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I. Introduction générale



Les travaux de thése décrits dans ce manuscrit ont été réalisés entre le Centre européen
d’étude du diabéte (DIATHEC EA 7294) et I’Institut Charles Sadron (CNRS UPR 22). Cette
these dont le titre est «Formulation, développement et validation de systémes particulaires
d’insuline en vue de leur administration par voie orale. » vise a développer une nouvelle
formulation d’insuline administrable par voie orale afin d’améliorer le contréle glycémique et
la qualité de vie du patient diabétique.

Le fonctionnement optimal de I’organisme requiert un apport constant et régulier d’énergie.
Le métabolisme du glucose apporte cette énergie grace aux glucides apportés par 1’alimentation.
Cependant, 1’organisme doit maintenir une homéostasie glycémique autour de 0.8 gramme par
litre de sang. Cette autorégulation pendant 1’alternance des phases alimentées et de jeline se fait
grace au tandem de deux hormones : D’insuline (hypoglycémiante) et le glucagon
(hyperglycémiante). Le déréglement de cette homéostasie est responsable de I’apparition d’un
trouble métabolique caractérisé par une concentration importante du glucose circulant : le
diabete.

Le diabéte est une maladie chronique qui apparait lorsque le pancréas ne produit pas
suffisamment d’insuline ou que 1’organisme n’utilise pas correctement I’insuline produite.

L’organisation mondiale de la santé (OMS) définit 1’état diabétique chez un patient si sa
glycémie a jeun est supérieure a 7 mM (1.26 g/L) ou a 11 mM (2g/L) deux heures aprés une
hyperglycémie provoquée par voie orale. Selon I’OMS, la prévalence du diabete en 2014 a
I’échelle mondiale était de 9 % chez les adultes agés de plus de 18 ans avec plus de 387 millions
de personnes touchées. L’organisme estime également que plus d’un million et demi de déces
dans le monde sont directement liés au diabéte dont 80% dans les pays émergents. Le nombre
de personnes touchées dans le monde ne cessent de croitre d’année en année. En 2030, le diabéte
sera la septieme cause de mortalité. Cette pathologie se décline sous plusieurs sous types dont
les majeurs sont ceux du type 1, du type 2. Le diabéte de type 1 apparait le plus souvent dans
I’enfance et concerne 10 % des patients. Cette forme de la pathologie est dite insulino-
dépendante. Elle est caractérisée par une abolition totale de production d’insuline a la suite de
la destruction auto-immune des cellules 3 des ilots de Langerhans. Sa prise en charge exige une
administration quotidienne d’insuline exogene. Le diabete de type 2 résulte d’une mauvaise
utilisation de I’insuline par I’organisme. C’est un diabete dit non insulino-dépendant. Le diabete
de type 2 représente 90% des diabétiques rencontrés dans le monde. Il est en grande partie le
résultat d’une surcharge pondérale due a la sédentarité et a des facteurs génétiques. La
conséquence majeure de I’hyperglycémie chronique liée au diabete est une glucotoxicité qui se

traduit par des atteintes vasculaires (micro-et macro angiopathies) et nerveuses (neuropathies).

1



Chez le patient atteint de diabéte, le maintien de la glycémie a des valeurs les plus proches
possible des valeurs seuils permet de prévenir I’apparition des complications liées a la
glucotoxicité. La prise en charge du diabete se fait par la combinaison de mesures hygiéno-
diététiques, de traitements médicamenteux et/ou d’une insulinothérapie.

L’administration de 1’insuline est indispensable pour les personnes souffrant de diabéte de
type 1 et fait partie de 1’arsenal thérapeutique des patients atteints de diabéte de type 2.
L’insulinothérapie a pour objectif d’étre le plus proche possible de la sécrétion physiologique
d’insuline en respectant le schéma basal/bolus. Ce schéma se base sur un apport basal en
insuline qui permet de maintenir une glycémie aussi proche que possible de la normale entre
les repas (0,7 a 1,1 g/l) associé a un apport d’insuline rapide au moment des repas (bolus) qui
permet d’assimiler les glucides apportés par I’alimentation et d’éviter les pics d’hyperglycémie
postprandiaux. Pour parvenir a cet objectif glycémique, plusieurs moyens permettent une
insulinothérapie optimisée: la formulation d’insulines a durée d’action modulable et le
développement de moyens d’administration comme les pompes a insulines (internes et
externes) et les injecteurs parentéraux (stylos, seringues...) permettant une délivrance
pluriquotidienne d’insuline. Contraignante pour le mode de vie, I’insulinothérapie par injection
n’est pas le traitement le plus confortable pour les patients. En effet, malgré les développements
technologiques mis en jeu pour améliorer I’administration de 1’insuline (diminution de la taille
des aiguilles, stylo injecteurs ...), celle-ci demeure contraignante pour le patient. Cette
contrainte peut devenir une limite lors de la prise en charge du patient diabétique (douleurs,
réticence aux auto-injections, manque d’autonomie...). Des études ont ainsi été conduites pour
développer des modes d’administration par voie non-injectable avec pour but I’amélioration de
la qualit¢ de vie du patient et I’optimisation du contrdle glycémique. Ces modes
d’administration doivent répondre a un certain nombre de critéres comme une simplicité
d’utilisation, 1’absence de matériel d’injections et enfin permettre le métabolisme de premier
passage hépatique de I’insuline administrée plus physiologique. La voie orale est la seule voie
d’administration qui répond a I’ensemble de ces criteres. Cependant, de par sa nature
peptidique, ’administration orale d’insuline est un défi majeur car les contraintes imposées par
le tractus gastro-intestinal doivent étre surmontées. La premicre contrainte est de nature
chimique : I’acidité de 1’estomac, 1’activité enzymatique se produisant a la fois dans 1’estomac
et dans entrainent sa dégradation rapide. La seconde contrainte est de nature physique :
I’épithélium intestinal tapissé par du mucus présente la propriété d’étre imperméable aux
macromolécules. De nombreuses méthodes ont été développées pour surmonter ces contraintes

physico-chimiques : les promoteurs d’absorption, les inhibiteurs enzymatiques, les systémes
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mucoadhésifs a base de polymere ou I’encapsulation du principe actif sous forme
nanoparticulaire. L.’encapsulation est aujourd’hui considérée comme étant 1’approche la plus
adaptée pour administrer per os des composées labiles comme les protéines. Elle permet de
pallier aux contraintes physico-chimiques du tractus gastro-intestinal tout en conservant
I’activité biologique du principe actif. Il existe plusieurs méthodes d’encapsulation mais les
seules approches qui permettent aujourd’hui d’encapsuler des principes actifs comme des
protéines sans risquer de les endommager sont la coacervation complexe et la double émulsion
évaporation de solvant. Bien que ces techniques présentent des inconvénients, elles sont les
seules a permettre une libération controlée du principe actif avec, pour la coacervation
complexe une formulation douce sans ajout de tensioactif ou autre stabilisant. De plus, les
formulations sont réalisées en milieu aqueux et il est notamment possible pour la double
émulsion de retirer le solvant par évaporation ce qui rend ces deux approches d’intérét en vue
d’une utilisation a des fins cliniques.

Cependant, les systémes nanoparticulaires seuls ne peuvent pas prétendre a la fois de résister
au pH acide de I’estomac et au pH plus basique de I’intestin. C’est dans ce contexte que le
centre européen d’étude du Diabete en collaboration avec I’Institut Charles Sadron ont déposé
en 2002 un brevet concept de double encapsulation. Il s’agit de protéger I’insuline dans
I’intestin dans des nanoparticules qui passeront la barriére intestinale et de protéger ces
nanoparticules dans 1’estomac grace a une gélule gastrorésistante.

Ce projet a déja fait I’objet de trois théses de doctorat. En 2009, Madame Nathalie REIX a
développé des systémes nanoparticulaires d’environ 200 nm en PLGA (acide poly (lactique-
co-glycolique)) par double émulsion eau/huile/eau. Cependant, cette formulation offre une
biodisponibilit¢é de 1’insuline encapsulée assez faible une fois administrée par voie
intraduodénale chez un modéle streptozotocine de rat diabétique (Reix et al, 2010). Elle a
¢galement pu développer une gélule gastrorésistante qui a permis de faire la preuve de concept
du double systeme d’encapsulation (Reix et al, 2012).

En parallele, Madame Adeline CALLET a en 2010 mis au point une formulation de
nanoparticules par coacervation complexe entre I’insuline et le chitosane. Ces nanoparticules
sont cependant instable en milieu biologique ce qui empéche toute validation in vitro et in vivo.

Enfin, en 2012, Madame Pauline GUHMANN démontre la non toxicité¢ des systémes
nanoparticulaires formulés par double émulsion in vitro et identifie la taille requise pour une
internalisation optimisée de ces nanoparticules (<200nm). Elle identifie également clairement
les modalités de passage de ces nanoparticules qui s’effectue par un mécanisme actif clathrine

et caveoline dépendant. Cependant, la biodisponibilité de I’insuline doit encore étre optimisée
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et il est nécessaire de standardiser la formulation compléte du vecteur pharmaceutique
complexe.

Cette these s’integre donc dans le cadre du projet Orail (ORal Administration of InsuLin),
projet collaboratif qui associe des laboratoires publics (CNRS, Université Paris Sud), et privés
(Centre européen d’étude du diabéte, Photon & Polymers) ainsi qu’un industriel de la
formulation de médicaments (Catalent). Ce projet vise a développer le vecteur pharmaceutique
complexe permettant d’administrer I’insuline par voie orale. Il est nécessaire pour cela
d’optimiser la biodisponibilité de ’insuline par la formulation de systémes nanoparticulaires
(NPs) soit par la méthode de double émulsion eau/huile/eau en présence de PLGA ou soit par
la formation de coacervats en présence de chitosane (coacervation complexe) pour former des
nanostructures appelées particules (NP). Ce systéme nanoparticulaire doit ensuite étre lui-méme
encapsulé dans un véhicule gastrorésistant.

Les objectifs de ces travaux de these étaient donc d’une part de mettre en place une méthode
permettant de formuler des systémes nanoparticulaires ayant une biodisponibilité optimisée soit
a partir de la technique de coacervation complexe entre 1’insuline et le chitosane ou de la double
émulsion eau/huile/eau en présence de PLGA et de sélectionner le systeme de plus pertinent.
Pour la méthode de coacervation, il a été nécessaire de développer des approches chimiques
stabilisation des coacervats (la réticulation et la lyophilisation ont été privilégices) afin de
valider leur fonctionnalité in vitro et in vivo. Pour les nanoparticules de PLGA, le travail s’est
orienté sur la modification des propriétés de surface des nanoparticules pour potentialiser leur
mucoadhésion et leur internalisation. La piste privilégiée a été de modifier la charge de surface
de ces NP qui était proche de la neutralité pour les rendre négativement chargées ou
positivement chargées. Enfin, afin de formuler le vecteur complexe, les nanoparticules ont été
encapsulées dans des véhicules en vue de leur validation biologique et d’une étude
toxicologique du systéme complet.

Les formulations des coacervats et des particules de PLGA mucoadhésives n’ont pas permis
de potentialiser activité biologique des systémes. A 1’opposé, les NP présentant une charge de
surface négative ont montré leur efficacité a la fois in vitro et in vivo, et représentent une
formulation prometteuse pour I'administration d'insuline orale. Celles-ci doivent cependant étre
formulées avec une quantité minimale de PVA pour limiter leur agrégation tout en conservant
leur propriété biologique.

