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Résumé

Les amas de galaxies sont reconnus comme étant de puissantes sondes cos-
mologiques. En particulier, l’évolution de la fonction de masse des amas en
fonction du redshift est sensitive à certains paramètres cosmologiques. Cepen-
dant, l’hypothèse standard de symétrie sphérique pour la matière noire et le
gas de l’amas est incorrecte et porte à confusion. En effet, il est bien établit
théoriquement et observationnellement que les amas de galaxies ne sont pas des
objets sphériques, et qu’ils sont beaucoup mieux décrits par la géométrie triaxi-
ale. Malgré cela, les travaux sur la forme tri-dimensionnelle des amas de galaxies
sont encore très rares. L’objet de cette thèse est de contribuer à cette probléma-
tique naissante. L’originalité de ce travail est d’aborder ce sujet théoriquement
et observationnellement.

Dans une première partie, j’introduit le contexte cosmologique et j’explique
comment il est possible d’obtenir des contraintes sur la forme des halos en com-
binant différentes sondes du potentiel gravitationnel, notamment lentilles gravi-
tationnelles et rayons X.

Dans une seconde partie, je présente une analyse des simulations numériques
à grand nombre de particules "Millenium XXL" et "Sbarbine". J’y étudie la forme
des halos de matière noire qui se forment dans ces simulations, et propose des
prédictions sur 5 ordres de grandeur en masse. C’est la première fois que ce type
de prédictions sont disponibles pour les halos d’amas de galaxies massifs. Aupar-
avant, la communauté utilisait des extrapolations provenant d’études effectuées
sur des halos moins massifs.

Ensuite, je m’intéresse aux amas simulés qui génèrent des phénomènes de
lentilles gravitationnelles fortes, afin de caractériser cette classe d’objets. Je
trouve que ces objets constituent une population biaisée de halos triaxiaux dont
le grand axe tend à être aligné avec notre ligne de visée, ce qui, par effet de pro-
jection, tend à accroître la probabilité de générer un effet de lentilles fortes. De
plus, j’étudie aussi comment la forme des halos varie avec la distance au centre
de l’amas.

Dans le quatrième chapitre, je présente un algorithme que j’ai développé et
qui se propose d’ajuster de façon simultanée des données en lentilles gravita-
tionnelles et en rayons X afin de contraindre une distribution de masse triaxiale.
Une fois la méthode introduite, je l’illustre sur un modèle très simple. Puis je
présente en détails les équations pertinentes et le cadre Bayesien de l’analyse
combinée. Ce modèle est utilisé afin de générer des données simulées, qui sont
utilisées pour tester et caractériser l’algorithme. L’algorithme permet de retrou-
ver les valeurs d’entrées utilisées pour obtenir des données simulées, et il est prêt
pour être utilisé sur de vrais données.

Dans le dernier chapitre, je présente l’analyse en données rayons X de l’amas
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de galaxies Abell 1703, pour lequel 80 ks d’observations obtenues avec le téle-
scope Chandra sont disponibles. A partir de ces données, je construit un profil
de masse dans une hypothèse de symétrie sphérique. Ce profil n’est pas en ac-
cord avec l’analyse en lentilles gravitationnelles, ce qui laisse supposer que la
géométrie sphérique ne convient pas. Dans un futur proche, j’envisage de com-
biner les analyses en lentilles gravitationnelles et en rayons X dans un cadre
triaxial afin de contraindre la géométrie de l’amas.

Mots clés : cosmologie, amas de galaxies, Structure tri-dimensionnelle, lentilles
gravitationnelles, simulations N-body, inference Bayesien
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Abstract

While clusters of galaxies are considered one of the most important cosmological
probes, the standard spherical modelling of the dark matter and the intra-cluster
medium is only a rough approximation. Indeed, it is well established both theo-
retically and observationally that galaxy clusters are much better approximated
as triaxial objects. However, investigating the asphericity of galaxy clusters is still
in its infancy. This thesis focuses on the three dimensional shape of galaxy clus-
ters. The originality of my approach is to tackle the problem both theoretically
and observationally.

Firstly, the cosmological context and the relevance of going beyond the spher-
ical assumption is discussed. I also explain how it is possible to combine com-
plementary probes of the gravitational potential in order to constrain the three
dimensional shape of a galaxy cluster.

Then, I present an analysis of the "Millenium XXL" and "Sbarbine" N-body sim-
ulations. I investigate the shape of galaxy clusters forming in these simulations,
providing predictions for shapes of dark matter halo in a mass range of over 5
orders of magnitude. In particular, this is the first time predictions are drawn for
massive, cluster-scale, dark matter haloes. Later, I investigate which numerically
simulated clusters do generate strong lensing features; characterising the strong
lensing population, finding that they constitute a biased class of objects whose
major axis tend to be aligned with our line of sight. Besides, I also investigate
how the shape of dark matter haloes vary with cluster-centric distance.

In the fourth chapter of this thesis, I present an algorithm that I developed
aimed at fitting simultaneously lensing and X-ray data in order to constrain a
triaxial mass distribution. After discussing the idea of the method, I illustrate
it on a toy model. Then I present in details the relevant equations and the
Bayesian framework of the joint analysis. The model is used to generate mock
observational data, which are fitted using the algorithm. This allows us to test
and characterise the algorithm, which is found to be able to recover the input
parameters.

In the last part, I present the X-ray analysis of galaxy cluster Abell 1703, for
which 80 ks of Chandra observation is available. I present the source spectral
analysis, discuss the issues related to background modelling and systematic er-
rors. Using the spherical assumption, I derive a mass profile from X-ray data. It
is found to disagree with the lensing based mass profile, suggesting the need to
go beyond the spherical assumption. The prospect is then to combine the X-ray
analysis with the existing lensing analysis of Abell 1703 in order to investigate
its shape.

Keywords : Cosmology, galaxy cluster, Three dimensional structure, gravita-
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tional lensing, N-body simulations, Bayesian inference
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1. Introduction

1.1. Cosmology & Galaxy Clusters

1.1.1. Cosmology: Emergence of the Dark Sector

Cosmology is the branch of astrophysics concerned with the study of the Universe
as a whole, a field of investigation that is likely to be as old as humankind.
However, the modern physically motivated cosmology is relatively young. With
the observation of the Universe through the first telescopes and the development
of mathematics and physics, cosmology has left the territory of philosophers and
religions to enter the modern physical cosmology era. This transition happened
less than one century ago, in particular with the works of Einstein, Friedman,
Lemaître and De Sitter. The development of more and more powerful telescopes
(on the ground and in space) has revolutionised our understanding of the cosmos
providing an ever growing amount of data.

Nowadays, cosmological multi-wavelength observations are driving cosmol-
ogy, and challenging new theories. In the last century, astronomers have re-
vealed that we knew very little of the content of our Universe. Indeed, observa-
tional evidences led us to describe our Universe as dominated by two mysterious
components: (i) Dark Matter (DM) which represents about 80% of the mass
density of our Universe and is made of non-baryonic particles, yet to be identi-
fied. Although the CERN Large Hadron Collider may still challenge the standard
particle physics models by discovering/weighting new particles, many investiga-
tions on the nature of Dark Matter can be undertaken by cosmologists to unravel
some of its properties. (ii) Furthermore, at the end of the last century, physi-
cists and astronomers have identified that Dark Energy (DE) represents about
75% of the mass-energy budget of the Universe. This cosmological concordance
model is referred as ΛCDM: Λ for the Dark Energy component, and CDM for
"Cold Dark Matter" (upper panel of Fig. 1.1). Investigating this "Dark Sector" is
fundamental in modern cosmology, and many projects are underway to unravel
these mysteries using different instruments and telescopes (e.g. DES, BigBOSS,
LSST, EUCLID)

Dark Energy:

With the measurement of the Hubble diagram of type Ia SNe (Riess, Filippenko,
et al., 1998; Perlmutter, Aldering, et al., 1999), complemented by the observa-
tion of the Cosmological Microwave Background (with the Planck mission), and
the detection of the Baryonic Acoustic Oscillation (BAO) in the SDSS-II survey
(Eisenstein, Zehavi, et al., 2005), we have some evidences in favour of a cos-
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mological model that includes a component with a similar effect as Einstein’s
cosmological constant (called Λ). In particular, this component must be respon-
sible for an acceleration of the Universe expansion seen in recent times. The
generic name for such a component is Dark Energy (DE) and it represent about
75% of the mass-energy budget in the Universe. Despite more than ten years
of speculations and development of new theories, DE remains today one of the
biggest mystery for fundamental physics and cosmology.

Dark Matter:

The Dark Matter story began in 1933 when Fritz Zwicky (using cluster galax-
ies as test particles in order to probe the mass distribution of the Coma galaxy
cluster), noticed that the virial mass of Coma was much larger than the stellar
mass in its galaxies. This puzzling observation led him to postulate the exis-
tence of a new invisible substance in the Universe. At the end of the Seventies,
using high quality velocity measurements of the neutral hydrogen gas at large
distance from galactic centres, the evidence for flat rotation curves of galaxies
firmly established the need for DM, thus confirming Zwicky’s hypothesis.

More recent measurement of the mass distribution in massive galaxy clusters
using velocity dispersion of cluster members, X-ray, Sunyaev Zel’dovich (SZ) ob-
servations and gravitational lensing, all conclude that baryonic matter represent
only at best 20% of the total mass of a cluster. In some exceptional cases of
merging clusters, the detailed mapping of the X-ray gas and the mass distribu-
tion probed by gravitational lensing showed a clear separation of the baryonic
and DM components (e.g. Clowe, Bradač, et al., 2006) thus giving the best obser-
vational proof of the existence of DM and evidence for it being non-collisional,
hence Cold Dark Matter (CDM).

Although direct laboratory measurements will continue to make progress and
improve or refute claim(s) of DM particles detection, astrophysical observations
and particularly galaxy cluster observations will provide ways of constraining
with high accuracy the DM mass distribution.

N-body Simulations:

From a theoretical point of view, N-body simulations constitute a powerful cosmo-

logical tool, allowing to compare observational results to theoretical expectations,
therefore providing a way to test the input cosmology used in the simulations.
Actually, it is possible to simulate large portions of the Universe with increasing
resolution and complexity. On galaxy cluster scales (lower panel of Fig. 1.1),
N-body simulations indicate that DM haloes aggregate with a typical mass den-
sity profile characterised by a Navarro, Frenck & White profile (Navarro, C. S.
Frenk, et al., 1996, hereafter NFW). Its three dimensional density profile is
characterised by a scale radius rs, where the density is proportional to r−2 and
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beyond which falls as r−3. On smaller scales, the 3D density profile of the DM is
described using a cuspy profile, and dark matter only simulations predict a log-
arithmic slope of 1 for r → 0. Besides, the concentration parameter c is defined
as the ratio between the virial radius and the scale radius.

1.1.2. Galaxy Clusters: Vertices of the Cosmic Web

Large spectroscopic galaxy redshift surveys and numerical N-body simulations
have revealed a large scale distribution of matter in the Universe featuring a
complex network of interconnected filamentary galaxy associations. Vertices,
i.e. intersections among the filaments, correspond to the very dense compact
nodes within this cosmic web where one can find massive galaxy clusters. Being
the most massive collapsed structures in the Universe, they constitute powerful
cosmological probes. They form the high-mass end of the mass function of col-
lapsed haloes, whose development as a function of redshift is a basic test of the
hierarchical structure formation scenario and depends sensitively on a number
of cosmological parameters (e.g. Voit, 2005). The structure of the cosmic web is
illustrated on Fig. 1.2.

1.1.3. The Mass Spectrum

When observing the structures of the Universe, we detect individual galaxies,
whose masses is of order 1012 solar masses; galaxy groups, whose masses are
of order 1013 solar masses, and galaxy clusters, with masses exceeds 1014 solar
masses (upper panel of Fig. 1.3). The number density of clusters of galaxies at a
given mass (i.e. the mass function) can be predicted analytically from linearised
models of the evolution of the density field with a simple prescription for the
formation of gravitationally bound objects. This is the Press-Schechter approach
which has been extended in various ways over the years (Press and Schechter,
1974; Bond, Cole, et al., 1991; Lacey and Cole, 1993). The results have been
confirmed and refined with numerical simulations (Sheth and Tormen, 1999;
Sheth, Mo, et al., 2001; Jenkins, C. S. Frenk, et al., 2001; G. Despali, C. Gio-
coli, R. E. Angulo, et al., 2016). The cluster mass function and its evolution
depend strongly on the cosmological parameters (lower panel of Fig. 1.3): mea-
surements of the local mass function constrain the normalisation of the matter
power spectrum, σ8, if an independent estimate of the mean mass density in the
Universe, ΩM, is used. The evolution of the mass function breaks the degener-
acy between σ8 and ΩM, and provides strong leverage for the determination of
ΩM. Measurements of the evolution of the cluster mass function form therefore
a cornerstone of current and future research in cosmology.

Investigating the mass spectrum requires to be able to weight the structures.
Cluster masses cannot be measured directly, so that investigation of the predic-
tions depends on the measurement of other observables which are related to
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mass. Weighting galaxy clusters is precisely the motivation of this PhD work.

1.2. How can we measure masses?

There are different methods of measuring masses that I briefly describe below.

1.2.1. Galaxy Dynamics

Observation of the internal dynamics of clusters, based on the virial theorem
and using the cluster galaxies as test particles of the cluster potential, is the his-
torical approach which provided early evidence for the existence of “missing”
(now called “dark”) matter (Zwicky, 1937). However, clusters of galaxies may
be sometimes far from being simple relaxed systems and their structural com-
plexity makes analysis of the velocity field difficult, especially in the presence of
substructures.

1.2.2. X-ray emission of the Intracluster Gas

An efficient way to derive the total mass of a cluster of galaxies is to use the
X-ray emission of the intracluster gas (see Ettori, Donnarumma, et al., 2013, for
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a detailed review on the subject). Rich clusters of galaxies are permeated by a
hot tenuous plasma with temperatures of order 107/108 K and number densities
of order ng ∼ 10−3/ cm3. This gas emits radiation at X-ray energies through the
thermal bremsstrahlung mechanism: clusters of galaxies are amongst the bright-
est known X–ray emitters. Assuming hydrostatic equilibrium of the X-ray emit-
ting gas in the cluster potential, it is possible to derive the DM potential shape
and therefore its mass. These masses can suffer systematics effects from non
relaxed objects or from non thermal pressure support (although some current
X-ray analysis take this component into account into a generalised hydrostatic
equilibrium equation, see Section 4.1.2). Because of these systematics, masses
tend to be underestimated by 10-15% as seen in numerical simulations (Nagai,
Vikhlinin, et al., 2007; Lau, A. V. Kravtsov, et al., 2009; Meneghetti, Rasia, et al.,
2010) and suggested by observational results (Mahdavi, Hoekstra, et al., 2008).

1.2.3. Sunyaev-Zel’dovich effect

Another efficient technique to characterise galaxy clusters is mapping the distor-
tion of the Cosmic Microwave Background spectrum. This is due to the inverse
Compton scattering induced from the high-energy electrons present in the hot
intra-cluster medium (ICM). Clear detection of these features (named Sunyaev-
Zel’dovich, SZ, effect) occurred in the late 90’s (see the review by Carlstrom,
2002) and many survey over wide areas of the sky have started to produce in-
teresting results (the South Pole Telescope; the Atacama Cosmology Telescope
and more recently the Planck collaboration has presented the first sample of 189
high signal-to- noise clusters in January 2011). The integrated SZ signal, being
proportional to the ICM pressure along the line-of-sight, can be used as proxy of
the total cluster mass.

1.2.4. Gravitational Lensing: A Direct Probe of the Total

Projected Mass Distribution

The deflection of light in the vicinity of large masses is one of the central predic-
tions of Einstein’s theory of general relativity. Close to large masses space time
can be curved to such an extent that there are multiple null geodesics which
connect an observer to the distant light source; in this case the observer sees
multiple images of the same source. At larger distances from the deflecting
mass, light rays emerging from the source are (partially) focused and sheared
and the image of the source, as seen by an observer, is distorted and magnified
or de-magnified. All these effects are observed in the form of multiply imaged
QSOs, giant arcs and arclets in clusters and groups of galaxies (strong lensing),
or a statistical distortion pattern in galaxies behind groups and clusters of galax-
ies (weak lensing, Bartelmann and P. Schneider, 2001), and are subsumed under
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the term gravitational lensing. Because the lensing effects depend directly on
the mass distribution between the source and the observer without regard to its
dynamical state or composition (baryonic or non-baryonic), gravitational lensing
has become a very valuable tool for cosmological research, especially in the field
of galaxy clusters (Kneib and Natarajan, 2011, for an in depth review).

The two regimes of gravitational lensing (strong and weak) are illustrated on
Fig. 1.4. One limitation of gravitational lensing is that it is sensitive to all the
mass between the source and the observer. Therefore, the lensing signal is likely
to be contaminated by structures which are not correlated with the object of
interest, and suffers from projection effects.
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1.3. The three dimensional shape of galaxy

clusters

For more than thirty years it has been known that galaxy clusters are not spheri-
cal objects. This can be seen in all their different components: from the distribu-
tion of galaxies in optical images (Binggeli, 1982); to the measured gas density in
X-ray (Fabricant, Rybicki, et al., 1984) and Sunyaev-Zel’dovich (Sayers, Golwala,
et al., 2011a) observations and finally in the total mass that comes from strong
(Soucail, Fort, et al., 1987) and weak (Oguri, Takada, et al., 2010) gravitational
lensing analyses. Whichever probe one considers, the observed projected quan-
tities are not circular, a result that is incompatible with a simple spherical shape
for galaxy clusters.

Moreover, the triaxiality of dark matter haloes has been observed in numeri-
cal simulations since C. S. Frenk, White, et al., (1988) and many studies have
expanded our knowledge of the shape of simulated haloes (C. S. Frenk, White,
et al., 1988; Dubinski and Carlberg, 1991; Warren, Quinn, et al., 1992; Cole and
Lacey, 1996; Y. Jing and Y. Suto, 2002; Hopkins, Bahcall, et al., 2005; Bailin
and Steinmetz, 2005; Kasun and Evrard, 2005; Paz, Lambas, et al., 2006; All-
good, R. A. Flores, et al., 2006; Bett, Eke, et al., 2007; Muñoz-Cuartas, Macciò,
et al., 2011; Gao, Navarro, et al., 2012; M. D. Schneider, C. S. Frenk, et al.,
2012; G. Despali, Tormen, et al., 2013). Additionally, the asphericity of haloes
is a straightforward result of a very basic assumption in the theory of large scale
structures formation: the fluctuations in the initial density field are independent
along the three dimensions. Therefore it is very unlikely for a density peak to be
spherically symmetric and host a spherical halo at later times.

When measuring the mass distribution of a galaxy clusters using any of the
method presented above, a shape for the object has to be assumed. Naturally,
the first choice adopted was spherical symmetry: this simplified the modelling
and it provided a sufficiently good description of galaxy clusters, given the poor
quality of data available at the time. In addition, the individual probes suffer
from intrinsic degeneracies with the shape and only by combining them in a
multi-wavelength analysis it is possible to actually measure the 3D shape of the
clusters (see Section 1.3.1).

The spherical assumption has also the problem of introducing biases in analy-
ses. For instance, galaxy cluster Abell 1689 shows some puzzling properties: it
has an extremely high concentration (up to 15, Umetsu, Birkinshaw, et al., 2009)
and a very large Einstein radius (Broadhurst, Benítez, et al., 2005) both which
are in contrast with predictions from the standard ΛCDM model (Neto, Gao, et
al., 2007; Duffy, Schaye, et al., 2008); furthermore the mass estimates from X-
ray data is only half of what can be measured with strong gravitational lensing.
However, by adopting a more general triaxial framework, it is possible to solve
both problems so that the masses from complementary probes are in agreement

18



and the values of concentration and Einstein radius are reconciled with the theo-
retical predictions. The full details of this analysis can be found in M. Limousin,
A. Morandi, et al., (2013), where similar results have been obtained for three
additional clusters.

1.3.1. How to get access to the third dimension

As the quality of data improved, the initial approximation that galaxy clusters
could be described as spherical objects became less necessary. Many authors
have then proposed methods that assume axial symmetry or triaxial ellipsoids
to model the shape; some relied on theoretical priors, other chose to combine
multi-wavelength observations to infer the three dimensional mass distribution
of galaxy clusters. A more detailed review on the methods available in the liter-
ature can be found in M. Limousin, A. Morandi, et al., (2013).

Even with the latest progress in data quality and modelling techniques, the
spherical assumption is still very popular in many analyses. This is because the
problem of deprojection is the curse of astronomy: every image we obtain is
projected on the plane of the sky; we can measure angular distances with beau-
tiful precision, but in many cases we have to deal with measurements in the
perpendicular direction that are order of magnitudes worse.

Deprojection is typically an under-constrained problem. For instance, the grav-
itational lensing effect arises from the full path of a photon through a gravita-
tional potential (see section 1.2.4), therefore we can only measure the integrated
impact of a mass on the light coming from background objects. In other words,
it can only constrain the 2D projected mass density and any 3D model will be
intrinsically degenerate, since lensing can rarely give full information on the line
of sight distribution of the mass. The only way to break the degeneracies intro-
duced by the projection is to combine different observables.

Recently two frameworks have been proposed to simultaneously fit comple-
mentary datasets with a triaxial model; they have been presented respectively in
A. Morandi and M. Limousin, (2012) and in Sereno, Ettori, et al., (2012). They
both exploit the idea that different probes have different dependence on the den-
sity: for example, X-ray surface brightness is proportional to the square of the
electron density integrated along the line of sight; while the Sunyaev Zel’dovich
effect only depend on the integral of the electron density times the temperature.
As an example, we present a simple toy model that can be very useful to get a
better understanding on why combined analysis is able to constrain the shape of
an halo.

First of all, we restrict the model to a prolate halo oriented along the line
of sight, so that the radius is given by R2 = (x2 + y2) /s2 + z2, where s is the
axis ratio. Moreover we use a simple isothermal density profile ρ(R) = AR−2,
where A is a normalisation constant; in this toy model s and A are the only free
parameters. By projecting the density along the z axis we can obtain the lensing
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observable L, while to obtain the X-Ray surface brightnessX we need to make an
additional very strong simplification: we will assume that the gas follows exactly
the dark matter (DM) distribution so that the electron density is proportional to
ρ(R):

L ∝
∫

ρ(R)dz,

X ∝
∫

ρ2(R)dz.
(1.1)

We would like to stress that this is not physical and we will use these assumptions
only in this section for illustration purposes. Alternatively, one can consider only
baryons and combine X-Ray with Sunyaev-Zel’dovich (similarly to what is done
in Sereno, Ettori, et al., 2012). Within the limits of this toy model the two
approaches are identical: by assuming a constant temperature and using the
isothermal profile as the electron density ne, the SZ observable is proportional to
the lensing as defined in eq 1.1: SZ ∝

∫

neTdz = T
∫

nedz = T
∫

ρ(R)dz.
If we substitute the definition of ρ(R) into eq. 1.1 we can see how the two

observables, taken separately, are not sufficient to measure the shape even of
such a simple model:

L ∝
∫ As2dz

x2 + y2 + (sz)2
= As

∫

d(sz)

x2 + y2 + (sz)2
= As

∫

dt

x2 + y2 + t2
,

X ∝
∫ A2s4dz
[

x2 + y2 + (sz)2
]2

= A2s3

∫

d(sz)
[

x2 + y2 + (sz)2
]2

= A2s3

∫

dt

(x2 + y2 + t2)2
.

(1.2)

In the last step, we changed the integration variable to t = sz to underline the
fact that all the information on the elongation along the line of site is lost and
the equation is indistinguishable from a spherical case. It is also clear that the
normalisation is inversely proportional to the axis ratio and therefore by solving
only one of the two equations it is not possible to break the degeneracy between
the variables: both observables are needed in order to obtain the 3D shape.

Finally, we have used this simple toy model to generate a set of mock surface
density and X-Ray surface brightness. Having added to each pixel a Gaussian
noise with standard deviation of 10%, we have computed the posterior prob-
ability drawing samples from flat priors (simple Monte Carlo) to constrain A
and s; the resulting distributions are shown in Figure 1.5. Blue, green and red
contours represent three different analysis respectively: lensing only, X-Ray only
and combined modelling. Dark contours show the areas that contain 39.3% of
the volume, lighter contours contain 86.4%; these are the values that correspond
to 1 and 2 sigma for a 2D normal distribution. A Gaussian filter has been applied
to the resulting histograms for graphical purposes only.
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As expected, both lensing and X-Ray only analyses can not break the projection
degeneracy; moreover the logarithmic slopes of the contours are exactly what it
has been derived in equations 1.2. On the other hand, when combining the
two probes it is possible to recover the 3D shape by exploiting the different
dependence on the density of lensing and X-Ray.

1.4. Plan of the thesis

This work is meant to advance our knowledge of the 3D shape of galaxy clusters.
Its originality is to tackle the problem both theoretically and observationally.

In the first part of this PhD (Chapter 2), I undertake an investigation of the
shape of numerically simulated clusters (Bonamigo, G. Despali, et al., 2015; G.
Despali, C. Giocoli, Bonamigo, et al., 2016; C. Giocoli, Bonamigo, et al., 2016)
The motivation of this project is to update the predictions by Y. P. Jing and Y.
Suto, (2002). Indeed, regarding the predictions on the triaxial shape of simu-
lated haloes (in particular the axis ratio), we still rely on the works by Y. P. Jing
and Y. Suto, (2002, JS 02 hereafter). JS 02 predictions are based on (dark matter
only) simulations with 5123 particles in a box of side 100 Mpc that have been
performed in 2001. Given the small side of the box, the statistics for massive
haloes is extremely poor, having no haloes with mass larger than 5×1014 solar
masses. Therefore, cluster scale triaxial predictions rely on extrapolation from
smaller (more numerous) haloes and may be inaccurate. In order to perform
meaningful comparisons between observations and simulations, is it therefore
important to update the results by JS 02 using state-of-the-art N-body simula-
tions, with the goal of characterising the statistics of halo non-sphericity with an
unprecedented precision.

To this end, I have considered the Millenium-XXL dark matter only simulation,
the best suited simulation to address this important issue. Performed in 2011,
it follows 67203 particles in a cosmological box of side 4.1 Gpc (R. E. Angulo,
V. Springel, et al., 2012a), featuring 464 haloes more massive than 2×1015 solar
masses.

The skill I have developed in manipulating the large amount of data of the
Millenium-XXL simulation allowed me to participate actively (as second and
third author) in two related projects: (i) characterising the strong lensing clus-
ters (work presented in Chapter 3 and published in C. Giocoli, Bonamigo, et al.,
2016); (ii) and studying the evolution of the shape as a function of cluster-centric
distance (G. Despali, C. Giocoli, Bonamigo, et al., 2016).

In the second part (from Chapter 4), I present a parametric algorithm aimed
at fitting simultaneously lensing and X-ray data sets within a triaxial frame-
work. It follows the general approach of the algorithm developed by A. Morandi
and M. Limousin, (2012), but goes beyond it implementing a more advanced
Montecarlo-Markov chain sampler and a more accurate likelihood function. Im-
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portantly, it is tested on mock data sets, which allows me to characterise it and
acknowledge its performances and biases. Moreover, it has been coded in a way
that simplifies the extension to other data sets, such as Sunyaev-Zel’dovich, and
to models beyond the assumed NFW density profile. Finally, the code is released
under open source licence: the field of galaxy clusters modelling needs some
standard code to analyse multi-wavelength data and hopefully this algorithm
will help to start a discussion for a more widespread tool.

The aim of this algorithm is to be applied on observational data sets, therefore
in the last part, I present an ongoing work on galaxy cluster Abell 1703. Firstly, I
introduce an X-ray analysis from deep Chandra data and then I model them in a
spherical framework, showing the need for a more realistic triaxial description.
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2. What we can learn from
simulations

In this chapter, we aim to characterise the shape of numerically simulated clus-
ters, described within a triaxial framework. As mentioned in Section 1.4, most
analyses of galaxy clusters that include non-spherical geometry still rely on the
predictions of Y. Jing and Y. Suto, (2002). However, those results where ob-
tained from a relatively small simulated region, which means that only a few
haloes would have a mass higher than 1014 M⊙. Later works (Y. Jing and Y. Suto,
2002; Allgood, R. a. Flores, et al., 2006; Macciò, Dutton, et al., 2008; Muñoz-
Cuartas, Macciò, et al., 2011; G. Despali, Tormen, et al., 2013; G Despali, C.
Giocoli, et al., 2014) expanded the explored mass range; but, until recently, it
was not possible to run a large enough simulation that had both the required res-
olution and number of objects. The Millennium XXL (MXXL) simulation (R. E.
Angulo, V. Springel, et al., 2012b) satisfies such requirements, allowing us to
study in details the three dimensional shape of massive galaxy clusters.

Having developed a code that measures the triaxial shape of an halo (similar
to the one presented in G. Despali, Tormen, et al., 2013), I applied it to haloes
extracted from the MXXL and the SBARBINE (G. Despali, C. Giocoli, R. E. Angulo,
et al., 2016) simulations. The former gives as a very large number of massive
galaxy clusters (≈ 500 with M > 2 × 1015 M⊙h

−1); while the latter, being a
collection of different box size simulations, allows us to extend the analysis to
nearly six orders of magnitude in mass, from 1010 to almost 1016 M⊙h

−1). The
task of measuring the shape of each halo in the MXXL simulation is not a trivial
one, considering that one has to analyse 3TB of data; it required a very fast code
and the implementation of parallelisation techniques.

I have approximate the mass distribution of each halo with a triaxial ellip-
soid and then computed the corresponding mass, centre of mass, axis ratios and
orientation. As I am using a single component to describe haloes, I had to re-
move objects that are not unimodal; this was accomplished by selecting only
those which had the centre of mass close to the minimum of potential (within
5% of their virial radius). In the literature, additional constrains are used, such
as the amount of mass in substructures and the ratio of kinetic to potential en-
ergy. However, all situations where the additional criteria fail are either unlikely
(extremely symmetrical configurations), or not relevant for the current analysis
(massive substructures in the centre) which is focused on the large scale shape
of the halo.

