating
the Reynolds number as an independent parameter, we found that the tran-
sition from absolute to convective instability is approximately at Re = 9.75
with

ω0 = 0.945, α0 = 0.8 − i0.505. (A.6)

This value of Reynolds number for the transition from absolute to convective
instability is similar to the result of Monkewitz (1988) (see Figure A.2).

102



Validation

Figure A.2: Stability region of the Monkewitz pro�le in parameter space
Re-N−1 for di�erent values of Λ (Monkewitz (1988), �gure 2, page 1001).
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Appendix B

Details of numerical procedures

B.1 Discretisation in the streamwise direction

The �rst derivative is approximated by eight-order �nite di�erence and the
formula is given by

[ df
dx
]
k

=
1

∆x
( 1

280
fk−4 −

4

105
fk−3 +

1

5
fk−2 −

4

5
fk−1 +

4

5
fk+1

−
1

5
fk+2 +

4

105
fk+4 −

1

280
fk+4) (B.1)

while the second derivative is approximated by fourth-order �nite di�erence
which is given by

[d2f
dx2
]
k

=
1

∆x2
(− 1

12
fk−2 +

4

3
fk−1 −

5

2
fk +

4

3
fk+1 −

1

12
fk+2. (B.2)

B.2 Time integration

An implicit second-order backward Euler method is used to integrate the
Navier-Stokes system in time.The Laplacian term is taken implicitly whereas
the nonlinear and convective terms are evaluated explicitly using a second-
order Adams-Bashforth scheme is used. The discretised formulation of the
linearised Navier-Stokes system is given by

(∆ − 3τ)u(n+1) = Re ∇p(n+1) + f (n,n−1) (B.3)

∇ ⋅ u(n+1) = 0 (B.4)

where f (n,n−1) is

f (n,n−1) = −4τu(n) + τu(n−1) +Re [(U ⋅ ∇)u + (u ⋅ ∇)U](n,n−1) . (B.5)
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In the above equations τ = Re/(2∆t) while the superscript (n,n−1) denotes
the explicit Adams-Bashforth time di�erencing where [⋅](n,n−1) = 2[⋅](n) −[⋅](n−1). At both inlet and outlet, an advective boundary condition

∂u

∂t
+Uad

∂u

∂X
= 0 (B.6)

is used in order to allow the perturbation to escape the domain, thus mim-
icking an open domain with Uad being a chosen convective velocity. A zero
Dirichlet boundary conditions are imposed at in�nity in the Y -coordinate.

The expression for the pressure perturbation can be obtained by apply-
ing divergence to the momentum equations and by using incompressibility
equation to eliminate ∇ ⋅ u. The result is a Poisson's equation for the pres-
sure. To enforce the divergence-free condition, the fractional-step method is
used, that is by computing an intermediate pressure and velocity �eld. For
the intermediate pressure computation a Neumann boundary condition is
used, the pressure gradient being obtained by projection of the momentum
equation (at the previous time-step) normal to the boundary.

The intermediate velocity �eld is then computed as follows

(∆ − 3τ)u∗ = Re ∇p(n+1) + f (n,n−1) (B.7)

with a boundary conditions
u∗
Γ
= u

(n+1)
Γ

(B.8)

where the subscript Γ denotes the boundary. The pressure correction ϕ =

p(n+1) − p∗ with

∇ϕ = −
3

2∆t
(u(n+1) − u∗) (B.9)

where ∇⋅u(n+1) = 0. Taking the divergence of (B.9) along with the Neumann
boundary condition for pressure correction, the following equation

∆ϕ =
3

2∆t
(∇ ⋅ u∗) (B.10)

is solved. Finally, the new divergence-free velocity �eld and the new pressure
can be computed by

u(n+1) = u∗ −
2∆t

3
∇ϕ (B.11)

p(n+1) = p∗ + ϕ. (B.12)

106



Bibliography

Y. D. Afanasyev. Wakes behind towed and self-propelled bodies: Asymptotic
theory. Phys. Fluids, 16:3235�3238, 2004.

Y. D. Afanasyev and V. N. Korabel. Wakes and vortex streets generated
by translating force and force doublet: laboratory experiments. J. Fluid

Mech., 553:119�141, April 2006.