Cette étape s’est poursuivie par un transfert de technologie chez 1’industriel qui a permis
d’obtenir des nanoparticules présentant les mémes caractéristiques physicochimiques que celles

synthétisées au laboratoire avec un taux d’encapsulation de 98%. La formulation du vecteur
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pharmaceutique complexe (encapsulation dans un vecteur gastrorésistant des nanoparticules) a
¢galement permis d’obtenir une réduction de la glycémie chez le modéle streptozotocine de rats

diabétique validant ainsi in vivo le systéme complet.



II. Introduction bibliographique



1. Insuline, pancréas et insulinosécrétion

1.1. Physiologie et régulation de la glycémie

Le fonctionnement optimal de I’organisme requiert un apport constant et régulier d’énergie.
Cette énergie provient du métabolisme du glucose qui provient lui-méme de la dégradation des
glucides apportés par 1’alimentation au niveau de I’intestin. Aprés son absorption par les
entérocytes, il rejoint la circulation portale puis les hépatocytes au niveau du foie qui
permettront son stockage sous forme de glycogene. Le glycogene est un polymere de glucoses
liés en a (1-4) et ramifiés en a (1-6) tous les 8 a 12 résidus (Figure 1). Ce glucose stocké sous
forme de glycogeéne peut étre utilisé par les cellules requérant de 1’énergie. C’est ainsi que
I’organisme maintient une homéostasie glucidique autour de 0.8 gramme par litre de sang. Il
doit donc s’autoréguler pendant les phases d’alternance de 1’état alimenté a 1’état de jeline et
ceci principalement grace a deux hormones, I’insuline et le glucagon qui sont responsables du

maintien permanent de cette homéostasie glucidique (Figure 2).
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Figure 1 : Représentation schématique de la molécule de glycogene
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Figure 2 : Autorégulation physiologique de la glycémie (Source : ikonet.com)



L’insuline est I’hormone de la phase alimentaire. Elle est responsable de la régulation de
la glycémie post prandiale. Chez I’individu sain, la normoglycémie (valeur basale) est rétablie
trois heures apres I’hyperglycémie postprandiale. Cette diminution de la glycémie est due a la
glycogénogenese qui se définit par la mise en stock du glucose au niveau du foie sous forme de

glycogene.

Le glucagon est I’hormone dite du jeline. Il est responsable de la compensation de la
diminution progressive de la glycémie entre deux repas due a la consommation du glucose par
les organes. Cette stabilisation de la glycémie est la conséquence de la glycogénolyse qui est
une libération de glucose par le foie. Il est a noter que le systéme nerveux par la voie des

catécholamines (adrénaline) influence le déstockage du glucose.

1.2. L’insuline

En 1920, les travaux de Frederick Grant Banting et de son équipe ont permis la découverte
de I’insuline. La molécule d’insuline bioactive est un hétérodimére d’un poids moléculaire de
5,8 kDa composé de deux chaines polypeptidiques, la chaine a composée de 21 acides aminés
et la chaine B composée de 30 acides animés reliées toutes les deux par deux disulfures (Figure

3).

? Al A
chaine B 0
10 11 1213 14 15 16 17

Figure 3 : Structure primaire de la molécule d’insuline

1.2.1. Biosynthése et sécrétion

Le géne de I'insuline humaine est porté¢ par le bras court du chromosome 11. La

transcription en ARN messager de ce dernier et sa traduction dans le réticulum endoplasmique



rugueux induit la production d’un précurseur de haut poids moléculaire (11,5 kDa), la prépro-
insuline. Cette derniére est convertie dans le réticulum endoplasmique en un peptide de poids
moléculaire plus bas (9 kDa), la pro-insuline par clivage de la séquence signale. La pro-insuline
est transportée du réticulum endoplasmique vers le cis-Golgi ou s’amorce sa transformation en
insuline mais sa maturation finale s’opere dans le trans-Golgi par le clivage du peptide-C
(Figure 4). L’insuline est encapsulée depuis le Golgi dans des vésicules d’excrétion recouvertes
de clathrine. Ces vésicules deviennent matures par co-précipitation de I’insuline avec des ions
zinc pour former des microcristaux dans les vésicules d’excrétion. L’insuline et le peptide-C
sont sécrétés de maniere équimolaire car ils sont contenus dans les mémes vésicules. Leur demi-
vie peut aller de quelques heures a quelques jours.
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Figure 4 : Représentation schématique de la biosynthése de I’insuline (modifié d’apres
Matteucci E. et al., 2015)

Le glucose stimule la biosyntheése et la sécrétion de I’insuline par les cellules f3
pancréatiques. Il est transporté dans les cellules a travers la membrane plasmique par des
transporteurs spécifiques appelés GLUT2. Une fois dans la cellule, le glucose est phosphorylé
puis métabolisé. Dans les cellules B (Figure 5), les métabolites du glucose influencent d’une
part la sécrétion d'insuline [A] et d’autre part sa biosynthése (transcription et traduction) [B].

L’insulinosécrétion stimulée par le glucose provient de 1’augmentation du rapport ATP/ADP



résultant du cycle de Krebs qui a lieu dans la mitochondrie. L’ATP induit la fermeture des
canaux potassium ATP dépendant (Katp). Il en résulte une dépolarisation de la membrane et
I’ouverture de canaux calcium voltage dépendant. Leur ouverture engendre un influx de
calcium extracellulaire qui va permettre 1’exocytose de I’insuline par fusion des granules
d’insuline avec la membrane plasmique. Le glucose induit la traduction de I'insuline en grande
partie par la promotion de sa transcription. Le glucose favorise le recrutement du ribosome 40S
afin d’obtenir de I’ARNm sous ’effet des facteurs d’initiation elF2 et eIF4F. L’activation des
kinases PI3K (phosphatidylinositol 3-kinase) et SAPK2 (Stress Activated protein kinase 2) par
I’entrée du glucose dans la cellule induit I’activation du facteur de transcription PDX-1
(pancreatic and duodenal homeobox 1) localisé dans le cytoplasme. Ce dernier va se transloquer
du cytoplasme vers le noyau ou il se lie et active le promoteur du geéne de I'insuline. Le glucose
active ¢également d'autres facteurs de transcription tels que Beta2 ou MafA qui agissent
¢galement en se liant a des régions promotrices du géne de l'insuline.

Les variations d’insulinémie observée sont liées a 1’exocytose de 1’insuline plutdt qu’a sa
synthése. La cellule B a une capacité importante de stockage de I’insuline avec une nette
séparation du contrdle de la biosynthese et de la sécrétion de I’hormone. Les substrats
énergétiques comme le glucose ou certaines hormones comme le GLP-1 (Glucose-Like Peptide
1) peuvent stimuler la sécrétion d’insuline et avoir une influence sur sa biosynthése. Ainsi, toute
molécule capable d’influencer la sécrétion d’insuline est, par définition, une molécule qui agira

en modulant le processus d’exocytose.
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1.2.2. Mécanisme d’action
1.2.2.1. Récepteur de l’insuline
Le récepteur de I’insuline est une glycoprotéine tétramérique de 400 kDa, formé de 2 sous-
unités o extracellulaires de 120 kDa qui assurent la fixation de I’hormone grace a leur partie
glucidique et de 2 sous-unités [ transmembranaires de 80 kDa contenant un domaine

enzymatique a activité tyrosine-kinase. Les sous unités sont reliés par des ponts disulfures
(Figure 6).

|
" els —sliel ~«——— domaine de liaison
chaines & de l'nsuline
| . . 1
cs —s/e Ois —si(@
i | |
domaine
2 transmembranaire
:): e
= !
milieu &
intracellulaire 953 - domaine
960 I juxtamembranaire
L 1018 |(L}-+—site de liaison de I'ATP
nai ) domaines
chaines | catalytiques | 1146
1150 (B | domaine
régulateur
1181 ‘ égulateu
kel O domaine
22
13 C-terminal

Figure 6 : Structure du récepteur a activité tyrosine kinase de l'insuline (Landry et Gies,

2009)

La partie intracellulaire de la sous-unité B contient des résidus tyrosine essentiels a I’activité
biologique du récepteur, repartis dans les trois régions juxta membranaire, catalytique et C-
terminale. En absence d’insuline, les sous-unités o exercent une inhibition de type allostérique
sur I’activité kinase portée par les sous-unités 3. La liaison de I’insuline induit des modifications
conformationnelles des 2 sous-unités, qui permettent ainsi I’acces aux sites catalytiques et la
trans-phosphorylation des résidus tyrosine. La phosphorylation de ces résidus est nécessaire a
I’activation du récepteur, qui va alors pouvoir phosphoryler ses substrats intracellulaires.
L’activation de 10 % des récepteurs suffit pour observer les effets maximaux de 1’insuline, ceci
grace a I’existence d’un mécanisme d’amplification du signal par trans-phosphorylation des

récepteurs libres par les récepteurs activés.
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1.2.2.2. Voies de signalisation du récepteur de l’insuline

La stimulation par I’insuline induit la phosphorylation des résidus tyrosine du récepteur a
I’insuline (Figure 7). Deux grandes voies de signalisation sont alors initiées par cette
phosphorylation : 1’activation des protéines IRS (Insulin Receptor Substrate) et Shc (Src
homology 2/a collagen-related). Il s’agit respectivement de la voie des MAP (Mitogen-
activated protein) kinases et de la PI3K (phosphatidylinositol 3-kinase) qui conduisent
respectivement aux effets mitogéniques et métaboliques de I’hormone. La phosphorylation des
Shc, suite a I’interaction avec le résidu phosphotyrosine du récepteur, induit le recrutement de
Grb2 (Growth factor receptor-bound protein 2), une protéine adaptatrice de la transduction du
signal, et de la protéine SOS (Son Of Sevenless) qui lui est constitutivement associé. SOS
favorise I’activation des Ras qui est a l'origine de la cascade d’activation des ERK
(Extracellular signal-regulated kinases). Les protéines ERK 1 et 2 phosphorylées se trouvent
dans le noyau ou elles phosphorylent des facteurs de transcription, conduisant alors les cellules
vers un processus de prolifération ou de différenciation. La phosphorylation par le récepteur de
I’insuline de résidus tyrosine des IRS permet de recruter la PI-3 kinase a proximité de la
membrane plasmique. La PI-3 kinase va alors catalyser la phosphorylation de phospho-
inositides membranaires, induisant une augmentation rapide de phosphatidylinositol 3,4,5-
triphosphate (PIP3). Les PIP3 vont ensuite activer différents effecteurs dont le principal est la
protéine kinase Akt. Apres activation, Akt se détache de la membrane plasmique et phosphoryle
des substrats cytosoliques et nucléaires induisant la synthése de glycogene par activation du
glycogene synthase et une stimulation de la synthése protéique. Des facteurs de transcription
sont aussi la cible d’ Akt ce qui a pour conséquence d’inhiber la transcription de certains geénes
comme celui codant pour le glucose 6-phosphatase. Une autre voie de signalisation passe par
la protéine mTOR (mammalian Target Of Rapamycin) qui est importante pour certaines actions

de I’insuline, notamment la croissance et la synthése protéique.
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Figure 7 : Voies de signalisation associées au récepteur a activité tyrosine kinase de

I’insuline (Landry et Gies, 2009)

1.3. Profil de sécrétion physiologique de I’insuline

Chez le sujet sain, I’insuline est sécrétée a des quantités variables au cours de la journée en
fonction de 1’alimentation et de ’activité (Figure 8).
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Figure 8 : Profil de l'insulinosécrétion chez un sujet sain (Marc UZAN, 2005)

Une portion comprise entre 30 et 40% de I’insuline est sécrétée de maniere continue
(insulinémie basale) afin de contrdler la production de glucose par le foie (en cas de carence en
insuline, la production hépatique de glucose est augmentée expliquant 1I’hyperglycémie a jeun
chez le patient diabétique). La plus grande quantité¢ de I’insuline est sécrétée de manicre
ponctuelle en fonction de la glycémie (phase postprandiale). Ainsi, il existe a la fois une
sécrétion basale et une sécrétion postprandiale permettant de maintenir une homéostasie de la

glycémie tout au long de la journée.
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Le déreglement de cette homéostasie est responsable de I’apparition d’un trouble

métabolique caractérisé par une concentration importante du glucose circulant : le diabéte.