Once the unrelaxed objects have been removed, I have looked at the probabil-
ity distribution functions (PDF) of the axis ratios.

• In the context of cluster scale haloes, one can rescale the minor to major
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axis ratio using function of mass proxy, the density peak height ν, to obtain
a single PDF which can be approximated by a single lognormal distribution.
Moreover, the parameters of the fitted PDF do not depend on mass, redshift
or cosmology as the rescaling is done as function of ν.

• For lower mass haloes, a lognormal distribution is not able to approximate
the minor to major axis ratio PDF. We have then adopted a beta distribution
whose parameters depend on the mass (via ν); as before the dependence on
ν assures that the fitting distribution can be applied to different cosmologies
and redshifts.

• In addition, the probability distribution function of the intermediate to ma-
jor axis ratio depends only on the other axis ratio and not on the mass of
the halo. We have used a beta distribution to model this PDF and given a
fit for its parameters as function of the minor to major axis ratio.

By studying the haloes from the MXXL and the SBARBINE simulations, I have
derived an analytic description of the probability distribution function of the
two axis ratios of an halo. These results are important for both theoretical and
observational studies:

• on the theory side, the adopted parametrisation fits in the more general
view that properties of an halo depend, at first order, only on its mass;

• the proposed PDF can be used as priors when modelling observations of
galaxy clusters in a three dimensional framework;

• finally, it is possible to generate mock haloes with shapes that are consistent
with numerical simulations.

For a more detailed presentation of the results of this analysis, I include the
corresponding published paper in the next section.

2.1. Universality of dark matter haloes shape over

six decades in mass: insights from the

Millennium XXL and SBARBINE simulations

M. Bonamigo, G. Despali, et al. “Universality of dark matter haloes shape over six
decades in mass: insights from the Millennium XXL and SBARBINE simulations”.
In: MNRAS 449 (May 2015), pp. 3171–3182. DOI: 10.1093/mnras/stv417.
arXiv: 1410.0015
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ABSTRACT

For the last 30 yr many observational and theoretical evidences have shown that galaxy

clusters are not spherical objects, and that their shape is much better described by a triaxial

geometry. With the advent of multiwavelength data of increasing quality, triaxial investigations

of galaxy clusters is gathering a growing interest from the community, especially in the time

of ‘precision cosmology’. In this work, we aim to provide the first statistically significant

predictions in the unexplored mass range above 3 × 1014 M⊙h−1, using haloes from two

redshift snapshots (z = 0 and z = 1) of the Millennium XXL simulation. The size of this

cosmological dark matter-only simulation (4.1 Gpc) allows the formation of a statistically

significant number of massive cluster scale haloes (≈500 with M > 2× 1015 M⊙ h−1, and

780 000 with M > 1014 M⊙ h−1). Besides, we aim to extend this investigation to lower masses

in order to look for universal predictions across nearly six orders of magnitude in mass, from

1010 to almost 1016 M⊙ h−1. For this purpose we use the SBARBINE simulations, allowing

us to model haloes of masses starting from ≈1010 M⊙ h−1. We use an elliptical overdensity

method to select haloes and compute the shapes of the unimodal ones (approximately 50 per

cent), while we discard the more unrelaxed. The minor to major and intermediate to major axis

ratio distributions are found to be well described by simple universal functional forms that

do not depend on cosmology or redshift. Our results extend the findings of Jing & Suto to a

higher precision and a wider range of mass. This ‘recipe’ is made available to the community

in this paper and in a dedicated web page.

Key words: methods: numerical – galaxies: clusters: general – galaxies: haloes – cosmology:

theory – dark matter.

1 IN T RO D U C T I O N

Spectroscopic galaxy redshift surveys and numerical N-body sim-

ulations have revealed a large-scale distribution of matter in the

Universe featuring a complex network of interconnected filamen-

tary galaxy associations. Vertices, i.e. intersections among the fil-

aments, correspond to the very dense compact nodes within this

cosmic web where one can find massive galaxy clusters.

⋆ E-mail: mario.bonamigo@lam.fr

These objects have been first assigned a spherical geometry, being

the easiest way to characterize a shape in three dimensions; at the

time this fitted the available data well enough. Nowadays, with

the advent of multiwavelength data of increasing quality, there is

a growing interest from the community to go beyond the spherical

assumption, which is inaccurate and misleading. At first, clusters of

galaxies have been characterized as spherical objects, a model that

fitted well enough the limited data available at the time. Nowadays,

with the advent of multiwavelength data of increasing quality, there

is a growing interest from the community to go beyond the spherical

assumption.

C© 2015 The Authors
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Many observational evidences have been collected showing that

clusters are not spherical objects; in particular from the non-

circular projection of various probes; density of cluster galaxies

(Carter & Metcalfe 1980; Binggeli 1982); X-Ray surface brightness

(Fabricant, Rybicki & Gorenstein 1984; Buote & Canizares 1992,

1996; Kawahara 2010; Lau et al. 2012); Sunyaev Zel’dovich pres-

sure maps (Sayers et al. 2011); strong gravitational lensing (Soucail

et al. 1987) and weak gravitational lensing (Evans & Bridle 2009;

Oguri et al. 2010, 2012).

Recently, an azimuthal variation of galaxy kinematics has been

detected in a stacked sample of 1 743 galaxy clusters from the

SDSS (Skielboe et al. 2012). The line-of-sight velocity dispersion

of galaxies lying along the major axis of the central galaxy is found

to be larger than those along the direction of the minor axis, further

evidence supporting the asphericity of galaxy clusters.

On the numerical side, haloes forming in cosmological simula-

tions have been found to be triaxial in shape, with a preference for

prolateness over oblateness (Frenk et al. 1988; Dubinski & Carlberg

1991; Warren et al. 1992; Cole & Lacey 1996; Jing & Suto 2002;

Bailin & Steinmetz 2005; Hopkins, Bahcall & Bode 2005; Kasun &

Evrard 2005; Allgood et al. 2006; Paz et al. 2006; Bett et al. 2007;

Muñoz-Cuartas et al. 2011; Gao et al. 2012; Schneider, Frenk &

Cole 2012; Despali, Tormen & Sheth 2013). These simulations also

predict an evolution of the shape with mass and redshift; low-mass

haloes appear more spherical than high-mass haloes, essentially be-

cause high-mass haloes have formed later on (Despali, Giocoli &

Tormen 2014).

Finally, it can be shown (Doroshkevich 1970) that triaxial col-

lapse is a straightforward prediction of structure growth driven by

self-gravity of Gaussian density fluctuations.

These evidences shows that the triaxial framework, though still

an approximation, encapsulates halo shapes much more accurately

than the spherical counterpart.

Besides, it has been shown that cluster properties (mass, con-

centration parameter, slope of the inner dark matter density pro-

file, strong lensing cross-section) can differ significantly depending

on the shape assumed in the analysis (see, e.g. the discussion in

Limousin et al. 2013, regarding Abell 1689); see also Giocoli et al.

(2012a,b). Even the galaxy correlation function can be affected by

wrong assumptions on the triaxiality of haloes (van Daalen, Angulo

& White 2012).

Since the mentioned properties constitute key ingredients of im-

portant cosmological tests, this suggests that triaxial modelling is

the next milestone in the road map of ‘precision cosmology’ with

galaxy clusters.

In this paper, we aim to characterize the shape of numerically

simulated clusters, described within a triaxial framework. Apart

from the three Euler angles, a triaxial geometry is characterized

by three axes (a < b < c), hence two axial ratios: minor to major

(s = a/c in the following) and intermediate to major (q = b/c).

Shape of triaxial haloes have been investigated theoretically in

a number of works which aim to characterize the dependence of

shapes on mass, redshift, radius and so on. Most of the works agree

on the fact that massive haloes are on average more elongated than

low-mass haloes (Jing & Suto 2002; Allgood et al. 2006; Muñoz-

Cuartas et al. 2011; Despali et al. 2013, 2014), since they form

at later times and thus still retain memory of their original shape;

which is influenced by the direction of the surrounding filaments or

of the last major merger. Moreover, shapes depend also on redshift

with haloes of all masses having on average smaller axial ratios

at higher z; even though, the rank in mass is maintained at all

times (Muñoz-Cuartas et al. 2011; Despali et al. 2014). Other works

have investigated halo shapes as a function of radius, measuring

axial ratios of shells at different distances from the centre and the

alignment between shells (Warren et al. 1992; Jing & Suto 2002;

Bailin & Steinmetz 2005; Allgood et al. 2006; Schneider et al.

2012); haloes are more elongated in the central regions, while the

outskirts are more rounded, probably due to interactions with the

surrounding environment. Obviously the available number of haloes

increased in parallel with computational resources; the analysis of

Jing & Suto (2002) was based on simulations with 5123 particles

in a 100 Mpc h−1 box, which contained hardly any halo above

1014 M⊙ h−1 and some higher resolution runs which provided only

12 haloes with more than 106 particles. On the other hand more

recent works, i.e. Schneider et al. (2012), have been able to analyse

larger data sets like the Millennium I and II simulations (Springel

2005; Boylan-Kolchin et al. 2009). The mass range between 1012

and 1014 M⊙ h−1 has been widely explored in all these works,

while only recently small haloes down to 1010 M⊙ h−1 (Muñoz-

Cuartas et al. 2011; Schneider et al. 2012) and some massive haloes

of 1015 M⊙ h−1 (Despali et al. 2014) have been included in this

kind of analysis. So far, no statistically significant predictions are

available above 3 × 1014 h−1 M⊙ and we rely on extrapolations

from lower mass haloes when it comes to predict the shapes of

massive galaxy clusters. With about 300 billion particles and a

box size of 3 Gpc h−1, the Millennium XXL (MXXL) simulation

(Angulo et al. 2012) fills the range of high masses and explore the

properties of cluster size haloes.

In this work our aims are twofold:

(i) using cluster scale haloes (M > 1014 M⊙ h−1) from the MXXL

simulation, we aim to provide predictions for the shape of massive

clusters.

(ii) Then, we extend the mass range by considering haloes from

the SBARBINE simulations, applying similar methods in order to

investigate the shapes of haloes and provide predictions over five

decades in mass, from ∼3 × 1010 to ∼4 × 1015 M⊙ h−1.

This paper is organized as follows: in Section 2, we present the

simulations and the methodology used to extract haloes and measure

their shapes. In Section 3, we present our results for the massive

cluster scale haloes, then in Section 4 we extend our analysis to a

broader mass range. In Section 5, we compare our findings with

previous works. We discuss our results and conclude in Section 6.

2 H A L O C ATA L O G U E

We have derived the shape of galaxy clusters from the MXXL sim-

ulation (Angulo et al. 2012). To generalize our analysis to lower

masses, we used a new set of simulations (Despali et al., in prepa-

ration), which extended the mass range to more than five orders of

magnitudes. From both simulations, we have analysed haloes from

two redshifts: z = 0 and 1. The main features of the simulations are

described in the following sections and summarized in Table 1.

2.1 MXXL simulation

With a box side of 3 Gpc h−1 (4.1 Gpc), this simulation was es-

pecially tailored to study massive haloes which can be only found

in very large volumes, because of their nature of extremely rare

objects and due to the dampening of large fluctuation modes in

smaller boxes. The 67203 ≈ 3 × 1011 dark matter particles have a

mass of 6.174 × 109 M⊙ h−1; the Plummer-equivalent softening

length is ǫ = 13.7 kpc. For reasons of consistency with the previous

Millennium runs, the adopted �CDM cosmology is the Wilkinson

MNRAS 449, 3171–3182 (2015)
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Table 1. Main features of the simulations used in this work. The last two columns report the total

number of haloes with more than 1000 particles (Nh) and the corresponding fraction of ‘regular’

haloes (Nreg), at redshift z = 0.

Box (Mpc h−1) zi mp(M⊙ h−1) Soft (kpc h−1) Nh(z = 0) Nreg(z = 0)

Ada 62.5 129 1.94 × 107 1.5 39 445 28 005

Bice 125 99 1.55 × 108 3 49 100 32 107

Dora 500 99 9.92 × 109 12 66 300 33 970

Emma 1000 99 7.94 × 1010 24 46 665 20 696

Flora 2000 99 6.35 × 1011 48 7754 2997

MXXL 3000 63 6.17 × 109 18.8 937 755 568 477

Microwave Anisotropy Probe one: total matter density �m = 0.25,

baryons density �b = 0.045, cosmological constant �� = 0.75,

power spectrum normalization σ 8 = 0.9 and dimensionless Hub-

ble parameter h = 0.73. The main properties of the simulation are

summarized in Table 1.

Due to the huge number of haloes in the simulation (almost 68

millions at redshift 0), we restricted the analysis to only a random

subsample; for each logarithmic mass bin of size 0.2 [mass inside a

spherical overdensity (SO) of 200�crit] we chose either 105 random

objects or all, for the higher masses where the number of haloes in

the bin is lower. This cut happens at a logarithmic mass of about

14.4 and 14.0 M⊙ h−1 for redshifts 0 and 1, respectively. We have

then re-identified haloes at redshift z = 1 and 0 using an ellipsoidal

halo finder, which will be described in Section 2.3.

2.2 LE SBARBINE simulations

With the purpose of comparing different data sets and extending

the available mass range, we use (from Section 4 on) the results

from five cosmological simulations which have been run in Padova

using the publicly available code GADGET-2 (Springel 2005); these

are part of a series of new simulations which will be presented in

a subsequent work (‘LE SBARBINE’ simulations, Despali et al.,

in preparation). The adopted cosmology follows the recent Planck

results (Planck Collaboration XVI 2014): �m = 0.307, �� = 0.693,

σ 8 = 0.829 and h = 0.677. The initial power spectrum was gen-

erated with the code CAMB (Lewis, Challinor & Lasenby 2008)

and initial conditions were produced perturbing a glass distribution

with N-GenIC (http://www.mpa-garching.mpg.de/gadget). They all

follow 10243 particles in a periodic box of variable length. Table 1

shows some of the main characteristics of these simulations. Haloes

were identified using a SO algorithm (Tormen, Moscardini &

Yoshida 2004; Giocoli, Tormen & van den Bosch 2008) and then

the best-fitting ellipsoid was found using an ellipsoidal overden-

sity method, already presented in Despali et al. (2013, 2014) and

similar to the one used on the MXXL haloes and described in the

next section; the two codes produce equivalent results. We selected

only haloes with more than 1000 particles to ensure a good resolu-

tion and to have a good comparison with the haloes of the MXXL

simulation.

2.3 Ellispoidal halo finder

It is known that Friends Of Friends finders tend to connect together

multiple virialized haloes via thin bridges of particles (Jing & Fang

1994); thus, to characterize halo shapes more precisely, we used a

second halo finder that iteratively selects particles inside an ellipsoid

and then uses their mass distribution to compute the ellipsoid for

the next step in the iteration. A more detailed description of the

‘ellipsoidal halo finder’ in general and of the iterative procedure

can be found in Despali et al. (2013)

We start with a traditional SO algorithm which selects parti-

cles inside a sphere of given overdensity, namely the value from

the spherical collapse model at z = 0: �vir = 359.7 times the back-

ground density (Eke, Cole & Frenk 1996), and centred in the particle

with lowest potential (most bound particle). We then compute the

mass tensor1

Mαβ =
NV
∑

i=1

mi ri,α ri,β

MTOT

(1)

of the particles inside the virial radius of the sphere of mass MTOT,

where ri is the distance of the ith particle, of mass mi, from the

most bound particle. The tensor’s eigenvectors give the direction

of the ellipsoid that approximate the mass distribution, while the

square roots of the eigenvalues are proportional to the axes length

(c > b > a).

Having derived the triaxial distribution of dark matter for the

SO, we use it to select particles inside an ellipsoid. This technique

has been already adopted in the literature (Allgood et al. 2006;

Schneider et al. 2012; Despali et al. 2013); however, different au-

thors use different criteria to define the ellipsoid. We select particles

inside an ellipsoid, centred in the most bound particle, that encloses

an overdensity equal to the virial one, as provided by the spherical

collapse model �vir; we do not fix the mass, the volume or the

major axis to be equal to the spherical values, as has been done in

previous works. We then recompute the mass tensor with the new

subset and we iterate this procedure until both the ratios of minor to

major axis s = a/c and intermediate to major axis q = b/c converge

within a 0.5 per cent of error. This method allows us to adopt a more

general description while being still close to theoretical predictions

and is the simplest possible extension of the SO, which actually

becomes just the first step in our iteration. The mass difference

between the spherical and the ellipsoidal identifications goes from

2 per cent at 1013 M⊙ h−1 to 5 per cent for very massive haloes of

5.5 × 1015 M⊙ h−1. On the other hand the change in the measured

shapes is about 30 per cent and cannot be ignored, as shown also

by Despali et al. (2013). Ellipsoidal masses are in general larger

than the spherical ones, since a triaxial shape is expected to follow

the actual distribution of matter better than a sphere, and so fol-

low the overdense regions, adding more particles. The difference in

the following results between using the mass inside a sphere or an

ellipsoid is negligible.

1 Not to be confused with the inertia tensor (Bett et al. 2007).

MNRAS 449, 3171–3182 (2015)
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3174 M. Bonamigo et al.

Figure 1. Density distribution (colour scale) of dark matter particles inside a 10 Mpc h−1 side cube centred in two different haloes and the respective computed

ellipsoids (red) that approximate the mass distribution of the halo. The halo shown on the left-hand panel has a virial mass of 5.29 × 1014 M⊙ h−1, the one

on the right has a mass of 6.90 × 1014 M⊙ h−1. These represent two families of objects: a ‘regular’ haloes (left) and a perturbed one (right), due to the large

amount of substructures the latter has to be discarded, as it cannot be well described by a triaxial approximation.

2.4 Halo selection

Fig. 2 shows the mass function of all haloes (upper panel). Data

from redshift z = 0 and z = 1 are indicated by red squares and blue

circles, respectively. As previously explained, we have analysed

only a random sample of the entire halo catalogue of the MXXL

simulation; this is causing the flattening at the mass bins which

have more than 105 objects in the entire box (≈1014 M⊙ h−1). To

avoid any resolution effect, we have kept only haloes with at least

1000 particles within the ellipsoid (vertical dashed line) in both

simulations.

For our analysis, we cleaned the halo catalogue from many unre-

laxed systems. As an example, Fig. 1 shows the density distribution

of dark matter of two haloes (colour scale) and, in red, the computed

ellipsoid which encloses an overdensity of �vir. The object on the

left has a virial mass of 5.29 × 1014 M⊙ h−1 and represent a relaxed

halo; the mass of the one on the right is 6.90 × 1014 M⊙ h−1 and it

is clearly multimodal. The ellipsoid seems to capture quite well the

overall three-dimensional matter distribution of the relaxed halo;

though it fails, as expected, with the perturbed one. This system is

highly asymmetrical and lacks of a well-defined centre, therefore

it cannot be described using a single triaxial model. Since triaxial

multimass modelling is beyond the purpose of this paper we decided

to not consider for our analysis multimodal haloes, like the one on

the right-hand panel.

In general, defining relaxed and unrelaxed haloes is not a trivial

task; there is no absolute definition and the limiting criteria depend

on the model that must be tested. In our case, where we are interested

in haloes shapes, we would like at least to be able to describe them

with a single ellipsoid. In particular, we need to well define their

centres as well as their symmetry, up to a certain degree.

A possible way to discriminate this kind of objects is to look

at the offset between centre of mass and geometrical centre of

the ellipsoid, which is one of the commonly used criteria for the

selection of relaxed haloes. While the latter is associated with

the minimum of the potential (most bound particle) of the most

massive substructure (Springel et al. 2001), the other represents the

centre of mass of the whole particle distribution. This means that,

if a significant number of massive substructures is present and per-

turbs the whole halo distribution, there will be an offset between the

centre of the ellipsoid and the centre of mass. We decided to select

only haloes for which the offset is less than 5 per cent of their virial

radius,

|x̄MBP − x̄cm|
Rvir

< 0.05. (2)

The lower panel of Fig. 2 shows the percentage of cleaned haloes

as a function of the mass. As expected, the number of perturbed

haloes increases with the mass, due to more massive haloes being

assembled recently (Giocoli et al. 2007). At high redshift (blue

circles), the percentage of ‘regular’ haloes was lower and more

constant with mass, than at z = 0 (red squares). For cluster masses

the percentage is roughly 50 per cent.

Generally, ‘relaxed’ haloes are selected using both this and two

other criteria: the amount of mass in substructures and the ratio of

kinetic to potential energy as measurements of the dynamical state

of a halo (Meneghetti et al. 2014). For this reason, we choose to

call our cleaned sample of haloes ‘regular’ and not relaxed haloes.

However, as can be seen in Neto et al. (2007), the selection in the

centre offset is responsible for the majority of the rejected haloes;

this means that our selection is still able to eliminate the most

unrelaxed and irregular objects. Ludlow et al. (2012) used a similar

selection (N200 > 5000 and spherically defined haloes) and found

different results: the fraction of objects with an offset less than 5 per

cent is 0.536, while, combining all the three relaxation criteria, the

fraction of selected haloes is 0.285. In comparison with their work,

our selection is still able to capture approximately 65 per cent of all

perturbed haloes.

Thus, the choice of the criteria to distinguish between relaxed

and unrelaxed haloes is still different in different works. Since we

are interested in the overall shape of haloes, we decided to use only

the centre offset as a selection criterion, since it is able to exclude

very irregular haloes which could not be well fitted by an ellipsoid;

we believe that adding the other two criteria would not change our

results more than a few percent. Moreover, our choice is motivated

also by the fact that we do not want to restrict our analysis to a

very limited and regular sample, since our future plans include a

MNRAS 449, 3171–3182 (2015)
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Figure 2. Mass function and halo selection of the MXXL sample at redshift

z = 0 (red squares) and z = 1 (blue circles) obtained with the ellipsoidal

overdensity. The vertical dashed line indicates the mass of a halo with 1000

particles. Top panel: points show the mass function of the whole selected

halo catalogue. The cut at low masses is clearly visible. Bottom panel: points

show the percentage of regular haloes in each mass bin (i.e. objects with a

centre offset smaller than 5 per cent of their virial radius).

comparison with observational results, which are far from being

homogeneous and regular.

Another used criterion is the rms of the fit adopting an NFW

profile (Macciò et al. 2007; Muñoz-Cuartas et al. 2011) as reference.

As we are only interested in the overall shape of a halo, this does

not play an important role; it is also interesting to mention that the

halo profile may vary for the simple NFW predictions (Navarro

et al. 2004; Prada et al. 2012; Klypin et al. 2014). This can be seen,

for example, in fig. 6 of Macciò et al. (2007), where the authors

compare the dependence of shape on mass for different selection

criteria. A selection only on centre offset (as done here) correspond

to what the authors called GOOD and NOISY halo samples (offset

less than 4 per cent) and differ only by the goodness of the NFW

fit. The two curves in the plot are almost identical, while there is

a noticeable difference when compared with the BAD and UGLY

sample (offset larger than 4 per cent).

These methods for selecting regular haloes have also been ap-

plied to the five SBARBINE simulations, obtaining a catalogue

equivalent to the MXXL haloes. The selected number haloes for

both simulations at redshift z = 0 is shown in Table 1.

3 T R I A X I A L S H A P E S O F M A S S I V E G A L A X Y

C L U S T E R S FRO M M X X L

3.1 MXXL results

In this first analysis we are mostly interested in the clusters mass

range, therefore we will use only a portion of the available MXXL

Figure 3. Probability distribution functions – differential and cumulative –

of s = a/c. The distributions for the entire haloes population is shown in

grey (and with dashed lines), while the red (solid) ones refer to the cleaned

population.

Table 2. Number of haloes in each logarithmic mass bin(in log (M/M⊙h))

and percentage of regular haloes for redshifts z = 0 and 1.

z = 0 z = 1

log (M)[M⊙ h−1] Nh Nreg/Nh Nh Nreg/Nh

14.0–14.2 57 759 58.56 per cent 30 823 41.19 per cent

14.2–14.4 56 083 56.61 per cent 13 271 39.11 per cent

14.4–14.6 42 951 53.52 per cent 3914 38.24 per cent

14.6–14.8 20 715 50.60 per cent 919 39.39 per cent

14.8–15.0 7823 48.50 per cent 134 36.81 per cent

15.0–15.2 2305 46.46 per cent 6 19.35 per cent

15.2–15.4 523 45.84 per cent

15.4–15.6 84 46.15 per cent

data. By taking the ratio of minor to major axis s = a/c we can

measure the degree of triaxiality of a halo; the closer s is to 0, the

less spherical the object is. If we combine this information with the

value of the intermediate to major axis ratio q = b/c, we can infer

how much prolate or oblate the halo is. In Fig. 3, the distribution of s

is shown for the entire halo catalogue (dashed grey curves), and for

the regular one (solid red curves). The filled histograms represent

the differential distributions, while the curves are cumulative distri-

butions of the two different samples. In the original population there

is a noticeable bump at low s which corresponds to highly aspherical

objects; clearly this is the case of unrelaxed or merging clusters. As

it can be seen in the red histogram, the selection criteria we adopted

have helped to remove this unwanted feature, since modelling them

is beyond the goal of this work. We have divided our sample in eight

logarithmic mass bins, from 1014 to 3.98 × 1015 M⊙ h−1. Table 2

reports the total number of haloes Nh and the percentage of regular

ones Nrel/Nh for each mass bin for both redshifts of the MXXL. As

expected, the number of clusters at high redshift is lower and we

do not have any halo in the highest mass bins. As noted before, the

percentage of regular haloes is higher at low masses, which formed

earlier and thus had more time to reach an equilibrium state.

It has already been established (Jing & Suto 2002; Allgood et al.

2006; Bett et al. 2007; Schneider et al. 2012) that the axis ratio

s depends on the mass of the halo, however this dependence has

not been tested at the high masses available in large simulation

boxes such as the MXXL. Fig. 4 shows the distributions of s for

different mass bins in our sample – only five mass bins of Table 2,

MNRAS 449, 3171–3182 (2015)
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Figure 4. Probability distribution function of s = a/c binned in mass using

a fixed bin of 0.2 M⊙ h−1 for both redshifts. For clarity, we show the results

for only five of the mass bins reported in Table 2.

Figure 5. Conditional distributions p(q|s), with q = b/c. Different colours

represent the distributions for six bins in s; solid and dashed histogram

shows data from redshift 0 and 1, respectively. The vertical dashed lines of

corresponding colour show the median value of s for each bin.

to avoid an overcrowded plot; as halo mass increases, the median

value of the axis ratio becomes smaller, that is, the halo is less

spherical. This effect is barely visible at redshift z = 1. Moreover

the dispersion in s is larger in the lower bins. It is also noticeable that

the distributions are not symmetric, particularly they are skewed to

low values of the axis ratio. To fully describe the shape of haloes,

we need also the conditional probability distribution function p(q|s),

which is the distribution of q for a given value of s. Fig. 5 shows the

conditional distributions obtained for six bins in s: solid histogram

for z = 0 and dashed for z = 1. The two redshifts are almost

indistinguishable, which hints at the universality of the conditional

distribution that will be discussed later on. For any interval, the

median value of b/c is fairly close to the median of a/c (dashed

vertical lines); although still fully triaxial, haloes tend to be prolate

rather than oblate. For example, in the case of a ‘disc-like’ object,

all the distributions would have been prominently shifted to values

close to unity, because, in this case, b ≈ c independently of the

minor axis a.

3.2 Minor to major axis ratio distribution: functional form

We aim to obtain a functional form to describe the axial ratio dis-

tributions at different masses. Due to the low statistic, Jing & Suto

(2002) were not able to fully resolve the shape of the distribution

and therefore assumed a Gaussian distribution. On the other hand,

Schneider et al. (2012) claimed to be able to fit all the masses

with a single beta distribution, although, even after a rescaling of s,

they mention some residual mass dependence. Thanks to the large

statistic in the MXXL simulation we are able to reconstruct the

distributions with greater detail, even at large masses. Moreover,

we are only interested in clusters, so we do not need the same level

of generalization of the previous authors (see Section 4 for broader

analysis). These two conditions allow us to simplify the analysis

and obtain a better fit of the axial ratio distributions.

As shown by various authors (Press & Schechter 1974; Bond et al.

1991; Lacey & Cole 1993) the mass function written as a function

of peak height ν = δc(z)/σ (M) does not depend on redshift nor on

cosmology (see appendix A for the details on how to compute ν). It

can be understood as follows: δc(z) is the critical overdensity of the

spherical collapse model (initial density required for a fluctuation to

collapse at redshift z), it increases with z; σ (M) is the variance in the

initial density field smoothed on a scale of a uniform sphere of mass

M and is higher for small masses. Then, since at high-redshift haloes

were less massive, the dependences on time of the two quantities

compensate with each other. For example, ν(M⋆, z) = 1 at every

redshift, and ν > 1 always represent a halo with a mass larger than

the typical haloes collapsing at that time, even though the exact

value of M⋆ changes with redshift.

Fig. 6 shows the logarithm of s versus the logarithm of peak

height (≈mass) for the selected haloes. Medians of log (s) for the

two redshifts are shown in red squares and blue circles; the redshift

dependence seen in Fig. 4 has disappeared completely. As already

shown by Despali et al. (2014, fig. 5), the universality of haloes

properties seems to extend also to the shape when using ν instead

of mass. The change of variable allows us to provide results that

are independent of the redshift and valid for different cosmologies.

