Etude des interactions nanoparticules métalliques-émetteurs quantiques

par Thomas Lerond

Thèse de doctorat en Optique et Nanotechnologies

Sous la direction de Davy Gérard et de Jérôme Plain.

Soutenue le 13-11-2015

à Troyes , dans le cadre de Ecole doctorale Sciences pour l'Ingénieur (Troyes, Aube) , en partenariat avec FEDER (Fonds Européens de Développement Régional) (Europe) .

Le président du jury était Rémi Carminati.

Le jury était composé de Davy Gérard, Jérôme Plain, Rémi Carminati, Anne Débarre, Renaud Vallée, Clémentine Symonds.

Les rapporteurs étaient Anne Débarre, Renaud Vallée.


  • Résumé

    Avec un monde industriel dont l’un des enjeux est la miniaturisation, l’échelle nanométrique est la prochaine étape à maîtriser. Les nanosources optiques, basées sur un fort confinement de la lumière, devraient permettre d’alimenter les futurs dispositifs nanophotoniques. Depuis que Purcell a démontré que les propriétés d’émission de lumière ne sont pas intrinsèques aux luminophores, la communauté scientifique vise à comprendre et contrôler ces propriétés. Les nanoparticules ou structures métalliques permettent de modifier ces propriétés de luminescence en influant sur l’efficacité d’émission, l’efficacité d’excitation ou encore la redirection de l’émission des émetteurs de lumière. Dans le cadre de ce travail de thèse, nous nous sommes focalisés sur l’étude de ce couplage au travers de structures simples composées de nanoparticules entourées de fluorophores, afin de discriminer l’effet de ce couplage à différentes distances séparant le métal de l’émetteur. Nous dégageons trois processus principaux : une forte inhibition de luminescence lors d’une grande proximité entre les émetteurs et le métal, une exaltation de luminescence à distances légèrement plus élevées, et une exaltation de l’excitation. Nous montrons par la suite qu’il est possible d’utiliser cette exaltation de l’excitation pour augmenter les effets d’absorption multiphotonique. Enfin nous ouvrons sur une nouvelle possibilité pour les travaux futurs : l’utilisation de l’aluminium pour utiliser ses possibilités plasmonique dans l’ultra-violet pour réfléchir à des nanosources UV

  • Titre traduit

    Interaction between a metallic nanoparticle and quantum emitters


  • Résumé

    In an industrial world where one of the most important issues is miniaturization the next step is to master nanometric scale. Optical nanosources, which are based on a strong light confinment, should allow to supply the next nanophotonic devices. Since Purcell demonstrate that light emission properties are not inhérent to optical emitters, scientists search to understand and control these properties. Metallic nanoparticles or nanostructures allow to modify these luminescence properties by changing emission and excitation rates or redirect the emitted light.In this study, we focus on this coupling with simple structures made from nanoparticles and quantum emitters in order to discriminate the effect of this coupling at different distances between metal and emitter. We observe three different processes: a strong quenching of the luminescence at the viscinity of the metal, an enhancement at longer distances, and an excitation enhancement. Then we show that it is possible to use this amplified excitation to obtain multiphoton absorption. Finally, we prospect a new way for future works: using aluminium plasmonic properties in UV to search on UV nanosources


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Technologie. Service commun de la documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.