2. Diabéte

2.1. Définition et épidémiologie

Le diabete a été identifié dans I’Egypte ancienne pour la premiere fois autour de 1500 avant
Jésus Christ. Il a été décrit comme étant une maladie rare dans laquelle I’individu affecté urinait
excessivement et perdait du poids. Le terme de diabéte sucré, reflétant le fait que I'urine des
personnes touchées avait un golt sucré, a été d'abord utilisé par le médecin grec Aretaeus (entre
80 a 138 avant Jésus Christ). Il fallut attendre 1776 pour réaliser les premic¢res mesures de
glucose dans les urines sur ses patients par Matthew Dobson.

Le diabéte est une maladie chronique qui apparait lorsque le pancréas ne produit pas
suffisamment d’insuline ou que I’organisme n’utilise pas correctement 1’insuline produite.
L’insuline est ’hormone hypoglycémiante qui en tandem avec le glucagon (hormone
hyperglycémiante) régule la concentration de glucose dans le sang. L’organisation mondiale de
la santé (OMS) définit I’état diabétique chez un patient si sa glycémie a jeun est supérieure a 7
mM (1.26 g/L) ou a 11 mM (2g/L) deux heures apres une hyperglycémie provoquée par voie
orale (HGPO). Selon I’OMS, la prévalence du diabete en 2014 a I’échelle mondiale était de 9

% chez les adultes agés de plus de 18 ans avec plus de 387 millions de personnes touchées

(Figure 9).
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Figure 9 : Prévalence du diabéte dans le monde en 2014 par région géographique et
projection pour 2035 (Source : Fédération international du diabete, 2014).

L’organisme estime également que plus d’un million et demi de déces dans le monde sont
directement liés au diabete dont 80% dans les pays émergents. Le nombre de personnes
touchées dans le monde ne cesse de croitre d’année en année. En 2030, le diabéte sera la
septieme cause de mortalité. Il s’agit d’une pathologie silencieuse, cliniquement
asymptomatique qui se décline sous plusieurs sous types et dont les complications sont d’autant

plus séveres que la prise en charge est faite tardivement.

2.2. Types de diabéte

Le diabéte est une pathologie qui appartient a la classe des troubles métaboliques chroniques
résultant d’une dérégulation de I’assimilation des glucides apportés par I’alimentation. Ce
trouble a pour origine le dysfonctionnement du systeme de régulation de la glycémie dans lequel
intervient I’insuline, I’hormone pancréatique hypoglycémiante. Il en résulte une concentration
anormalement élevée du glucose circulant chez les personnes touchées. Cette pathologie se
décline sous plusieurs sous types dont les majeurs sont ceux du type 1, du type 2 et du diabéte

gestationnel qui survient lors de la grossesse.

2.2.1. Le diabéte de type 1

Le diabete de type 1 était anciennement connu sous le nom de diabéte juvénile ou diabéte «
maigre ». Il apparait le plus souvent dans 1’enfance et concerne 10 % des patients. Cette forme
de la pathologie est dite insulino-dépendante. Il est caractérisé par une abolition totale de
production d’insuline & la suite de la destruction auto-immune des cellules  des ilots de
Langerhans. Sa prise en charge exige une administration quotidienne d’insuline exogene. La
cause de diabéte de type 1 n'est pas totalement connue mais il est démontré une importante

composante auto-immune. Des travaux ont mis en évidence le réle des lymphocytes T auto-
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réactifs dans la mort des cellules B pancréatiques. Au cours du développement du diabete de
type 1, les cellules T tueuses infiltrent le pancréas et ciblent les cellules  productrices d'insuline
(Coppieters Ken T. et al.,, 2012). Cependant, les cellules T ne représentent qu’une des
possibilités des phénomenes immunitaires impliqués dans la perte des cellules B pancréatiques.
I1 est décrit dans la littérature I’implication des cellules dendritiques plasmacytoides dans la
destruction auto-immune des cellules  pancréatiques. Les cellules dendritiques plasmacytoides
sont des médiateurs de l'immunité de par leur capacité a produire de grandes quantités
d'interféron-a (IFN-a)) et d'IFN-B (Diana Julien et al., 2012). L expression de I’I[FN-a dans les
cellules B de souris transgéniques engendre un diabéte auto immun (T .A. Stewart et al., 1993).
Alba A. et al. (2004) ont également montré que I'IFN-f accéleére I'apparition de la maladie chez
des souris diabétiques non obeéses.
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Figure 10 : Cycle de destruction des cellules [ des ilots de Langerhans par auto immunité
(Diana Julien et al., 2012).
Les symptomes du diabéte de type 1 sont la polyurie (miction fréquente et abondante), la
polydipsie (sensation de soif), une faim constante, une perte de poids, I’altération de la vision

et la fatigue. Ces symptomes peuvent apparaitre brutalement.

2.2.2. Le diabéte de type 2

Le diabete de type 2 autrefois désigné comme diabete de la maturité ou diabete « gras »
résulte d’une mauvaise utilisation de I’insuline par I’organisme. C’est un diabete dit non
insulino-dépendant. Le diabéete de type 2 représente 90% des diabétiques rencontrés dans le
monde. Il est en grande partie le résultat d’une surcharge pondérale due a la sédentarité (un
individu en situation d’obésité a trois fois plus de risque de développer un diabéte de type 2) et

a des facteurs génétiques (Cynthia M. Ripsin et al., 2009; Frank B. Hu and al., 2001). Le diabéte
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de type 2 présente une forte composante héréditaire. En effet, la corrélation est de 100% chez
des jumeaux homozygotes et de 25% pour les individus ayant des cas de diabéte dans la famille.
Des travaux ont permis d’identifier des génes impliqués dans le développement du diabéte de
type 2, en particulier des génes codant pour les canaux potassium ATP dépendant (canaux Katp)
intervenant dans 1’insulinosécrétion de méme que des facteurs de transcription (transcription
factor 7-like 2) régulant I’expression du géne codant pour le pro-glucagon et donc la production
du glucagon et du glucagon-like peptide-1 (GLP-1). Les individus en surpoids posseédent une
grande masse adipeuse. Des études ont mis en évidence le role primordial du tissu adipeux dans
le développement du diabéte de type 2, donnant a ce type de diabéte la terminologie de
« diabésité ». En effet, celui-ci peut étre considéré comme un organe endocrine sécrétant de
nombreux adipocytokines (la leptine, le facteur de nécrose tumoral alpha (TNF-a), la résistine
et 1’adiponectine) impliquées dans I’insulinorésistance et probablement dans Ile
dysfonctionnement des cellules B (Olokoba Abdulfatai B. et al., 2012). Ces symptomes peuvent
étre les mémes que ceux du diabéte de type 1 mais sont souvent moins marqués. De ce fait, la
maladie peut étre diagnostiquée plusieurs années apreés son apparition, une fois les
complications déja présentes. Récemment encore, ce type de diabete n’était observé que chez
I’adulte mais on le trouve désormais aussi chez I’enfant et ce sans distinction de la zone
géographique.

Le diabéte de type 2 apparait progressivement (Figure 11). Celui-ci débute par 1’apparition
d’une intolérance au glucose résultant de la résistance du foie et des tissus a 1’action de
I’insuline. L’intolérance au glucose est marquée par une augmentation de 1’insulinosécrétion
pour réguler la glycémie ce qui par la suite induit un dysfonctionnement de I’homéostasie
glycémique, on parle de diabéte débutant. On observe un effet ciseau entre la sécrétion
d’insuline qui baisse progressivement et la glycémie qui augmente. L’installation lente de 1’état
pathologique permet de mettre en place un traitement adapté en vue de prévenir 1’apparition de
la maladie. Cette prise en charge se fait en premiere intention par la mise en place de mesures
hygiéno-diététiques (lors de la phase diabete débutant) puis par un traitement médicamenteux
(antidiabétiques oraux) et enfin par la mise en place d’une insulinothérapie (Figure 11) dans le

cas ou le patient devient insulino-requérant.
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Figure 11 : Installation progressive du diabete de type 2 (Bliclé JF., 1999)

2.2.3. Le diabéte gestationnel

Cette forme de la pathologie est particuliere d’une part par son état transitoire durant la
grossesse et d’autre part par son hyperglycémie présentant des valeurs supérieures a la normale
mais inférieures a celles posant le diagnostic de diabete. L’TADPSG (International Association
of Diabetes Pregnancy Study Group) définie les valeurs de glycémie permettant de
diagnostiquer le diabéte gestationnel. Selon cet organisme, le diabéte gestationnel peut étre
diagnostiqué si la glycémie a jeun est supérieur a 0,92 g/L (5,1 mmol/L) et une glycémie
supérieure a 1,80 g/L (10,0 mmol/L) une heure aprés une charge orale de 75 g de glucose et
supérieure a 1,53 g/L (8,5 mmol/l) aprées 2 heures. Ce diabéte est diagnostiqué lors des examens
prénataux et rarement a la suite de ’apparition de symptomes. Selon 'IADPSG, la présence
d’au moins un des criteres cités ci-apres chez la femme enceinte doit conduire a un dépistage a
savoir : age de la grossesse supérieur a 35 ans, un indice de masse corporel (IMC) supérieur a
25 kg/m?, des antécédents familiaux de diabéte (parents au premier degré), des antécédents
personnels de diabéte gestationnel. Les femmes ayant un diabete gestationnel ont un risque
accru de complications pendant la grossesse et au cours de I’accouchement. Leur risque d’avoir
un diabete de type 2 a un stade ultérieur de leur vie augmente également. Chez le rongeur,
I’hyperglycémie in utéro engendre une hyperplasie des ilots de Langerhans et une hyperactivité
des cellules B (Franks Paul W. et al., 2006). La régulation de la glycémie se fait par la mise en

place de mesures hygiéno-diététiques ou par une insulinothérapie.
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2.3. Les complications du diabéte

La conséquence majeure de I’hyperglycémie chronique liée au diabéte est une glucotoxicité
qui se traduit par des atteintes vasculaires (micro-et macro angiopathies) et nerveuses
(neuropathies) (Figure 12) :

- le diabéte augmente le risque de cardiopathie et d’accident vasculaire cérébral. Selon
une étude conduite dans plusieurs pays, 50% des diabétiques meurent principalement
de ces complications.

- la neuropathie qui touche les pieds augmente la probabilité¢ d’apparition d’ulcéres des
pieds, d’infections et, d’amputation des membres antérieurs comme postérieurs. Elle est
associée a une diminution du débit sanguin,

- larétinopathie diabétique est une cause importante de cécité. Elle survient par suite des
l1ésions des petits vaisseaux de la rétine qui s’accumulent avec le temps. Apres plus de
20 ans de diabéte, 2% des patients deviennent aveugles et environ 10% présentent des
atteintes visuelles graves. Pres de 1% de la cécité dans le monde peut étre attribuée au
diabete.