This idea was already in the original Jing & Suto (2002) paper,

as the mass was given in units of M⋆, but the use of ν is more

Figure 6. (logarithmic) Distribution of s as function of peak height: the

black boxes and whiskers represent the quartiles and 1.5 the quartiles range

of the combined distributions. The horizontal error shows the different bins,

while the green solid line is the linear fit to the medians. Red squares and

blue circles are redshift 0 and 1 subsamples. As reference, the corresponding

mass for MXXL cosmology at z = 0 is shown in the top axis.
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Figure 7. Distribution of the scaled axial ratio s̃ for masses shown in

Table 2. It can be easily seen that the distributions at all masses are well

represented by an unique fitting function.

general and gives a more direct connection to the theory of structure

formation. As a result, we can safely treat the two data sets as a single

population, shown by the box and whiskers plot for a given ν bin

(horizontal error bars). This plot confirms the previously mentioned

trend: more massive haloes (higher ν) are more aspherical. We

have looked for a linear relation between ν and axis ratio in the

log–log space (green line in Fig. 6) and obtained an inclination

a = −0.257 ± 0.01 and an intercept b = −0.219 ± 0.005. The

intercept is the logarithm of the median axis ratio at M⋆: s̃(M⋆) =
10b = 0.604 ± 0.006, which however does not enter directly in the

following relations. The relation translate to a rescaling similar to

the one adopted by previous authors: log (s) = a log (ν) + b ⇒ s̃ =
10b = 10log s−a log(ν) = s ν−a . Therefore

s̃ = sν0.257 (3)

as ν takes care of any time and cosmology dependence, this rescal-

ing is valid also for different redshifts and cosmologies. As Fig. 7

shows, distributions of the rescaled axis ratios (coloured histograms)

are nearly indistinguishable from each other, meaning that we have

eliminated all the dependence on the mass, in contrast with the

findings of Schneider et al. (2012). Moreover, we were not able

to fit the histogram of s̃ with a beta distribution. As it can be

seen in Fig. 7, the distributions are non-zero at values greater than

s̃ = 1; this does not mean that there are haloes with axis ratio

greater than 1: s̃ is not a physical quantity, this effect is due to the

rescaling. Nevertheless, one can argue that s̃ represents the physical

axis ratio at ν = 1 (M = 5.8 × 1012 M⊙ h−1); still, this rescal-

ing has been obtained only for M > 1014 M⊙ h−1, leaving the

unscaled axis ratio well within the physically meaningful bound-

aries. We have chosen to fit the minor to major axis ratio using a

lognormal distribution

p(x, μ, σ ) =
1

x
√

2πσ
exp

(

−
(ln x − μ)2

2σ 2

)

, (4)

which corresponds to the probability distribution function of a vari-

able which is normally distributed in the logarithmic space. The

parameters of the fitted function are the following:

μ = −0.49

σ = 0.20; (5)

they can be converted to more familiar quantities

median = eμ = 0.61,

std =
√

(eσ 2 − 1)e2μ+σ 2 = 0.13. (6)

In this framework, for a simple analysis, one can just use the

scaled median value s̃ = eμ = 0.61 with asymmetric quartiles at

0.53 and 0.70; then use equation (3) to obtain the physical value.

On the other hand, it is possible to use the fit to obtain the whole

distribution for a given mass. For example, to use it as a prior

distribution of the minor to major axis ratio, one draws a value

x from a normal (Gaussian) distribution with mean μ = −0.49

and standard deviation σ = 0.20, the scaled axis ratio is then ex

(or directly extract s̃ from a lognormal distribution); inverting the

rescaling relation one can obtain the axis ratio of the halo at a given

peak height, which can be subsequently converted in mass for a

given cosmology at a given redshift.

3.3 Intermidiate to major axis ratio distribution: functional

form

Once we are able to describe s as a function of mass we can look at

the correlation between the two axial ratios. For construction, q is

always greater (or equal) than s; also it is always less than 1. These

limits have the effect of distorting the distribution of intermediate

to major axis ratio in a way that depends directly on s. To avoid this

problem, we use the rescaled quantity q̃ = (q − s)/(1 − s) instead

of the simple axial ratio (Schneider et al. 2012), eliminating the

issues of a limited interval; the correlation between the rescaled

second axial ratio and s can be seen in the left-hand panel of Fig. 8,

where medians (red error bars) and quartiles (box and whiskers

plot) for different values of the first axis ratio are shown. We have

divided q̃ in bins of different s and extracted the distributions p(q̃|s)

(right-hand panel of Fig. 8). From both plots, it is quite evident that

q̃ strongly depends on the first axial ratio, with higher values at

higher s, which is in agreement with haloes that tend to be prolate.

Moreover the scatter is larger at higher s, though this is mostly due

to the rescaling which extends the allowed interval of q̃.

Because of the strong correlation between q̃ and s, we cannot

just give q̃ as a function of mass to obtain the second axis ratio

distribution for a given mass, we have to describe p(q̃|s) and then

get the first axis ratio from its distribution at different masses (as

shown in Section 3.2). Given the large differences in the shapes of

the distributions of q̃ at a given s, the rescaling needed to reduce

them to a single one needs to be much more complex than the one

adopted in the last section. Therefore, we fit each single histogram

with a different beta distribution, which has the following analytical

expression:

p(x, α, β) =
1

B(α, β)
xα−1(1 − x)β−1. (7)

This function has two shape parameters α and β; the factor 1/B(α,

β) is a normalization constant that can be computed by requiring

that the integral of the probability distribution function is equal to

unity.

From the fitting procedure, we obtained a pair of parameters for

each bin in s; however, α has a complicated dependence on the first

axial ratio (almost constant with an average value of α = 2.15),

while the mean value of the beta distributions μ = 1/(1 + β/α)

follows a linear relation. Fig. 9 shows the dependence of the mean

μ (red squares on left-hand panel) and β parameter (blue circles on

right-hand panel) of the fitted beta functions on the first axial ratio

MNRAS 449, 3171–3182 (2015)
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3178 M. Bonamigo et al.

Figure 8. Distribution of q̃ = (q − s)/(1 − s) as function of s: the black boxes and whiskers represent the quartiles and 1.5 the quartiles range, respectively.

The horizontal red error bars represent the bin inside which the medians have been computed. Right: distributions of q̃ for different values of s (histograms)

and fitting function resulting from the model presented in the section (curves).

Figure 9. Parameters of the fitted beta functions. Red is the mean of the

distribution, in blue the second parameter β.

s. The coloured lines in each respective panel show a fit of these

two parameters:

μ(s) = 0.633s−0.007

β(s) = 1.389s−1.685. (8)

These two equations give us a functional form of p(q̃|s): starting

from a value of s, one can retrieve the mean μ and β from which

the other parameter can be computed α = β/(1/μ + 1). This gives

what is needed to reconstruct the distribution of q̃ of a given s

and the scatter, if needed. The final step is to revert the change of

coordinates and compute the physical axial ratio q.

4 E X P L O D I N G T H E M A S S R A N G E TO FI V E

O R D E R S O F M AG N I T U D E

The next step of our work is to explode the recipes for dark matter

halo shapes to lower masses; in the following sections we describe

how to generalize the axial ratio distribution to a wider mass range.

To do so, we combined the MXXL data with the SBARBINE simu-

lations, a set of cosmological simulations that will allow us to study

the shape of dark matter haloes from 3 × 1010 to 6 × 1015 M⊙ h−1.

As before, we express the mass dependence in terms of peak

height ν. By doing this, it is possible to treat homogeneously data

from different redshifts and cosmologies, such as the SBARBINE

and the MXXL simulations.

4.1 Axis ratio distribution: minor to major

On left-hand panel of Fig. 10, the logarithm of the minor to major

axial ratio s is shown as a function of the logarithm of ν. As be-

fore, horizontal error bars represent the interval in ν and the box

and whiskers are the quartiles and 1.5 the quartiles range for the

combined sample, while coloured points are medians of individual

catalogues. Again, there is no difference in the medians between

redshifts, neither between the single simulations. It can be seen that

s has a nearly linear dependence on log (ν), with a hint of flattening

at both high and low masses.

For each bin, we extracted the probability distribution function

of log (s) (right-hand panel of Fig. 10). The resulting curves exhibit

an interesting pattern: high and low ν histograms are mirrored with

respect to a central symmetric distribution which corresponds to

ν ≃ 1.21 (M ≈ M∗). The rescaling adopted in Section 3.2 for

cluster-size haloes does not compensate this large variation in the

form of the distributions and it is not able to remove entirely the

mass dependence. Instead of using a different rescaling relation to

obtain a single probability distribution function (pdf), we decided to

follow the same recipe we used for the second axial ratio; first of all

we separately fit each distribution and then we relate the resulting

parameters to the binning quantity. This is shown in Fig. 11, where

we fit the mean (left-hand panel) and β parameter (right-hand panel)

of the Beta distributions we derived by fitting the histograms of the

right-hand panel of Fig. 10. In order to keep the procedure simple

we fit with a linear relation both μ and log β,

μ(ν) = −0.322 log ν + 0.620

log (β(ν)) = 0.560 log ν + 0.836. (9)

As before, the dependence of α is difficult to describe and it is

almost constant with a value of about 11.21.

Using this fits we are now able to approximate the probability

distribution function of the first axial ratio with a Beta function with

parameters α = β/(1/μ − 1) and β, over a range in mass of almost

MNRAS 449, 3171–3182 (2015)
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Figure 10. Left: distribution of s as function of peak height for all the haloes selected from both redshifts the two simulations; the black boxes and whiskers

represent the quartiles and 1.5 the quartiles range, respectively, computed within the bins shown by the horizontal error bars. The coloured points represent

the medians for individual redshifts for the two simulations. Right: differential distribution of s for 8 bin in ν (histograms) and the respective approximating

functions obtained as shown in section 4.1 (curves).

Figure 11. Parameters of the fitted beta functions. Red is the mean of the

distribution, in blue the second parameter β.

six orders of magnitudes. Moreover the use of ν allows us to extend

these results to different cosmologies and different redshifts.

4.2 Axis ratio distribution: intermediate to major

Finally, to fully describe a triaxial halo of a given mass the in-

termediate to major axis ratio has to be parametrized. As Fig. 12

shows, the relation between q and s at redshift z = 0 does not de-

pend on the mass; the curves of different colours represent different

mass bins and still trace the same relation. The fact that all the

mass dependence is already inside s, allows us to use for p(q|s) the

same functional form of Section 3.3, independently of the mass we

choose. The same applies to different redshifts (not shown here,

but see Fig. 5 for a limited comparison), with the relation between

Figure 12. Axis ratio q as function of s for different masses, represented by

the points of different colours. Since there is no residual mass dependence

in the conditional distribution, we get the same result as in the MXXL with

all the simulations, confirming that this relation is universal.

the two quantities being indistinguishable from the one in Fig. 12.

Moreover, this independence of the conditional distribution from

both mass and redshift is in agreement with the theoretical predic-

tions from Rossi, Sheth & Tormen (2011).

5 C O M PA R I S O N W I T H PR E V I O U S WO R K S

We have compared our results with measurement of axis ratios

from other authors (Fig. 13). The data from both redshifts of the

MXXL and SBARBINE simulations are shown with red squares,

the median result form the analysis on cluster masses (Section 3.2)

is the blue solid line and the green solid line is from the combined
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Figure 13. Comparison between previous works (dashed lines) and the results of this paper (solid lines). Red squares represent the data from both redshifts

of the MXXL and the SBARBINE simulations, converted to redshift z = 0 for the Millennium cosmology. The blue solid line is the model for clusters shown

in Section 3.2; the green solid line is the fit for the entire mass interval from section 4.1. The dotted parts of the curves show the mass ranges outside where the

relations have been derived from.

data sets (Section 4.1). Results from other authors are shown with

dashed lines in the mass range where their analysis was carried out

and with dotted lines when extrapolated beyond it. Moreover all

data and predictions have been converted to redshift z = 0 for the

Millennium cosmology, when necessary. As it can be seen, there is

a general agreement in the dependence of s on the mass, with more

massive haloes being less spherical. Although there seems to be a

scatter of about 15 per cent, this is due more to the differences in

the method of measuring shapes (different finders, radius, cleaning

procedure), than an error on the measurement. It must be noticed

that instead of the spherical mass, we used the mass within the

ellipsoid for consistency reasons; yet, this does not substantially

alter the findings presented here.

The most important difference comes from the radius at which

the shape is measured. Jing & Suto (2002, blue dashed line) used

particles of the isodensity surface corresponding to 2500δc, roughly

at a radius of 0.3Rvir; this analysis is different from all the following

authors, as it reflects the shape of an ellipsoidal shell, and not

of all the mass inside the ellipsoid. Their mass range 6 × 1012–

1014 M⊙ h−1 was also quite small compared to later analysis.

Studying a larger mass interval, 6 × 1011–3 × 1014 M⊙ h−1,

Allgood et al. (2006, yellow dashed line) derived axis ratios of

particles distribution inside 0.3Rvir diagonalizing the normalized

mass tensor (weighted by the distance from the centre); because of

this their measure reflects the shape at an even closer radius.

On the other hand, Schneider et al. (2012, black dashed line)

extended the analysis up to the virial radius, nevertheless the use of

the normalized tensor prevents a meaningful comparison with our

results.

All of these results are lower than what we derived, which can be

explained by the fact that the shapes were measured at inner radii,

where the particle distribution is supposed to be more elongate.

However, if we restrict the comparison to works that used particles

within the virial radius the agreement becomes much more strong.

This is the case of Muñoz-Cuartas et al. (2011, magenta dashed

line), who studied shapes with an ellipsoidal overdensity algorithm

similar to the one adopted in this work; their results agree with ours

much more than any other work.

Finally, using a different type of halo finder, Bett et al. (2007, red

dashed line) measured s for a set of particles that represent all the

bounded particles of a halo without assuming any particular shape;

the finder also clean the sample for irregular haloes. The agreement

with our results is another indication that the adopted selection

criteria are justified and ellipsoids are a good approximation for

regular haloes.

The other difference can arise from the cleaning of the sample;

the green dashed line show the prediction from Despali et al. (2014),

which is obtained from all haloes, regardless of their state of relax-

ation. As expected the values are lower, since the more unrelaxed

haloes are typically irregular and so they appear more elongated

with lower axial ratios. The difference is greater for less massive

haloes.

6 SU M M A RY A N D C O N C L U S I O N S

We have studied the triaxiality of dark matter haloes from the MXXL

simulation, which enabled us to characterize the shape of haloes

with extremely good statistic in the galaxy clusters mass range,

from 1014 to 4 × 1015 M⊙ h−1. Using the SBARBINE simula-

tions, we have extended our analysis to lower masses down to

3 × 1010 M⊙ h−1, thus increased the mass range by more than

five orders of magnitude. The main results of our analysis are the

following:

(i) dark matter haloes are triaxial with a tendency of being prolate

and in particular more massive objects are less spherical; as shown in

Fig. 3 very unrelaxed haloes have the effect of artificially increasing

the axis ratios and cannot be described by this simple ellipsoidal

model, which is unimodal by construction;
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(ii) for clusters, the distribution of the rescaled minor to major

axis ratio is well described by a lognormal distribution, in contrast

to previous extrapolations from lower masses that found a simple

Gaussian fit;

(iii) over the whole examined mass range, s can be approximated

by a beta distribution that depends only on the peak height ν;

(iv) the conditional intermediate to major axis ratio distribution

p(q|s) can also be described by a beta distribution that depends only

on the first axis ratio and not on the mass, thus the same approach

can be used for both clusters and the whole mass range of haloes;

(v) overall, the pdf of the shape of a dark matter halo is given

by one single parameter ν, related to its mass, that incorporates

the dependence on redshift and cosmology. This goes in support

of methods that allows us to change the cosmology of a numerical

simulation (Angulo & White 2010), as within good approximation

most of halo properties depend only on ν.

In the recipe that we provide, a halo shape is determined only by

its mass and can be changed to different cosmologies and redshifts.

Depending on the level of precision desired, it is possible to choose

different approximations,

(i) for a simpler analysis that is focused on the entire mass range,

Section 4.1 presents a single method that can be applied to masses

from 1010 up to 1016 M⊙ h−1. If restricted to masses lower than

1014 M⊙ h−1, this is actually a very accurate description of haloes

shapes;

(ii) if the interest is only on clusters shapes, then Section 3.2

gives a more precise model;

(iii) finally, it is possible to combine the two description and just

use the most suitable one given the mass of the halo, although losing

the universality of the description.

A simple implementation of this model can be found on a dedi-

cated website.2

In Section 5, we have compared our results with previous findings.

There is a general agreement with previous works within a 15 per

cent scatter that is due to the different methods used and especially

to the radius at which the shape is measured. However, the picture is

clear; dark matter haloes are triaxial objects and this effect is more

prominent in clusters where the spherical model is quite far from

being able to realistically represent the matter distribution.
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A P P E N D I X A : D E N S I T Y P E A K H E I G H T

In this appendix, we describe step by step how to compute density

peak height ν for a virialized halo with mass M at redshift z for a

given cosmological model. Its definition is the following:

ν ≡
δc(z)

σ (M)
, (A1)

where δc(z) is the critical overdensity of the spherical collapse

model, the initial density required for a fluctuation to collapse at

redshift z. This in turn can be expressed as the collapse overdensity

at redshift z = 0 rescaled to a given time: δc(z) = δc/D(z), with D(z)

being the linear growth rate of a density fluctuation normalized to

unity at z = 0. The overdensity δc depends only on redshift and not

on the mass; on the other hand, the denominator σ (M), depends on

the mass but not on redshift. It is the variance in the initial density

field smoothed on a linear scale R, which corresponds to the radius

of a uniform sphere of mass M. Therefore, only the linear growth

rate D(z) and the initial power spectrum P(k) are needed.

From the linear perturbation theory, it is possible to compute

D(z)

D(z) ∝ H (t)

∫ t

0

dt ′

a2(t ′)H 2(t ′)
, (A2)

which has to be solved numerically. Fortunately, there is an approxi-

mated solution (Carroll, Press & Turner 1992) that can be expressed

as D(z) ∝ g(z)/(1 + z), where

g(z) =
5/2 �m(z)

�
4/7
m − ��(z) + [1 + �m(z)/2] [1 + ��(z)/70]

. (A3)

Additionally, the collapse overdensity has an extremely weak de-

pendence on cosmology: δc ≈ 1.686[�m(tc)]0.0055; for realistic cos-

mologies this can be approximated to δc ≈ 1.69. Therefore, at z = 0

the collapse overdensity is δc and it increases with redshift, due to

D(z).

The other quantity required, the variance σ 2(M), is defined from

the power spectrum as

σ 2(M) =
1

2π2

∫ ∞

0

P (k)W̃ 2(kR)k2dk; (A4)

where W̃ is the Fourier transform of a window function. Typically,

W is a Top Hat (sphere) in the coordinates space, so that its Fourier

transform W̃ is

W̃ (kR) = 3
sin (kR) − kR cos (kR)

(kR)3
; (A5)

with the radius R given by M = ρb4π/3R3. The power spectrum

P(k) of the density fluctuations is the main input; given a set of

cosmological parameters it can be computed from a software like

CAMB (Lewis et al. 2008). As it is function of initial conditions only,

σ (M) needs to be computed only once for a given cosmology; all

the redshift dependence is inside D(z).

Finally, for a halo of mass M, using equation (A4) it is possible to

compute σ (M) and combine it with the value of D(z) from equation

(A3) to obtain the correct density peak height ν.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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3. Simulating gravitational lensing
observations with MOKA

Strong gravitational lensing systems represent a biased population. In order
to form multiple images or visibly deform background sources, a high surface
mass density is required (or lucky alignments of the background object); this
threshold can be reached by haloes that have large mass, high concentration or
special orientation (Hennawi, Dalal, et al., 2007). Therefore it is clear that a
sample of galaxy cluster selected because of their gravitational lensing does not
represent the overall population.

Many studies have characterised the different systematics that can influence
the appearance and strength of gravitational lensing effects (Hennawi, Dalal,
et al., 2007; Meneghetti, Fedeli, et al., 2010; Redlich, Bartelmann, et al., 2012;
Waizmann, Redlich, et al., 2012, for example); however the limited size of the
simulations prevented the formation of a large number of very massive objects.

The analysis presented in the previous chapter provided us with a catalogue
of triaxial shape and orientation of all the haloes in the Millennium XXL (MXXL)
simulation. In this chapter we have exploited these data to investigate the prop-
erties of galaxy clusters that generate strong gravitational lensing and how they
are influenced by shape and orientation of the halo. I have done so by selecting
haloes from the MXXL simulation and then computing their lensing properties
using the MOKA software (C. Giocoli, Meneghetti, et al., 2012). Even though
the catalogue with properties of haloes was already available, I had to generate
surface mass density maps for each selected cluster; I also had to modify MOKA
to accept mass maps as input to measure the Einstein radius and produce the
convergence and shear maps.

For each halo, I have produced outputs for six different orientations: three
along the x, y and z axis; and three along the main axes of the halo. The first
three orientations correspond to random rotations of the object; while the latter
allows us to quantify the boost in strong lensing signal caused by the alignment
of the axes with the line of sight, in particular by looking at the Einstein radius
of the different orientations. Moreover, I have compared the distribution of mi-
nor to major axis ratio of strong lensing clusters with the overall population for
different values of the Einstein radius.

Finally, I have checked that in our analysis the effect of correlated structures
along the line of sight are negligible by comparing the results with what is ob-
tained by using larger regions in the projected direction.

The main results of our analysis can be summarised as following:

• projection effects play an important role in biasing strong lensing clusters;
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• orientation effects can boost the Einstein radius by more than a factor of
two when an halo is aligned with its major axis along the line of sight;

• there is a small but non-negligible difference in the distribution of the mi-
nor to major axis ratio between the strong lensing clusters and the overall
population.

The results of this work are shown in Section 2.1 (“Strong lensing of Clusters in
the Millennium-XXL Simulation”) of the paper included in the following section.
The paper has been accepted for publication in MNRAS.

3.1. Characterising Strong Lensing Galaxy

Clusters using the Millennium-XXL and MOKA

simulations

C. Giocoli, M. Bonamigo, et al. “Characterising Strong Lensing Galaxy Clus-
ters using the Millennium-XXL and MOKA simulations”. In: ArXiv e-prints (Apr.
2016). arXiv: 1604.03109
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ABSTRACT

In this paper we investigate the strong lensing statistics in galaxy clusters. We extract
dark matter haloes from the Millennium-XXL simulation, compute their Einstein ra-
dius distribution, and find a very good agreement with Monte Carlo predictions pro-
duced with the MOKA code. The distribution of the Einstein radii is well described by
a log-normal distribution, with a considerable fraction of the largest systems boosted
by different projection effects. We discuss the importance of substructures and triax-
iality in shaping the size of the critical lines for cluster size haloes. We then model
and interpret the different deviations, accounting for the presence of a Bright Cen-
tral Galaxy (BCG) and two different stellar mass density profiles. We present scaling
relations between weak lensing quantities and the size of the Einstein radii. Finally
we discuss how sensible is the distribution of the Einstein radii on the cosmological
parameters ΩM − σ8 finding that cosmologies with higher ΩM and σ8 possess a large
sample of strong lensing clusters. The Einstein radius distribution may help distinguish
Planck13 and WMAP7 cosmology at 3σ.

Key words: Gravitational lensing: strong lensing – galaxy clusters; Numerical meth-
ods: simulations; Galaxies: clusters

1 INTRODUCTION

Spectroscopic galaxy redshift surveys and numerical N -body
simulations have revealed a large-scale distribution of mat-
ter in the Universe featuring a complex network of intercon-
nected filamentary galaxy associations (Tormen et al. 2004;
Springel et al. 2005; The Dark Energy Survey Collaboration
2005; Sousbie et al. 2008, 2011; Guzzo et al. 2014; Percival
et al. 2014; Le Fèvre et al. 2015; Codis et al. 2015). Vertices,
i.e. interconnections among the filaments, correspond to the
very dense compact nodes within this cosmic web where one
can find massive galaxy clusters (Tormen 1998; Bryan &
Norman 1998; Shaw et al. 2006; Borgani & Kravtsov 2011;
Bellagamba et al. 2011).

The mass density distribution in clusters can be inferred
using different wavelength observations (Meneghetti et al.
2010b; Donnarumma et al. 2011; Donahue et al. 2016). In

⋆ E-mail: carlo.giocoli@lam.fr

particular, optical and near-infrared data provided by, for in-
stance, the Subaru and the Hubble Space telescopes (HST)
are allowing to indirectly infer the total projected matter
density distribution in clusters through its effect of gravi-
tationally bending the light of background galaxies (Jullo
et al. 2007; Merten et al. 2015; Limousin et al. 2015). Gravi-
tational lensing, as predicted by the Einstein’s General Rela-
tivity, deflects light rays once they get close to a deep poten-
tial well (Einstein 1918; Landau & Lifshitz 1971). Light-rays
from distant galaxies travelling in the space-time of our Uni-
verse can be weakly or strongly bent when they approach a
galaxy cluster (Bartelmann & Schneider 2001; Bartelmann
2010). The weak lensing regime happens when the light-rays
travel far from the centre of the cluster. In this case, the
shapes of background galaxies are only slightly altered and,
for a good determination of the signal, it is usually neces-
sary to average over a large sample of background systems
(Hoekstra et al. 2012, 2013; Giocoli et al. 2014; Radovich
et al. 2015; Formicola et al. 2016). The strong lensing regime
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takes place when the light-rays transit close to the centre
of the cluster, and the mass density becomes critical: the
lensing event in this case is non-linear and images of back-
ground galaxies may be multiplied and/or appear stretched
and elongated. Depending on the quality of the data and
on their availability, weak and strong lensing data can be
used separately or jointly for a better reconstruction of the
projected mass from the very central region to the outskirts
of the cluster. In the following, we will concentrate on the
strong lensing regime and on the objects that originate it,
which we will refer to as Strong Lensing Clusters (SLCs).

SLCs may constitute a peculiar class of objects. While
their existence is a natural consequence of General Relativ-
ity, “giant arcs” – extremely distorted images of background
galaxies – hosted in clusters have been discovered only 30
years ago in the core of Abell 370, independently by Lynds
& Petrosian (1986) and Soucail et al. (1987). This obser-
vation was recognised by Paczynski (1987) as the result of
strong gravitational lensing, a hypothesis later confirmed by
the measurement of the redshift of the arc (Soucail et al.
1988a,b).

Since then, SLCs have led to many important advances
in cosmology: (i) being a direct and precise probe of the two-
dimensional projected mass density, Strong Lensing (SL) has
provided accurate mass maps, constraining structure forma-
tion properties and evolution scenarios (for example: Broad-
hurst et al. 2000; Sand et al. 2002; Saha & Williams 2006;
Bradač et al. 2006; Zitrin et al. 2009a; Zitrin & Broadhurst
2009b; Newman et al. 2011; Verdugo et al. 2011; Sharon
et al. 2014); (ii) producing a natural gravitational amplifi-
cation, SL has allowed to push the frontier of our telescopes
(for example: Richard et al. 2006; Coe et al. 2013; Atek
et al. 2014; Zitrin et al. 2014); (iii) providing a method
to probe the dark energy equation of state, since images
position depends on the underling cosmology (for example:
Soucail et al. 2004; Jullo et al. 2010).

SLCs are now well established as a promising class of
objects that cannot be ignored in cosmology, and their fu-
ture is extremely promising, since future facilities are ex-
pected to detect thousands of SLCs (Laureijs et al. 2011;
Boldrin et al. 2012, 2016; Serjeant 2014), and the exquisite
resolution of the James Webb Space Telescope (JWST) will
deliver unique multi-colour data sets for some of them.
The growing importance of SLCs has been recently il-
lustrated by the CLASH program (Postman et al. 2012)
which has been awarded of 500 HST orbits to observe 25
massive SLCs. More recently, the Hubble Deep Fields Ini-
tiative has unanimously recommended a “Frontier Field”
program of six deep fields concentrated on SL clusters
(together with six deep “blank fields”) in order to ad-
vance our knowledge of the early epochs of galaxy forma-
tion and to eventually offer a glimpse of JWST’s universe
(http://www.stsci.edu/hst/campaigns/frontier-fields). Each
cluster will be imaged with 140 orbits, leading to a total of
840 orbits dedicated to the Frontier Field Initiative.

Very encouraging is also the work performed by Zitrin
et al. (2011c) on reconstructing the mass density distribution
and the Einstein radius (which estimates the size of the SL
region) of a large sample of SDSS clusters. In this case, the
“blind’ approach based on the assumption that light traces
mass has allowed to establish that the Einstein radius dis-
tribution of clusters with 0.1 < zl < 0.55 has a log-normal

shape. Furthermore, a visual inspection has revealed that
approximately 20 percent of SLCs are boosted by various
projection effects.

Given the significance of SLCs, characterising this pe-
culiar class of object is crucial and this has been the focus of
many studies (for example: Hennawi et al. 2007; Meneghetti
et al. 2010a; Redlich et al. 2012; Waizmann et al. 2012).
This is also the motivation of the present work, where we
aim at characterising which clusters do generate strong lens-
ing features. Our approach is twofold: (i) first we will use the
large sample of cluster statistics afforded by the Millennium
-XXL simulation (Angulo et al. 2012) – exploiting its large
size (3 Gpc/h box side), that allows to follows the formation
of many massive haloes; (ii) second we will complement the
statistics with a cosmological study based on clusters mod-
elled using the MOKA code (Giocoli et al. 2012a).

We want to spend few words about the fact that the
Einstein radius of lenses is not a direct observable quantity.
The Einstein radius, defined by the location of the tangential
critical lines (more will be discussed about this in the first
section) is a byproduct of the mass reconstruction pipeline
by mean of parametric algorithms that typically assume that
mass traces the light (Jullo et al. 2007; Zitrin et al. 2011) or
adaptively reconstruct the mass density distribution using
non-parametric approaches (Merten 2014).