S. Alben, C. Witt, T. V. Baker, E. Anderson, and G. V. Lauder. Dynamics
of freely swimming �exible foils. Phys. Fluids, 24:051901, 2012.

E.J. Anderson, W.R. McGillis, and M.A. Grosenbaugh. The boundary layer
of swimming �sh. J. Exp. Biol., 204(1):81�102, 2001.

A. Azuma. The biokinetics of �ying and swimming. Springer-Verlag, 1992.

S. Bagheri, E. Åkervik, L. Brandt, and D. S. Henningson. Matrix-free meth-
ods for the stability and control of boundary layers. AIAA J., 47(5):
1057�1068, 2009.

R. Bale, A. A. Shirgaonkar, I. D. Neveln, A. P. S. Bhalla, M. A. MacIver,
and N. A. Patankar. Separability of drag and thrust in undulatory animals
and machines. Scienti�c Reports, 4:7329, December 2014.

D. S. Barrett, M. S. Triantafyllou, D. K. P. Yue, M. A. Grosenbaugh, and
M. J. Wolfgang. Drag reduction in �sh-like locomotion. J. Fluid Mech.,
392:183�212, 1999.

C. M. Bender and S. A. Orszag. Advanced Mathematical Methods for Sci-

entists and Engineers I: Asymptotic Methods and Perturbation Theory.
Springer Science & Business Media, March 2013.

Q. Bone. Muscular and Energetic Aspects of Fish Swimming in Swimming

and Flying in Nature: Volume 2, pages 493�528. Springer US, Boston,
MA, 1975.

107



BIBLIOGRAPHY BIBLIOGRAPHY

Q. Bone and R. Moore. Biology of Fishes. Taylor & Francis, New York, 3rd
edition, 2008.

I. Borazjani and F. Sotiropoulos. Numerical investigation of the hydrodynam-
ics of anguilliform swimming in the transitional and inertial �ow regimes.
J. Exp. Biol., 212(4):576�592, 2009.

J. R. Brett. The energy required for swimming by young sockeye salmon
with a comparison of the drag force on a dead �sh. Trans. Roy. Soc. Can.,
27:1637�1652, 1963.

F. Candelier, F. Boyer, and A. Leroyer. Three-dimensional extension of
lighthill's large-amplitude elongated-body theory of �sh locomotion. J.

Fluid Mech., 674:196�226, 2011.

B. J. Cantwell. Viscous starting jets. J. Fluid Mech., 173:159�189, 1986.

J. M. Chomaz. Global instabilities in spatially developing �ows: non-
normality and nonlinearity. Annu. Rev. Fluid Mech., 37(1):357�392, 2005.

J. M. Chomaz, P. Huerre, and L. G. Redekopp. A frequency selection criterion
in spatially developing �ows. Stud. Appl. Math., 84(2):119�144, 1991.

A. Couairon and J. M. Chomaz. Global instability in fully nonlinear systems.
Phys. Rev. Lett., 77:4015�4018, Nov 1996.

T. Daniel, C. Jordan, and D. Grunbaum. Hydromechanics of swimming in
Advances in comparative and environmental physiology: Volume 11, pages
17�49. Springer-Verlag, London, 1992.

P. A. Dewey, B. M. Boschitsch, K. W. Moored, H. A. Stone, and A. J. Smits.
Scaling laws for the thrust production of �exible pitching panels. J. Fluid
Mech., 732:29�46, 2013.