- parmi les principales causes d’insuffisance rénale figure le diabete. Le déces de 10 a

20% de diabétiques dans le monde survient a la suite d’une insuffisance rénale.
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Figure 12 : Schéma récapitulatif des complications lices a I’hyperglycémie chronique

(modifié d’apres Le Figaro, 02/10/12)

18



Le risque général de déces chez les diabétiques est au minimum deux fois plus important

que chez les non diabétiques.

3. La prise en charge du diabete

Chez le patient atteint de diabete, le maintien de la glycémie a des valeurs le plus proche
possible de valeurs seuils permet de prévenir ’apparition des complications lides a la
glucotoxicité. La prise en charge du diabéte se fait par la mise en ceuvre de moyens combinables
comme la mise en place de mesures hygiéno-diététiques, d’un traitement médicamenteux et/ou

d’une insulinothérapie.

3.1. Mise en place de mesures hygiéno-diététiques

La mise en place de mesures hygiéno-diététiques est valable pour tous les types de diabéte
mais est spécifiquement un traitement de premiere intention dans le cadre du diabete de type 2
avant toute prise en charge médicamenteuse. En effet, des études ont montré qu'il y avait une
réduction significative de lI'incidence du diabéte de type 2 en combinant un maintien de 1l'indice
de masse corporelle (IMC) a 25 kg/m? avec une alimentation riche en fibre, en acides gras
insaturés et pauvre en acides gras saturés et en sucre (Chen Lei et al.,2011). II faut ajouter au
régime alimentaire une activité physique réguliere, une abstinence vis-a-vis du tabac et une

consommation modérée d'alcool.

3.2. Les antidiabétiques oraux

Les hypoglycémiants oraux agissent sur la sécrétion de I’insuline, sur la sensibilité tissulaire
a I’hormone et enfin sur ’absorption du glucose issu de 1’alimentation. Ces compos¢s bioactifs
sont le second volet du traitement du diabéte non insulinodépendant aprés les mesures hygiéno-
diététiques. Les hypoglycémiants non insulino-sécréteurs sont utilis€s en complément de
I’insulinothérapie et des mesures hygiéno-diététiques dans la prise en charge du diabéte de type
1. Le choix d’un hypoglycémiant oral repose sur différents criteres comme la réduction des taux
d’HbAlc sur le long terme, la tolérance, 1’observance thérapeutique du patient, son efficacité

vis-a-vis des complications micro- et macrovasculaires.

3.2.1. Les sulfamides hypoglycémiants et les glinides
Les sulfamides hypoglycémiants sont des molécules utilisées empiriquement depuis des
décennies dans le traitement du diabéte non insulino-dépendant. Les carbutamides

(Glucidoral®, Servier) sont les sulfamides de premicre génération. Ils étaient disponibles
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depuis les années 1950 mais ont été retirés du marché en 2012. Entre les années 1970 et 1990
sont apparus les sulfamides de seconde génération largement prescrits actuellement comme les
gliclazides (Diamicron®, Servier), les glimépirides (Amarel®, Sanofi Aventis), les glipizides
(Minidiab®, Flexpharma ; Glibenese®, Laphal ; Ozidia®, Pfizer). Plus récemment est apparue
sur le marché une seconde classe de molécule, les glinides (NovoNorm®, NovoNordisk). Cette
classe de médicaments a des modalités d’action comparables aux sulfamides. Ils agissent en
stimulant 1’insulinosécrétion. Ils ont un effet semblable a celui de I’ATP en fermant les canaux
potassium ATP dépendant (Katp) membranaire ce qui entraine la sécrétion d’insuline et
I’utilisation du glucose par tous les tissus engendrant la baisse corrélative de la glycémie. Les
sulfamides stimulent I’insulinosécrétion en se liant & un récepteur membranaire spécifique
(SURI) sur la cellule B. Le récepteur SURI est associé¢ au canal Katp dont I’activité est
étroitement liée au ratio ATP/ADP. La fixation des sulfamides sur le récepteur SURI ferme les
canaux ATP dépendant, ce qui entraine une dépolarisation de la membrane plasmique,
I’ouverture des canaux calciques voltage-dépendants, I’influx du calcium et I’exocytose des

vésicules d’insuline.
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Figure 13 : Mécanisme d’action des sulfamides hypoglycémiants (SNH) sur
I’insulinosécrétion (tiré de P.J. Guillausseau,)

L’excrétion des sulfamides est essentiellement urinaire et leur demi-vie plasmatique est
variable et peut aller de 4 a 10 heures en fonction du composé. Les sulfamides présentent pour
effets secondaires majeurs une prise de poids et un risque d’hypoglycémie. Ils peuvent de fagon
exceptionnelle provoquer une allergie cutanée allant d’un simple urticaire au syndrome de Lyell
(nécrose épidermique toxique), une thrombopénie auto-immune, une agranulocytose ou enfin

une hépatite cytolytique.
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3.2.2. Les biguanides : exemple de la metformine (Glucophage®)

Ils sont utilisés en France depuis plus de 60 ans. Ils agissent en luttant contre
I’insulinorésistance et favorisent ’utilisation périphérique du glucose en améliorant la réponse
des tissus a I’insuline. L’effet hypoglycémiant de la metformine résulte d’une réduction de la
néoglucogenese hépatique. Yong Deuk kim et al., (2008) ont démontré un mécanisme d’action
de la metformine impliquant une kinase, I’AMPK (AMP-activated protein kinase) qui joue un
role primordiale dans 1’expression des geénes de la néoglucogenese hépatique. L’ AMPK est une
sérine/thréonine kinase ubiquitaire dont 1’activation dépend de 1’augmentation de la balance
AMP/ATP reflétant une dépression énergétique. Benoit Viollet et al. (2012) décrivent que cette
activation est secondaire aux effets mitochondriaux de la metformine. En effet, la metformine
inhibe le complexe 1 de la chaine respiratoire ce qui réduit la disponibilité¢ de I’ATP
intracellulaire (Figure 14). L’augmentation du ratio AMP/ATP cellulaire induit une réduction
de la lipotoxicité, une amélioration de la sensibilité des tissus a 1’insuline par la diminution de
la lipogeneése et par ’activation de la B-oxydation. L’action essentielle des biguanides se situe
donc au niveau des tissus hépatique et musculaire dont ils augmentent 1’insulino-sensibilité.
Contrairement aux sulfamides hypoglycémiants, les biguanides n’ont aucune action insulino-
sécrétrice, et leur action hypoglycémiante s’effectue uniquement en présence d’insuline. Ils sont

excrétés par voie urinaire et biliaire.

Figure 14 : Mécanisme d’action de la metformine (d’apreés Benoit Viollet et al.2012)
AMPK: AMP-activated protein kinase; Glut2: Glucose transporter 2; LKB1: Liver kinase B1;

OCT]1: organic cation transporter 1
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Un des risques majeurs mais exceptionnel des biguanides est 1’acidose lactique qui est
l1étale. D’autres propriétés bénéfiques sont attribuées a la metformine comme sa propriété
antioxydant (Maaroufi A. et al., 2006), sa potentialisation de 1'efficacité des lymphocytes T du
systeme immunitaire et donc de l'efficacité des vaccins antiviraux et anticancéreux (Monica
Buzzai et al., 2007 ; Jones et Thompson 2009 ; Jones et al., 2009 ; Heiichiro Udono et al., 2015).
Ces propriétés rendent aujourd’hui son utilisation intéressante pour le traitement du diabéte de
type 1, de type 2 mais aussi du diabete gestationnel. La limite majeure a son utilisation dans le

diabete gestationnel est le manque de recul sur sa tératogénicité.

3.2.3. Les inhibiteurs des a-glucosidases

L’alpha glucosidase est I’enzyme qui permet de dégrader les polysaccharides en
monosaccharides. Seuls les monosaccharides sont en mesure de traverser la barri¢re intestinale.
De ce fait, les glucides issus de ’alimentation sont dégradés d’une part par les amylases
salivaires et pancréatiques en disaccharides (saccharose, lactose) puis en monosaccharides au
niveau de la brosse intestinale par les alpha-glucosidases comme la maltase, la lactase, la
saccharase. L’inhibition des a-glucosidases au niveau de la bordure en brosse intestinale retarde
alors la dégradation des polysaccharides réduisant ainsi 1’hyperglycémie postprandiale. Les
inhibiteurs des a-glucosidases comme ’acarbose (Glucor ®, Bayer) et le Miglitol (Diastabol®,
Sanofi Aventis) peuvent donc étre employés dans le traitement des diabétes de type 1 et de type
2. L’inconvénient majeur est la stagnation et la fermentation des sucres non digérés dans

I’intestin, responsables de flatulences, de douleurs digestives ou de diarrhées.

3.2.4. Les incrétinomimétiques

Le terme effet incrétine désigne 1’augmentation de I’insulinémie observée a la suite d’un
repas, médiée par deux hormones (incrétines) : le GLP-1 (Glucagon like peptide 1) sécrété par
les cellules entéro-endocriniennes L de I’iléon et du colon, et le GIP (Gastric inhibitory peptide)
sécrété par les cellules K du duodénum. Le GLP-1 stimule I’insulinosécrétion en présence de
glucose (pas de sécrétion si glycémie normale), diminue la production de glucagon et réduit la
prise alimentaire. Ces propriétés en font un candidat d’intérét pour le traitement du diabete de
type 2. Cependant, apres sa sécrétion, le GLP-1 est rapidement inactivé par la dipeptidyl
peptidase-4 (DPP-4) par clivage de deux acides aminés en N-terminal.

Deux voies thérapeutiques sont développées pour exploiter les bénéfices des incrétines dans
la gestion du diabete de type 2. La premiere consiste a inhiber la DPP-4 afin d’augmenter la

concentration plasmatique du GLP-1 endogene et la seconde consiste a augmenter la durée
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d’action du GLP-1 sur ses récepteurs (formulation d’analogues). Les produits formulés dans

ces deux approches sont nommés incrétino-mimétiques.

3.2.4.1. Les inhibiteurs de la DPP-4 : les gliptines

La dipeptidyl peptidase-4 (DPP-4) est responsable de la dégradation des incrétines tel que
le GLP-1. L'inhibition de la DPP-4 par une gliptine entraine une augmentation importante de la
concentration de GLP-1 qui provoque une augmentation de la sécrétion d'insuline et une
diminution de la sécrétion de glucagon. Ce produit se présentent sous forme de comprimés pour
une prise orale et peut s’administrer en association avec un autre antidiabétique oral comme la
metformine dans le traitement du diabéte de type 2. La gliptine a les mémes effets bénéfiques
que le GLP-1 car elle augmente sa concentration en inhibant sa dégradation. Ses effets
secondaires a long terme ne sont pas connus mais on observe fréquemment des hypoglycémies,
des maux de téte ou de gorge, de I’arthrose ou encore des douleurs aux membres supérieurs et

inférieurs.