The paper is organised as follows: in Section 2 we
present the numerical simulations and the pseudo-analytical
methods we adopt as bases for our analyses; in Section 3 we
discuss the scaling relations between the size of the Einstein
radius and weak lensing-derived quantities; in Section 4 we
present how the Einstein radius distribution depends on the
matter content of the universe and on the initial normali-
sation of the power spectrum. Finally in Section 5 we sum-
marise and discuss our results.

2 METHODS

In this paper we aim at studying the strong lensing prop-
erties of galaxy clusters – through the size of their Einstein
radius – extracted from a very large cosmological box. How-
ever, the limitation of possessing the simulation only for one
cosmological model in addition to the fact that the run has
been performed only using collisionless dark matter parti-
cles forced us to complement the analyses using a pseudo-
analytic approach to simulate convergence maps of triaxial
clusters. This latter method allows us, in a more flexible way,
to investigate which properties of clusters mainly contribute
in shaping the Einstein radius, to quantify the contribution
of the stellar component and to understand how the Ein-
stein radius distribution of clusters may depend on specific
cosmological parameters.

2.1 Strong lensing of Clusters in the

Millennium-XXL Simulation

With a box side of 3 Gpc/h, the Millennium-XXL (M-XXL)
simulation (Angulo et al. 2012) was especially tailored to
study massive haloes which can be only found in very large
volumes, because of their nature of extremely rare objects.
The 67203 ∼ 3 × 1011 dark matter particles have a mass of
6.174× 109M⊙/h; the Plummer-equivalent softening length
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is ǫ = 13.7 kpc. For reasons of consistency with the previ-
ous Millennium runs (Springel et al. 2005; Boylan-Kolchin
et al. 2009), the adopted ΛCDM cosmology as the following
parameters total matter density ΩM = 0.25, baryons den-
sity Ωb = 0.045, cosmological constant ΩΛ = 0.75, power
spectrum normalisation σ8 = 0.9 and dimensionless Hubble
parameter in H0/100 km/s/Mpc h = 0.73. We remind the
reader that the simulated volume of the M-XXL is equivalent
to the whole observable Universe up to redshift z = 0.72.

At each simulation snapshot, haloes have been identified
using a FoF algorithm. For each FoF-group, starting from
the particle with the minimum potential, we then compute
M200 as the mass enclosing a sphere 200 times denser than
the critical density ρc at that redshift. In our analysis – for
the motivation we will underline later – we will consider the
halo catalogue at z = 1 and the corresponding snapshot files.
Due to the large number of haloes identified in the simula-
tion volume we restrict our analysis only to the ones more
massive than 3×1014M⊙/h – corresponding to 3135 systems.
For each halo respecting this criterion we store all the parti-
cles enclosed in a cube of 8Mpc/h by side and project them
in a 2D-mass map resolved with 2048 × 2048 pixels using
the Triangular Shape Cloud technique, along six different
directions. In the first three cases we consider three projec-
tions along the cartesian axes, which are then random with
respect to the cluster morphology, we then consider three pe-

culiar projections i.e. along the ellipsoid axes as computed
in Bonamigo et al. (2015): major, intermediate and minor
axes. In placing the particles on the grid, to avoid particle
noise effects (Rau et al. 2013; Angulo et al. 2014) due to the
discreteness of the dark matter density, we apply a Gaussian
filter with a scale of 3.25 kpc/h, which corresponds to ap-
proximately one third of the simulation Plummer-equivalent
softening.

From the constructed mass density maps Σ(x1, x2) –
where x1 and x2 are the two cartesian coordinates on the
2D map projected in the plane of the sky – we compute the
convergence κ(x1, x2) as:

κ(x1, x2) =
Σ(x1, x2)

Σcrit

(1)

with

Σcrit ≡
c2

4πG

Dl

DsDls
≡

c2

4πG

1

Dlens
(2)

where c represents the speed of light and G the universal
gravitational constant; Dl, Ds and Dls are the angular di-
ameter distances between observer-lens, observer-source and
source-lens, respectively; we also define the lensing distance
Dlens ≡ DlsDs/Dl. We assume clusters to be located at
zl = 0.5 and sources at zs = 2.5, computing the distances
assuming the cosmological parameters in agreement with
the Planck13 results (Planck Collaboration et al. 2014): the
matter density parameter ΩM = 0.307, the contribution of Λ
ΩΛ = 0.693, the normalised Hubble constant h = 0.6777 and
the normalisation of the initial power spectrum σ8 = 0.829.
We do so because, even if the M-XXL simulation has been
run with a different set of cosmological parameters, we as-
sume to be able to rescale those clusters at z = 1 from a
M-XXL cosmology to a sample at z = 0.5 in a Planck13
cosmology. This is supported by the fact that the halo prop-
erties at z = 1 in the M-XXL cosmology are very similar to

those at z = 0.5 in a Planck13 cosmology (Sheth & Tormen
1999; Macciò et al. 2008; Zhao et al. 2009; Giocoli et al.
2012b; Despali et al. 2015); even if the two mass functions
for haloes more massive than 3× 1014M⊙/h may be differ-
ent by more than 50%, the two concentration-mass relations
deviate by less than 5%.
From the convergence we can define the effective lensing po-
tential as:

Φ(x1, x2) ≡
1

π

∫

κ(x′) ln |x− x
′|d2

x
′, (3)

with x ≡ (x1, x2), and then the pseudo-vector field of the
shear γ = γ1 + iγ2 as:

γ1(x1, x2) =
1

2
(Φ11 − Φ22) , (4)

γ2(x1, x2) = Φ12 = Φ21 (5)

with Φij representing the i and j derivatives of the effec-
tive lensing potential (Bartelmann & Schneider 2001; Ba-
con et al. 2010). At first order, gravitational lensing induces
distortion and stretch on background sources: typically a
circular source is mapped through gravitational lensing into
an ellipse when both k and γ are different from zero. These
effects are described by the Jacobian matrix:

A =

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

. (6)

The magnification is quantified as the inverse determinant
of the Jacobian matrix that can be read as:

µ ≡
1

detA
=

1

(1− κ)2 − γ2
; (7)

the inverse of the eigenvalues of the Jacobian matrix mea-
sure the amplification in radial and tangential direction of
background sources:

µr =
1

1− κ+ γ
(8)

µt =
1

1− κ− γ
. (9)

For circularly symmetric lenses, the regions in the image
plane where the denominator of the relations above is equal
to zero define where the source images are infinitely radi-
ally and tangentially magnified, respectively. In particular
images forming close to the tangential critical curve are
strongly distorted tangentially to it.

The definition of critical curves is more complex and
non trivial in asymmetric, substructured and triaxial clus-
ters. From each convergence map the lensing potential and
the shear are numerically computed in Fourier space 1 where
derivatives are easily and efficiently calculated. To avoid
artificial boundary effects each map is enclosed in a zero-
padded region of 1024 pixels. We have tested the impact of
the size of the zero-padded regions on the weak and strong
lensing properties of individual non-periodic cluster maps
and find that artefact mirror clusters do not appear when
the size of the zero region is at least half of the considered
field of view. To define the Einstein radius of the cluster
we identify in the cluster maps points of infinite tangential

1 using the FFTW libraries: http://www.fftw.org
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Figure 1. Convergence maps of different projections of a halo extracted from the Millennium-XXL simulation with mass M200 =
1.2× 1015M⊙/h. The red curves in each panel represent the tangential critical lines from which we compute the median Einstein radii.

The top-three images show the three projections along the cartesian axes (i.e. random with respect to the cluster morphology), while the
bottom ones from left to right, are the projections along the major, intermediate and minor axes, respectively. This particular cluster

has the peculiarity of having in one projection (namely the one in the left bottom panel) the largest Einstein radius in our sample: 75

arcsec.

Figure 2. Left panel: scatter plots of the relative size of the Einstein radii when the cluster major axis of the ellipsoid is oriented along

the line-of-sight with compared to the average value of the three random projections: 〈θE〉random . Right panel: Fraction i of clusters with

an angle φ between the direction of the major axis of the mass ellipsoid and the line-of-sight smaller than 80◦, 40◦, 25◦ and 10◦ as a
function of the Einstein radius.
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Table 1. Percentage of the projections along which M-XXL clus-
ters have the largest Einstein radius for the random and the pe-

culiar projections, respectively.

projection % (random)

x 34%

y 32%
z 34%

projection % (peculiar)

major axis of the ellipsoid 86%

intermediate 12%
minor 2%

magnification θt and define the Einstein radius θE as the
median distance of these points from the cluster centre:

θE ≡ med

{

√

(θi,x1
− θc,x1

)2 + (θi,x2
− θc,x2

)2
∣

∣ θi ∈ θt

}

.

(10)
We define the center of the cluster θc as the position of the
particle with minimum potential and the connected region
defined by the tangential critical points θt, when they ex-
ist, have to enclose the cluster centre; this ensures that the
critical points are not eventually assigned to a substructure
present in the field of view. The robustness of this definition
has already been tested and discussed in a series of works
(Meneghetti et al. 2008, 2010a; Redlich et al. 2012; Giocoli
et al. 2014) to which we remind the reader for more de-
tails. The size of the Einstein radius defines a measure of
the strong lensing region and, for an axially symmetric lens,
permits to estimate the mass enclosed within it using the
equation:

θE =

(

4GM(< θE)

c2
Dls

DlDs

)1/2

(11)

assuming that all mass is located at the centre of the lens. By
geometrically measuring the area A enclosed by the tangen-
tial critical curve it is possible to define the effective Ein-
stein radius as θE,eff =

√

A/π. However, we will rely on
the median Einstein radius definition that – as noticed by
Meneghetti et al. (2011) and Giocoli et al. (2014) – better
captures the presence of asymmetries of the matter distri-
bution towards the cluster centre.

In Figure 1 we show the six considered projections of the
halo which in one them has the largest Einstein radius (75
arcsec) in our constructed catalogue – namely in the bottom
left panel. The top panels show the x, y and z projections,
while the bottom ones the projections along the major, in-
termediate and minor axis of the halo ellipsoid, from left to
right respectively. In each panel, the red curves represent the
tangential critical curves, i.e. where images of background
galaxies would appear highly tangentially magnified if lo-
cated close to the optical axis of the lens system. From the
figure we notice that the largest Einstein radius occurs, in
this case – as in most of the cases, when the major axis of
the cluster ellipsoid is oriented along the line-of-sight; the
opposite holds when the minor axis points towards the ob-
server. From the measured Einstein radius of each of the six
projections of all clusters in the M-XXL we can summarise
(as it can be read in Table 1) that in the random projec-

tions the probability of having the largest Einstein radius is

uniform in the three cases as expected. However, consider-
ing the peculiar projections, sample we notice that in 86%
of the cases the largest Einstein radius appears when the
major axis of the ellipsoid is oriented along the line-of-sight
and in 12% (2%) of the cases when the orientation is the in-
termediate (minor) axis. We have investigated those latter
cases and they arise either (i) when there is a merging event
which manifests in the presence of a massive substructure
projected in correspondence of the cluster centre and/or (ii)
when the cluster ellipsoid is very elongated in the plane of
the sky.

In the left panel of Figure 2 we quantify by how much
the Einstein radius grows when the cluster is oriented along
the major axis of its mass ellipsoid. We consider all clus-
ters having at least an Einstein radius of 7 arcsec along one
of the considered projections2. In this case we compare the
size of the Einstein radius computed when the cluster is ori-
ented along the major axis with respect to the average value
measured from its three random projections. From the figure
we observe that the typical size of an Einstein radius may
grow up to a factor of two/three when the cluster is aligned
along the line of sight with respect to a random orienta-
tion; we also notice some cases where the Einstein radius
computed in a random projection is larger than the value
measured when the mass ellipsoid is oriented along the line-
of-sight; as discussed previously we verified that those cases
are merging clusters or very elongated ellipsoids in the plane
of the sky. All this brings more light to the general picture
that most of the strong lensing clusters may possess their
dark matter halo major axis preferentially pointing close to
the line-of-sight (Oguri & Blandford 2009). This is more ev-
ident in the right panel of the same figure where we show
the fraction of SLCs per different bins in θE that possess
an angle φ between the major axis of the ellipsoid and the
line-of-sight smaller than a given value: 65% of SLCs with
30 < θE < 40 have an angle φ between the direction of their
major axis and the line-of-sight smaller than 40 degrees.
Our finding are quite consistent with the results presented
by Oguri et al. (2005) where the authors also discuss that
the apparent steep observed mass profile can be reconciled
with theoretical models if the triaxial ellipsoid of the dark
matter halo is preferentially oriented with the major axis
along the line-of-sight.

However, when looking at random projections in the
plane of the sky, the sole effect of triaxiality is less obvi-
ous. Figure 3 shows the difference that might arise in the
distribution of shapes – namely minor to major axis ra-
tio s – by selecting clusters that are strong lenses (blue
histograms) instead of the general population (black his-
tograms). Haloes have been subdivided in bins of Einstein
radius θE , each shown in a different panel. Even though, as
previously found by Hennawi et al. (2007), the distribution
of the axis ratio of SLCs does not seem to differ from the dis-
tribution of the overall population, the mean values (vertical
dashed lines) vary up to 5%, in particular for very large θE .
A Kolmogorov-Smirnov test showed that we can reject the
hypothesis that the samples are taken from the same distri-

2 The value of 7 arcsec ensures that the measurement of the size

of the Einstein radius of the cluster is not affected nor by particle
noise neither by the finite grid size of the map.
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Figure 3. Probability distribution functions of the minor to ma-

jor axis ratio of the overall M-XXL cluster population (black his-

togram) and of the SLCs (blue histogram), with each panel rep-
resenting a different bin in θE . Vertical dashed lines indicate the
mean of the corresponding sample.

bution at significance level of 10%, meaning that there is a
low probability that SLC have the same shape properties of
the overall population. This suggests that the concentration
is mainly responsible in driving the correlation of the cluster
Einstein radii.

It is important to underline that the effect of correlated
and uncorrelated large scale structures may also impact the
lensing properties of galaxy clusters and boost their strong
lensing cross section as well as the size of the Einstein radius
(Puchwein & Hilbert 2009). Usually to quantify the impact
of uncorrelated structures along the line-of-sight it is neces-
sary to run expensive multi-plane ray-tracing lensing simu-
lations of clusters and matter extracted from cosmological
runs (Hilbert et al. 2008; Petkova et al. 2014; Giocoli et al.
2015), things that are beyond the purpose of this paper.
However the effect of correlated structures on the lensing
properties can be studied selecting for each cluster projec-
tion a larger region along the line-of-sight, and quantify how
these changes on the determination of the Einstein radius.
To do so, we have produced two other sets of convergence
maps, one selecting particles from a region of 16 Mpc/h and
another from 32 Mpc/h along the line-of-sight, and project-
ing all of them into a single lens plane. We still keep the
size of the region in the plane of the sky to be 8 Mcp/h
of a side. As an example, in Figure 4 we show the aver-
age convergence power spectra of the random projections

sample considering a region of 8, 16 and 32 Mpc/h along
the line-of-sight in black, blue and red, respectively. In the
bottom panel we present the relative residuals of the last
two cases with respect to the 8 Mpc/h reference one. We
notice that the inclusion of more matter along the line-of-
sight tends to increase the convergence power spectrum at
small scales of about 20 percent for 16 Mpc/h and almost
40 percent for 32 Mpc/h, which however contains 4 times
the volume. In the figure we show also for comparison the
prediction from a smooth NFW halo (green curve) and the
power spectrum of a spherical halo (with the same large
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Figure 4. Average convergence power spectrum of haloes of the

M-XXL simulation. Black, blue and red curve show the average
power spectrum derived extracting the particles contained in a re-

gion of 8, 16 and 32 Mpc/h along the line-of-sight; in the plane of

the sky in all three cases we have considered particles in a square
of 8 Mpc/h of side. The green curve shows the prediction from

smooth NFW spherical haloes, while the purple one presents the

prediction for spherical MOKA haloes with substructures mod-
elled with a Singular Isothermal Sphere (SIS) profile. The bottom

panel shows the relative residuals of the average power spectra
measured using 16 and 32 Mpc/h with respect to the one com-

puted assuming 8 Mpc/h as box side along the line-of-sight.

scale normalisation) with substructures (in magenta): both
curves are obtained by averaging produced using MOKA
haloes (see below), with the same masses and NFW concen-
trations of the M-XXL sample. In this case we observe that
the presence of substructures in a halo tends to increase the
small scale power of more than one order of magnitude for
l & 3× 104 with respect to a smooth case. The other inter-
esting behaviour is that while the power spectrum of haloes
extracted from the M-XXL are characterised at small scales
by the particle noise and finite grid size of the maps (Vale &
White 2003), MOKA haloes are particle noise-free and the
only numerical limitation at small scale is set by the desired
grid size of the map.

Puchwein & Hilbert (2009) have shown that the pres-
ence of uncorrelated structures tends to boost both the
strong lensing cross-section for giant arcs and the size of
the Einstein radii. As discussed, an accurate description of
the contribution of uncorrelated large-scale structures needs
expensive multi-plane ray-tracing simulations and is beyond
the purpose of this paper. However in order to give a hint on
how much the Einstein radii change including more matter
along the line-of-sight, in Figure 5 we show the relative size
of the Einstein radius – with respect to the case in which
we select a region of 8 Mpc/h along the line-of-sight – com-
puted selecting a region of 16 Mpc/h (left) and 32 Mpc/h
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the unique results that will be available from the next-
generation wide field surveys from space.
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4. A Bayesian framework for
multi-wavelength galaxy clusters

In the literature, there are two different, and complementary, approaches which
have been developed and applied to lensing, X-Ray and SZ data within a full
triaxial framework. One is described in A. Morandi and M. Limousin, (2012),
the other in Sereno, Ettori, et al., (2012). While the former focuses on strong
lensing and X-Ray to study the inner regions of a cluster, the latter exploits weak
lensing and SZ to model the halo on a larger scale; however both algorithms
can (and do) use all available observables. The main difference between the
two codes is in how they compute the projected quantities: the algorithm pre-
sented in Sereno, Ettori, et al., (2012) leverages the symmetries of the problem
to express analytically the integrals along the line of sight, while the approach
of A. Morandi and M. Limousin, (2012) is to compute values on a grid and then
project it on the plane of the sky. A grid-based code is much slower than an
analytical evaluation of the integrals; however the advantage is that it allows for
an arbitrary complex (and even multi-object) model as it does not rely on any
simplifying assumption. Nevertheless, in the current implementation A. Morandi
and M. Limousin, (2012) assumes the intra-cluster medium (ICM) to be in hy-
drostatical equilibrium, while the method of Sereno, Ettori, et al., (2012) can be
used to test this hypothesis. When applied to the same cluster, the two codes give
comparable results (M. Limousin, A. Morandi, et al., 2013). These approaches
have never been tested on mock data sets. We are therefore unaware of the
possible bias of the algorithms.

In this chapter, we present a new algorithm, based on the works published
by Andrea Morandi and collaborators (A. Morandi, K. Pedersen, et al., 2010; A.
Morandi, K. Pedersen, et al., 2011a; A. Morandi, M. Limousin, Rephaeli, et al.,
2011b; A. Morandi and M. Limousin, 2012; A. Morandi, M. Limousin, Sayers,
et al., 2011), which combines consistently lensing and X-ray (with the possibil-
ity of adding SZ data) within a triaxial framework. However, on the technical
point of view, the algorithm is different from the one used in A. Morandi and M.
Limousin, (2012). Although the original code has been successfully applied to a
four observed clusters of galaxies (Fig. 4.1), and it has shown that the triaxial
model reduces tensions between observations and theoretical predictions; it has
never been tested on simulated data. In this work, we test the new version of the
algorithm on mock data sets in order to characterise its behaviour. We have also
made the source code available to the community under a free license (MIT) at
https://bitbucket.org/marioaieie/mcclusters.

This chapter is organised as follows. In Section 4.1, we present the phys-
ical model currently implemented in the code, giving explicitly the equations
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entering the lensing, X-ray and SZ analyses, and the corresponding likelihoods
to be combined. In Section 4.2, we use the aforementioned equations in order
to generate analytically mock data sets used to pursue a test of the algorithm
and investigate the degeneracies, and possible biases, between the different pa-
rameters. We test the model in a triaxial first and subsequently in a spherical
framework, showing the systematical effects introduced by such assumption.

4.1. Methodology

In this Section we summarise the astrophysical model used in the current imple-
mentation of the code, for a more detailed review see M. Limousin, A. Morandi,
et al., (2013). We also present the choices made for the likelihoods and intro-
duce the new sampler used to perform the Montecarlo-Markov chain (MCMC).

4.1.1. Lensing Equations

In the model we describe the DM and ICM as ellipsoids oriented in an arbitrary
direction on the sky. We introduce two Cartesian coordinate systems, x = (x, y, z)
and x

′ = (x′, y′, z′), which represent respectively the principal coordinate system
of the triaxial cluster and the observer’s coordinate system, with the origins set
at the centre of the halo. We assume that the z′-axis points along the line of sight
direction of the observer and that the x′, y′ axes identify the directions of West
and North, respectively, on the plane of the sky. We also assume that the x, y, z-
axes point along the minor, intermediate and major axes, respectively, of the DM
halo. In our model, x, y, z also represent the axes of the ICM distribution. We
define ψ, θ and φ as the rotation angles about the x, y and z axis, respectively.
Then the relation between the two coordinate systems can be expressed in terms
of the rotation matrixM as x

′ = M(ψ, θ, φ)x,whereM represents the orthogonal
matrix corresponding to counter-clockwise/right-handed rotations.

We define the radius R as the major axis of ellipsoid:

R2 = c2

(

x2

a2
+
y2

b2
+
z2

c2

)

, (a ≤ b ≤ c); (4.1)

therefore, minor-major and intermediate-major axis ratios are sDM = a/c and
qDM = b/c, respectively.

In order to parametrise the cluster mass distribution, we consider a triaxial
generalised Navarro, Frenk & White model (gNFW, e.g. Y. P. Jing and Y. Suto,
2002):

ρ(R) =
δcρc,z

(R/RS)α (1 +R/RS)3−α , (4.2)

where RS is the scale radius, α represents the inner slope of the density profile,
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ρc,z ≡ 3H(z)2/8πG is the critical density of the universe at redshift z and δc is the
dimensionless characteristic density contrast:

δc =
200

3

c3
200

F (c200, α)
, (4.3)

where c200 ≡ R200/RS is the concentration parameter and with (Wyithe, Turner,
et al., 2001): F (y, α) ≡

∫ y
0 x

2−α(1 + x)α−3dx.
Finally, the two-dimensional surface mass density Σ is derived by projecting

the three dimensional density ρ(R) along the direction of the line of sight z′. We
also calculated the covariance matrix C among all the pixels of the reconstructed
surface mass (see A. Morandi, M. Limousin, Rephaeli, et al., 2011b, for further
details).

4.1.2. X-ray Equations

For small eccentricities, the gravitational potential of a gNFW halo (Eq. 4.2) can
be approximated as follows (Lee and Y. Suto, 2003):

Φ(u) ≃C0 F1(u) + C0

e2
b + e2

c

2
F2(u)

+C0

e2
b sin2 θ sin2 φ+ e2

c cos2 θ

2
F3(u),

(4.4)

with u ≡ r/RS, C0 = 4πGδcρc(z)R
2
S, and the functions F1(u), F2(u), and F3(u)

as defined in A. Morandi, K. Pedersen, et al., (2010); finally eb and ec are the

eccentricity of DM with respect to the major axis (e.g. eb =
√

1 − (b/c)2). The
work of Lee and Y. Suto, (2003) showed that the iso-potential surfaces of the
triaxial dark halo are well approximated by a sequence of concentric triaxial
distributions of radius RICM with different and non-constant eccentricity (see A.
Morandi, K. Pedersen, et al., 2010, for further details).

If we assume hydrostatic equilibrium (HE), the iso-potential surfaces of the
triaxial halo coincide also with the iso-density (pressure, temperature) surfaces
of the intracluster gas. This is simply a direct consequence of the X-ray shape

theorem (Buote and Canizares, 1994); the HE equation (4.6) yields

∇P × ∇Φ = ∇ρgas × ∇Φ = 0. (4.5)

For the X-ray analysis we rely on a generalisation of the HE equation (A.
Morandi, M. Limousin, Rephaeli, et al., 2011b), which accounts for the non-
thermal pressure PnT and reads:

∇PT OT = −ρgas∇Φ (4.6)
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where ρgas is the gas mass density, Φ is the gravitational potential, PT OT = PT +
PnT . We implemented a model where PnT is a fraction of the total pressure
PT OT , and we set this fraction to be a power law with respect to the radius
(Shaw, Nagai, et al., 2010):

PnT

PT OT

= ξ (R/R200)
n . (4.7)

Note that X-ray data probe only the thermal component of the gas PT = ne kBT ,
kB being the Boltzmann constant. From Equations (4.6) and (4.7) we point out
that neglecting PnT (i.e. PT OT = PT ) systematically biases low the determination
of cluster mass profiles. This effect increases at larger radii, where the contribu-
tion of the gas motion is larger.

Solving Eq. (4.6), gives the model temperature T , however given that this is a
first order differential equation, we need a boundary condition on the pressure,
P0, and it is an unknown parameter to be determined.

To model the electron density profile in the triaxial ICM halo, we use the fol-
lowing fitting function, which corresponds to a simplified version of the function
given by Vikhlinin, A. Kravtsov, et al., (2006):

ne(RICM) =n0 (RICM/rc)
−δ(1 +R2

ICM/r
2
c )−3/2 ε+δ/2 (4.8)

with parameters (n0, rc, ε, δ). We compute the theoretical three-dimensional tem-
perature T by numerically integrating the equation of the HE (Equation 4.6),
assuming triaxial geometry and a functional form of the gas density given by
Equation (4.8).

The observed X-Ray surface brightness SX is given by:

SX =
1

4π(1 + z)4
Λ(T ∗

proj, Z)
∫

nenp dz
′ , (4.9)

where Λ(T ∗

proj, Z) is the cooling function. Since the projection on the sky of the
plasma emissivity gives the X-ray surface brightness, the latter can be geometri-
cally fitted with the model ne(RICM) of the assumed distribution of the electron
density (Equation 4.8) by applying Equation (4.9). This has been accomplished
via simulated Chandra spectra, where the current model is folded through re-
sponse curves (ARF and RMF) and then added to a background file, and with
absorption, temperature and metallicity measured in that neighbouring ring in
the spectral analysis. In order to calculate Λ(T ∗

proj, Z), we adopted a MEKAL
model for the emissivity.
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4.1.3. Bayesian combined analysis

In our analysis, we want to infer the values of parameters of a model given
the observations we have. Using Bayes theorem, this probability P (θ|d) can be
expressed as:

P (θ|d) =
P (d|θ)P (θ)

P (d)
, (4.10)

where θ and d are the parameters and observations vectors, P (θ|d) is the like-
lihood L, P (θ) is the priors probability distribution and P (d) is just a normal-
isation factor that can be used to compare different models. In the rest of this
work, we will ignore P (d).

If the observations vector d is composed of independent data sets then the joint
likelihood can be expressed as the product of independent likelihoods (Marshall,
Hobson, et al., 2003). Therefore, we can assume in our combined analysis L =
LΣ LT LSX

, where the independent likelihoods are:

• for the lensing constraint, the two-dimensional projected mass density Σ is
described by a Gaussian likelihood

LΣ ∝ exp
[

−
1

2
(Σ − Σ

∗)T
C

−1 (Σ − Σ
∗)
]

, (4.11)

where C is the covariance matrix, Σ
∗ are the observed measurements of

the two-dimensional projected mass density in the ith pixel, and Σ is the
theoretical 2D model;

• for the temperature T in the spectral analysis, the likelihood is

LT ∝ exp



−
1

2

nT
∑

i=1

(Tproj,i − T ∗

proj,i)
2

σ2
T ∗

proj,i



 , (4.12)

T ∗

proj,i being the observed projected temperature profile in the ith circular
ring and Tproj,i the azimuthally-averaged projection (following Mazzotta,
Rasia, et al., 2004) of the theoretical three-dimensional temperature T ;
the latter is the result of solving the HE equation, with the gas density
ne(RICM);

• for the X-ray surface brightness, given that the number of counts in each
cell might be small (< 5), we cannot assume that the distribution from
which the counts are sampled has a nearly Gaussian shape; the likelihood
of a Poisson distribution can be approximated as

LSX
∝ exp



−2
NS
∑

i=1

SX,i − S∗

X,i log(SX,i) − S∗

X,i + S∗

X,i log(S∗

X,i)



 (4.13)
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ICM

Ti

c, rs, α, s, ψ, φ, θ n0, rc, ǫ, δ, PnT , P0

NFW

Ci,j
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with SX,i and S∗

X,i theoretical and observed counts in the ith pixel of the
image.

The whole framework can be summarised in a probabilistic graphical model
(PGM), shown in figure 4.2. In this notation, ellipses and circles represent ran-
dom variables drawn from probability distribution. A double circle means that
the value is observed, therefore fixed. A point represents a deterministic quan-
tity, a rectangle encloses operations that apply on vectors and an arrow shows
conditional dependence of two variables. The PGM makes it easy to visualise the
relations between variables in the model:

• the axis ratio q is conditional on the value of s (they are ordered), so it is
shown in a separate circle connected with an arrow to the other parameters;

• only some variables are used to generate the NFW density profile which
itself is the only ingredient used to generate the lensing data;

• the NFW profile and additional parameters are then used to generate the
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ICM model which is used to derive the surface brightness and temperature
profiles;

• the rectangles show that each observable is compared pixel per pixel using
the corresponding distribution.

Finally, the prior probability distributions P (θ) have to be specified for each
analysis as the contain the prior knowledge on the parameters; in table 4.1 we
show the priors used in this work.

