Modeling the power consumption of computing systems and applications through machine learning techniques

par Leandro Fontoura Cupertino

Thèse de doctorat en Réseaux, télécoms, systèmes et architecture

Sous la direction de Jean-Marc Pierson et de Georges Da Costa.

  • Titre traduit

    Modélisation de la consommation énergétique des systèmes informatiques et ses applications grâce à des techniques d'apprentissage automatique


  • Résumé

    Au cours des dernières années, le nombre de systèmes informatiques n'a pas cesser d'augmenter. Les centres de données sont peu à peu devenus des équipements hautement demandés et font partie des plus consommateurs en énergie. L'utilisation des centres de données se partage entre le calcul intensif et les services web, aussi appelés informatique en nuage. La rapidité de calcul est primordiale pour le calcul intensif, mais pour les autres services ce paramètre peut varier selon les accords signés sur la qualité de service. Certains centres de données sont dits hybrides car ils combinent plusieurs types de services. Toutes ces infrastructures sont extrêmement énergivores. Dans ce présent manuscrit nous étudions les modèles de consommation énergétiques des systèmes informatiques. De tels modèles permettent une meilleure compréhension des serveurs informatiques et de leur façon de consommer l'énergie. Ils représentent donc un premier pas vers une meilleure gestion de ces systèmes, que ce soit pour faire des économies d'énergie ou pour facturer l'électricité à la charge des utilisateurs finaux. Les politiques de gestion et de contrôle de l'énergie comportent de nombreuses limites. En effet, la plupart des algorithmes d'ordonnancement sensibles à l'énergie utilisent des modèles de consommation restreints qui renferment un certain nombre de problèmes ouverts. De précédents travaux dans le domaine suggèrent d'utiliser les informations de contrôle fournies par le système informatique lui-même pour surveiller la consommation énergétique des applications. Néanmoins, ces modèles sont soit trop dépendants du type d'application, soit manquent de précision. Ce manuscrit présente des techniques permettant d'améliorer la précision des modèles de puissance en abordant des problèmes à plusieurs niveaux: depuis l'acquisition des mesures de puissance jusqu'à la définition d'une charge de travail générique permettant de créer un modèle lui aussi générique, c'est-à-dire qui pourra être utilisé pour des charges de travail hétérogènes. Pour atteindre un tel but, nous proposons d'utiliser des techniques d'apprentissage automatique.Les modèles d'apprentissage automatique sont facilement adaptables à l'architecture et sont le cœur de cette recherche. Ces travaux évaluent l'utilisation des réseaux de neurones artificiels et la régression linéaire comme technique d'apprentissage automatique pour faire de la modélisation statistique non linéaire. De tels modèles sont créés par une approche orientée données afin de pouvoir adapter les paramètres en fonction des informations collectées pendant l'exécution de charges de travail synthétiques. L'utilisation des techniques d'apprentissage automatique a pour but d'atteindre des estimateurs de très haute précision à la fois au niveau application et au niveau système. La méthodologie proposée est indépendante de l'architecture cible et peut facilement être reproductible quel que soit l'environnement. Les résultats montrent que l'utilisation de réseaux de neurones artificiels permet de créer des estimations très précises. Cependant, en raison de contraintes de modélisation, cette technique n'est pas applicable au niveau processus. Pour ce dernier, des modèles prédéfinis doivent être calibrés afin d'atteindre de bons résultats.


  • Résumé

    The number of computing systems is continuously increasing during the last years. The popularity of data centers turned them into one of the most power demanding facilities. The use of data centers is divided into high performance computing (HPC) and Internet services, or Clouds. Computing speed is crucial in HPC environments, while on Cloud systems it may vary according to their service-level agreements. Some data centers even propose hybrid environments, all of them are energy hungry. The present work is a study on power models for computing systems. These models allow a better understanding of the energy consumption of computers, and can be used as a first step towards better monitoring and management policies of such systems either to enhance their energy savings, or to account the energy to charge end-users. Energy management and control policies are subject to many limitations. Most energy-aware scheduling algorithms use restricted power models which have a number of open problems. Previous works in power modeling of computing systems proposed the use of system information to monitor the power consumption of applications. However, these models are either too specific for a given kind of application, or they lack of accuracy. This report presents techniques to enhance the accuracy of power models by tackling the issues since the measurements acquisition until the definition of a generic workload to enable the creation of a generic model, i.e. a model that can be used for heterogeneous workloads. To achieve such models, the use of machine learning techniques is proposed. Machine learning models are architecture adaptive and are used as the core of this research. More specifically, this work evaluates the use of artificial neural networks (ANN) and linear regression (LR) as machine learning techniques to perform non-linear statistical modeling.Such models are created through a data-driven approach, enabling adaptation of their parameters based on the information collected while running synthetic workloads. The use of machine learning techniques intends to achieve high accuracy application- and system-level estimators. The proposed methodology is architecture independent and can be easily reproduced in new environments.The results show that the use of artificial neural networks enables the creation of high accurate estimators. However, it cannot be applied at the process-level due to modeling constraints. For such case, predefined models can be calibrated to achieve fair results.% The use of process-level models enables the estimation of virtual machines' power consumption that can be used for Cloud provisioning.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (142 p.)

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2015 TOU3 0073
  • Bibliothèque : Université Paul Sabatier. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.