3.2.4.2. Analogues du GLP-1

Les incrétines sont une nouvelle famille d’hormones peptidiques dont le GLP-1 (Glucose-
Like Peptide 1) qui est produit au niveau de I’intestin et qui stimule la sécrétion d’insuline en
inhibant la sécrétion de glucagon. Le GLP-1 est un peptide de 31 acides aminés codé par le
méme gene que le glucagon mais son effet est différent de celui du glucagon car il agit sur ses
propres récepteurs (récepteurs aux GLP-1). Les analogues du GLP-1 sont des agonistes de ce
récepteur mais ils possédent une durée d’action plus longue et sont plus résistants a leur
dégradation catalysée par la DPP-4. Ces analogues comme ’exénatide (BYETTA®, Lilly), le
premier des analogues du GLP-1, le lixisenatide (Lyxumia®, Sanofi) ou le liraglutide
(Victoza®, NovoNordisk) sont administrés par voie systémique (injection sous cutanée).

Contrairement aux sulfamides hypoglycémiants, ils entrainent une perte de poids et
répriment I’apparition des hypoglycémies. Les effets a long termes de ces produits ne sont pas
encore connus mais des pancréatites ont €té décrites. Les autorités de santé européennes
évaluent actuellement les résultats d'une étude qui va dans ce sens. Cette étude suggere une
augmentation du risque d'effets indésirables pancréatiques (pancréatite, métaplasie des canaux
pancréatiques) dus aux incrétinomimétiques. A court terme, des nausées accompagnées de

vomissements sont fréquentes.
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Figure 15 : Mécanisme d’action du GLP-1 et de ses analogues (Modifié a partir de Society

for Endocrinology)

En résumé, afin de réguler la glycémie chez le patient diabétique de type 2, plusieurs

médicaments sont disponibles sur le marché (Figure 16). Ces produits peuvent agir sur

I’insulinosécrétion (sulfamides et incrétinomimétiques), sur la sensibilisation des tissus a

I’action de D’insuline (biguanides) ou encore sur I’absorption du glucose apporté par

I’alimentation (inhibiteur a-glucosidase). En fonction de 1’évolution de la pathologie, les

antidiabétiques oraux peuvent étre combinés. L’échec de la metformine en monothérapie

conduit a son utilisation en bithérapie puis en trithérapie avec les autres antidiabétiques oraux.

L’échec du traitement médicamenteux traduit I’insulino-requérance du patient et oblige la mise

en place de I’insulinothérapie.

24



e
Insuline

Yidsidtiia.. - Sulfamides SRgene
gt a— s 5 |
sécrétion - Incrétinomimetiques l
- Insuline - Insuline
— | Pancréas Foie plasmatique
[
£
2| (® Inhibition
Glucose 3
=¥
S Absorption Glucdse Action
Intestin @ plasmatique de
I’insuline
=
=
Inhibiteur a 2 @ Stimulatje I
glucosidase ]
Metformine
Tissus

Figure 16 : Schéma récapitulatif des modalités d’action des antidiabétiques oraux sur le

marché.

3.3. Insulinothérapie

3.3.1. Schéma de I’insulinothérapie

L’administration de I’insuline est indispensable pour les personnes souffrant de diabéte de
type 1 mais fait également partie de I’arsenal thérapeutique dans la prise en charge du patient
diabétique de type 2. Le schéma d’insulinothérapie idéal est celui qui reproduit
I’insulinosécrétion physiologique de 1’insuline tel que décrit sur la figure 7. Celui-ci se base
donc sur un apport basal en insuline qui permet de maintenir une glycémie aussi proche que
possible de la normale entre les repas (0,7 a 1,1 g/). A 'insuline basale est associée un apport
supplémentaire d’insuline au moment des repas, dit apport bolus, qui permet d’assimiler les
glucides apportés par I’alimentation et d’éviter les pics d’hyperglycémies postprandiaux (1 a

1,4 g/l) (Figure 17).
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Figure 17 : Illustration d’une insulinothérapie simple par injection d’insuline exogene

Les études DCCT (Diabetes Control and Complications Trial) et U.K.P.D.S (United
Kingdom Prospective Diabetes Study) (Paromita King et al., 1999) ont montré que I’obtention
d’un équilibre glycémique aussi proche que possible de celui du sujet normal permet de réduire
a terme I’incidence des complications micro- et macrovasculaires chez le patient diabétique.
Elle fait appel a un schéma d’insulinothérapie qui sépare 1’apport basal en insuline (pour
normaliser la glycémie inter prandiale) et les apports supplémentaires (bolus) au moment des
repas. Ce schéma basal-bolus est le fondement de I’insulinothérapie fonctionnelle adaptée au
patient. Celle-ci nécessite une sensibilisation du patient sur le plan diététique et la réalisation
d’un autocontrdle quotidien de la glycémie capillaire. Le but est de faire varier les doses
d’insuline en fonction des besoins en tenant compte des apports alimentaires, de 1’activité
physique. Pour parvenir a cet objectif glycémique, plusieurs moyens permettent une
insulinothérapie optimisée : la formulation d’insulines & durée d’action modulable et le
développement de moyens d’administration comme les pompes a insulines (internes et
externes) et les injecteurs parentéraux (stylos, seringues...) permettant une délivrance

pluriquotidienne d’insuline.

3.3.2. Insulines développées par I’industrie pharmaceutique

3.3.2.1. Historique de ’insuline industrielle

Jusqu’en 1923, P’insuline était obtenue a partir de pancréas d’animaux : beeuf et surtout
porc. En 1935, Hagedorn et Fischer mettent au point la premiere insuline a action lente (insuline
protamine zinc). En 1946 est mise au point de I’insuline associée a un antagoniste de [’héparine

afin d’en ralentir I’action (Neutral protamine Hagedorn ou NPH). Celle-ci est encore largement
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utilisée comme insuline a action intermédiaire. Cependant, il faut attendre 1955 pour que
Frederick Sanger décrive la structure chimique de I’insuline. La qualit¢ de 1’insuline
d’extraction s’améliore avec les années, et en 1978, les laboratoires Eli Lilly mettent au point
le clonage du geéne de I’insuline en vue d’une production industrielle par génie génétique.
L’arrivée des techniques de génie génétique a permis d’incorporer dans des cellules vivantes
les séquences d’ADN humain codant pour I’insuline et de produire cette insuline a 1’échelle
industrielle.

Des modifications sur la molécule d’insuline ont également été¢ développées pour que celle-
ci acquiere des caractéristiques particulieres. Il s’agit d’analogues de I’insuline humaine. Il
existe plusieurs types d’insuline qui dépendent essentiellement de leur rapidité de passage dans

la circulation sanguine ainsi que de leur durée d’action.
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Figure 18 : Action hypoglycémiante et durée d’action des différents types d’insulines.

3.3.2.2. Insuline humaine ordinaire ou rapide

Il s’agit de I’insuline naturelle utilisable par toutes les voies d’administration
(intraveineuse, intramusculaire, sous-cutané et intra péritonéal). Son profil d’action dépend de
la voie d’administration. Injectée par voie sous-cutanée, son effet débute 15 a 20 minutes apres
injection, culmine entre 2 et 4 heures et se termine apres 6 heures. Elle se présente sous la forme
d’une solution limpide pouvant étre utilisée en toutes circonstances dans tous les systémes
d’injections : seringues, stylos et pompes. Elle est cependant moins stable que les analogues
ultrarapides dans les pompes externes. En utilisation courante, elle est administrée en sous-
cutanée, en plusieurs injections quotidiennes seule ou le plus souvent associée a d’autres

injections d’insulines d’action prolongée (analogues de I’insuline a action lente).
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3.3.2.3. L’insuline NPH
L’insuline NPH (Neutral Protamine Hagedorn), du nom de son découvreur est I’insuline
humaine biogénétique additionnée de sulfate de protamine, destinée a retarder et augmenter sa
durée d’action. Cette insuline est encore largement utilisée sous les dénominations
commerciales Umuline® NPH (Eli Lilly) ou Insulatard® (NovoNordisk) comme insuline a
action intermédiaire. Elle se présente sous forme d’une suspension injectable en flacon ou en
stylo. La durée d’action de I’insuline NPH se prolonge pendant 14 a 18 heures. Cette durce est
dite intermédiaire car elle se situe entre celle de I’insuline rapide et celle des insulines lentes au
zinc.
3.3.2.4. Analogues de ’insuline
Un analogue de l'insuline est une forme modifiée de l'insuline humaine mais toujours
fonctionnelle sur le patient pour effectuer la méme action que l'insuline humaine en termes de
contrdle glycémique. Par génie génétique, la séquence d'acides aminés de l'insuline peut étre
changée pour modifier ses caractéristiques d’absorption, de distribution, de métabolisme et
d’excrétion. Ces modifications ont été utilisées pour créer deux types d’analogues de l'insuline:
- ceux qui sont libérés lentement sur une période comprise entre 8 et 24 heures. Ils sont
utilisés pour maintenir une insulinémie basale tout au long de la journée,
- ceux qui sont plus facilement absorbés a partir du site d'injection et donc agissent plus

rapidement. IIs sont destinés a un usage de bolus prandial.
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Figure 19 : Zones de modification sur la séquence d’insuline.
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3.3.2.4.1. Analogues lents de I’insuline

Les analogues lents de I’insuline peuvent étre obtenus en modifiant la conformation spatiale
de I’insuline. En effet, en présence de zinc, celle-ci forme un hexamere : trois dimeres situés
autour d’un axe ternaire passant par 3 atomes de zinc. Ainsi, leur diffusion est ralentie, ce qui

contribue a augmenter la durée d’action de I’insuline (Figure 20).
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Figure 20 : Représentation schématique d’oligomeres d’insuline.

Ces analogues lents résultent d une modification de la structure de 1’insuline humaine, mais
cette modification est destinée a augmenter leur durée d’action. Leur libération se fait de facon
plus constante ce qui réduit le risque d’hypoglycémie. Il existe deux analogues lents :

- D’insuline glargine ou Lantus® (Sanofi-Aventis) est soluble a pH 4 et se présente sous
forme d’une solution limpide. Une fois injectée dans le tissu sous-cutané, elle précipite en
microcristaux qui permettent sa libération progressive. Son action débute en 2 a 4 heures et se
prolonge de fagon réguli¢re et constante, sans pic, jusqu’a 25 heures. Cette cinétique permet le
plus souvent de ne faire qu’une seule injection quotidienne a heure fixe,

- I’insuline détémir ou Levemir® (NovoNordisk) se présente sous forme d’une solution
limpide neutre. Elle se lie dans le tissu sous-cutané ce qui lui confére son effet retard. Elle
commence a agir 2 a 4 heures apres injection. Son action se poursuit sans pic jusqu’a 14 heures
apres injection.

Un nouvel analogue d’insuline ultra lente dégludec ou Tresiba® (NovoNordisk) vient
¢galement d’étre développé. 1l présente une structure semblable a celle de 1’insuline humaine,
hormis la suppression d’une thréonine en position B30 et la liaison sur la lysine d’un acide gras
C16 (hexadécanoyle). Cette structure permet a I’insuline apres injection sous-cutanée de former
des multi-hexameres qui se libérent en continu dans la circulation. La liaison de ’acide gras a

I’albumine garantit une prolongation de la demi-vie estimée a 42 heures.
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Figure 21 : Comparaison des insulines humaine et ultra lente dégludec.