4.1.4. New implementation

We present here a new implementation of the code used in A. Morandi, M.
Limousin, Sayers, et al., (2011). It has been completely rewritten in python
to use a more advanced MCMC sampler called emcee (Foreman-Mackey, Hogg,
et al., 2013), much faster and easy to run in parallel. One of the main advan-
tages of the new version is its modularity: we maintained a very clear distinction
between astrophysical model and statistical inference sections of the code, which
leads to easier implementation of alternative models and data-sets. Another ad-
dition to the original algorithm is the full implementation of prior probability
distributions. It is now possible to define custom functions or use predefined
distributions from standard libraries.

The code has been made available to the community with an open source
license. It can be found at https://bitbucket.org/marioaieie/mcclusters.

4.2. Testing the Algorithm

In order to test our algorithm, we generate mock data from the model itself, i.e.

using the equations given in the previous Section. We use values for the param-
eters (see Table 4.1) which are modelled on those of galaxy cluster MACS J1423
presented in M. Limousin, A. Morandi, et al., (2013). These do not need to be
really representative of the cluster population: the scope of this analysis is to test
the reconstruction algorithm, not the astrophysical model.

The values for c200 and R200 are in the typical range for clusters of galaxies
(Duffy, Schaye, et al., 2008) and α = 1 means that the halo is a simple NFW,
even though we still consider it as a free parameter in the analysis (Table 4.1).
The same applies for the gas density profile: even though we have used a simpler
model to generate the data (δ = 0 and PnT = 0), we treat these as unknown
variables and we fit the complete model. In absence of weak lensing and SZ, P0

is a nuisance parameter (the pressure in the outskirts of the cluster), therefore
we have chosen a value that produces a temperature in the last bin that is at
least 1keV . At last, the angle between the major axis of the halo and the line of
sight is justified by the fact that strong lensing cluster are preferentially found
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Name Prior True
c200 Uniform [1, 12] 4.00
R200 [kpc] Uniform [5 × 102, 8 × 103] 2400
α Uniform [0, 3] 1.00
s Uniform [0.2, 1] 0.60
q Uniform [s, 1] 0.70
ψ [deg] Uniform [−180, 180] −68.75
φ [deg] Uniform [−180, 0] −34.38
θ [deg] Uniform [0, 90] 28.65
n0 [cm−3] Uniform [10−3, 1] 0.10
rc [kpc] Uniform [10, 200] 30.00
ǫ Uniform [0, 1] 0.55
δ Uniform [0, 1] 0.00
PnT exp(−x/10) with x < 1. 0.00
P0 [104 keV cm−3] Uniform [0, 10] 3.74

❚❛❜❧❡ ✹✳✶✳✿ ❚r✉❡ ✈❛❧✉❡s ❛♥❞ ♣r✐♦rs ♦❢ t❤❡ ♣❛r❛♠❡t❡rs ♦❢ t❤❡ tr✐❛①✐❛❧ ❥♦✐♥t ♠♦❞❡❧

with their major axis close to the line of sight: around 50% of the clusters with an
Einstein radius larger than 20′′, have an inclination angle lower than 30 degrees
(Figure 2 in C. Giocoli, Bonamigo, et al., 2016).

We generated 7 sets of mock observations with increasing minor to major axis
ratio s, from 0.4 to 1 with linear bins of 0.1; the intermediate to minor axis ratio
q is then fix to q = (1 + s)/2, which gives an halo in-between a prolate and an
oblate one (prolateness equal to zero). This is an arbitrary condition used only
to generate the mock data-set from a mono-dimensional binning in shape; it is
not forced in the actual fitting of the observables. In the following, we will use
10 × s to identify the different mock haloes (e.g. halo 4 has s = 0.4).

4.2.1. Generating mock observables

Figure 4.3 shows the generated data sets, from halo 4 to 9 (left to right and top to
bottom). The colour maps show the X-Ray surface brightness, while the contours
correspond to the projected mass maps (lensing data). For each of the halo, we
have projected the observable to produce an image similar to what have been
used to analyse the real clusters (lenstool 2D mass maps and Chandra images).
We have then added noise independently with the following procedure.

For the strong lensing, we used a 200′′ × 200′′ image with 50 pixels per side,
that gives a resolution of 4′′/pixel. Normally, strong lensing analysis has a higher
resolution, and this procedure would degrade the accuracy with which strong
lensing is typically able to reconstruct mass distributions in the core (∼ 150 −
200 kpc). This is not a problem here since the purpose of our analysis is to model
the main mass clump with a single triaxial halo, ignoring any substructures; we
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are also not working with images positions but only with the projected mass
map, which does not require the same level of spatial resolution. Then, we have
projected the NFW profile and added independently to each pixel a Gaussian
noise with σΣ = 5% Σ; because of this, the lensing likelihood is not a multivariate
Gaussian (eq. 4.11) anymore, but simply the product of independent Gaussian
functions.

Similarly, for the X-Ray temperature, we have averaged the model’s 2D tem-
perature in 8 circular annuli and added Gaussian noise with σT = 5%T . To
simplify the procedure of generating the X-Ray surface brightness, we have used
a constant cooling function Λ(T ∗

proj, Z) (eq. 4.9); this is possible because in our
code it is treated as a rescaling factor that is only function of the observed tem-
perature. Therefore, the mock surface brightness was obtained by rescaling the
projected electron density in Chandra-like images: 1024 × 1024 pixels (then re-
duced to 256×256 pixels for convenience reasons) with a side of about 8.4′ plus a
uniform background of 0.1 cts/s/arcmin2. Finally, we used the surface brightness
to extract the photon counts per pixel from a Poisson distribution.

4.2.2. Triaxial analysis

As shown in Table 4.1, we have used uniform prior distributions for all parame-
ters except for the non-thermal pressure PnT for which we adopted a decreasing
exponential with scale of 0.1 and truncated at 1. In addition, the lower limit of
the distribution of q is set to the value of s, to maintain the correct order in the
axis ratios.

One of the more difficult aspect of using emcee is choosing a good initial guess
from which starting to explore the parameter space (Foreman-Mackey, Hogg,
et al., 2013). Although the suggested technique is to start from a tight N-
dimensional ball close to the point of maximum probability, we have found that
in our case traditional maximum likelihood methods do not give correct results.
This is possibly due to the large number of variables in the model or the complex
correlations between the observables. Therefore, we decided to use a spherical
NFW halo to find a first guess of the model parameters (see sub-section 4.2.3 for
biases introduced by a spherical analysis): the reduced number of variables al-
lows us to start emcee from the maximum likelihood fit. We then set the starting
values of the angles to zero and of the axis ratios to s = 0.5 and q = 0.65, typical
values for cluster scale haloes (see chapter 2). We have also decided to fit R200

instead of the scale radius to avoid the strong correlation with the concentration
that can be problematic, at times, for samplers like emcee.

Figure 4.4 shows the mock observables of halo 4 and halo 10, namely: one
dimensional profiles of surface density, X-Ray surface brightness and X-Ray tem-
perature, from top to bottom panel. The red line corresponds to the true values
of the parameters; the green one with error bars is obtained by adding noise
to the true profiles, as described in the previous section; and the blue lines are
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the Montecarlo-Markov chains. This figure is just for illustration purposes, given
that the fit is done comparing pixel by pixel the 2D images of lensing and X-
Ray surface brightness; the temperature is the only observables that is actually
modelled from the one dimensional profile.

We have also computed the residuals of the projected mass (Figure 4.5 ) and
X-Rays surface brightness (Figure 4.6) maps comparing the fitted model with
the noise-less data. Clearly the visible symmetric patterns tell us to expect some
biases in the shape and orientation of the recovered halo, however the residual
signal is around 1-2%, well below the assumed noise (5% for the projected mass).
This is also seen in the ratio between the χ2 of the fit and the one computed using
the true parameters: for every analysed halo this value is always unity within 1
part out of 103. The reduced χ2 are actually lower than 1, for example, for halo 4

the value is 0.720; this is because we have used a Poisson distribution for the X-
Ray surface brightness, which means that the common rule of reduced χ2 being
one for a good fit does not apply. Moreover, in a Bayesian framework the idea is
to maximise the posterior distribution, not minimise the χ2.

In summary, it is clear that the algorithm was able to converge to values that
reproduce the input observations within the given uncertainties.

The posterior probability distributions obtained by the MCMC analysis for halo

4 are shown in Figure 4.10 as blue 2D filled contours and histograms. Dark con-
tours show the areas that contain 39.3% of the volume, lighter contours contain
86.4%; these are the values that correspond to 1 and 2 sigma for a 2D normal
distribution. In the one dimensional histograms, dashed vertical lines show the
median, 16% and 84% percentiles; these values are also shown in Table 4.2. As it
can be seen, all parameters are constrained even though some degeneracies are
still present, for examples between angles and axis ratios. Overall, most of the
true values (green lines) are recovered within 1 or 2 sigma.

As the aim of this analysis is to measure the 3D shape of galaxy clusters, we
show in Figure 4.7 the marginalised posterior distributions of the axis ratios for
the 7 mock haloes. As before, contours show the areas that would correspond
to 1 and 2 sigma in a 2D Gaussian distribution. The colours correspond to the
different values of minor to major axis ratio as indicated in the legend and the
white stars show the true value of the parameters. While there is a good recovery
of the principal axis ratio s (almost always within one sigma of the true value),
the intermediate to major axis ratio is not constrained as accurately. More pre-
cisely, in the two more elongated haloes, the posterior distribution of q are more
than three sigmas away from the correct value. This could be due to the algo-
rithm finding only a local maximum or to unfavourable initial conditions for the
MCMC sampler which might not be adequate to deal with strong correlations
between variables like shape, orientation and radius of the cluster. We are in-
vestigating alternative techniques to start the algorithm and eventually different
MCMC samplers.

Even though we still can not recover accurately the full 3D shape (at least
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given the assumption of this work), we are able to reproduce the combined
data-set within the errors of current observations. As well as improving the
fitting procedure, the addition of Sunyaev-Zel’dovich data and higher precision
measurement of the X-ray and lensing signals could help reducing the systematic
effects we have seen. Finally, even with the presence of an offset in the shape
measurements, we are capable of constraining the cluster mass with extremely
good precision and accuracy (see Figure 4.9 for a comparison with the spherical
case).

4.2.3. Spherical analysis

In this subsection we aim at quantifying the bias induced by assuming a spherical
approach. To this end, we consider the same data-sets generated with the triaxial
model and fit the mock data using a spherical halo.

In Figure 4.11 we show the output of the spherical analysis for halo 5 (same
as Figure 4.10). The median values and relative errors are summarised in table
4.2. The resulting marginalised distributions show that:

• regarding the gas distribution, both the non-thermal pressure PnT and the
pressure P0 (the boundary condition of the HE) are highly biased;

• other parameters are recovered correctly within 1-2 sigma, namely concen-
tration c200, gNFW inner slope α, gas density normalisation n0 and slopes ε
and δ;

• finally, the radii of the two profiles, R200 and rc, are offset by more than 3
sigma.

The marginalised distributions of all mock haloes are shown in Appendix A.
An interesting trend is the bias of the concentration as function of the axis ratio

s of the cluster, shown in Figure 4.8. In this box and whiskers plot, the boxes en-
close the quartiles, while error bars are drawn at 1.5 times the interquartile range
(between 2 and 3 sigma for a Gaussian distribution). It is clear that the more
elongated the halo, the more the concentration is over-estimated by a spherical
analysis. For an average cluster with s = 0.5 this bias can at the 3 sigma level.

A similar trend can be seen in both radii of the model, where for example the
measured scale radius of halo 4 is only half of the true value. However, it is im-
portant to note that a comparison between a spherical and an ellipsoidal radius
depends always on definitions (G. Despali, Tormen, et al., 2013; Bonamigo, G.
Despali, et al., 2015) and no unambiguous correspondence exists. We therefore
prefer to compare the total mass of a cluster, given that this is also the most
(cosmologically) relevant property of the object. The probability distributions
of the total mass (M200) are shown in Figure 4.9; these are computed respec-
tively with the triaxial (top panel) and the spherical model (bottom panel) for
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all haloes (shown in different colours). While in the triaxial analysis we are able
to retrieve the input mass within 1% accuracy and precision; in the spherical
model it can be underestimated by up to 30% for a very elongated halo (but not
particularly uncommon (Bonamigo, G. Despali, et al., 2015)), similarly to what
happens with the concentration. Although slightly concerning in the context of
precision cosmology, this result should be considered as a limit case as it depends
on the particular orientation of the considered cluster.

4.3. Summary and Conclusions

In this chapter, we have presented an algorithm aimed at fitting simultaneously
complementary data sets of galaxy clusters within a triaxial framework. We have
first introduced the physical model which describes the lensing and X-ray data
sets. The algorithm is implemented in an open source code that is available
to the community and that, thanks to its modularity, can be easily improved to
incorporate additional probes, such as SZ data, or dynamics of cluster members.

We have generated mock data sets in order to characterise the algorithm and
we find that overall the input parameters are well retrieved. However there
are some biases present in the shape measured for some haloes; the origin of
such systematic effects is not clear and improvement to the whole framework are
being investigated. However, the observables are reproduced within the assumed
errors and we are able to constrain the input mass within a few percents.

Moreover, we have also quantified the bias arising from using a spherical
framework to fit triaxial data sets, showing that recovered masses can be bi-
ased by up to ∼ 30%. This is another demonstration that the current (widely
adopted) spherical model is not adequate for the coming era of 1% precision
cosmology with clusters of galaxies.
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5. An X-Ray study of galaxy cluster
Abell 1703

In this chapter we present two Chandra observations of galaxy cluster Abell
1703. The cluster is located at redshift 0.2836 and it is considered to be a relaxed
and unimodal object. In the chapter, we have adopted a flat ΛCDM cosmol-
ogy with the following parameters: total matter density Ωm = 0.3, cosmological
constant ΩΛ = 0.3 and Hubble constant H0 = 70 km s−1 Mpc−1.

5.1. X-Ray data and spectral analysis

We have analysed data from two Chandra observations of galaxy cluster Abell
1703: 15123 (P.I. Christine Jones) and 16126 (P.I. Fabio Gastaldello). Both
data-sets are taken with the ACIS-I camera with exposure times of 29130 ks and
48246 ks respectively.

Having reduced both observation following a standard Chandra analysis using
the CIAO software, we extracted the source spectrum form concentric annuli.
The radii are chosen so that every region contains 7 000 counts (cluster plus
background). Figure 5.1 shows counts rate from observation 16126 (colour bar),
with the position of the CCD during observation 15123 superimposed (white
mask); magenta annuli show the binning used to measure the source spectrum.
Background emission has been modelled on red and blue circles from observa-
tion 15123 and 16126 respectively, as explained in the following section.

For the cluster emission spectrum we adopted an APEC model with a photo-
electric absorption (phabs) from the Galaxy. The hydrogen column density is
taken from the LAB Survey of Galactic HI and correspond to nH = 1.32 × 1020

cm−2 and the spectrum is fitted between 0.7 and 7 keV.

5.1.1. Background modelling and systematics

To model the background signal, we have adopted a simplified version of the one
proposed by Bartalucci, Mazzotta, et al., (2014). First of all we implemented
continuum emissions for sky and the instrumental noise (nxb):

model 1:sky apec + (apec + powerlaw)phabs

model 2:nxb expdec + powerlaw

From the fit residuals, at least three lines were visible, respectively at 2.165,
7.5 and 9.72 KeV; we used fixed single Gaussian to describe these lines instead
of the position-dependent mother-daughter systems adopted by the authors. We
performed the analysis in the range between 0.3 and 11 keV.
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♦♥❧② ♦♥ ♦♥❡ ♦❜s❡r✈❛t✐♦♥ ❛♥❞ t❤❡♥ ❛♣♣❧✐❡❞ t♦ ❜♦t❤❀ ✇❤✐❧❡ ✐♥ ❝❛s❡ ♦❢
♠❛❣❡♥t❛ ♣❡♥t❛❣♦♥s ❡❛❝❤ ❜❛❝❦❣r♦✉♥❞ ✐s ❛♣♣❧✐❡❞ t♦ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣
❞❛t❛✲s❡t✳ ❋♦r ❣r❡❡♥ tr✐❛♥❣❧❡s✱ t❤❡ ❜❛❝❦❣r♦✉♥❞ ✐s ❥♦✐♥t❧② ♠❡❛s✉r❡❞ ♦♥
❜♦t❤ ♦❜s❡r✈❛t✐♦♥s✳

In order to check if the normalisation of the model are constant between the
two data-sets, we measured it on single observations separately. Due to the
different position angles, it was not possible to use exactly the same region on
the sky; however they cover, roughly, the same portion of the detector.

Figure 5.2 shows how the cluster profile temperature (and one sigma errors)
changes with different assumptions on the background. As reference, black stars
represent the data obtained by using a blank-sky background. Red squares are
computed by modelling the source-free region only on observation 15123 (red
circle in Fig. 5.1) and then use it as background for both data-sets. The same ap-
plies to blue circles with observation 16126. Magenta pentagons correspond to
the case where each modelled background is used on the corresponding observa-
tion. Finally, green triangles are the adopted background, where normalisation
are assumed to be constant between data-sets; therefore the two source-free re-
gions can be used together to obtain a single background model. There is very
little difference between magenta and green points; this confirms our assump-
tion that the background does not change much, in normalisation, between the
two observations. However, when using only one data-set to model the source-
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♠✐♥✉s ❛♥❞ ♣❧✉s ♦♥❡ s✐❣♠❛ r❡s♣❡❝t✐✈❡❧②✳

free region, the resulting temperature are slightly offset; this can arise from
problems in the data reduction. For instance the fit to the source-free region of
observation 15123 (black lines) seems to fail at line 9.72 keV;this will cause an
over estimation of the background, which in turn will give a lower temperature
for the outskirts of the cluster, as observed in Fig. 5.2.

To better assess the systematic errors we measured the cluster temperature
profile using normalisation for the nxb at plus and minus one sigma from the
model; these are shown in Fig. 5.3 as red squares and blue circles respectively.
In addition, blank-sky background modelling is shown in black stars and the
adopted background as green empty triangles. The grey shaded area show the
maximum errors on the temperature corresponding to different choices in the
background modelling (top panel). Although quite similar, the errors are slightly
dominated by systematics effects in the outer regions of the cluster.

82



102 103

R [kpc]

10−4

10−3

10−2

10−1

100

S
X

[c
ts
/
a
rc
m
in

2
/
s]

❋✐❣✉r❡ ✺✳✹✳✿ ❙✉r❢❛❝❡ ❜r✐❣❤t♥❡ss ♣r♦✜❧❡ ♠❡❛s✉r❡❞ ❢r♦♠ ✸✵ ❝♦♥❝❡♥tr✐❝ ❛♥♥✉❧✐ ✉♣ t♦ ❛
r❛❞✐✉s ♦❢ ✻✵✵ ♣① ✭295.2 ❛r❝s❡❝✮✳

5.1.2. Observed profiles

Additionally, we measured the surface brightness from the combined data-set on
30 concentric annuli, up to a radius of 600 px (295.2 arcsec). The background is
measured on the subsequent annulus, with a width of 30 px (14.76 arcsec). The
result is shown in Fig. 5.4, where the error bars are drawn at 1σ.

Finally, Figure 5.5 shows the resulting profiles of temperature (upper panel),
metallicity (middle panel) and normalisation (lower panel), all using the refer-
ence background model. Error bars represent statistical errors at 1σ.

5.2. Strong lensing mass model

We here present briefly the strong lensing analysis of Abell 1703, performed
using the parametric Lenstool software (Jullo, Kneib, et al., 2007). For more
details, we refer to M. Limousin, Richard, Kneib, et al., (2008) and Richard, Pei,
et al., (2009). During this PhD, we have updated the published mass model, in
particular by performing the optimisation in the image plane instead of source
plane, which is known to be more reliable. Our approach is parametric: we de-
scribe the cluster using a smooth large scale dark matter halo on top of which
we add the individual cluster galaxies. More details about our analysis approach
is given in Jullo, Kneib, et al., (2007). We use as constraints 53 multiple images,
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belonging to 16 multiply imaged systems (Fig. 5.6), of which 9 are spectroscop-
ically confirmed. The result of the optimisation are some parameters describing
the mass distribution. From these parameters, we can derive a two dimensional
mass map with the associated error bars. This is this output from the lensing
analysis which is used as an input in our combined analysis.

5.3. Spherical Modelling

In this section, we apply the algorithm presented in the previous chapter to the
X-ray data-set. We have decided to start with a spherical framework and later,
in a following work, increase the complexity of the model, to better understand
the systematics introduced by a spherical X-ray only analysis. This also allows
us to compare the parameters measured by our code with the ones presented in
Gastaldello, Bonamigo et al. (in prep), obtained with the algorithm developed
by Stefano Ettori and collaborators (Ettori, Gastaldello, et al., 2010). For this
reason, we describe the electron density with the following analytic function
(Vikhlinin, A. Kravtsov, et al., 2006):

ne(RICM) =n0 (1 +R2
ICM/r

2
c1

)−3/2 ε(1 +R3
ICM/r

3
c2

)−υ/3; (5.1)

where rc2
and υ are the characteristic radius and slope of the profile at large

scales; these additional parameters were not considered in the previous chapter
(eq. 4.8). We have also set δ to zero, as the cluster does not show the presence
of a cool core both in the temperature and surface brightness profile. Finally,
we assume zero non-thermal pressure PnT and the boundary condition of the
hydrostatic equilibrium P0 is set by deprojecting the density in the outermost
annulus P0 = 1.622 × 10−4 keV cm−3 at a distance from the centre of the cluster
of R = 1.684 Mpc. All these simplifying assumptions have been chosen in order
to compare the results of this work with the values presented in Gastaldello,
Bonamigo et al. (in prep).

As previously stated, we have adopted a Poisson likelihood for the surface
brightness map (eq. 4.13) and a Gaussian function for the X-ray temperature
profile (eq. 4.12). We then simply multiply the two likelihoods without adding
artificial weights to the fitting procedure. The background in the surface bright-
ness map is assumed to be constant and it has been measured in an area of the
image not contaminated by the cluster emission. Moreover, we have chosen flat
prior distribution for all parameters, as shown in Table 5.1.

In this analysis, we have started the algorithm from a set of values obtained by
a maximum likelihood method and then spread the walkers using a N-dimensional
Gaussian with standard deviations equal to 10% of the priors support.

The result of the MCMC sampling are presented in Figure 5.7, where darker
contours show the areas that contain 39.3% of the volume, lighter contours con-
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Parameter name Prior distribution
c200 Uniform [1, 12]
R200 [kpc] Uniform [600, 3000]
n0 [cm−3] Uniform [10−3, 1]
rc1

[kpc] Uniform [10, 300]
ε Uniform [0, 1]
rc2

[kpc] Uniform [300, 2000]
υ Uniform [0, 4]

❚❛❜❧❡ ✺✳✶✳✿ Pr✐♦rs ✉s❡❞ ✐♥ t❤❡ ❛♥❛❧②s✐s ♦❢ ❆❜❡❧❧ ✶✼✵✸

tain 86.4%; these are the values that correspond to 1 and 2 sigma for a 2D normal
distribution. In the one dimensional histograms, dashed vertical lines show the
median, 16% and 84% percentiles; these values are also shown in Table 5.1.
The green lines show the reference values presented in Gastaldello, Bonamigo
et al. (in prep). The fit gives a χ2 of 47185, with 51467 degrees of freedom;
this corresponds to a reduced χ2 of 0.92: however, as the surface brightness can
not be described by a Gaussian likelihood function, the popular rule of thumb
of having a value close to the unity does not hold anymore and there is no real
“aim-to number” (for large number counts the χ2 should tend to one, thanks to
the central limit theorem). Individually, the two observables have χ2 of 47171
and 12.85 and a reduced value of 0.9165253 and 2.14244893. Here we have
divided only by the corresponding number of data points, as it is not straightfor-
ward to compute separately the degrees of freedom in a combined analysis: for
example the X-ray temperature profile has 6 values and the model has 7 fitted
parameters).

Almost all parameters are in agreement within 1 sigma; however it has to be
noticed that even though the physical model is the same, the two analysis differ
in the fitting procedure. While we have inferred all the parameters from a joint
analysis of the surface brightness map and the temperature profile; the reference
method only fits the temperature profile using the observed electron density
(obtained by deprojecting the surface brightness). Moreover, the parameter of
the Vikhlinin profile have been derived from a one dimensional fit, as opposed
to our 2D map fit.

Having derived the parameters of the NFW profile from an X-ray only spher-
ical analysis, we can use them to predict the projected mass measured by the
gravitational lensing. This is possible because, having assumed hydrostatical
equilibrium, the X-ray is sensitive to the gravitational potential generated by the
total mass distribution. The upper panel of Figure 5.8 shows the projected mass
profile from the lensing data presented in Section 5.2, while the second and
third panels show the surface brightness and X-ray temperature profile, respec-
tively. We remind the reader that in the algorithm we use the surface brightness
map and that the 1-D profile is shown here just for illustration purposes. The
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green points with error bars are the observed values; while blue lines are the
Montecarlo-Markov chains. Both X-ray profiles are very well recovered by the
fitting procedure, however the model is not able to predict the lensing data:
a spherical X-ray only analysis of Abell 1703 under-estimates the mass of the
galaxy cluster, similarly with what has been found in Abell 1689 (A. Morandi,
K. Pedersen, et al., 2011b).
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5.4. Summary and Conclusions

In this chapter, we have presented a set of two Chandra X-ray observations of
the cluster of galaxies Abell 1703 which correspond to a total of almost 80ks of
exposure. We have modelled the X-ray background and the instrumental noise
with a simplified version of the framework proposed by Bartalucci, Mazzotta,
et al., (2014) and then checked how the resulting temperature profile depend
on the method of combining the two data-sets. This systematic effect turns out
to be about the same order of magnitude of the statistical errors.

We have then used the algorithm presented in the previous chapter to model
the X-ray observations and obtained parameters that are consistent with what
has been derived by a reference pipeline (Ettori, Gastaldello, et al., 2010). How-
ever the adopted spherical framework predicts a projected mass that is lower
than the one observed with strong gravitational lensing. Clearly this spherical
model is not able to reconcile the observed X-ray data with the measured lensing
signal and a combined triaxial analysis might be needed to obtain a consistent
description of cluster of galaxy Abell 1703.
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Conclusion

The study of clusters of galaxies is one of the most promising tools of astrophysics
of the next decade. Thanks to the large surveys that will be conducted in the near
future, we will be able to collect enough of these objects to have constraints on
the cosmological parameters that are competitive with other, more traditional,
probes. Such a large quantity of data will bring the modelling of galaxy clusters
in a regime where the statistical errors are comparable if not smaller than the
current systematics; therefore it is extremely important to improve the models
we use to avoid biased results.

One of the many possible ways to enhance our description of these objects is to
renounce to the inaccurate approximation that clusters of galaxies are spherical
objects and move one step further by using triaxial ellipsoids to describe their
shape. This has been possible only recently due to the improvement of both nu-
merical simulations and observations. On one side, it is now possible to simulate
with high spatial and mass resolution extremely large volumes, a fundamen-
tal requirement for the study of a statistically significant sample of dark matter
haloes. These state of the art simulations enable very detailed descriptions of
the inner structure and, in particular, of the shape of the dark matter distribu-
tion in galaxy clusters. The other advancement is the availability of deep optical
and X-ray observations from telescopes like the Hubble Space Telescope and the
Chandra X-ray observatory; with these powerful tools, it is now possible to con-
strain the properties of cluster of galaxies with unprecedented precision. In this
thesis, I have exploited both these recent improvement in order to advance our
understanding of the three dimensional shape of galaxy clusters.

First of all, I started by looking at what N-body simulations can tell us about
the 3D structure of such objects (Chapter 2). By studying the particle distribution
of more than half a million of dark matter haloes extracted from the Millennium
XXL simulation (R. E. Angulo, V. Springel, et al., 2012b), I was able to:

• provide to the community distributions of the axis ratios of haloes hosting
massive galaxy clusters, a mass regime previously unexplored;

• confirm the theoretical expectations that more massive objects are less
spherical and that in general they tend to be prolate rather than oblate;

• show that distributions of the axis ratios can be described by analytical
functions that only depend on a single parameter (density peak height ν)
and not on the cosmology or on the redshift.

These novel results are particularly useful to generate realistic mock haloes or as
priors in the analysis of clusters of galaxies.
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By using mock observations it is possible to study more in details possible sys-
tematic effects of a given measurement technique. In Chapter 3 I have looked
at the MXXL clusters through the gravitational lensing effect generated by the
MOKA code. The main conclusions of the study quantities what was already
expected: strong gravitational lenses represent a biased population that is pref-
erentially aligned along the line of sight. This special orientation is very impor-
tant when studying galaxy clusters and it has to be kept into consideration, as it
causes an higher concentration in the 2D radial density profile.

The other main result of this thesis is the modelling of multi-wavelength ob-
servations of galaxy clusters:

• firstly in the Introduction, I have presented a simple toy model to illustrate,
both analytically and numerically, how the combination of complementary
data-sets can help to solve the projection problem;

• then in Chapter 4, having introduced the real physical model, I have tested
the triaxial reconstruction on mock analytical observations;

• finally, I have compared the results with what I have obtained, on the same
data, with a spherical analysis.

In particular, the joint analysis of gravitational lensing and X-ray data is required
to brake the degeneracies introduced by the projection into two dimensional
observables. This is done in the new algorithm presented in Chapter 4. The
test on mock data has shown that the new code is able to recover the original 3D
shape from projected noisy observables although some systematic effects are still
present at this level of noise. Moreover, the spherical model applied to triaxial
data has given biased results with mass and concentration that can be off even
by 30%.

In the last chapter of this thesis (Chapter 5), I have reduced and analysed two
Chandra X-ray observations of the cluster of galaxies Abell 1703. I have first
subtracted the X-ray background and the instrumental noise using a model that
consider the continuum emission and three prominent lines. Then I have applied
the code presented in the previous chapter to model the X-ray emission with a
spherically symmetric distribution. When using the fitted parameters to predict
the total mass, the X-ray only spherical analysis under-estimates the projected
mass measured by gravitational lensing, suggesting that a more accurate triaxial
parametrisation should be applied to the galaxy cluster.