E. G. Drucker and G. V. Lauder. A hydrodynamic analysis of �sh swim-
ming speed: wake structure and locomotor force in slow and fast labriform
swimmers. J. Exp. Biol., 203:2379�2393, 2000.

E.G. Drucker and G.V. Lauder. Locomotor forces on a swimming �sh: three-
dimensional vortex wake dynamics quanti�ed using digital particle image
velocimetry. J. Exp. Biol., 202(18):2393�2412, 1999.

A. B. Dubois and C. S. Ogilvy. Forces on the tail surface of swimming �sh:
Thrust, drag and acceleration in blue�sh (pomatomus saltatrix). J. Exp.
Biol., 77(1):225�241, 1978.

108



BIBLIOGRAPHY BIBLIOGRAPHY

U. Ehrenstein, M. Marquillie, and C. Eloy. Skin friction on a �apping plate
in uniform �ow. Philos. T. Roy. Soc. A, 372(2020), 2014.

C. Eloy. Optimal Strouhal number for swimming animals. J. Fluids Struct.,
30:205�218, 2012.

F. E. Fish. The myth and reality of gray's paradox: implication of dolphin
drag reduction for technology. Bioinspir. Biomim., 1(2):R17, 2006.

F. E. Fish, P. Legac, T. M. Williams, and T. Wei. Measurement of hydrody-
namic force generation by swimming dolphins using bubble dpiv. J. Exp.
Biol., 217(2):252�260, 2014.

B. E. Flammang, G. V. Lauder, D. R. Troolin, and T. E. Strand. Volumetric
imaging of �sh locomotion. Biol. Letters, 7(5):695�698, 2011.

B. Fornberg. Steady viscous �ow past a circular cylinder up to reynolds
number 600. J. Comput. Phys., 61(2):297 � 320, 1985.

P. Freymouth. Propulsive vortical signature of plunching and pitching air-
foils. AIAA J., 26:821�883, 1988.

R. Godoy-Diana, J.-L. Aider, and J. E. Wesfreid. Transitions in the wake of
a �apping foil. Phys. Rev. E, 77:016308, 2008.

J. Gustafsson and B. Protas. On oseen �ows for large reynolds numbers.
Theor. Comput. Fluid Dyn., 27(5):665�680, 2012.

D. A. Hammond and L. G. Redekopp. Global dynamics of symmetric and
asymmetric wakes. J. Fluid Mech., 331:231�260, January 1997.

G. Helfman, B. B. Collette, D. E. Facey, and Brian W. Bowen. The Diversity
of Fishes: Biology, Evolution, and Ecology. Wiley-Blackwell, Chichester,
UK; Hoboken, NJ, 2nd edition, May 2009.

P. Huerre and P. A. Monkewitz. Local and global instability in spatially
developing �ows. Ann. Rev. Fluid Mech., 22:473�537, 1990.

P. Huerre and M. Rossi. Hydrodynamic instabilities in open �ows in Hydro-

dynamics and Nonlinear Instabilities, pages 81�294. Cambridge University
Press, Cambridge, 1998.

M. M. Koochesfahani. Vortical patterns in the wake of an oscillating airfoil.
AIAA J., 27:1200�1205, 9 1989.

109



BIBLIOGRAPHY BIBLIOGRAPHY

K. Kupfer, A. Bers, and A. K. Ram. The cusp map in the complex frequency
plane for absolute instabilities. Phys. Fluids, 30(10):3075�3082, 1987.

G. V. Lauder. Swimming hydrodynamics: ten questions and the technical
approaches needed to resolve them. Exp. Fluids, 51(1):23�35, 2011.

G. V. Lauder and E. G. Drucker. Forces, �shes, and fuids: hydrodynamic
mechanisms of aquatic locomotion. Physiology, 17:235�240, 2002.

G. V. Lauder and E. D. Tytell. Hydrodynamics of undulatory propulsion.
Fish Physiol., 23:425�468, 2005.

B. Lautrup. Physics of Continuous Matter, Second Edition: Exotic and

Everyday Phenomena in the Macroscopic World. CRC Press, March 2011.