3.3.2.4.2. Analogues ultrarapides de ’insuline

Lorsqu’ils sont injectés par voie sous-cutanée, les analogues de I’insuline d’action
ultrarapide commencent a agir plus rapidement que I’insuline humaine soluble, dans les 10
minutes qui suivent I’injection. Ils maintiennent une glycémie plus basse dans les 4 heures qui
suivent le repas, avec un effet maximal apparaissant 1 a 3 heures apres 1’injection. Leur durée
d’action est inférieure a celle de I’insuline humaine soluble et on assiste a une remontée des
glycémies a distances des repas au-dela de 4 heures apres injection. Ces analogues remplacent
généralement 1’insuline ordinaire rapide en traitement d’urgence et dans les schémas multi-
injections. Ils sont administrés juste avant les repas alors que I’insuline humaine doit 1’étre 30
minutes avant. IIs permettent de mieux réduire les élévations glycémiques postprandiales et
d’éviter les épisodes d’hypoglycémies a distance des repas. Les analogues ultrarapides sont
parfaitement stables dans les pompes externes mais pas dans les pompes implantables.

I1 existe trois analogues ultrarapides (Figure 19) :

- celui issu de I’inversion des deux avant-derniers acides aminés sur la chaine f3, la lysine
prenant la position 28 et la proline la position 29 pour donner I’insuline lispro ou Humalog
commercialisée par Eli Lilly,

- celui obtenu par remplacant de la proline en position 28 par un aspartate pour donner
I’insuline asparte ou Novorapid développer par les laboratoires NovoNordisk,

- le dernier analogue ultra rapide provient du remplacement de I’aspartate en position 33
par la lysine et de la lysine en 29 par un glutamate pour donner I’insuline glulisine ou Apidra

(Sanofi-Aventis).
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3.3.2.4.3. Mélanges d’insuline

Les différentes formulations d’insuline humaine peuvent étre utilisées pré-mélangées afin
de réduire le nombre d’injections quotidiennes nécessaires dans la prise en charge du diabéte
de type 2. Ceci permet de couvrir les besoin basal et postprandial a la fois. Dans cet objectif,
des préparations contenant de I’insuline ou un analogue rapide et de 1’insuline NPH ont été
développées. Deux mélanges avec des analogues rapides sont disponibles : la lispro protamine
neutre (Humalog®, Eli Lilly) et ’aspartate protamine cristalline (NovoLog®, NovoNordisk).
La composante protamine de ces deux molécules a des propriétés pharmacocinétiques et

pharmacodynamiques similaires a la NPH.

3.3.2.4.4. Développement d’une insuline concentrée

Sous sa forme commerciale, 1’insuline est généralement dosée a 100 unités par millilitre
(U/mL) (3,5mg/mL) pour permettre une administration aisée et réduire les volumes injectés.
Ce dosage est issu d’un long processus d’évolution de la préparation de 1’insuline permettant
une augmentation de la concentration au fil des années. Une formulation a 400 Ul/mL
(Insuman®, Sanofi-Aventis) ultra stabilisée a été¢ développée spécifiquement pour étre utilisée
dans les pompes a insuline internes munies d’un cathéter intrapéritonéal. L’Insuman est une
insuline humaine d’action rapide et courte, obtenue par modification enzymatique de I’insuline
porcine. Cette insuline présente une concentration quatre fois supérieure aux autres insulines et
a été formulée de facon a minimiser la perte d’efficacité dans les conditions de stress mécanique
et thermique rencontrées dans les pompes. Plus récemment, Eli Lilly a développé et
commercialisé la spécialité la plus concentrée sur le marché sous la dénomination Humulin®
R Regular U-500. Il faut noter que I’ Humulin® U-500 a été¢ développée pour une
administration par injection afin de réduire les volumes administrés pour les sujets obéses et/ou

présentant une forte insulinorésistance.

3.3.3. Les dispositifs d’administration de I’insuline
A D'instar de leur préparation, de nouveaux modes d’administration de I’insuline doivent
étre développés. Ces dispositifs d’administration devraient permettre aux patients d’opter pour
les équipements les plus adaptés a leur mode de vie, conduisant ainsi a une amélioration de leur
compliance et a prévenir les complications cliniques de leur maladie. Ainsi, des stylos pré-

remplis et des pompes (internes et externes) sont développés.
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3.3.3.1. Les stylos injecteurs
L’insuline est classiquement administrée a I’aide d’une aiguille et d’une seringue. Depuis
plus de 30 ans, différents types de stylos injecteurs ont été développés dont le premier mis sur
le marché en 1985 était le NovoPen® (NovoNordisk). Ces stylos peuvent étre soit pré-remplis
(jetables), soit réutilisables et présentent les avantages de permettre un dosage simple (par des
moyens analogiques ou numériques), d’étre 1égers et faciles a transporter (discrétion et suivi du
traitement), et de s’adapter a toutes sortes d’aiguilles hypodermiques ce qui améliore 1’efficacité

des injections et limite la douleur (Figure 22).
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Figure 22 : Vue éclatée d’un stylo injecteur d’insuline (source : Agence Nationale de Sécurité

du Médicament)
3.3.3.2. Les pompes a insuline

La possibilité de perfuser en continu de I’insuline en sous-cutané existe déja depuis
quelques années et rencontre un succes croissant chez les patients. Cette approche se pose en
alternative aux injections sous-cutanées discontinues d’insuline humaine ou de ses analogues.
Ces dispositifs se composent d’un réservoir-pompe externe et d’une interface de contrdle
informatisée. Le dispositif est apposé au niveau de I’abdomen du patient et permet de perfuser
en continu une faible quantité d’insuline humaine en sous-cutané par I’intermédiaire d’un
cathéter (Figure 23 B). Dans ce type de dispositif, les insulines aspartate et lispro (analogues
rapides) sont utilisées. Les dispositifs de perfusion peuvent aussi se présenter sous une autre
forme (interne) ou le réservoir de diffusion est implanté en sous cutané avec toujours le systeme
informatisé de contrdle a I’extérieur (Figure 23 A). Pour ce type de dispositif, une insuline a été
spécialement développée pour résister au stress mécanique et a la température a laquelle elle

est exposée pendant 6 semaines dans la pompe: il s’agit de I’Insuman (Sanofi-Aventis). Ces
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pompes ne dispensent pas le patient de mesures régulieres de leur glycémie afin d’établir la

quantité d’insuline a perfuser.

A

Figure 23 : Pompes a insuline disponible sur le marché. (A) pompe implantable Medtronic

Minimed, (B) pompe externe Medtronic Paradigm VEO.

Bien que ce type de systéme soit tres efficace dans la prise en charge du diabéte, le but de
I’insulinothérapie est de développer un mécanisme en circuit fermé, autorégulé par
rétrocontrole. Celui-ci pourra automatiquement réagir a toute modification de la glycémie en
ajustant la quantité d’insuline administrée. Des dispositifs innovants visant a recréer un
«pancréas artificiel» sont en cours de développement. Ils intégrent un systéme d’administration

d’insuline par pompe externe couplé a un détecteur de glycémie en continu.

3.3.4. Les techniques d’insulinothérapie
Les analogues lents de I’insuline injectés par voie sous-cutanée sont libérés régulierement
sans pic. Ils sont utilisés comme insuline basale dans 1’insulinothérapie fonctionnelle en
association avec un bolus d’analogue ultrarapide avant chaque repas (diabéte de type 1 ou
diabete insulino-requérant) ou en association avec des hypoglycémiants oraux dans le diabete

de type 2 (Figure 24).
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Figure 24 : Insulinothérapie a une injection associée a un hypoglycémiant oral
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Dans le cadre d’une insulinothérapie par injection pluriquotidienne (cas du diabéte de
type 1), un analogue ultrarapide de I’insuline est injecté 10 minutes avant les repas (matin, midi
et soir), qui n’ont ainsi pas besoin d’étre pris a heure fixe. Un analogue lent de 1’insuline est
injecté a un moment quelconque de la journée mais toujours a la méme heure. Le schéma
d’injections varie d’un patient a I’autre notamment lorsque les besoins de base en insuline sont

tres différents le jour et la nuit (Figure 25).
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Figure 25 : Insulinothérapie a injection pluriquotidienne

3.4. Voies d’administration de I’insuline

Apres sa découverte en 1921 par Banting et Best, I’insuline s’est présentée comme une
réelle valeur ajoutée pour les patients souffrant de diabéte. Des lors, la question de son
administration s’est posée et les voies intramusculaires, intraveineuses et sous-cutanées ont été
utilisées pour administrer I’insuline. Contraignante pour le mode de vie, I’insulinothérapie par
injection n’est pas le traitement le plus confortable pour les patients. En effet, malgré les
développements technologiques mis en jeu pour améliorer I’administration de 1’insuline
(diminution de la taille des aiguilles, stylo injecteurs ...), celle-ci demeure contraignante pour
le patient et devient par conséquent une limite dans la prise en charge du patient. Des études
ont ainsi ét¢ conduites pour développer des méthodes d’administration par voie non-injectable
comme les voies sublinguale, nasale, pulmonaire, rectale, transdermique... (R. I Henkin et al.,

2009) (Figure 26).
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Figure 26 : Voies d’administration des médicaments

3.4.1. La voie buccale / sublinguale

La voie buccale présente de nombreux avantages pour 1I’administration d’insuline dont le
non usage de dispositifs médicaux spécifiques, une absorption accrue du principe actif grace a
I’absence de couches kératinisées, le non passage au travers de la barriére intestinale et les
risques de dégradation qui y sont associés. Du point de vue de la physiologie, la muqueuse
buccale est richement vascularisée (sang et lymphe) et permet un acces direct a la circulation
systémique via la veine jugulaire. Ceci permet de contrecarrer le métabolisme du premier
passage hépatique et d’offrir une meilleure biodisponibilité. D'autres avantages comprennent
une faible activité enzymatique, une administration indolore, la facilité d'inclure un promoteur
d’absorption/inhibiteur enzymatique ou un modificateur de pH dans la formulation et la
multiplicité dans la conception de systémes de libération pour une action locale ou systémique.
La muqueuse qui tapisse la cavité orale est une voie d’intérét pour 1’administration de protéines
et de peptides thérapeutiques. Les muqueuses buccales et les tissus muqueux dans la surface
ventrale de la langue comptent pour environ 60% de l'aire de la muqueuse orale et sont

constitués a pres d’un tiers de cellules épithéliales étroitement compactés (figure 27).
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Figure 27 : Représentation schématique de la muqueuse buccale (Patel Viralkumar F. et al.,
2011)

L'environnement de la cavité buccale présente des défis importants pour une
administration systémique du médicament. Le médicament doit étre libéré depuis la forme
pharmaceutique au site d’administration (par exemple la zone buccale ou sublinguale) et passer
a travers les couches muqueuses et entrer dans la circulation systémique. Certains aspects
physiologiques de la cavité buccale jouent un role important dans ce processus, y compris le
pH, le volume de fluide, l'activité enzymatique et la perméabilité de la muqueuse buccale. Pour
les systemes d’administration de médicaments destinés a une libération prolongée dans la cavité
buccale (par exemple les systemes mucoadhésifs), la structure et le renouvellement de la surface
de la muqueuse sont également des facteurs déterminants pour leur performance. La voie
buccale fournit une concentration de médicament prévisible et constante dans le sang. Des
¢tudes ont montré que le transport de peptides a travers la muqueuse buccale se fait par diffusion
passive (Khafagy El-sayed et al., 2007). De ce fait, I'usage de promoteurs d’absorption pour
améliorer la perméabilité de I’insuline prend tout son sens. La majorité des formulations
disponibles dans le commerce sont des formes pharmaceutiques solides telles que des
comprimés et des pastilles. Des compagnies ont réussi la formulation de films ou de patchs
visant a obtenir une libération du médicament et une réponse clinique rapide. D’intenses
recherches sont menées pour le développement de systémes mucoadhésifs. Des études ont
montré que cette forme pharmaceutique est un candidat prometteur pour 1’administration de
I’insuline par la voie buccale par le développement d’un film a base de chitosane renfermant de
I’insuline (Morales Javier O. et al., 2014). Khafagy El-sayed et al. (2007) font référence a une
formulation a base d’un gel de polymére (Pluronic F-127) contenant de I’insuline et des acides
gras insaturés (acide oléique (18:1), acide eicosapentanoique (20:5), acide docosahexaenoique

(22:6)) comme promoteurs d’absorption. Cette formulation permet de maintenir une
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hypoglycémie continue chez le rat aprés une administration buccale. Les limites associées a ce
type de formes posologiques comprennent une déglutition incontrélée qui entraine une
libération du médicament dans le tube digestif et des difficultés a maintenir la forme
posologique au site d'absorption. En 2003, un brevet est déposé par Generex Biotechnology
(WO 2003013589 A1) pour protéger un dispositif permettant une administration de 1’insuline
par la voie buccale (Figure 28). Ce dispositif se présente sous forme de spray de nanoémulsions
d’insuline d’une taille de 200 nm en utilisant la lécithine de soja comme promoteur
d’absorption. Ce dispositif a montré des résultats encourageant en 2015 (Generex
Biotechnology) lors de sa validation clinique de phase III et fait I’objet aujourd’hui d’une

amélioration de sa biodisponibilité.