With this thesis, I have tried to contribute to an advance in both the theoretical
and the observational side of the study of galaxy cluster in a triaxial framework.
The field is still in its early phases; however it is a necessary step in the direction
of an accurate description of clusters of galaxies in the coming era of precision
cosmology.
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Notes

1 using the FFTW libraries: http://www.fftw.org

2 The value of 7 arcseconds ensures that the measurement of the size of the Ein-
stein radius of the cluster is not affected nor by particle noise neither by the finite
grid size of the map
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A. Some busy plots (AKA posterior probability

distributions)

In this appendix, we show the posterior probability obtained with the triaxial
analysis (from Fig. .9 to Fig. .15) and with the spherical analysis (from Fig. .16
to Fig. .22 ) as blue 2D filled contours and histograms. Dark contours show the
areas that contain 39.3% of the volume, lighter contours contain 86.4%; these
are the values that correspond to 1 and 2 sigma for a 2D normal distribution.
In the one dimensional histograms, dashed vertical lines show the median, 16%
and 84% percentiles; these values are also shown in Table 4.2.
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ABSTRACT

We present a strong-lensing analysis of MACSJ0717.5+3745 (hereafter MACS J0717), based on the full depth of the Hubble Frontier
Field (HFF) observations, which brings the number of multiply imaged systems to 61, ten of which have been spectroscopically
confirmed. The total number of images comprised in these systems rises to 165, compared to 48 images in 16 systems before the
HFF observations. Our analysis uses a parametric mass reconstruction technique, as implemented in the L        software, and
the subset of the 132 most secure multiple images to constrain a mass distribution composed of four large-scale mass components
(spatially aligned with the four main light concentrations) and a multitude of galaxy-scale perturbers. We find a superposition of cored
isothermal mass components to provide a good fit to the observational constraints, resulting in a very shallow mass distribution for
the smooth (large-scale) component. Given the implications of such a flat mass profile, we investigate whether a model composed
of “peaky” non-cored mass components can also reproduce the observational constraints. We find that such a non-cored mass model
reproduces the observational constraints equally well, in the sense that both models give comparable total rms. Although the total
(smooth dark matter component plus galaxy-scale perturbers) mass distributions of both models are consistent, as are the integrated
two-dimensional mass profiles, we find that the smooth and the galaxy-scale components are very different. We conclude that, even
in the HFF era, the generic degeneracy between smooth and galaxy-scale components is not broken, in particular in such a complex
galaxy cluster. Consequently, insights into the mass distribution of MACS J0717 remain limited, emphasizing the need for additional
probes beyond strong lensing. Our findings also have implications for estimates of the lensing magnification. We show that the am-
plification difference between the two models is larger than the error associated with either model, and that this additional systematic
uncertainty is approximately the difference in magnification obtained by the different groups of modelers using pre-HFF data. This
uncertainty decreases the area of the image plane where we can reliably study the high-redshift Universe by 50 to 70%.

Key words. gravitational lensing: strong – galaxies: clusters: individual: MACS J0717.5+3745

1. MACS J0717 in the Hubble Frontier Field era

MACS J0717, a galaxy cluster located at z = 0.55, is well
established as one of the most massive and complex merging
structures known so far, based on extensive optical (Ebeling
et al. 2004, 2007; Ma et al. 2008; Ma & Ebeling 2010), ra-
dio (Edge et al. 2003; van Weeren et al. 2009; Bonafede
et al. 2009; Pandey-Pommier et al. 2013), X-ray (Ma et al.
2009), and Sunyaev Zel’dovich studies (LaRoque et al. 2003;
Mroczkowski et al. 2012; Sayers et al. 2013). Acting as a

⋆ Based on observations obtained with the Hubble Space Telescope.

powerful gravitational lens, the system has been investigated
both in the strong- (Zitrin et al. 2009; Limousin et al. 2012;
Richard et al. 2014; Diego et al. 2015b) and in the weak-lensing
regimes (Jauzac et al. 2012; Medezinski et al. 2013), further un-
derlining its position as one of the most complex, dynamically
active, and massive clusters studied to date.

As a result, MACS J0717 has been selected as a target by the
CLASH program (Postman et al. 2012) and more recently by the
Hubble Frontier Field (HFF) initiative. The HFF project consti-
tutes the largest commitment of Hubble Space Telescope (HST)
time ever made to the exploration of the high-redshift Universe
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via gravitational lensing by massive galaxy clusters: 140 orbits
of HST time have been devoted to deep imaging observations of
six galaxy clusters. Each cluster is observed for 20 orbits in each
of three ACS filters (F435W, F606W and F814W), and in each
of four WFC3 passbands (F105W, F125W, F140W and F160W).
More information on the HFF initiative can be found on their
website1.

In this paper, we use the full set of HFF observations in
order to pursue a strong-lensing analysis of MACS J0717. Our
aims are twofold: (i) first, to study the mass distribution in de-
tail, which entails estimating the total projected mass of the core
of MACS J0717, quantifying the location and shape of the mass
components relative to the gas and galaxy distribution, and us-
ing the results to gain further insight into the ongoing merging
processes in MACS J0717, which may have broader implica-
tions for our understanding of structure formation and evolution.
(ii) Second, to provide the community with a calibrated mass
model of MACS J0717, thereby enabling its use as an efficient
gravitational telescope for studies of the high-redshift Universe,
which is the primary scientific goal of the HFF program.

Previous analyses revealed that MACS J0717 is undergo-
ing multiple merger events, reflected in its quadri-modal mass
distribution, with a filament extending to the south-east. Using
X-ray and optical data (both imaging and spectroscopy), Ma
et al. (2009) were the first to identify four major concentra-
tions of large elliptical cluster galaxies, referred to as A, B, C,
and D in their work. This scenario was later confirmed in a para-
metric strong-lensing analysis by Limousin et al. (2012). More
recently, Diego et al. (2015b), exploiting the first third of the
HFF data and using a non-parametric strong-lensing technique,
has again found evidence for a quadri-modal mass distribution
for the smooth component, i.e., once cluster members are re-
moved. This agreement between the results from both paramet-
ric and non-parametric, grid-based modelling approaches (the
latter having much more freedom than the former) is further evi-
dence in favour of the four-component model. Like all the above-
mentioned strong-lensing studies of MACS J0717, ours also uses
the original labelling by Ma et al. (2009) of these four compo-
nents (see Fig. 2). In fact, we assume in this paper that the mass
distribution of MACS J0717 is quadri-modal.

All our results use the ΛCDM concordance cosmology
with ΩM = 0.3,ΩΛ = 0.7, and a Hubble constant H0 =

70 km s−1 Mpc−1. At the redshift of MACS J0717 this cosmol-
ogy implies a scale of 6.4 kpc/′′. Magnitudes are quoted in the
AB system. Figures are aligned with the conventional equatorial
axes, i.e. north is up, and east is left.

2. Multiple images

2.1. Previous work

Prior to the HFF observations, 16 multiple-image systems, com-
prising 48 individual images, had been reported (Johnson et al.
2014; Richard et al. 2014; Coe et al. 2015). The analysis by
Diego et al. (2015b), using the first third of the data from the
HFF observations, identified an additional 17 multiple-image
systems, as well as 10 elongated features, assumed to be single
images of lensed background galaxies.

More recently, at the same time as this paper, Kawamata
et al. (2016) has presented a mass model for MACS J0717 based
on the full depth of the HFF observations. We briefly discuss
their findings in Sect. 5.4.

1 http://www.stsci.edu/hst/campaigns/frontier-fields/

2.2. This work

In this work, we revisit the strong-lensing identifications by
Diego et al. (2015b), agree with most of them (discarding, how-
ever, their system 30), and, using the full depth of the HFF obser-
vations, add 28 new multiple-image systems. The HFF observa-
tions thus enabled the discovery of 45 new systems (consisting
of 117 images), bringing the grand total to 61 multiple-image
systems in MACS J0717, comprised of 165 individual images.
Here we use as constraints only a subset of 132 multiple images
that we consider to be the most reliably identified ones.

For clarity, we present an overview of these images in two
tables: Table A.1 lists the multiple images known before the
HFF observations and is thus identical to the one published in
Richard et al. (2014); the corresponding strong-lensing features
are shown in red in Fig. 1. Table A.2 lists the multiple images
discovered thanks to the HFF observations; they are shown in
blue and cyan in Fig. 1. Where relevant, we use the notation of
Diego et al. (2015b).

We note that we have not been able to securely identify
counter-images for some systems. We also report two radial arcs
(systems 27 and 37). It is very likely that more multiple-image
systems are present in the HFF data of MACS J0717.

2.3. Comparison with Diego et al.

Diego et al. (2015b) identified ten elongated features, interpreted
as single-image arclets. These arclets are of potential interest in
the region beyond the Einstein radius where strong-lensing con-
straints largely disappear. Combined with photometric estimates
of their redshifts, the shape of these features (elongation, orienta-
tion) may provide valuable constraints. However, in our analysis,
we do not use these features.

We agree with the identifications by Diego et al. (2015b),
except for the following few cases:

– image 25.3: we removed this image on the grounds of un-
clear morphology and colour. Adding 25.3 leads to a larger
rms for this system (2′′ instead of 1.3′′).

– image 29.3: as for 25.3 we find the morphology and colour
of 29.3 poorly determined; adding 29.3 leads to a larger rms
for this system (2.6′′ instead of 1.9′′).

– system 30: we disagree with this identification. Image 30.1
as proposed by Diego et al. (2015b) is a faint long arc located
between images 1.2 and 1.3. In Limousin et al. (2012), we
previously interpreted this feature as the merged tail of 1.2
and 1.3. This merged tail corresponds to the counter image
of the tail associated with 1.1, for which we measured a spec-
troscopic of 2.963 (labelled 1.1∗ in Limousin et al. 2012). In
addition, our parametric mass model is not able to reproduce
system 30 as proposed by Diego et al. (2015b).

– system 34: we propose an alternative identification for im-
age 34.1 which significantly improves the rms of this system
(1.6′′ instead of 3.7′′ when using the identification by Diego
et al. 2015b). We note that Diego et al. (2015b) has already
reported a possible problem with this system. The identifica-
tion we propose is supported by the geometry of systems 50
and 56.

– system 39: Diego et al. (2015b) consider image 39.1 an elon-
gated single-image feature. We associate this image with an-
other one located on the other side of the arc, forming sys-
tem 39. A third image is predicted, at least 1 mag fainter.
Although we identify several candidates for this third image,
none is sufficiently compelling, causing us to use only im-
ages 39.1 and 39.2 for this system.
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Fig. 1. Colour image (240′′ × 184′′) of MACS J0717 based on HST images in the F435W, F606W, and F814W ACS pass bands. Multiple-image
systems used in this work are marked: in red, the 48 multiple images identified prior to the HFF observations; in blue, the 84 images discovered
thanks to the HFF observations; in cyan, the 33 candidate images discovered in the HFF observations. Shown in white is the critical line for a
source redshift of 7.

2.4. Photometric redshifts

In addition to the Frontier Fields observations, we include
WFC3/UVIS (F275W, F336W) photometry in our analysis in
order to estimate photometric redshifts for the multiple im-
ages. The corresponding data were obtained for HST program
ID 13389 (PI: B. Siana), which obtained deep UV imaging
(8 orbits per filter) of three Frontier Field clusters (Abell 2744,
MACS J0717, and MACS J1149.5+2223). A complete descrip-
tion of the data reduction and photometry catalogues will be
given in Siana et al. (in prep.). Here, we briefly summarize
the photometric redshift measurements; a more detailed dis-
cussion will be presented in a forthcoming paper (Alavi et al.,
in prep.).

We derived photometric redshifts of the galaxies using
the EAZY software package (Brammer et al. 2008) with the
PÉGASE (Fioc & Rocca-Volmerange 1997) stellar synthetic
templates and a χ2 fitting procedure. When doing so, we in-
cluded an additional spectral energy distribution (SED) template
of a dusty starburst SED. EAZY parameterizes absorption from
the intergalactic medium following the description presented in
Madau (1995). We did not use the magnitude priors in EAZY, as

the lensed galaxies are much fainter than the luminosity range
covered by the priors.

We note that the resulting photometric redshift estimates
(listed in Tables A.1 and A.2) are not used as constraints in the
strong-lensing analysis; they are, however, very helpful for asso-
ciating images with each other while looking for multiple-image
systems.

3. Strong-lensing analysis

3.1. Arc spectroscopy

Previous work (Limousin et al. 2012; Schmidt et al. 2014;
Vanzella et al. 2014; Treu et al. 2015) reported spectroscopic
redshifts for nine multiple-image systems (systems 1, 3, 4, 6,
12, 13, 14, 15 and 19). In addition, a spectroscopic redshift of
z = 5.51 was measured for system 68 (Clement et al., in prep.),
bringing to ten the total number of multiple-image systems in
MACS J0717 for which spectroscopic redshifts are available.

Treu et al. (2015) reported a “probable” redshift of z = 0.928
for image 5.1. We disregard this value. Given the colour and
morphology of the three images constituting system 5, we are
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Table 1. dPIE parameters inferred for the dark matter components considered in the optimization procedure: the four large-scale dark matter
clumps (A, B, C, D) and the galaxy-scale component.

Component ∆RA ∆Dec e θ rcore (′′) rs (′′) σ (km s−1)
C –9.1+1.5

−0.5 –8.7 ± 1.4 0.34 ± 0.03 54 ± 4 16.1 ± 2.0 [1000] 895 ± 29.0
D 26.6 ± 0.9 –19.3 ± 1.1 0.65 ± 0.03 52 ± 3 4.5 ± 0.8 [1000] 494±15
B 37.3 ± 3.9 34.9 ± 1.8 0.50 ± 0.06 3+9

−2 27.6 ± 2.1 [1000] 800 ± 38
A 114.9 ± 2.9 64.7 ± 1.1 0.68 ± 0.01 9 ± 5 20.7 ± 2.1 [1000] 880 ± 22
L∗ galaxy – – – – [0.05] 8.3 ± 0.7 250.3 ± 8.4

Notes. These parameters correspond to the cored mass model. Coordinates are given in arcseconds with respect to α = 109.3982, δ = 37.745778.
The ellipticity e is for the mass distribution. Error bars correspond to 1σ confidence level. Parameters in brackets are not optimized. For the scaling
relations, the zero point is set to a magnitude equal to 20.66.

confident in this multiply imaged system, whose geometrical
configuration does not support a low redshift as reported by Treu
et al. (2015). Indeed, our model predicts a redshift around 4
(Table A.1), in agreement with the predictions from Diego et al.
(2015b) and Kawamata et al. (2016). In addition, a non-detection
in all filters bluer than the B-band can suggest a high-redshift so-
lution (z > 3), as this possibility is also favoured by the CLASH
survey which estimates a photometric redshift of 4.5 for im-
ages 5.1 and 5.2 (Jouvel et al. 2014).

3.2. Methodology

As in our previous work (see, e.g. Limousin et al. 2007b), our
mass model consists of large-scale dark matter (DM) haloes,
whose individual mass is larger than that of a galaxy group
(typically of the order of 1014 M⊙ within 50′′), and perturba-
tions associated with individual cluster galaxies. For our analy-
sis of MACS J0717, we consider the 90 most luminous galaxies
in the ACS field as perturbers (corresponding to a magnitude
limit equal to 23.4). We characterize these mass components
(both on the cluster and the galaxy scale) with dual Pseudo
Isothermal Elliptical Mass Distribution (dPIE, Limousin et al.
2005; Elíasdóttir et al. 2007), parametrized by a fiducial velocity
dispersion σ, a core radius rcore, and a scale radius rs. For the
individual cluster galaxies, empirical scaling relations (without
any scatter) are used to derive their dynamical dPIE parameters
(central velocity dispersion and scale radius) from their lumi-
nosity (the core radius being set to a vanishingly small value
of 0.3 kpc), whereas all geometrical parameters (centre, elliptic-
ity, position angle) are set to the values measured from the light
distribution. More precisely, the scaling relations are given by:

rs = r∗s

(

L

L∗

)

1
2

and σ = σ ∗

(

L

L∗

)

1
4

· (1)

We allow the velocity dispersion of an L∗ galaxy to vary be-
tween 100 and 250 km s−1, whereas its scale radius is forced
to be less than 70 kpc, thus accounting for tidal stripping of
galaxy-size dark matter haloes (see, e.g. Limousin et al. 2007a,
2009; Natarajan et al. 2009; Wetzel & White 2010, and refer-
ences therein). Model optimisation is performed in the image
plane using the         2 software (Jullo et al. 2007).

Positional uncertainty. The positional uncertainties of the im-
ages is an important ingredient for the χ2 computation. They af-
fect the derivation of errors, in the sense that smaller positional
uncertainties will, in general, result in smaller statistical uncer-
tainties, which may in fact be underestimated.

2 http://www.oamp.fr/cosmology/lenstool/

In principle, deep HST images like the ones used in this pa-
per allow compact images to be located to an astrometric pre-
cision of the order of 0.′′05. However, parametric cluster lens
models often fail to reproduce or predict image positions to this
precision, yielding instead typical image-plane rms values be-
tween 0.2′′ and a few arc seconds. Nominal positional uncer-
tainties of 1.4′′ are usually chosen (Zitrin et al. 2015) to account
for the contribution of fore- or background structures that are not
included in our simple mass models (Jullo et al. 2010; D’Aloisio
& Natarajan 2011; Host 2012). In this work, we use an even
larger positional uncertainty of 2.0′′ (i.e., a value of the order of
the image plane rms), in order to attain a reduced χ2 of order 1.

Finally, we should keep in mind that we are trying to repro-
duce observed and, to some extent, poorly understood structures
located far away using rather simple parameterized mass models.

3.3. A multimodal mass model

Acknowledging previous results, we adopt and optimize a
quadri-modal mass distribution for MACS J0717. Each mass
component is associated with one of the four components (A,
B, C and D), its location set to coincide with the correspond-
ing light peak (red diamonds in Fig. 2). As in prior studies, we
allow the positions of these components to vary within ±20′′

of the associated light peak, while the ellipticity is limited to a
range from 0 to 0.7 (in units of (a2 − b2)/(a2 + b2)). The veloc-
ity dispersion of each component is allowed to vary between 400
and 1500 km s−1, and the core radius may take any value between
1 and 30′′. Finally, the scale radius – unconstrained by our data
– is fixed at 1000′′.

4. Mass distribution from strong lensing

4.1. Cored mass components: A flat DM distribution?

Our quadri-modal mass model is able to reproduce the lensing
constraints with an image-plane rms of 1.9′′. The resulting pa-
rameters of all mass components are given in Table 1; the corre-
sponding mass contours are shown in yellow in Fig. 2.

We find that the total mass distribution (i.e., smooth
DM component + galaxy-scale perturbers) follows the light dis-
tribution. The centre of each component is offset from the asso-
ciated light concentration by 19′′, 27′′, 13′′, and 14′′ for compo-
nents A, B, C, and D, respectively. In light of the large core radii
of most of the four components (21′′, 28′′, 21′′, and 5′′ for A,
B, C, and D, respectively); however, these offsets are not neces-
sarily significant. Specifically, our analysis does not support the
hypothesis advanced by Diego et al. (2015b) that component A
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Fig. 2. Mass maps inferred from the cored (yellow), the non-cored (green) and the NFW (magenta) models. Contours show where the surface mass
density equals 4, 7 × 1010 M⊙ arcsec−2. Red diamonds correspond to the light peaks associated with each mass component. The white cross shows
the barycentre of the Einstein ring as estimated by Meneghetti et al. (2011) at α = 109.38002, δ = 37.752214. The underlying image covers an
area of 236′′ × 166′′.

is significantly offset from the closest light peak. These authors
argued that this offset is probably due to the lack of lensing con-
straints in that area.

Since three of the four components have core radii larger
than 15′′, i.e., larger than 100 kpc at the redshift of MACS J0717,
their superposition leads to a relatively flat mass distribution.
In the following, this model is referred to as the cored mass
model.

Various mechanisms that could lead to such large cores have
been proposed (see also Diego et al. 2015b,a, for a thorough dis-
cussion). Large cores in massive central galaxies are thought to
be caused by massive black holes that clear the centre of galax-
ies of stars (see, e.g. López-Cruz et al. 2014). This may affect
dark matter as well, but the scales on which this mechanism
can be expected to be effective (less than 10 kpc) are smaller
than the scale we are interested in here (∼100 kpc). Actif galac-
tic nucleus feedback can also contribute to the flattening of the
central region (Martizzi et al. 2012), but once again this mech-
anism is efficient only on small scales (up to 10–15 kpc). On
scales of 100 kpc, large cores may result from violent interac-
tions related to merging events in this actively evolving cluster,
although several studies find that DM profiles are not strongly
altered by a collision (Ricker & Sarazin 2001; Dekel et al. 2003;
Molnar et al. 2010). Finally, heating of massive galaxies by dy-
namical friction against the diffuse dark matter distribution of

the cluster can flatten the slope of the DM density profile, and
sometimes even dominate over adiabatic contraction (see, e.g.
El-Zant et al. 2001, 2004). Another explanation might be self-
interacting dark matter particles (Natarajan et al. 2008; Rocha
et al. 2013), known to flatten the cusps of cluster scale haloes on
scales up to 100 kpc, or the multi-coupled Dark Energy scenario
(Garaldi et al. 2016).

Given the implications of a flat mass profile for
MACS J0717, we investigate its mass distribution further by test-
ing whether large-core components are really required by the
data. To this end, we explore in the next subsection a peaky, non-
cored mass model.

4.2. Non-cored mass components: a peaky DM distribution?

The differences between the non-cored and the cored mass mod-
els lie in the shape and location of each mass component: the
position of each mass component is required to lie within 5′′ of
the associated light peak in both right ascension and declination,
and its core radius is forced to be smaller than 5′′. Interestingly,
we find that this non-cored mass model is also able to reproduce
the observational constraints, with an image-plane rms of 2.4′′,
similar to that of the cored mass model. Therefore, both models
fit the data equally well, in the sense that they give comparable
total rms.
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Table 2. Same as Table 1 for the non-cored mass model.

Component ∆RA ∆Dec e θ rcore (′′) rs (′′) σ (km s−1)
C –0.9 ± 0.5 4.9+0.1

−0.5 >0.38 63 ± 2 4.9+0.1
−0.2 [1000] 889 ± 11

D 31.8 ± 0.5 –14.5 ± 0.5 >0.69 46 ± 3 4.8 ± 0.2 [1000] 617 ± 8
B 64.9 ± 1.0 39.9+0.1

−0.2 >0.54 173 ± 18 4.9+0.1
−0.6 [1000] 733 ± 13

A 134.9+0.1
−0.7 75.0+0.5

−0.1 0.61 ± 0.03 12.0 ± 9 2.7 ± 0.4 [1000] 795 ± 16
L∗ galaxy – – – – [0.05] 11.4 ± 1.4 161 ± 6

Table 3. NFW parameters inferred for the four large-scale dark matter clumps (A, B, C, D) and the dPIE parameters for the galaxy-scale component
(core radius fixed to 0.3 kpc).

Component ∆RA ∆Dec e θ c200 rs (′′) σ (km s−1)
C –2.3 ± 0.6 –0.7 ± 0.8 0.13 ± 0.02 53 ± 4 3.4 ± 0.2 81.8 ± 6.0 –
D 32.6 ± 0.4 –13.5 ± 0.5 0.55 ± 0.03 50 ± 2 5.3 ± 0.3 25.3 ± 2.2 –
B 63.3 ± 1.2 44.6 ± 0.4 0.51 ± 0.06 5 ± 2 3.0+0.1

−0.0 63.9 ± 3.7 –
A 133.7 ± 0.9 77.4 ± 1.4 0.23 ± 0.04 165 ± 15 5.5 ± 0.3 32.5 ± 0.35 –
L∗ galaxy – – – – – 9.2 ± 0.4 188 ± 9

Notes. These parameters correspond to the NFW mass model. Coordinates are given in arcseconds with respect to α = 109.3982, δ = 37.745778.
The ellipticity e is for the mass distribution. Error bars correspond to 1σ confidence level. Concerning the scaling relations, the zero point is set to
a magnitude equal to 20.66.

Best-fit parameters for this mass model are listed in Table 2.
We can appreciate that they differ significantly from the best-fit
parameters obtained for the cored mass model. The correspond-
ing mass contours are shown in green in Fig. 2. Essentially,
the total mass distribution of this model also follows the light
distribution.

4.3. NFW profile

We further investigate the impact of the profile of the DM com-
ponents on our model’s ability to satisfy the lensing constraints
by adopting an NFW profile (Navarro et al. 1996), parametrized
by a scale radius rs and a concentration parameter c200, for each
of the four cluster-scale components. We note that this exercise is
not physically motivated. Although NFW profiles are well suited
to describe isolated, relaxed DM haloes, they are not necessarily
expected to be adequate for the parameterization of this com-
plex merging system. While the four subclusters may have had
an NFW mass profile before their collision, it is not obvious that
they will keep this shape during the violent merging process act-
ing in MACS J0717.

Here we test two NFW models. In the first, the location of
each mass component is allowed to vary within ±20′′ of its as-
sociated light peak (the same limits used for the cored mass
model); in the second, this limitation is tightened to 5′′ (the same
limits used for the non-cored mass model). In both cases, the
scale radius is allowed to vary between 80 and 750 kpc, and
the concentration parameter between 3 and 6.

We find that the best-fit parameters derived for either
NFW model agree with each other. Even when the position of
the components is allowed to deviate from that of the corre-
sponding light peak, the best-fit position ends up consistent with
the light distribution. We conclude that an NFW cusp without
a luminous counterpart is not favoured by the data. In light of
this result, we thus only discuss further the second NFW model.
It too is able to reproduce the observational constraints, with an
image-plane rms of 2.2′′, comparable to that of both the cored
and non-cored models. Best-fit parameters for this mass model
are listed in Table 3; the corresponding mass contours are shown
in magenta in Fig. 2.

This test thus further confirms that a peaky DM distribu-
tion for the large-scale mass components can accommodate the
strong lensing constraints.

4.4. A hybrid mass model

A key assumption of all models so far has been that each mass
component is associated with one of the four light peaks in
MACS J0717 (we note that this hypothesis is supported by pre-
vious studies, in particular by the series of “blind tests” per-
formed in Limousin et al. 2012). Consistent with this assump-
tion, Fig. 2 shows the light distributions corresponding to the
mass components A, C, and D to be dominated by a bright ellip-
tical galaxy; however, this is not the case for mass component B,
whose light peak coincides with a group of small elliptical galax-
ies. Acknowledging this peculiarity, we consider a hybrid mass
model that combines some of the properties of the cored and the
non-cored mass models. Components A, C, and D are described
by a dPIE mass profile, whose right ascension and declination
are required to remain within ±5′′ of the associated light peak
and whose core radius is forced to be smaller than 5′′, whereas
component B is modelled by a dPIE mass profile whose posi-
tion is allowed to vary within ±20′′ of the associated light peak,
and whose core radius is allowed to reach 35′′. Not surprisingly,
this hybrid model is also able to reproduce the observational con-
straints with an rms of 2.2′′. The best-fit location of component B
is 8.5′′ away from the associated light peak, and its best-fit core
radius is 20 ± 2′′.

5. Model comparison

The small difference in rms between the cored and the non-cored
model (0.5′′) suggests that the observational constraints, even in
the HFF era, cannot discriminate between a flat and a peaky dark
matter distribution for the smooth component. This difference
in rms is comparable to or smaller than that due to an image
mis-identification (see, e.g. the case of image 3.3 in Abell 2744
presented in Jauzac et al. 2015), or to the difference caused by
an unaccounted for structure along the line of sight (e.g. Host
2012), two effects that may also affect our analysis.
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Fig. 3. Comparison between the mass maps of the cored (left) and the non-cored (right) mass models. Top: total mass (smooth component +
galaxies). Contours show where the surface mass density equals 4, 7 × 1010 M⊙ arcsec−2. Middle: contribution from the smooth component only.
Contours delineate where the surface mass density equals 4, 5.5, 6.0 × 1010 M⊙ arcsec−2. Bottom: contribution from the galaxies component only.
Contours mark where the surface mass density equals 0.5, 2 × 1010 M⊙ arcsec−2. We note that the galaxies gain more weight in the cored mass
model, in order to compensate for the smoothness of the underlying large-scale mass components. Each panel measures 260′′ × 190′′.

5.1. Mass maps

Figure 3 shows that the total mass maps generated by these two
mass models are quite similar (top row) and follow the light dis-
tribution. In the middle and bottom row of Fig. 3 this comparison
is decomposed into the smooth component and the galaxy-scale
component. In that decomposition, one can see important differ-
ences between the smooth components. It is peaky in the non-
cored mass model, and the four mass components are clearly
visible. By contrast, the dark matter distribution of the cored
mass model is much more diffuse, leading to a very shallow mass

profile. However, this effect is compensated for by the galaxy-
scale component, which is much more massive in the cored mass
model (lower plots of Fig. 3).

5.2. Convergence profile of the smooth component

Figure 4 (top left) compares the resulting convergence profile
of the smooth component for the two models. Following Diego
et al. (2015b), we take the centre of the profile to be the position
of the most massive galaxy that is closest to the centre of group C
(α = 109.3982, δ = 37.745778). As expected from Fig. 3, the
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Fig. 4. Top left: surface-mass-density profile for the smooth component of the cored (yellow) and the non-cored (green) mass model. The blue line
shows the same quantity, as derived by Diego et al. (2015b). Shaded areas represent 3σ uncertainties. Top right: cumulative two-dimensional mass
profile for the cored (yellow) and the non-cored (green) mass model (abscissa in arc seconds). Bottom: absolute value of the relative difference
between each models. Blue contours mark where the difference is 20%, and cyan contours where it is 30%. The mass contours corresponding to
the non-cored model are shown in green. The size of the field is 226′′ × 155′′.

profiles differ visibly. For the cored mass model, the convergence
profile is basically flat out to 20 kpc and then decreases mono-
tonically, whereas the profile for the non-cored model features
bumps corresponding to the mass components D, B, and A. For
comparison, the same figure also shows the convergence profile
for the smooth component inferred by Diego et al. (2015b). It re-
sembles the profile of our cored model, but remains very flat to a
much larger radius (∼100 kpc) before decreasing monotonically.