S. Le Dizès, P. Huerre, J. M. Chomaz, and P. A. Monkewitz. Linear global
modes in spatially developing media. Phil. Trans. R. Soc. London A, 354
(1705):169�212, 1996.

G. C. Lewin and H. Haj-Hariri. Modelling thrust generation of a two-
dimensional heaving airfoil in a viscous �ow. J. Fluid Mech., 492:339�362,
2003.

M. J. Lighthill. Note on the swimming of slender �sh. Journal of Fluid

Mechanics, 9:305�317, 10 1960.

M. J. Lighthill. Hydromechanics of aquatic animal propulsion. Annual Review
of Fluid Mechanics, 1(1):413�446, 1969.

M. J. Lighthill. Aquatic animal propulsion of high hydromechanical e�ciency.
J. Fluid Mech., 44(2):265�301, 1970.

M. J. Lighthill. Large-amplitude elongated-body theory of �sh locomotion.
Proc. R. Soc. Lond. B, 179(1055):125�138, 1971.

S. Lighthill. Mathematical Bio�uiddynamics. Society for Industrial and Ap-
plied Mathematics, 1975.

M. Marquillie and U. Ehrenstein. Numerical simulation of separating
boundary-layer �ow. Computers & Fluids, 31(4-7):683 � 693, 2002.

M. Marquillie and U. Ehrenstein. On the onset of nonlinear oscillations in a
separating boundary-layer �ow. J. Fluid Mech., 490:169�188, 2003.

M. J. McHenry and G. V. Lauder. The mechanical scaling of coasting in
zebra�sh (danio rerio). J. Exp. Biol., 208(12):2289�2301, 2005.

110



BIBLIOGRAPHY BIBLIOGRAPHY

M. J. McHenry, E. Azizi, and J. A. Strother. The hydrodynamics of locomo-
tion at intermediate reynolds numbers: undulatory swimming in ascidian
larvae (botrylloides sp.). J. Exp. Biol., 206:327�343, 2003.

P. Meunier and G. R. Spedding. Strati�ed propelled wakes. J. Fluid Mech.,
552:229�256, 2006.

P. A. Monkewitz. The absolute and convective nature of instability in two-
dimensional wakes at low reynolds numbers. Physics of Fluids, 31(5):
999�1006, 1988.

P. A. Monkewitz, P. Huerre, and J. M. Chomaz. Global linear stability
analysis of weakly non-parallel shear �ows. J. Fluid Mech., 251:1�20, 1993.

K. W. Moored, P. A. Dewey, A. J. Smits, and H. Haj-Hariri. Hydrodynamic
wake resonance as an underlying principle of e�cient unsteady propulsion.
J. Fluid Mech., 708:329�348, 10 2012.

K. W. Moored, P. A. Dewey, B. M. Boschitsch, A. J. Smits, and H. Haj-Hariri.
Linear instability mechanisms leading to optimally e�cient locomotion
with �exible propulsors. Phys. Fluids, 26:041905, 2014.

Faith A. Morrison. An Introduction to Fluid Mechanics. Cambridge Univer-
sity Press, April 2013. ISBN 978-1-107-00353-8.

U. K. Müller, B. L. E. Van Den Heuvel, E. J. Stamhuis, and J. J. Videler. Fish
foot prints: morphology and energetics of the wake behind a continuously
swimming mullet (Chelon labrosus Risso). J. Exp. Biol., 200(22):2893�
2906, 1997.

J. C. Nauen and G. V. Lauder. Hydrodynamics of caudal �n locomotion
by chub mackerel, scomber japonicus (scombridae). J. Exp. Biol., 205:
1709�1724, 2002.

F. Paraz, L. Schouveiler, and C. Eloy. Thrust generation by a heaving �exible
foil: Resonance, nonlinearities, and optimality. Phys. Fluids, 28:011903,
2016.