Figure 28: Oral-LynTM (Generex Biotechnology™)

3.4.2. La voie pulmonaire

L’appareil respiratoire offre un site d’échange idéal entre le milieu extérieur et le
compartiment sanguin avec une superficie d’échange de plus de 120 m2, dont plus de 95 %
sont des zones d’absorption. La surface alvéolaire est faite d’'une monocouche de cellules
¢épithéliales d’une épaisseur de 0,1 a 0,5 um et est fortement vascularisée, permettant aux
molécules d’étre transportées vers la circulation sanguine en un laps de temps court. Ce
transport a travers la membrane alvéolaire se fait par transcytose pour des molécules de 40 kDa
et par passage paracellulaire pour des molécules plus petites comme I’insuline (5,7 kDa). Adjei
A. et al., (1997) ont identifié les parametres essentiels de I’absorption pulmonaire (taille
adéquate des particules, caractéristiques ventilatoires adaptées, dépot pulmonaire profond). En
effet, les médicaments administrés par cette voie doivent se présenter sous forme d’aérosol
permettant 1’obtention de particules de taille inférieure & Spum pour une absorption efficace.
Wigley et al., 1971 ont démontré pour la premiere fois que la nébulisation d’insuline porcine
augmente les concentrations plasmatiques d’insuline et que celles-ci sont corrélées a I’action
hypoglycémiante obtenue. L’insuline inhalée présente de nombreux avantages justifiant les

efforts de recherche dans ce domaine. En effet, elle est absorbée au moins aussi vite que par
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voie sous-cutanée, I’effet hypoglycémiant de 1’insuline est plus rapide sous sa forme inhalée et
son effet métabolique maximal est au moins égal a sa forme injectable, cette voie évitant le
métabolisme du premier passage hépatique. La durée d’action de I’insuline inhalée est
d’environ 6 heures avec des épisodes d’hypoglycémies moins fréquents qu’avec 1’insuline
injectable mais plus fréquents qu’avec les antidiabétiques oraux. La biodisponibilité¢ de
I’insuline inhalée est de 80% par rapport a celle administrée en sous-cutanée (Henkin R. I et al.,
2009). Partant de ces avantages, des dispositifs a 1’étude pour pulvériser I’insuline ont fait
1’objet de nombreuses publications issues d’une recherche active de I’industrie pharmaceutique
pour développer de nouvelles technologies : en effet, ces systemes doivent a la fois générer des
particules de taille adéquate, assurer une inhalation optimale et délivrer la substance
médicamenteuse intacte aux alvéoles de manicre reproductible pour éviter les épisodes d hypo-

ou d’hyperglycémie.
La formulation médicamenteuse utilisée est soit:

» Une poudre d’insuline :

- Exubera® (Nektar Therapeutics Inc., Pfizer, Etats-Unis)

En 2006, la FDA (Food and Drug Administration) aux Etats-Unis donne les autorisations
de mise sur le marché de I’Exubera® pour le compte des laboratoires Pfizer pour une
administration intrapulmonaire de I’insuline (Figure 29). C’est une poudre seche d’insuline
humaine recombinante, présentée en blister s’ insérant dans un inhalateur. Ce dispositif permet
de nébuliser I’insuline sans gaz et ne requiert pas d’énergie. L’efficacité de I’Exubera a été
démontrée. Elle permet 1’obtention d’une concentration maximale (Cmax) d’insuline en une
heure en comparaison a I’insuline ordinaire administrée par voie sous-cutanée dont le Cmax
apparait au bout d’une heure et demie (M.H. Becquemin et al., 2008). L’Exubera® s’est vu
retirer du marché pour des raisons qui demeurent encore mal connues mais le manque
d’efficacité semble étre la raison principale (Lutz Heinemann 2008). Une autre raison de son
retrait sur le marché est le risque de cancer du poumon accrue. En effet, ’insuline est un facteur
de croissance et son exposition dans 1’épithélium pulmonaire a long terme sous sa forme

particulaire pourrait s’avérer délétere.
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Figure 29 : Dispositif Exubera® (Nektar Therapeutics Inc., Pfizer)

Le dispositif Nektar semble néanmoins avoir encore un avenir prometteur car le groupe

Sanofi-Aventis vient d’acquérir une licence d’exploitation.

- Technosphere™ Insuline (Pharmaceutical ~discovery corporation mankind

biopharmaceuticals, Etats-Unis)

Il s’agit de poudre cristalline d’insuline dont le diameétre est de ’ordre de 3 um, contenue
dans des gélules. L’aérosol, constitué¢ de particules d’insuline, est produit grace a un inhalateur
dont ’activation est déclenchée par 1’inhalation du patient (Figure 30). Les études sur des sujets
sains et diabétiques de type 2 lui ont montré une action intermédiaire entre I’insuline
administrée en intraveineuse et celle administrée en sous-cutanée. Sous cette formulation, la

durée d’action de I’insuline est bréve (inférieure a 3 heures).

Figure 30: Dispositif Technosphere™ Insuline (Pharmaceutical discovery corporation

Mankind biopharmaceuticals)

Le dispositif Technosphere™ a été autorisé par la FDA en 2014 pour une administration
bolus dans le traitement les diabetes de type 1 et de type 2. L’effet pharmacologique obtenue
avec ce dispositif est moins important que celui observé avec les insulines rapides administrées
en sous cutanée, mais engendre moins d’hypoglycémie (Nuffer W. et al., 2014). La cinétique
d’absorption offerte par ce dispositif est supérieure a toutes celles obtenues avec les insulines

disponibles sur le marché et présente un profil d’action semblable a celle de la lispro. Du fait
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de son lieu d’administration, les effets indésirables sont d’ordre respiratoire. En effet, la toux
semble étre I’effet négatif prédominant associé a une réduction du volume d’expiration forcée.
L’usage de ce dispositif implique un contrdle régulier des fonctions respiratoires du patient.
Air™ (Eli Lilly, Etats-Unis)
Le systéme Air™ utilise des particules poreuses d’un diamétre de 5 um approximativement
(Figure 31). Le caractere poreux des particules minimise les phénomenes d’agrégation, facilite
leur dispersion et permet une meilleure absorption. Des données obtenues chez le rat et chez

I’Homme montrent une pharmacocinétique comparable a celle de I’insuline en sous-cutanée.

Figure 31: Air™ Insuline (Eli Lilly, Etats-Unis)

Les données pharmacocinétiques et pharmacodynamiques obtenues lors de la phase 1
des essais cliniques ont démontré que l'insuline AIR™ est rapidement absorbé avec une
exposition et une durée d’action plus longues en comparaison a I'insuline lispro. Une étude de
phase 2 a montré une préférence des patients pour l'insuline administrée par le dispositif Air™
par rapport a I’administration par injection sous-cutanée, et une étude récente a indiqué que le
systeme est facile d’utilisation. En 2008, Eli Lilly annonce ’arrét de son programme de
développement de son dispositif Air™. Le programme de développement a été jusqu’en phase
IIT d’étude clinique pour une prise en charge des diabétiques de type 1 et de type 2. Mais la
compagnie indique que cette décision n’est pas liée a un défaut de sécurité du dispositif observé

lors des études mais a des incertitudes d’ordres réglementaires et commerciaux.

» Une solution d’insuline nébulisée

- AERX® (Novo Nordisk A/S, Danemark)

Ce systeme délivre un nébulisat d’insuline dont le diameétre des particules est compris entre
1 et 3 um (Figure 32). Un microprocesseur permet le déclenchement automatique de 1’aérosol
et est capable de mémoriser les doses, ainsi que les parametres ventilatoires pour chaque

inhalation réalisée par le patient, facilitant la compliance et la surveillance de ce traitement.
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Une ¢étude réalisée chez 18 patients diabétiques de type 1 a confirmé une absorption et un délai

d’action plus court que 1’insuline en sous-cutanée.

Figure 32 : AERx® (Novo Nordisk A/S, Danemark)

Ce systéme a montré son efficacité lors d’études (Schuster J. et al., 1997) en montrant
son aptitude a générer des particules de tailles homogenes compris dans I’intervalle
d’absorption défini avec une dispersion homogene dans les poumons. Moses R. G. et al. (2009),
ont publi¢ une étude évaluant ’efficacité et la sécurité d’utilisation du dispositif AERx
démontrant que ceux-ci dtaient similaires aux autres systémes d’administration par voie
pulmonaire. Il ressort de cette étude que NovoNordisk doit encore améliorer I’AERx® afin de
réduire les hypoglycémies nocturnes observées lors des phases cliniques. Cependant, en janvier
2008, NovoNordisk annonce 1’arrét du développement du systtme AERx® dans un
communiqué de presse en indiquant que la stratégie commercial de développement d’un tel
dispositif était trop risquée.

- Aecrodose™ (Aerogen Inc., Etats-Unis).
Ce systéme est un générateur électronique a piles qui délivre de ’insuline liquide nébulisée
(3 um) (Figure 33). Chez le sujet sain, le pic d’insulinémie est plus rapide que par la voie sous-

cutanée.

Figure 33: Aerodose™ (Aerogen Inc., Etats-Unis)
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Dennis Kim et al.,(2003) ont démontré que I’insuline administrée par le dispositif
Aerodose™ présente des courbes dose/réponse semblables a celles de I’injection en sous
cutanée ainsi qu'une biodisponibilité relative constante. En partenariat avec Dance Biopharm
Inc. (Etats-Unis), Aerogen Inc. conduit actuellement les études cliniques de phase II du
dispositif Aerodose™ (Adagio™). Les premiers résultats dévoilés en 2013 font état d’une
efficacité et d’une innocuité de I’insuline administrée par la voie pulmonaire par le biais de
I’Adagio™.