5.3. Total mass profile

Although the large-scale (smooth) components of our two mod-
els results in noticeably different radial mass profiles, the mod-
els’ cumulative total two-dimensional mass profiles are nearly
indistinguishable (Fig. 4, right). Owing to the complex spatial

distribution of the mass, the centre of MACS J0717 (needed to
integrate the two-dimensional mass map) is not easily defined.
Following Meneghetti et al. (2011), we choose the barycentre
of the Einstein ring, at α = 109.38002, δ = 37.752214 (white
cross on Fig. 2), near the centre of the ACS frame. The projected
mass within 990 kpc (156′′) of this location is found to be M =
(2.229±0.022)×1015 M⊙ for the cored model, and M = (2.199±
0.021)×1015 M⊙ for the non-cored model (1σ statistical errors).
As for other cluster mass models based on HFF data (Jauzac
et al. 2015, 2016, 2014), the errors thus imply 1% precision.
However, such claims disregard the additional, systematic uncer-
tainty that we investigate here and which, based on the choice of
mass model, leads to larger error bars on the mass. Averaging
the two mass measurements yields M = (2.214 ± 0.037) ×
1015 M⊙. It is likely that other systematic uncertainties, not
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taken into account here, further affect the reported value and its
error.

A final comparison is presented in Fig. 4, which shows the
absolute value of the relative difference between the mass maps
inferred for the cored and the non-cored model. We find differ-
ences of 30% near massive cluster ellipticals and, importantly,
also in the cores of the four large-scale components.

5.4. Comparison with other studies

Diego et al. (2015b), using the first third of the HFF ob-
servations, reported an image plane rms of 2.8′′. More re-
cently, Kawamata et al. (2016), using 173 images from the full
depth of the HFF observations, reported an image plane rms
of 0.52′′. Their modelling approach is parametric. They place
nine NFW components on the positions of bright cluster mem-
bers (of which six have a mass larger than 1014 h−1 M⊙), plus
multipole perturbations modelling the external perturbations on
the lens potential and the asymmetry of the cluster mass distri-
bution. Compared to our approach, their model involves many
more parameters, which may explain why their rms is signifi-
cantly smaller than ours. Their paper focusses on the detection
of high-redshift galaxies, and so modelling results that allow to
pursue a more detailed comparison are not provided. In particu-
lar, it is not possible to see if their best mass model is closer to
our cored or to our non-cored mass model.

6. Discussion

Our analysis reveals that two very different models (in term of
mass component parameters) are able to reproduce all observa-
tional constraints equally well, in the sense that the total rms
is comparable. While we can state that the mass distribution in
MACS J0717 is quadri-modal, further insights remain limited;
in particular, we are not able to constrain the shape and the pre-
cise location of the four mass clumps, even with the exquisite
data provided by the HFF project. Although this problem is
likely exacerbated by the complexity of the mass distribution in
MACS J0717, it is likely to affect and limit our understanding of
the mass distribution in other clusters too.

In the following we discuss ways to discriminate between
these models.

6.1. Stellar velocity dispersions

As our two models lead to different mass distributions for the
galaxy-scale component (see Fig. 3), here we investigate the role
of the galaxy-scale perturbers in an attempt to find ways to dis-
criminate between the two models.

The parameters characterizing the galaxy-scale perturbers,
the velocity dispersion σ and the scale radius rs, differ notice-
ably: we find σ = 250 km s−1 and rs = 53 kpc for the cored mass
model, and σ = 161 km s−1 and rs = 73 kpc for the non-cored
mass model (for a magnitude of 20.66). Both of these parameters
can be constrained independently by weak and strong galaxy-
galaxy lensing in clusters, and by measurements of the stellar
velocity dispersion from low-resolution spectroscopy. Recently,
Monna et al. (2015) conducted the latter type of investigation
for the galaxies in Abell 383 and also presented a compilation
of similar measurements in the literature (Fig. 11 of their paper).
The parameter σ is found to range from 80 to 300 km s−1 and rs
from 5 to 85 kpc, which are consistent with the values obtained
for both of our two models. Measurements of these parameters

for a significant number of individual galaxies in MACS J0717
may allow us to discriminate between the cored and the non-
cored mass model.

6.2. Redshift estimates and measurements

In principle, the redshift predictions of either model might
prove useful to discriminate between them. However, all esti-
mated redshifts predicted by the different mass models (listed in
Tables A.1 and A.2) agree with each other at the 3σ confidence
level. We also note that for all systems but one (system 39), these
model-based estimates agree with the photometric redshifts.

6.3. Beyond strong lensing

Using different probes beyond strong lensing might also allow
us to at least alleviate the degeneracies between the cluster-
and galaxy-scale mass components. Measuring the weak-lensing
shear around cluster members is a very interesting avenue in this
context, in particular in the flexion regime, which is well suited
to probe galaxy-scale dark matter haloes. Although flexion is
challenging to measure, its signal has already been detected in
much shallower space-based images than the ones provided by
the HFF (see, e.g. Leonard et al. 2007, on Abell 1689).

7. Implications for magnification estimates

The primary science goal of the HFF campaign is to use clus-
ters as gravitational telescopes in order to probe deeper into the
high-redshift Universe. Whether, or how well, this goal can be
achieved depends critically on the accuracy with which one can
recover the amplification that allows us to convert observed into
intrinsic properties of said high-redshift objects.

Not surprisingly, the cored and the non-cored mass models
presented in this paper lead to different magnification estimates,
thus adding a systematic error that is in general larger than the
statistical error derived from a single mass model. This system-
atic error is defined as the difference between the amplification
derived from the best-fit cored model and the amplification de-
rived from the best-fit non-cored model. It can sometimes be
larger than the difference between the magnification values ob-
tained by the different groups of modellers, using pre-HFF data.
To quantify the effect for a given image, we compute the am-
plifications obtained by the different groups of modellers using
pre-HFF data3 and take the difference between the smallest and
largest value as the “modellers” uncertainty.

For a given source redshift, the implications of these sys-
tematic uncertainties for magnification estimates depends on
where one looks through the cluster. To illustrate this, for a few
multiply imaged galaxies we list the following informations in
Table 4: the amplification with associated error bars and signal-
to-noise ratio (in square brackets), for the cored and the non-
cored models; the difference between these two amplifications
(the systematic error developed in this paper), and the previously
mentioned modellers uncertainty. The images used for this exer-
cise were chosen to represent a wide range of magnifications:
several are located far from the critical lines (images 19.3, 68.2,
71.2, and 61.2), one is close to the critical line in one model but
not in the other (image 57.1), and another one lies close to the
critical lines in both models (23.2).

In regions where the amplification is estimated with high
confidence, we note how the amplification difference between

3 http://archive.stsci.edu/prepds/frontier/lensmodels/
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Fig. 5. Map (310′′ × 310′′) of the signal-to-noise ratio of the amplification, for the cored (left) and the non-cored (right) mass models. White lines
indicate where the signal-to-noise ratio equals 3. Darker areas interior to these lines correspond to regions where the signal-to-noise ratio is less
than 3.

Table 4. Illustration of the implication of the systematic uncertainty on magnification estimates.

ID Ampli (cored) Ampli (non-cored) ∆ [cored – noncored] ∆ [pre-HFF]
19.3 3.2 ± 0.15 [21] 2.8 ± 0.07 [40] 0.4 1.7
68.2 24 ± 2.0 [12] 8.7 ± 0.6 [14.5] 15.3 4.0
71.2 12.0 ± 1.4 [8.5] 10.0 ± 0.7 [14] 2.0 63.5
61.2 2.3 ± 0.2 [11.5] 1.6 ± 0.1 [16] 0.7 1.62
57.1 12.3 ± 6.0 [2] 32.4 ± 846 [<1] >100 205
23.2 1083 ± 9167 [<1] 21.8 ± 2.5 [<1] >1000 69

Notes. For different multiple images, the value of the amplification with associated errors and signal-to-noise ratio (in brackets), for the cored and
the non-cored model; the difference in amplification between the cored and the non-cored mass model; the difference in amplification considering
pre-HFF data and the different modelling/group software. Magnifications computed for z = 3.0.

the cored and the non-cored models is larger than the error as-
sociated with a given model and comparable to the modellers
uncertainty. In the case of image 57.1, we also note how the
amplification is reasonably well constrained in the cored model
(signal-to-noise ratio of 2), but essentially unconstrained in the
non-cored model.

This additional systematic uncertainty needs to be taken into
account in all practical applications of a gravitational telescope,
as it will decrease the area of the image plane where amplifica-
tions are well determined enough for credible studies of the high-
redshift Universe. We quantify this effect by computing the area
of the image plane for which the signal-to-noise ratio on the am-
plification is less than 3 for a source redshift of 7. We find 1.1
and 1.3 arcmin2 for the cored and non-cored models, respec-
tively. When both models are considered valid descriptions, thus
adding the above-mentioned systematic error, this area increases
to 1.9 arcmin2, i.e., by 50 and 70%, respectively. A graphic pre-
sentation of this change in area is provided by Fig. 5 which
shows the signal-to-noise ratio for the cored and the non-cored
mass models; the white line marks a value of 3.

8. Conclusion

We present a strong-lensing analysis of MACS J0717 based on
the full depth of the HFF data.

We find that the lensing constraints can be equally well sat-
isfied by a mass model with a shallow large-scale DM compo-
nent and one for which this component is peaky. Given the clear
physical difference between the two models, we conclude that
our insights into the DM distribution remain limited, even in
the HFF era. One way to discriminate between the two models
would be to model the mass distribution while constraining si-
multaneously the large-scale smooth component and the galaxy-
scale component, i.e. the two ingredients of our mass models
that display generic degeneracies.

Our findings have important implications for magnification
estimates. We show that the ambiguity between the two mod-
els leads to an additional systematic error that varies with po-
sition and needs to be taken into account when looking at the
high-redshift Universe through MACS J0717. Generally speak-
ing, it decreases the area available for studying the high-redshift
Universe by 50–70%.
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Table A.1. Multiple-image systems found before the FF observations.

ID RA Dec zspec zmodel (non-cored, cored, NFW) zphot

1.1 109.39534 37.741178 – – 3.07 ± 0.06
1.2 109.39382 37.740095 2.963 – 2.91 ± 0.09
1.3 109.39098 37.738280 2.963 – 2.72 ± 0.17
1.4 109.38436 37.736945 – – 3.11 ± 0.06
1.5 109.40578 37.761378 – – 3.11 ± 0.07
2.1 109.39281 37.741010 – 2.6 ± 0.3, 2.2 ± 0.4, 3.0 ± 0.3 2.72 ± 0.12
2.2 109.39043 37.739245 – – 2.72 ± 0.07
3.1 109.39855 37.741495 1.855 – 1.87 ± 0.04
3.2 109.39446 37.739176 1.855 – 1.84 ± 0.04
3.3 109.40715 37.753827 1.855 – 1.84 ± 0.04
4.1 109.38088 37.750127 1.855 – 1.93 ± 0.05
4.2 109.37644 37.744696 1.855 – 1.84 ± 0.04
4.3 109.39109 37.763296 1.855 – 1.82 ± 0.04
5.1 109.37991 37.746861 – 4.1 ± 0.2, 3.8 ± 0.2, 3.7 ± 0.1 –
5.2 109.37791 37.742810 – – –
5.3 109.40003 37.767399 – – –
6.1 109.36436 37.757091 2.393 – 2.37 ± 0.06
6.2 109.36271 37.752693 2.393 – 2.27 ± 0.07
6.3 109.37388 37.769711 2.393 – –
7.1 109.36657 37.766343 – 1.9 ± 0.1, 2.0 ± 0.1, 2.0 ± 0.1 –
7.2 109.36505 37.764125 – – –
7.3 109.35905 37.751780 – – 2.23 ± 0.13
8.1 109.36665 37.769694 – 2.5 ± 0.1, 2.9 ± 0.2, 2.8 ± 0.1 –
8.2 109.36208 37.763125 – – –
8.3 109.35652 37.751928 – – –
12.1 109.38516 37.751844 1.699 – 1.62 ± 0.05
12.2 109.37762 37.742878 1.699 – 1.73 ± 0.06
12.3 109.39122 37.760626 1.699 – 1.71 ± 0.05
13.1 109.38567 37.750733 2.547 – 2.47 ± 0.06
13.2 109.37756 37.739627 – – 2.54 ± 0.07
13.3 109.39621 37.763333 2.540 – 2.61 ± 0.09
14.1 109.38879 37.752163 1.855 – 1.84 ± 0.04
14.2 109.37966 37.739707 1.855 – 1.84 ± 0.04
14.3 109.39619 37.760427 1.855 – 1.84 ± 0.02
15.1 109.36766 37.772059 2.405 – –
15.2 109.35862 37.760127 – – –
15.3 109.35654 37.754641 – – 3.40 ± 0.08
16.1 109.36916 37.773279 – 3.2 ± 0.3, 3.6 ± 0.3, 3.1 ± 0.1 –
16.2 109.35856 37.759558 – – –
16.3 109.35694 37.753691 – – –
17.1 109.36938 37.771869 – 2.7 ± 0.2, 2.8 ± 0.2, 2.7 ± 0.1 –
17.2 109.35938 37.758792 – – –
17.3 109.35822 37.753609 – – 3.15 ± 0.14
18.1 109.36425 37.768628 – 2.0 ± 0.1, 2.6 ± 0.5, 2.2 ± 0.1 –
18.2 109.36121 37.764326 – – –
19.1 109.40906 37.754681 6.40 – –
19.2 109.40772 37.742731 6.40 – –
19.3 109.38105 37.731391 6.40 – –

Notes. Uncertainties quoted for redshifts predicted by our model, zmodel, correspond to the 1σ confidence level. They are given for the non-cored,
the cored, and the NFW models. In the last column, we show the estimate of the photometric redshift, when possible, together with the 1σ error
bars.
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Table A.2. Multiple-image systems found after the FF observations.

ID RA Dec zspec zmodel (non-cored, cored, NFW) zphot

20.1 109.37420 37.7651450 – 3.4 ± 1.0, >2.6, uncons. –
20.2 109.37340 37.7646610 – – –
21.1∗ 109.37241 37.746392 – – 2.61 ± 0.16
21.2∗ 109.37673 37.752029 – – 2.65 ± 0.12
22.1∗ 109.36773 37.755897 – – 0.87 ± 0.11
22.2∗ 109.36769 37.755556 – – 0.93 ± 0.05
23.1∗ 109.37958 37.762879 – – –
23.2∗ 109.37897 37.761983 – – –
24.1 109.392290 37.732946 – 2.7 ± 0.1, 2.5 ± 0.1, 2.5 ± 0.1 –
24.2 109.410560 37.748427 – – –
25.1 109.380290 37.744746 – 4.0 ± 0.1, 3.8 ± 0.1, 3.8 ± 0.2 –
25.2 109.379510 37.742762 – – –
25.3 109.402910 37.766411 – – –
27.1 109.397390 37.747883 – 1.6 ± 0.9, 3.0 ± 1.1, uncons. 2.95 ± 0.18
27.2 109.397560 37.747567 – – 2.17 ± 0.32
29.1 109.400870 37.743174 – 1.7 ± 0.1, 1.7 ± 0.1, 1.7 ± 0.1 1.45 ± 0.07
29.2 109.392840 37.738612 – – 1.62 ± 0.06
31.1 109.374720 37.756347 – 1.6 ± 0.1, 1.6 ± 0.1, 1.6 ± 0.1 1.55 ± 0.08
31.2 109.371000 37.750538 – – 1.52 ± 0.06
31.3 109.381610 37.764973 – – 1.57 ± 0.08
32.1 109.369500 37.757729 – 2.3 ± 0.1, 2.8 ± 0.1, 2.5 ± 0.1 –
32.2 109.380950 37.769382 – – –
32.3 109.366250 37.749210 – – 2.40 ± 0.05
33.1 109.383770 37.758259 – 3.5 ± 0.3, 3.7 ± 0.2, 3.7 ± 0.1 –
33.2 109.386620 37.764144 – – –
33.3 109.370370 37.738712 – – –
34.1 109.391580 37.766308 – 2.6 ± 0.2, 2.7 ± 0.2, 2.6 ± 0.1 –
34.2 109.379110 37.751227 – – 1.03 ± 0.05
34.3 109.373300 37.744211 – – 1.11 ± 0.09
36.1 109.364330 37.771976 – 2.4 ± 0.2, 2.9 ± 0.2, 2.6 ± 0.1 –
36.2 109.358240 37.763325 – – –
36.3 109.353290 37.755808 – – –
37.1 109.397090 37.754736 – 3.8 ± 0.8, 3.3 ± 0.7, 3.3 ± 0.4 –
37.2 109.396720 37.754793 – – –
39.1 109.402270 37.731234 – 4.3 ± 0.3, 4.1 ± 0.3, 4.1 ± 0.3 1.82 ± 0.04
39.2 109.404950 37.732519 – – 2.14 ± 0.19
39.3∗ 109.414740 37.743276 – – –
45.1 109.389820 37.739214 – 2.7 ± 0.1, 2.7 ± 0.1, 2.6 ± 0.1 –
45.2 109.383480 37.737879 – – –
45.3 109.404470 37.761960 – – –
49.1 109.402800 37.733260 – >4.8, 4.1 ± 0.3, 3.8 ± 0.2 3.40 ± 0.08
49.2 109.393000 37.730812 – – 3.54 ± 0.06
50.1 109.374440 37.743736 – 3.7 ± 0.4, 3.6 ± 0.3, 3.6 ± 0.2 3.19 ± 0.10
50.2 109.379580 37.750708 – – –
50.3∗ 109.392800 37.767181 – – –
52.1 109.368380 37.771761 – 3.0 ± 0.2, 3.3 ± 0.2, 3.3 ± 0.3 –
52.2 109.360230 37.760497 – – –
52.3 109.357040 37.752486 – – –
55.1 109.373760 37.755778 – 2.2 ± 0.1, 2.4 ± 0.1, 2.4 ± 0.1 –
55.2 109.370240 37.748743 – – 2.17 ± 0.11
55.3 109.385020 37.768411 – – –
56.1 109.373150 37.744015 – 3.2 ± 0.2, 3.2 ± 0.2, 3.0 ± 0.1 –
56.2 109.378400 37.751095 – – –
56.3∗ 109.391820 37.766216 – – –
57.1 109.379030 37.744097 – 1.7 ± 0.1, 1.8 ± 0.2, 1.7 ± 0.1 –
57.2 109.379530 37.745110 – – –
58.1 109.379420 37.762383 – 4.2 ± 1.4, 4.2 ± 1.2, uncons. 3.03 ± 0.34
58.2 109.379260 37.762129 – – –
59.1 109.376840 37.743245 – 3.4 ± 0.8, 4.2 ± 0.5, 3.6 ± 0.5 3.11 ± 0.23
59.2 109.379960 37.748146 – – –
59.3∗ 109.400700 37.768628 – – –

Notes. Images with (∗) are the ones we propose as candidates and that are not used as constraints in the mass model. Uncertainties quoted for
redshifts predicted by our model, zmodel, correspond to the 1σ confidence level. They are given for the non-cored, the cored, and the NFW model.
uncons means unconstrained, i.e. when the output PDF is flat. In the last column, we show the estimate of the photometric redshift, when possible,
together with the 1σ error bars.

A99, page 13 of 14

132



A&A 588, A99 (2016)

Table A.2. continued.

ID RA Dec zspec zmodel (non-cored, cored, NFW) zphot

62.1 109.372220 37.747464 – 2.7 ± 0.3, 2.9 ± 0.3, 2.7 ± 0.3 2.23 ± 0.08
62.2 109.375510 37.752276 – – 2.23 ± 0.06
63.1 109.369420 37.756278 – 1.3 ± 0.1, 1.6 ± 0.1, 1.7 ± 0.1 2.20 ± 0.24
63.2 109.368360 37.753695 – – 2.20 ± 0.18
64.1∗ 109.372250 37.765391 – – –
64.2∗ 109.371790 37.765066 – – –
65.1 109.383120 37.762595 – 5.4 ± 0.3, >4.6, >5.0 –
65.2 109.382250 37.760394 – – –
66.1 109.383310 37.765079 – >6.5, 6.4 ± 0.8, 6.5 ± 0.4 –
66.2 109.380290 37.759228 – – –
67.1 109.367470 37.756509 – 3.0 ± 0.1, 4.2 ± 0.9, 4.5 ± 0.5 –
67.2 109.365120 37.749544 – – –
67.3∗ 109.382090 37.771629 – – –
68.1 109.392330 37.738083 5.51 – –
68.2 109.382350 37.736508 – – –
68.3∗ 109.406780 37.763803 – – –
69.1 109.380400 37.749467 – 3.4 ± 0.5, 3.3 ± 0.4, 3.1 ± 0.4 –
69.2 109.375320 37.743383 – – –
69.3∗ 109.396440 37.768591 – – –
70.1 109.392210 37.760496 – 3.7 ± 0.4, 3.1 ± 0.2, 3.9 ± 0.3 2.72 ± 0.06
70.2 109.389380 37.757279 – – 3.11 ± 0.07
70.3∗ 109.375110 37.735945 – – 2.14 ± 0.09
71.1 109.382700 37.744711 – 3.0 ± 0.1, 2.6 ± 0.1, 2.6 ± 0.1 2.91 ± 0.10
71.2 109.380650 37.741346 – – 1.82 ± 0.04
71.3 109.402550 37.763610 – – 2.65 ± 0.16
71.4 109.387210 37.741295 – – –
72.1 109.380120 37.765496 – >4.1, >4.0, 3.9 ± 0.4 3.32 ± 0.14
72.2 109.374810 37.762346 – – 3.32 ± 0.22
73.1∗ 109.375970 37.748883 – – –
73.2∗ 109.375500 37.748483 – – –
73.3∗ 109.391470 37.767033 – – –
74.1∗ 109.370890 37.751182 – – 1.52 ± 0.06
74.2∗ 109.383420 37.769708 – – –
74.3∗ 109.371310 37.751974 – – 1.60 ± 0.15
75.1 109.382000 37.738429 – 3.6 ± 0.4, 4.7 ± 0.4, 4.3 ± 0.5 –
75.2 109.388640 37.739263 – – –
75.3∗ 109.40496 37.764678 – – –
76.1 109.411230 37.731990 – 4.5 ± 0.4, 5.4 ± 0.3,3.7 ± 0.4 –
76.2 109.412840 37.733789 – – –
76.3 109.413660 37.734646 – – –
77.1∗ 109.377000 37.736456 – – –
77.2∗ 109.386260 37.751928 – – –
77.3∗ 109.399110 37.764959 – – –
78.1∗ 109.371840 37.742478 – – –
78.2∗ 109.379010 37.752778 – – –
79.1 109.393150 37.762795 – 3.7 ± 0.3, 3.4 ± 0.2,3.7 ± 0.3 –
79.2 109.387350 37.755963 – – –
79.3 109.375740 37.735628 – – –
80.1 109.390940 37.733628 – 3.7 ± 0.3, 3.3 ± 0.1, 3.8 ± 0.2 2.37 ± 0.15
80.2 109.400250 37.738496 – – 2.50 ± 0.11
80.3 109.410080 37.753576 – – 2.40 ± 0.14
81.1∗ 109.408320 37.728127 – – –
81.2∗ 109.409010 37.728544 – – –
81.3∗ 109.410160 37.729344 – – –
82.1∗ 109.383660 37.766146 – – 2.65 ± 0.48
82.2∗ 109.379500 37.756303 – – 2.72 ± 0.21
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2 Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
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ABSTRACT

In this paper we study the triaxial properties of dark matter haloes of a wide
range of masses extracted from a set of cosmological N -body simulations. We mea-
sure the shape at different distances from the halo center (characterised by different
overdensity thresholds), both in three and in two dimensions, discussing how halo tri-
axiality increases with (i) mass, (ii) redshift and (iii) overdensity. We also examine
how the orientation of the different ellipsoidal shells are aligned with each other and
what is the gradient in internal shapes for halos with different virial configurations.
Our findings highlight that the internal part of the halo retains memory of the violent
formation process keeping the major axis oriented toward the preferential direction of
the infalling material while the outer part becomes rounder due to continuous isotropic
merging events; this effect is clearly evident in high mass haloes - which formed re-
cently - while it is more blurred in low mass haloes. We present simple distributions
that may be used as priors for various mass reconstruction algorithms, operating in
different wavelengths, in order to recover a more complex and realistic dark matter
distribution of isolated and relaxed systems.

Key words: galaxies: halos - cosmology: theory - dark matter - methods: numerical

1 INTRODUCTION

Different wide field surveys, observing at various wave-
lengths, are revealing that most of the matter density con-
tent of our Universe is in form of collisionless particles
(Amara et al. 2012; Guzzo et al. 2014; Covone et al. 2014).
These particles do not emit radiation and interact only grav-
itationally with the surrounding density field: they are gen-
erally termed Dark Matter. In addition to these, various
analyses are revealing that another dark component dom-
inates the energy budget of the Universe – approximately
70%, responsible for the late time acceleration of the space-
time metric (Perlmutter et al. 1999; Riess et al. 2004, 2007;
Schrabback et al. 2010): Dark Energy (Komatsu et al. 2011;
Planck Collaboration et al. 2014; Cappi et al. 2015). To the
ordinary matter – planets, stars, hot and cold intergalactic
medium etc. – is attributed only approximately 5% of the
energy budget (Ettori et al. 2009, 2013): commonly called
baryos.

⋆ E-mail: gdespali@gmail.com

Following the standard scenario of structure formation,
dark matter drives the structure evolution processes: sys-
tems up to proto-galactic scales form as consequence of grav-
itational collapse and then merge together, along the cosmic
time, forming the more massive ones (White & Rees 1978;
Tormen 1998; Springel et al. 2001b; Tormen et al. 2004).
Galaxy clusters sit at the top of this hierarchical pyramid
being the most massive and late forming virialised structures
of our Universe (Frenk et al. 1990; Borgani & Kravtsov 2011;
Angulo et al. 2012).

Various studies of time evolving isolated perturbations
seeding in the dark matter density field have lead many sci-
entist to the development of the spherical collapse theory
(White & Silk 1979; Press & Schechter 1974; Pace et al.
2010). A density perturbation grows with the expansion of
the Universe in concentric shells and, if it is dense enough,
will pull away from the background expansion, and will col-
lapse after reaching a maximum size characterised by null
kinetic energy. The collapse happens when the perturbation
exceeds the predicted critical value by the spherical collapse
model forming a so called dark matter halo (Bond et al.

c© 2010 RAS
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2 Despali et al. 2015

1991; Eke et al. 1996; Bryan & Norman 1998). The improve-
ment of the computational facilities and the development of
faster computers have allowed many scientists to perform
high resolution cosmological simulations. Those have given
the possibility to many researchers to follow the collapse,
the creation and the formation of a large number of dark
matter haloes in a variety of environments (Springel et al.
2001a, 2005; Angulo et al. 2009; Angulo et al. 2012). The
main conclusion is that density perturbations from which
haloes form are not independent with each other nor iso-
lated, but during the expansion and collapse perturbations
are pulled, stretched and sheared by the surrounding den-
sity field (Doroshkevich 1970; Despali et al. 2013). All these
also translate in a mass dependence of the collapse threshold
(Eisenstein & Loeb 1995; Sheth & Tormen 1999; Sheth et al.
2001; Sheth & Tormen 2002) and in the formation of haloes
that are typically triaxial, more in particular prolate (Jing
& Suto 2002; Despali et al. 2014; Bonamigo et al. 2015).

In addition to these, the standard spherical modelling
of the dark matter, stars, inter-galactic and the intra-cluster
medium is only a rough approximation and in particular
both theory and observations agree on the general picture
that haloes in which galaxies and clusters live are very well
approximated by a triaxial ellipsoid (Morandi et al. 2011,
2012; Sereno & Zitrin 2012; Limousin et al. 2013). The study
of the asphericity of galaxy clusters is growing, in light of
the analyses performed on different numerical simulations
during the last years (Angrick & Bartelmann 2010; Rossi
et al. 2011a,b; Despali et al. 2014). In this paper we aim to
discuss the dependence of the halo shape on the distance
from the centre. Other previous works (Allgood et al. 2006;
Bailin & Steinmetz 2005) have measured shapes at differ-
ent fractions of the virial radius. For reasons that are linked
to the different halo mass definitions, M500, M200 or Mvir

(Despali et al. 2015) and so on and so forth – as we will bet-
ter discuss later in the text – we chose to present our results
in term of different overdensity thresholds: we define halos
as triaxial regions enclosing a desired multiple of the critical
density of the Universe and, for each halo identified using
∆vir, we measure the triaxial shape at other four overdensity
thresholds, multiples of the critical density of the Universe
ρc (200, 500, 1000 and 2000). This choice is also motivated
by the fact that, typically, the X-ray community adopts as
mass definition that associated to the region enclosing 500
times the critical density, while weak lensing and dynam-
ical analyses usually prefer 200 times the critical density.
On the other side, strong lensing researchers make use of
the very central region of clusters or galaxies, where critical
lines emerge; in this case we can refer to observe a region
enclosing at least 1000 times the critical density of the Uni-
verse (Broadhurst et al. 2005b; Coe et al. 2012; Zitrin et al.
2011). In light of the various observational analyses, it is
important to underline that a study of the degree of align-
ment of the mass density distribution at different distances
from the centre can help us to understand dark matter and
baryonic properties in which the various physical processes
are taking place.

