Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive

par The-Cang Nguyen

Thèse de doctorat en Mathématiques

Sous la direction de Emmanuel Humbert et de Romain Gicquaud.

Le président du jury était Piotr T. Chruściel.

Le jury était composé de Laurent Véron, Erwann Delay.

Les rapporteurs étaient Piotr T. Chruściel, James Allen Isenberg.


  • Résumé

    Dans cette thèse nous étudions deux problèmes issus de la relativité générale : la construction de données initiales pour le problème de Cauchy des équations d’Einstein et le théorème de la masse positive. Nous construisons tout d’abord des données initiales en utilisant la méthode dite conforme introduite par Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] et Y. Choquet-Bruhat–J. Isenberg– D. Pollack [Choquet-Bruhat et al., 2007a]. Plus particulièrement, nous étudions les équations –de contrainte conforme– qui apparaissent dans cette méthode sur des variétés riemanniennes compactes de dimension n > 3. Dans cette thèse, nous donnons une preuve simplifiée du résultat de [Dahl et al., 2012], puis nous étendons et nous généralisons les théorèmes de M. Holst–G. Nagy–G. Tsogtgerel [Holst et al., 2009] et de D. Maxwell [Maxwell, 2009] dans le cas de données initiales à courbure moyenne fortement nonconstante. Nous donnons au passage un point de vue unifié sur ces résultats. En parallèle, nous donnons des résultats de non-existence et de non-unicité pour les équations de la méthode conforme sous certaines hypothèses.

  • Titre traduit

    Construction of solutions to the Einstein constrainit equations in general relativity and comments on the positive mass theorem


  • Résumé

    The aim of this thesis is the study of two topical issues arising from general relativity: finding initial data for the Cauchy problem with respect to the Einstein equations and the positive mass theorem. For the first issue, in the context of the conformal method introduced by Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] and Y. Choquet-Bruhat–J. Isenberg–D. Pollack [Choquet-Bruhat et al., 2007a], we consider the conformal constraint equations on compact Riemannian manifolds of dimension n > 3. In this thesis, we simplify the proof of [Dahl et al., 2012, Theorem 1.1], extend and sharpen the far-from CMC result proven by Holst– Nagy–Tsogtgerel [Holst et al., 2009], Maxwell [Maxwell, 2009] and give an unifying viewpoint of these results. Besides discussing the solvability of the conformal constraint equations, we will also show nonexistence and nonuniqueness results for solutions to the conformal constraint equations under certain assumptions.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université François Rabelais. Service commun de la documentation. Bibliothèque de ressources en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.
Cette thèse a donné lieu à 1 publication .

Consulter en bibliothèque

à

Informations

  • Sous le titre : Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive
  • Détails : 1 vol. (104 f.)
  • Annexes : Bibliogr. f. 101-104
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.