Random and periodic operators in dimension 1 : Decorrelation estimates in spectal statistics and resonances

par Tuan Phong Trinh

Thèse de doctorat en Mathématiques

Sous la direction de Frédéric Klopp.

Soutenue le 15-09-2015

à Sorbonne Paris Cité , dans le cadre de École doctorale Galilée (Villetaneuse, Seine-Saint-Denis) , en partenariat avec Université Paris 13 (établissement de préparation) et de Laboratoire Analyse, géométrie et applications (Villetaneuse, Seine-Saint-Denis) (laboratoire) .

Le président du jury était Alain Grigis.

Le jury était composé de François Germinet, Jean-Marc Delort, Hakim Boumaza.

Les rapporteurs étaient Gerald Teschl.

  • Titre traduit

    Opérateurs aléatoires et périodiques en dimension 1 : les estimées de décorrélation et résonances


  • Résumé

    Cette thèse comporte deux parties qui correspondent à deux domaines distincts : les opérateurs aléatoires et les opérateurs périodiques en dimension 1. Dans la première partie, nous prouvons une estimée de décorrélation pour un opérateur aléatoire avec désordre hors diagonal en dimension 1. En se servant de cette estimée, nous déduisons l'indépendance asymptotique des statistiques locales des valeurs propres près d'énergies distinctes positives dans le régime localisé. Finalement, nous donnons une démonstration alternative de l'estimée de décorrélation pour le modèle d'Anderson discret unidimensionnel. La deuxième partie de cette thèse est liée à un problème de résonances pour l'opérateur de Schrödinger discret en dimension 1 avec potentiel périodique tronqué [...].


  • Résumé

    This thesis consists of two parts : te random and periodic operators in dimension 1. In this part, we prove the decorrelation estimate for a 1D lattice Hamiltonian with off-diagonal disorder. Consequently, we deduce the asymptotic independance of the local level statistics near distinct positive energies in the localized regime. Finally, we revisit a known result on the decorrelation estimate for the 1D discret Anderson model. The second part on my thesis adresses questions on resonances for a 1D Schrödinger operators with truncated periodic potential [...].


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.