Kernel-based machine learning for tracking and environmental monitoring in wireless sensor networkds

par Sandy Mahfouz

Thèse de doctorat en Optimisation et Sûreté des Systèmes

Sous la direction de Paul Honeine et de Farah Mourad-Chehade.

Soutenue le 14-10-2015

à Troyes , dans le cadre de Ecole doctorale Sciences pour l'Ingénieur (Troyes, Aube) , en partenariat avec Région Champagne-Ardenne (Collectivité territoriales) .

Le président du jury était Cédric Richard.

Le jury était composé de Paul Honeine, Farah Mourad-Chehade, Cédric Richard, Jean-Yves Tourneret, Joumana Farah, François Septier.

Les rapporteurs étaient Cédric Richard, Jean-Yves Tourneret.

  • Titre traduit

    Méthodes à noyaux pour le suivi de cibles et la surveillance de l'environnement dans les réseaux de capteurs


  • Résumé

    Cette thèse porte sur les problèmes de localisation et de surveillance de champ de gaz à l'aide de réseaux de capteurs sans fil. Nous nous intéressons d'abord à la géolocalisation des capteurs et au suivi de cibles. Nous proposons ainsi une approche exploitant la puissance des signaux échangés entre les capteurs et appliquant les méthodes à noyaux avec la technique de fingerprinting. Nous élaborons ensuite une méthode de suivi de cibles, en se basant sur l'approche de localisation proposée. Cette méthode permet d'améliorer la position estimée de la cible en tenant compte de ses accélérations, et cela à l'aide du filtre de Kalman. Nous proposons également un modèle semi-paramétrique estimant les distances inter-capteurs en se basant sur les puissances des signaux échangés entre ces capteurs. Ce modèle est une combinaison du modèle physique de propagation avec un terme non linéaire estimé par les méthodes à noyaux. Les données d'accélérations sont également utilisées ici avec les distances, pour localiser la cible, en s'appuyant sur un filtrage de Kalman et un filtrage particulaire. Dans un autre contexte, nous proposons une méthode pour la surveillance de la diffusion d'un gaz dans une zone d'intérêt, basée sur l'apprentissage par noyaux. Cette méthode permet de détecter la diffusion d'un gaz en utilisant des concentrations relevées régulièrement par des capteurs déployés dans la zone. Les concentrations mesurées sont ensuite traitées pour estimer les paramètres de la source de gaz, notamment sa position et la quantité du gaz libéré


  • Résumé

    This thesis focuses on the problems of localization and gas field monitoring using wireless sensor networks. First, we focus on the geolocalization of sensors and target tracking. Using the powers of the signals exchanged between sensors, we propose a localization method combining radio-location fingerprinting and kernel methods from statistical machine learning. Based on this localization method, we develop a target tracking method that enhances the estimated position of the target by combining it to acceleration information using the Kalman filter. We also provide a semi-parametric model that estimates the distances separating sensors based on the powers of the signals exchanged between them. This semi-parametric model is a combination of the well-known log-distance propagation model with a non-linear fluctuation term estimated within the framework of kernel methods. The target's position is estimated by incorporating acceleration information to the distances separating the target from the sensors, using either the Kalman filter or the particle filter. In another context, we study gas diffusions in wireless sensor networks, using also machine learning. We propose a method that allows the detection of multiple gas diffusions based on concentration measures regularly collected from the studied region. The method estimates then the parameters of the multiple gas sources, including the sources' locations and their release rates


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Technologie. Service commun de la documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.