R. Peyret. Spectral Methods for Incompressible Viscous Flow. Springer,
March 2002.

B. Pier and P. Huerre. Nonlinear self-sustained structures and fronts in
spatially developing wake �ows. J. Fluid Mech., 435:145�174, 2001.

111



BIBLIOGRAPHY BIBLIOGRAPHY

D. B. Quinn, G. V. Lauder, and A. J. Smits. Scaling the propulsive perfor-
mance of heaving �exible panels. J. Fluid Mech., 738:250�267, 2014.

H. Schlichting and K. Gersten. Boundary-Layer Theory. Springer Science &
Business Media, 2003.

A. H. Schooley and R. W. Stewart. Experiments with a self-propelled body
submerged in a �uid with a vertical density gradient. J. Fluid Mech., 15
(1):83�96, 1963.

L. Schouveiler, F. S. Hover, and M. S. Triantafyllou. Performance of �apping
foil propulsion. J. Fluids Struct., 20:949�959, 2005.

M. Sfakiotakis, D. M. Lane, and J. B. C. Davies. Review of �sh swimming
modes for aquatic locomotion. IEEE J. Oceanic Eng., 24(2):237�252, 1999.

S. A. Smirnov and S. I. Voropayev. On the asymptotic theory of
momentum/zero-momentum wakes. Phys. Lett. A, 307(2�3):148 � 153,
2003.

C. Sozou. Development of the �ow �eld of a point force in an in�nite �uid.
J. Fluid Mech., 91(3):541�546, 1979.

G. Taylor. Analysis of the swimming of microscopic organisms. P. Roy. Soc.
A - Math. Phy., 209(1099):447�461, 1951.

G. K. Taylor, R. L. Nudds, and A. L. R. Thomas. Flying and swimming an-
imals cruise at a Strouhal number tuned for high power e�ciency. Nature,
425:707�711, 2003.

G. S. Triantafyllou, M. S. Triantafyllou, and M. A. Grosenbaugh. Optimal
thrust development in oscillating foils with application to �sh propulsion.
J. Fluid Struct., 7:205�224, 1993.

E. D. Tytell and G. V. Lauder. The hydrodynamics of eel swimming. i. wake
structure. J. Exp. Biol., 207:1825�1841, 2004.

J. L. van Leeuwen, C. J. Voesenek, and U. K. Müller. How body torque and
strouhal number change with swimming speed and developmental stage in
larval zebra�sh. J. R. Soc. Interface, 12(110):20150479, 2015.

J. J. Videler. Fish swimming, volume 10 of Fish and �sheries Series. Chap-
man & Hall, London, 1993.

112



BIBLIOGRAPHY BIBLIOGRAPHY

S. Vogel. Life in Moving Fluids: The Physical Biology of Flow. Princeton
University Press, 1994.

S. I. Voropayev and S. A. Smirnov. Vortex streets generated by a moving
momentum source in a strati�ed �uid. Phys. Fluids, 15(3):618�624, 2003.

S. I. Voropayev, H. J. S. Fernando, S. A. Smirnov, and R. Morrison. On sur-
face signatures generated by submerged momentum sources. Phys. Fluids,
19(7), 2007.

P. W. Webb. The swimming energetics of trout: I. thrust and power output
at cruising speeds. Journal of Experimental Biology, 55(2):489�520, 1971.

P. W. Webb. Form and function in �sh swimming. Sci. Am., 251:72�82,
1984.

D. Weihs. Energetic signi�cance of changes in swimming modes during
growth of larval anchovy, engraulis mordax. Fish. Bull, 77:597�604, 1980.

T. Y. Wu. Hydromechanics of swimming propulsion. part 3. swimming and
optimum movements of slender �sh with side �ns. J. Fluid Mech., 46(3):
545�568, 1971.

113