Warren et al. (1992) using dissipationless simulations
has found that a typical halo is a triaxial spheroid which
tends to be more often prolate than oblate, and that halo
shapes are primarily supported by anisotropic velocity dis-
persion. In addition Bailin & Steinmetz (2005) has discussed

the fact that shapes of haloes in N -body simulations are
correlated internally and are aligned with respect to the
location and properties of the surrounding systems; their
measured shape properties are also in agreement with the
computed cluster shape from weak-lensing by Hoekstra et al.
(2004). Hopkins et al. (2005) have studied the shape prop-
erties of haloes extracted from a light-cone up to redshift
z = 3 constructed from a large-scale high-resolution N -body
simulation. They discuss that the mean halo ellipticity in-
creases with redshift as 〈ǫ〉 = 0.33+0.05z and with the clus-
ter mass, as also found by Despali et al. (2014); Bonamigo
et al. (2015). For Hopkins et al. (2005) the cluster elliptic-
ity decreases with radius in disagreement with other results
(Bailin & Steinmetz 2005; Hayashi et al. 2007; Vera-Ciro
et al. 2011; Velliscig et al. 2015). In particular Vera-Ciro
et al. (2011), studying the N -body haloes from the Aquarius
simulation (Springel et al. 2008), found that the evolution
in halo shape correlates well with the distribution of the in-
falling material: prolate configurations arise when haloes are
fed through narrow filaments whereas triaxial/oblate con-
figurations result as the accretion turns more isotropic at
later times. The geometrical properties of haloes at different
epochs are not lost: haloes retain memory of their structure
at earlier times. This memory is imprinted in their present-
day shape trends with radius, which change from typically
prolate in the inner (earlier collapsed) regions to a triaxial in
the outskirts (corresponding to the shells that have collapsed
last and are now at the virial radius). Analysing the results
of dissipational and dissipationless simulations Kazantzidis
et al. (2004) have noticed that the firsts produce significantly
rounder halos. This happens because the gas cooling causes
an average increase in halo principal axis ratios of ∼ 0.2−0.4
in the inner regions and a systematic shift that persists out
to the virial radius. Haloes in Dark-Matter (DM) only sim-
ulations are more triaxial, where there is cooling there is
transportation of angular momentum of the substructures
that survive more toward the central region, making haloes
more round. However, it is worth to mention that the inter-
play between dissipative gas physics and dark matter is still
ambiguous and may depends both on the baryonic physic
implementations and on the gas treatment. Velliscig et al.
(2015) have noticed that the stellar distributions exhibit a
median misalignment of about 45-50 degrees with respect to
their host haloes, studying the shapes of stars and dark mat-
ter in galaxy scale haloes extracted from the EAGLE and
the cosmo-OWLS simulations. The authors have also pre-
sented some fitting functions and tabulated values for the
probability distribution of galaxy-halo misalignment to en-
able a straightforward inclusion of their results into models
of galaxy formations based on purely collisionless N-body
simulations

In this work we will present a study of the shape prop-
erties of haloes extracted from DM only simulations. We
underline that our results do not account for the presence
of baryons – mainly influencing the most internal shells –
and could eventually be adapted to their presence using pre-
calibrated analytical recipes.

The paper is organised as follows: (i) Section 2 describes
the numerical simulations and the halo catalogues; (ii) in
Section 3 we discuss how we selected the halos for the follow-
ing sections and which are the best criteria to avoid contam-
inations from unrelaxed or irregular haloes; (iii) our results

c© 2010 RAS, MNRAS 000, 1–15
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are presented in Sections 4 and 5, which show respectively
the distributions derived in three or two dimensions; (iv)
Section 6 is dedicated to summarise our results and draw
our conclusions.

2 THE NUMERICAL SIMULATIONS

2.1 Le SBARBINE simulations

Le SBARBINE simulations are six cosmological simulations
which have been run in Padova using the publicly available
code GADGET-2 (Springel 2005); these are part of a series
of new simulations which have been presented in a previ-
ous work (Despali et al. 2015). The adopted cosmology fol-
lows the recent Planck results (Planck Collaboration et al.
2014), in particular we have set: Ωm = 0.307, ΩΛ = 0.693,
σ8 = 0.829 and h = 0.677. The initial power spectrum was
generated with the code CAMB (Lewis et al. 2000) and
initial conditions were produced perturbing a glass distri-
bution with N-GenIC (http://www.mpa-garching.mpg.de/
gadget). They all follow 10243 collisionless particles in a pe-
riodic box of variable length (we refer the reader to Table 1
for more details).

2.2 Halo catalogues

At each stored snapshot, we identified the dark matter
haloes using the Ellipsoidal Overdensity algorithm, as de-
scribed in Despali et al. (2013, 2014, 2015) and Bonamigo
et al. (2015). This algorithm identifies ellipsoidal haloes in
numerical simulations: it works similarly to the more com-
mon Spherical Overdensity criterion (Lacey & Cole 1994;
Tormen et al. 2004; Planelles & Quilis 2010; Knebe et al.
2011, 2013), with the difference that the halo shape is re-
fined using an iterative procedure to find the best triaxial
ellipsoid that follows the mass density distribution - instead
of forcing a spherical shape. For example, at the present
time we used the virial overdensity ∆vir ≃ 319 as a den-
sity threshold for the main halo catalogues (Eke et al. 1996;
Bryan & Norman 1998). Then, we identified the haloes at
other four overdensity thresholds, corresponding to 200, 500,
1000 and 2000ρc (as in Despali et al. (2015)); each run has
been made independently, so that the resulting shape and
direction of each shell is not influenced by the virial value.

We calculate halo shapes using eigenvalues of the mass
tensor, defined as:

Mα,β =
1

N

N
∑

i=1

ri,αri,β , (1)

where ri is the position vector of the i-the particle and α and
β are the tensor indexes. By diagonalizing Mα,β we obtain
the eigenvalues and eigenvector: the axes of the ellipsoid
(a 6 b 6 c) are then defined as the square roots of the
eigenvalues .

3 HALO SELECTION

Since the purpose of this work is to provide reliable predic-
tion of the halo shapes as a function of radius – and overden-
sities, we decided to restrict our halo catalogue in order to

Figure 1. Fraction of haloes excluded by each selection criterion
- or by their combination - for different mass bins. Left: the

brown histogram shows the percentage of irregular or “unrelaxed”

haloes detected by method 1 (m1 ), the green colour stands for
those detected with method 2 (m2 ), the association of the two

criteria is shown in blue and finally the combination with method
3 (m3 ) is shown in black. At z = 0 (top panels), our remaining

catalogue contains roughly 60 % of haloes of 1012M⊙h−1 and 40%

of high mass haloes of 1015M⊙h−1; at z = 1 (bottom panels) the
percentage of selected haloes is further reduced.

exclude irregular, merging or highly unrelaxed haloes. First
of all we applied one of the common criteria to define re-
laxed haloes (Neto et al. 2007; Macciò et al. 2008) - method

1 : we calculated the distance between the position of the
minimum of potential and the centre of mass of the halo;
then, we maintain only systems in which this difference is
less than 5% of the corresponding halo virial radius. As seen
in Bonamigo et al. (2015), this criterion is able to exclude
most of the irregular haloes – meaning those that cannot be
reliably described by one single triaxial ellipsoid – and their
fraction increases with the mass, due to the fact that high
mass haloes, forming later (Giocoli et al. 2007; Zhao et al.
2009; Giocoli et al. 2012b), are still in a merging phase. As
a second criterion - method 2, we calculated the total energy
of haloes – as a sum of the kinetic and potential energies of
the constituting particles – and discarded those with posi-
tive energy, getting rid of some other irregular systems. In
Figure 1 (left panels – top and bottom panels refer to z = 0
and z = 1, respectively) we illustrate the effect of these two
selection criteria on the halo catalogue: showing the per-
centage of irregular haloes detected (and those excluded) by
each method and by their combination.

Nevertheless, after this first selection, we noticed that
some irregular haloes were still present in our catalogues,
as for example the halo displayed on top panel of Figure
2. This halo was chosen randomly between those exhibiting
extremely low virial axial ratios (ar1 = a/c 6 0.2), who were
not excluded by the first selections: it is clearly an unrelaxed

c© 2010 RAS, MNRAS 000, 1–15
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Figure 2. Top panels: spatial distribution of particles of an irregular halo, which is not excluded by method 1 and method 2. It has a

virial mass Mvir ≃ 1.37 × 1014M⊙h−1 and it is clearly still in a merging phase, being composed by multiple mass clumps. The black
dots show the virial particles, while those identified at 500ρc are in blue, located around the centre of mass and the most massive clump.

In this case, while ar1vir = (a/c)vir = 0.21, the axial ratio in the inner shell is ar1500 = 0.68, causing an irregular shape profile. This

halo is successfully excluded by method 3. Bottom panels: for comparison, we show the particle distribution of a regular halo; in this case
the axial ratios at both overdensities are about 0.3.

Figure 3. Mass fraction in each shell, with respect to the total mass at the virial overdensity. Different points show the median result for

different mass bins: in all cases the mass fraction decreases similarly to the centre, but with different slopes determined by the differences

in the density profiles and thus in the concentration. As an example, the two dashed lines show the 25% and 75% quartiles for the mass
bin associated to 1014M⊙h−1.

c© 2010 RAS, MNRAS 000, 1–15
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name box [Mpc h−1] zi mp[M⊙h−1] soft [kpc h−1] Nh−tot(z = 0) Nh>1000(z = 0)

Ada 62.5 124 1.94× 107 1.5 2264847 36561
Bice 125 99 1.55× 108 3 2750411 44883

Cloe 250 99 1.24× 109 6 3300880 54467

Dora 500 99 9.92× 109 12 3997898 58237
Emma 1000 99 7.94× 1010 24 4739379 38636

Flora 2000 99 6.35× 1011 48 5046663 5298

Table 1. Main features of the simulations. The last two columns report the total number of haloes with more than 10 and 1000 particles

(Nh)), at redshift z = 0.

halo, being composed by multiple mass clumps and in a
merging phase. It survived through the previous selection
because (even if it may not be clear from the figure due to the
projection effect and the colour combination) its main clump
is still more massive than the other, keeping the centre of
mass near the minimum of potential. From the figure, we
can notice how the shape of the 500ρc shell (shown in blue)
is very different from the overall virial shape (black dots):
while ar1vir = (a/c)vir = 0.21, the axial ratio in the inner
shell is ar1500 = 0.68, in contrast with the common finding
that inner shells are more elongated than the outer ones (see
Section 4.1). For comparison, the two bottom panels, show
the case of a relaxed halo with similar mass: its axial ratios
do not change dramatically as a function of radius and the
shell enclosing 500ρc is clearly larger and more massive than
in the previous case.

In order to capture this kind of systems, we propose
and use a third selection criterion (method 3 ), based on
the discreet measurement of the density profile of the halo
computed on elliptical shell of well defined overdensities. In
particular, we measure the mass fraction contained in each
overdensity shell, with respect to the total virial mass. Fig-
ure 3 shows the mass enclosed by each overdensity threshold,
as a function of the overdensity with respect to the critical
one. The points show the median values in each mass bin:
the mass decreases with overdensity, with a mass dependent
slope because smaller haloes are more concentrated than the
more massive ones (Giocoli et al. 2012; Meneghetti et al.
2014). In those haloes which are in a merging phase, the
central clump can be expected to be less massive than in re-
laxed haloes, since a significant part of the mass still resides
in the infalling clumps. Thus, this median density profile can
be used as a selection criterion, in particular to characterise
a relaxed sample in addition to the method 1 and method

2 : we exclude also all haloes for which the mass fraction
MX/Mvir(ρ/ρc) always lies in the lower quartile (6 25%
of the distribution) for all the four shells. We remind the
reader that this last selection criterion is very analogous
to the substructure mass fraction method adopted by Neto
et al. (2007) to characterise relaxed and unrelaxed haloes.
The fraction of haloes excluded only by method 3 is shown
by the pink histogram in Figure 1 (right panels): they are
approximately 20% of the whole halo sample both at z = 0
and z = 1. In the same plot, the yellow histogram shows how
many of the haloes excluded by method 1+method 2 are also
excluded by the method 3 ; finally the red histogram displays
the haloes that satisfy all the three conditions. This means
that, adding method 3 as an exclusion criterion, we are able
to discard some irregular haloes that are not identified by
the first two methods: the final cut in the halo catalogue is

shown by the black histogram in the left panel of Figure 1.
The relaxed halo in the bottom panels of Figure 2 satisfy
all our selection criteria, thus proving to be relaxed and reg-
ular – in all considered overdensities, while the top one is
successfully excluded from the whole sample by method 3.

4 3D SHAPE AS A FUNCTION OF

OVERDENSITY

In this section we analyse how the three-dimensional shape
of relaxed haloes changes as a function of the overdensity,
and characterise the variation as a function of mass and
redshift at fixed shape at the virial radius. First, we confirm
that halo shapes are not self-similar as a function of radius
(Allgood et al. 2006; Vera-Ciro et al. 2011; Jing & Suto 2002;
Bailin & Steinmetz 2005), both in terms of axial ratios and
orientations. Usually this dependence is explored by mea-
suring halo shapes at different fractions of the virial radius;
analogously – and consistently with how our ellipsoidal halo
finder works – we chose to use the overdensity as an alter-
native to the radius, also in order to produce results more
easily comparable with observational studies and selection
criteria. Then, we will proceed to analyse conditional shape
distributions, in order to give more detailed predictions of
the properties of individual haloes. A general colour/style
code is used through the paper: (i) different overdensities
are represented by various colours (from black for the virial
case to red for the innermost one, going through green, blue
and magenta) and (ii) z = 0 results are shown by solid lines,
while at z = 1 we chose dashed lines – we mention that for
better display our data and results we do not show the case
z = 0.5 that lays in the middle between z = 0 and z = 1.
We start by showing how the overall distribution of shapes
depends on overdensity (for different masses and redshifts)
and then we explore the conditional distribution of shapes,
binning in the virial axial ratio: in this way we can give
realistic prediction of the change in shape within individ-
ual halos. Finally, we address the misalignment between the
shells and show how it depends on mass and an the virial
shape properties.

4.1 General distributions

Figure 4 shows how the axial ratios varies as a function of the
virial mass for our five overdensity thresholds. We remind
the reader that the three dimensional ellipticity is defined
as

e =
c− a

2(a+ b+ c)
(2)
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6 Despali et al. 2015

Figure 5. Cumulative distributions of axial ratios and ellipticity for different overdensity thresholds; each panel shows the results for
haloes in a certain mass bin, centred in 1011M⊙h−1 - 1015M⊙h−1, at redshift 0 (solid) and 1 (dashed).

(with a 6 b 6 c) and it is equal to zero for a spherical sys-
tem. Apart from the well known dependence on mass (All-
good et al. 2006; Despali et al. 2014; Bonamigo et al. 2015),
we notice how the dependence on overdensity is almost the
same and regular for all relaxed masses, with inner shells
being more triaxial than the outermost virial one, shown in
black. The same behaviour can be observed at z = 1 (dashed
lines): at this time, for a given mass bin, haloes are gener-

ally more triaxial, but the inner ordering is unaltered. Note
that the black and green dashed lines (virial and 200ρc) al-
most coincide, since at this redshift the two overdensities
are very close to each other (Despali et al. 2015). The anal-
ogous distributions for unrelaxed haloes at z = 0 are shown
in Appendix A, proving why unrelaxed haloes cannot be
easily described by simple relations, and a regular trend is
absent. This highlight the fact that the morphological prop-
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Figure 4. Axial ratios and ellipticity as a function of halo mass,

for different overdensity thresholds. The lines show the median

values of the distributions for ar1 = a/c, ar2 = b/c and e =
(c− a)/[2 ∗ (a+ b+ c)]) with a 6 b 6 c)..

erties of galaxies and clusters at different radii may be used
to infer the state of relaxation (Donahue et al. 2016) and
that our relations for relaxed haloes do not hold for some of
the recently observed clusters, which appear unrelaxed and
presents multiple components.

In Figure 5 we present the shape distributions in more
details: we consider five mass bins, centred on masses from
1011M⊙h

−1 to 1015M⊙h
−1 and outline the cumulative dis-

tributions of the shapes – axial ratios and ellipticities – for
different overdensities. From the figure we notice that all
trends are very regulars both in mass and overdensities.
Comparing the distributions at z = 0 and z = 1 we notice
that at higher redshifts haloes of same mass are more triax-
ial, once the mass is fixed – the case z = 0.5 would lay in the
middle between z = 0 and z = 1 not shown here avoiding to
overcrowd the panels. As described in Despali et al. (2014)
the redshift dependence can be removed comparing haloes
possessing the same peak-height ν = δc(z)/S(M), which is
beyond the scope of this work.

4.2 Conditional distributions

Figure 6 shows conditional distribution of the axial ratios,
for different mass bins and redshifts z = 0 and z = 1, using
solid and dashed line styles, respectively. In order to char-
acterise more precisely the shape variation inside individual
haloes, we bin the axial ratio distributions using the com-
puted values at the virial overdensity: each colour shows the
median distribution of the axial ratios for haloes in a cer-
tain bin of virial axial ratio. Each bin in ar1 or ar2 has a
width of 0.1. Thus, the virial axial ratios of haloes repre-
sented by the yellow lines are contained in the interval [0.9,
1], the green ones in [0.8,0.9] and so on and so forth. The
lowest axial ratios ar1/2 =[0.3,0.4] are represented in purple
colour. Objects with even lower axial ratios are excluded by
our selection criteria, since extreme elongations often coin-
cide with haloes in a merging phase, as already discussed
above in the text. A new feature, that was not visible in the
previous figures, emerges from the conditional distributions:
the variation of shape with overdensity – or radius – depends
on their outer shape. While triaxial haloes with axial ratios
(ar1 ≃ 0.5, ar2 ≃ 0.6) are self-similar in their inner parts,
the more spherical ones present a greater shape variation,
becoming considerably more triaxial inside. This effect is
present for all masses, even if it may be caused by different
phenomena: in general, it has been argued that the outer
parts of haloes become rounder due to the interactions with
the surrounding density field, which take place after their
formation, while the inner parts maintain the original triax-
iality due to the collapse process. This is true in particular
for low mass haloes, which formed earlier and are more in-
fluenced by the surrounding tidal field or by encounters with
more massive structures. For high-mass haloes, apart from
the few with high formation redshifts, the physical expla-
nation of this dependence may be different: it is possible
that, while matter is still in an accretion phase from many
directions onto a 1015M⊙h

−1 halo - as they live at the in-
tersection of filaments, the centre already collapsed in a well
defined triaxial object.

To summarise, our results highlight that the internal
part of the halo retains memory of the violent formation
process keeping the major axis oriented toward the pref-
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Mvir[M⊙h−1] ρvir 200ρc 500ρc 1000ρc 2000ρc

1011 (0.732,0.878,0.052) (0.720,0.882,0.054) (0.693,0.874,0.060) (0.669,0.863,0.066) (0.646,0.844,0.071)

1012 (0.687,0.851,0.061) (0.670,0.851,0.066) (0.637,0.832,0.074) (0.611,0.810,0.081) (0,585,0.782,0.087)
1013 (0.629,0.803,0.076) (0,612,0.798,0.080) (0.577,0.767,0.090) (0.549,0.735,0.099) (0.506,0.701,0.106)

1014 (0.546,0.710,0.100) (0.537,0.713,0.102) (0.506,0.678,0.113) (0.481,0.646,0.121) (0.465,0.620,0.128)

1015 (0.475,0.624,0.124) (0.471,0.631,0.126) (0.449,0.610,0.133) (0.430,0.587,0.141) (0.420,0.566,0.145)

Table 2. Median values of (ar1,ar2,e) at different overdensity z = 0 thresholds for five mass bins.

Figure 6. Conditional distributions of the axial ratios. Each colour shows the median axial ratio as a function of density for the haloes

with a certain value of the virial axial ratio. For example, the haloes represented by the yellow have 0.9 < a/c 6 1, while for the purple

curve 0.3 < a/c 6 0.4. The same holds for the second axial ratio b/c in the right panel. Solid lines represent the results at z = 0 and
dashed ones those for z = 1.

erential direction of the infalling material, the outer part
become rounder due to continuous isotropic merging events.
(Zhang et al. 2009; Vera-Ciro et al. 2011)

We underline that these distributions are useful to gen-
erate mock mass density distributions of dark matter in
galaxies and clusters producing for example more realistic
lens models (Giocoli et al. 2012a).

4.3 Misalignment of the different shells

It has been previously shown that shapes measured at dif-
ferent radii within the same halo are not perfectly aligned
with each other. Having independently measured the triax-
ial shapes of four inner shells, we can easily compare their
relative orientations – with respect to a predefined direction
of the three dimensional ellipsoid – in a way to better un-
derstand how on average the different shells are misaligned
with each other. We remind the reader that our shape mea-
surements include all the components of haloes and do not
discriminate between the main smooth component and the
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Figure 7. Misalignment angle of the four inner shells with respect to the virial one, as a function of halo mass. The upper panel shows

the the median angle between the two longest axes, while the lower one the median misalignment between the two shortest axes. Different
mass bins are represented by different point types; the dashed and the dotted lines show the 25% and 75% quartiles of the distribution

for 1015M⊙h−1 and 1011M⊙h−1, respectively.

substructures, as has been done in other previous works (as
for example Vera-Ciro et al. 2011). In Figure 7 we show
the median misalignment angle between the four inner shells
with respect to the virial one – that we view as reference; we
considered the misalignment between the two longest (left)
and the two shortest axes (right) of the 3D mass ellipsoid
– to give an idea of the deformation of the triaxial mass
ellipsoid. The measurements are divided in five mass bins,
represented by different point types. From the figure we no-
tice that while the median misalignment at 200ρc is around
10 degrees only, it becomes larger when going toward the
halo centre. We stress that there is a considerable disper-
sion in the data, which increases for low mass haloes: to
give an idea about this, the dashed (dotted) lines show the
25% and 75% quartiles associated with the highest (low-
est) mass bin - thus 1015 (1011). The median misalignment

appears to depend on mass: in particular, for cluster size
haloes, which formed very recently – or are in their forma-
tion phase, the shells are aligned with each other within 10
degrees - probably to the direction of compression of the
gravitational collapse, while low mass haloes – that formed
typically at higher redshifts (Lacey & Cole 1993; Giocoli
et al. 2007) – present greater variations, again due to the
interactions with the surrounding field and their evolution
after the formation time (more evident is the halo to halo
variation) – also being less gravitationally strong they tend
to be more influenced by the surrounding density field. As
shown in Despali et al. (2014), the ellipticity anti-correlates
with the formation redshift and so more elongated haloes
formed more recently. Also, this mass dependence may hide
a geometrical shape dependence: low mass halos are rounder
and thus the axes direction at the virial radius may be less
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Figure 8. Conditional misalignment of the different shells. Different colours show angles corresponding to haloes with a certain ar1vir,

as was done for the axial ratios in Figure 6. Since binned results where almost the same for the five mass bins of the previous figure,

we decided to not bin in mass in this case: this proves how the scatter of Figure 7 between different halo masses is due to the different
distribution of shapes.
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Figure 9. Correlation between the 3D and 2D shapes. For each real halo, we calculated three two dimensional projections and here we

plot all of them. In both cases, the axes have been calculated from the inertia tensor, in three or two dimension, but the ellipticities

follow two different formula: (c− a)/(2 ∗ (a+ b+ c)) in 3D and (a2 − b2)/(a2 + b2) for 2D. In both cases, e = 0 corresponds to a sphere.
We used the first axial ratio and so, for simplicity in this particular case, ar3D is what was called previously ar1. Since the projection is

just a geometrical effect, here we show the points corresponding to all the density thresholds.

defined than in a very elongated system. This seems to be
supported also by the results of Figure 8, where we display
the conditional distributions of the misalignment of the dif-
ferent shells. The data are divided according to the virial
axial ratio ar1, as in Figure 6. From this figure it appears
more clear that for very triaxial haloes all the shells are well
aligned, probably due to the phase of collapse or a recent
formation, while this is not true for rounder haloes. This
figure shows all the masses together, as we noticed that the
conditional distribution are very similar for different mass
bins, reinforcing our framework and our explanations.

Together with the results on conditional axial ratios pre-
sented at the beginning of this section, these distribution

can be used to produce self-consistent mock mass density
distribution of realistic triaxial and perturbed haloes.

5 PROJECTED 2D SHAPE AS A FUNCTION

OF OVERDENSITY

After the discussion presented in the previous section about
three dimensional shapes, we proceed analysing the shapes
in two dimensions (2D), which can be more directly related
with observed quantities. We project each halo along three
random directions in particular along the three axes of the
coordinate system of the simulation (x,y,z) – considering
each projection a random measure of the 2D shape of the

c© 2010 RAS, MNRAS 000, 1–15
144



Shapes and overdensities 11

halo ellipsoid. Since we already have a relatively large num-
ber of haloes we do not consider necessary to project each
object along different possible random line of sights. We then
look at the distributions of halo shapes and orientations for
different overdensities and masses, as done and discussed for
the 3D case. In 2D we calculate the ellipticity as

e =
a2 − b2

a2 + b2
, (3)

we notice that the ranges in which e2D and e3D changes are
different, even though both tend to zero for more spherical
cases.

As general result, 2D-distributions maintain the same
properties and ordering of the 3D ones, but they become
shallower due to projection effects. The extreme cases, such
as very elongated shapes, are blurred by being the halo el-
lipsoid projected in random directions. This general effect
can be seen in Figure 9 where the contours show the point
density of the relationship between the axial ratios (left) and
ellipticities (right) as measured in 2D versus the 3D ones.
The black points show the median of the distribution at a
fixed 3D value. From the figure we notice that the 2D axial
ratio is always higher than the corresponding 3D value (ar1
in this case) for all haloes, as marked by the dashed lines
that indicate the exclusion regions in the two panels.

In Figure 10 we present the cumulative probability dis-
tribution of axial ratios (top panel) and ellipticities (bottom
panel) for haloes of different masses and at redshift z = 0
(solid curves) and z = 1 (dashed curves). The figure under-
lines that in projections high mass haloes are still on average
more elongated than low mass ones, at all redshifts. Also the
ordering due to the different overdensity definitions is not al-
tered when one looks at two dimensional quantities (Figure
11), even if the low-axial ratios tail is reduced in compar-
ison with the three dimensional quantities, as presented in
Figure 5.

Same considerations also holds for the conditional dis-
tributions as presented in Figure 12, where we show the 2D
axis ratios at various overdensities binning the haloes in term
of the 2D axis ratios at the virial definition. In Figure 13 we
present the misalignment angle in the plane of the sky of
the projected mass ellipsoids at the various overdensities.
We notice that in projection the misalignment angle of the
inner shell may reach values of the order of 15-20 degrees
with respect to the virial direction - lower than the median
values of 40 degrees as measured in the 3D case.

6 SUMMARY AND CONCLUSIONS

The aim of this work is to provide simple and clear estimates
of how the shape of relaxed haloes changes as a function of
overdensity, mass and redshift. We looked at five different
shells, enclosing various overdensities, and measured their
shape in three and two dimensions. The main results of our
work can be summarised as follows:

(i) general distributions: we confirm that, as found in
other previous works (Jing & Suto 2002; Allgood et al. 2006),
dark matter haloes are more elongated near the centre than
in the outskirts; this is true for a wide range in halo masses
(from 1011 to 1015M⊙h

−1).
(ii) conditional distributions: the rate at which the shape

Figure 10. Projected axial ratios and ellipticities in 2D at the
virial overdensity. The different colours show various halo masses

while solid and dashed curves refer to redshift z = 0 and z = 1,

respectively

varies through the halo depends on that at the virial radius;
very triaxial haloes show a similar shape at all the overden-
sity shells and the shells are quite well aligned with each
other, while for rounder haloes the inner shells are, propor-
tionally, both more misaligned and more triaxial than the
virial one.

(iii) 2D projections: we calculated projected shapes by
taking three different projections for each halo; the conclu-
sions coming from projected quantities are similar to the 3D
ones, even though the differences between shell ellipticities
and orientations are shallower due to projection effects.

Our findings are consistent with the standard picture
of structure formation, in which the central part of haloes
may maintain its original triaxiality longer than the out-
skirts which are subjected to stronger interactions with the
surrounding field; also, haloes formed recently will be still
aligned with the direction of the last merger or of the fila-
ment along which matter accreted onto the halo, and so their
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12 Despali et al. 2015

Figure 11. Cumulative distributions of projected axial ratios and ellipticities. The panel from left to right show the results for various

host halo masses while the colours refer to different overdensities: virial in black, green 200, blue 500, magenta 1000 and red 2000ρc.
Solid and dashed line styles refer to redshift z = 0 and z = 1 respectively.

whole shape will probably be well aligned. The distributions
presented in this work may be used as priors for mass re-
construction algorithms working in different wavelengths, in
order to recover a more realistic triaxial matter distribution
of galaxies and clusters.
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APPENDIX A: UNRELAXED HALOES

In the analysis preformed in our paper we have chosen to
discard unrelaxed and irregular haloes from our sample, be-
cause they tend to introduce more scatter in the distribu-
tions, not easily to explain and model in the same way for
all the objects. In the various cases, the analyses should take
into account the specific features of each system and of the
field surrounding it. Figure A1 shows the analogous of Fig-
ure 4 for unrelaxed haloes, showing clearly why they cannot
be modelled together with the more relaxed ones; in par-
ticular, the ellipticity trend is completely reversed, leading
to more triaxial shapes in the outer shells (instead of the
inner ones), probably due to the presence of multiple com-
ponents or infalling material along a preferential direction
at the observing time.
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Figure A1. Axial ratios and ellipticity as a function of halo mass,

for different overdensity thresholds for the unrelaxed halo sample.

The points show the median values of the distributions for ar1 =
a/c, ar2 = b/c and e = (c− a)/[2 ∗ (a+ b+ c)]) with a 6 b 6 c).
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