3.4.3. La voie nasale

La voie nasale a été largement étudiée en vue d’en faire une voie alternative a la sous-
cutanée pour ’administration d’insuline dans le traitement du diabéte. L’intérét d’une
administration intranasale est multiple. En effet, cette voie d’administration offre une large
surface d’absorption compte tenu du fait que I’épithélium nasale est couvert de microvillis et
d’une couche sous muqueuse richement vascularisée (Figure 34). La vascularisation se déverse
directement dans la circulation générale avec un important apport sanguin qui permet
d’empécher le catabolisme du principe actif en évitant le métabolisme de premier passage
hépatique. De par sa physiologie, cette voie permet donc une posologie faible, un effet

pharmacologique rapide et un faible risque d’apparition d’effets secondaires.
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Figure 34 : Histologie de la muqueuse nasale (modifié d’apres kmu.edu.tw)

Michael Hinchcliffe et Lisbeth Illum (1999) ont démontré que I’insuline intranasale
présente le méme profil pharmacocinétique que I’insuline administrée en intraveineuse.
Néanmoins, beaucoup des problémes d’absorption rencontrés dans 1’administration intra
pulmonaire concernent également la voie intranasale. La limite majeure a 1’administration

d’insuline par la voie intranasale est d’ordre physiologique incluant la présence du mucus et de
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son épaisseur, la clairance mucocilliaire, la présence d’enzymes et ’activité des macrophages
qui peuvent représenter une barriére a son absorption. L’utilisation de promoteurs d’absorption,
d’inhibiteurs enzymatiques ainsi que la formulation de formes pharmaceutiques adéquates
(systémes mucoadhésifs ou pulvérisateurs de poudre) peut étre une solution pour contourner
cet obstacle et permettre une augmentation de la biodisponibilité¢ de I’insuline administrée par
cette voie.

La taille optimale des particules d’insuline a administrer n’est pas clairement définie mais
on peut supposer qu’elle doit étre du méme ordre que celle d’une administration par voie
pulmonaire. De ce fait, les dispositifs utilisés pour une administration intranasale doivent étre
similaires a ceux employ¢s pour I’administration intra pulmonaire (voir 3.4.2). Des études ont
montré que cette voie d’administration permet d’obtenir un contréle efficace de la glycémie sur
le long terme. L’insuline intranasale offre une absorption rapide et une biodisponibilité de 9%
par rapport a la voie sous-cutanée (Parmar Harshad et al., 2010). L’emploi des promoteurs
d’absorption pour augmenter la perméabilité de I’insuline délivré par voie intranasale a déja fait
ses preuves (Zhang Yi et al., 2001; Khafagy E.-S et al., 2007). Les systémes mucoadhésifs sont
une alternative intéressante pour augmenter la biodisponibilité. Ces systémes de délivrance
nasale de médicaments absorbent I'eau, gonflent et forment une couche de type « gel » au
contact de la muqueuse nasale, qui est éliminée lentement de la cavité nasale. Par conséquent,
l'absorption se produit rapidement, souvent avec une biodisponibilité élevée. Les polymeres
muco-adhésifs exercent un effet direct sur la muqueuse en absorbant l'eau a partir du mucus.
En gonflant, les cellules épithéliales sont déshydratées, ce qui provoque I’ouverture des
jonctions serrées, entrainant une augmentation de I'absorption des médicaments transportés par
voie paracellulaire. La formulation de gel contenant de I’insuline produit une réponse
hypoglycémique chez le lapin significativement supérieure a celle obtenue avec une injection
sous cutanée (El-Dakrouri WA et al. 2010). Ces résultats suggerent que le gel peut étre
considéré comme une technologie intéressante pour une administration nasale de
macromolécules. L’administration  intranasale d’un gel a base de chitosane permet
I’augmentation de I’absorption du principe actif et une réduction de la glycémie de 46% par
rapport a celle induite par une injection intraveineuse. Par conséquent, les nanoparticules
d'insuline a base de chitosane peuvent étre utilisées en tant que systeme d’administration de
médicament par voie nasale (Varshosaz J. et al., 2006). Malgré les résultats prometteurs, le
développement de systemes d’administration d'insuline par voie nasale est en proie a des

problémes qui exigent une approche rationnelle. A ce jour, 'expérience clinique relativement
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limitée avec de l'insuline intranasale indique un besoin d’utiliser des doses €levées et répétées

pour obtenir un contrdle glycémique.

3.4.4. La voie rectale

La voie rectale peut étre considérée comme une voie alternative intéressante pour
I’administration d’insuline. En effet, cette voie est indépendante du systéme digestif et permet
donc d’échapper a la dénaturation de I’insuline par les enzymes digestives. De par son irrigation
par le systeme circulatoire, les principes actifs administrés par cette voie échappent au
métabolisme de premier passage hépatique. L’absorption d’insuline par voie rectale nécessite
I’utilisation de promoteurs incorporés dans des suppositoires ou des gels. Des études ont montré
que P’insuline en co-administration avec un promoteur d’absorption comme 1’acide biliaire
désoxycholique permet de réduire efficacement la glycémie chez le modéle de lapin diabétique
induit par I’alloxane (Khafagy E.-S et al., 2007). L’utilisation des promoteurs d’absorption est
une limite majeure a I’administration d’insuline par voie rectale compte tenu de la présence
d’¢léments toxiques (flore bactérienne) dans la lumiére de méme que la douleur, la compliance

des patients et 1’absence de reproductibilité de la biodisponibilité.

3.4.5. La voie transdermique

La peau est le plus gros organe de 1’organisme possédant une large surface d’échange (2
m?) et est une alternative intéressante a la voie sous-cutanée en offrant une meilleure compliance
au patient, une libération prolongée de médicament en évitant la dénaturation du principe actif
se produisant dans le tractus gastro-intestinal et lors du métabolisme de premier passage
hépatique. Malgré les avantages qu’elle offre, la peau est une barriere tres efficace et est
imperméable aux molécules étrangeres et plus particuliecrement aux larges molécules
hydrophiles. La perméabilité faible de la peau est en grande partie due a la couche cornée qui

est la couche la plus superficielle (Figure 35).
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Le développement d’approches sophistiquées pour permettre de pallier a I’imperméabilité
du tissu cutané inclus 1’usage de promoteur d’absorption, 1’utilisation de de micro-aiguilles ou

de techniques comme 1’iontophorése ou encore 1’ultrason.

3.4.5.1. Promoteurs d’absorption

Les promoteurs d’absorption se définissent comme étant des composés qui facilitent
I’absorption d’un principe actif en augmentant la diffusion de celui-ci au travers d’une barricre
biologique. Comme décrit dans les autres voies d’administration ou I’augmentation de la
biodisponibilité du principe actif nécessite le recours a I'utilisation de promoteurs d’absorption,
ces derniers sont des agents de surface, des acides gras ou des esters gras. Ils agissent sur la
perméabilité cutanée en modifiant la structure de la kératine, en dénaturant les lipides
intercellulaires. Les limites majeures a ['usage de promoteurs d’absorption sont liées aux
irritations de la peau qu’ils engendrent (dénaturation des lipides intercellulaires) et a leur
inaptitude a transporter efficacement des macromolécules dont la masse moléculaire est
supérieure a 4.5 KDa au travers de la peau. Le peptide TD-1 utilis¢é comme promoteur
d’absorption (Jin PP et al. 2014) en co-administration avec I’insuline permet d’augmenter la
perméation de I’insuline a travers la peau et donc sa biodisponibilité et de potentialiser son
activité pharmacologique (Chang Mingming et al., 2013). Des études rétrospectives ont montré

que les petits peptides utilisés comme promoteur d’absorption créent une ouverture transitoire
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des jonctions cellulaires pour permettre le passage des macromolécules de la surface cutanée

vers la circulation systémique.

3.4.5.2. Systémes d’administration transdermique

Pour pallier 'imperméabilité de la peau aux macromolécules, des stratégies ont &té
développées dont I’encapsulation du principe actif dans des nanovecteurs (dispersion
colloidale). Guo et al., (2000) ont montré I’efficacité de ces systémes nanoparticulaires
(nanovecteurs en lécithine et encapsulant de la cyclosporine A) de par leur taille (inférieure a
100 nm), leur efficacité d’encapsulation et leur activité biologique. En effet, cette étude menée
chez la souris a démontré que 1’application topique d’une dose d’insuline encapsulée permet
d’obtenir un effet pharmacologique de I’insuline par réduction de la glycémie.

Megumu Higaki et al., (2006) montrent que la formulation de nanoparticules de carbonate
de calcium (CaCOs3) encapsulant de I’insuline (Romuald Babou-Kammoe et al., 2012)
permettent d’induire une diminution de la glycémie et une augmentation de la biodisponibilité
de I’insuline chez la souris.

Ces études montrent la faisabilité d’un systeme d’administration d’insuline par la voie

transcutanée par le biais de nanoparticules encapsulant de I’insuline.

3.4.5.3. La technique de I’iontophorese

L’iontophorése est un procédé visant a accroitre la perméabilit¢ de la peau aux
macromolécules a visée thérapeutique en utilisant un faible courant électrique (Figure 36).
L’iontophorese transdermale est une technique prometteuse et est considérée comme une
approche intéressante pour un contréle et une augmentation de la perméabilité lors de
I’administration de protéines ou peptides. Sur le modele de rat diabétique par injection de
streptozotocine, I’iontophorése sur peau nue permet d’obtenir une réduction de la glycémie.
Pillai et al., (2004) montrent que cette perméabilité de I’insuline a travers la peau par
iontophorese est d’autant plus important que le temps d’exposition et I’intensité du courant sont
faibles. Il est donc possible de moduler la perméabilité des macromolécules au travers de la
barriere cutanée. Des études ont montré que le prétraitement de la peau avant I’application de
I’iontophorese accroit la perméabilité de I’insuline a travers la peau (E. H. Choi et al., 1999 ;
Khafagy E.-S et al., 2007). En effet, le promoteur d’absorption employé permet de dilater
I’espace intercellulaire de la couche cornée réduisant ainsi son impédance électrique et
augmentant le passage de macromolécules. Des résultats similaires sont obtenus en utilisant des
acides gras. La forme pharmaceutique la plus adéquate est le gel pour co-administrer le principe

actif avec un agent de surface avant I’iontophorese. Des gels a base de polymere (poloxamer
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P407) ont montré leur efficacité mais la limite majeure de cette technique est I’irritation de la

peau qu’elle engendre.

Figure 36 : Perméabilisation de la peau par iontophorese : exemple du Mesodermil P. ®

(Mesodermil Plus®, LASER3X)

3.4.5.4. La technique de la sonophoreése (ultrasons)

La sonophorése est une technique basée sur 1’application cutanée d’ultrasons pour
perméabiliser la peau aux macromolécules (Figure 37). Cette technique a déja montré son
efficacité en permettant le transport transcutanée de principes actifs de diverses natures incluant
du matériel génétique ou des protéines. Cette méthode peut étre couplée avec des promoteurs
d’absorption, mais cette combinaison n’a pas révélé de gain notable en termes d’efficacité
pharmacologique. La fréquence des ultrasons doit étre faible pour permettre I’incorporation
efficace des produits dans la peau. La sonophorese est supposée provoquer de fagon réversible
I’ouverture de canaux a travers les couche cornée et lipidique afin d’offrir a I’insuline un trajet
direct vers les couches inférieures du derme puis vers la circulation systémique. Des études ont
montré que cette méthode permet chez le rat d’obtenir un effet pharmacologie comparable a
une injection sous cutanée d’insuline (A. Boucaud et al., 2002). Cette étude a également montré
que D’effet pharmacologique de I’insuline transdermique n’est observable que lorsque la
sonophorese et 1’insuline sont appliquées extemporanément sur la peau. Une présonophorese

suivi d’une apposition d’insuline ne donne donc aucun résultat.

47



Téte de traitement

Niveaux de pénétration dans la peau réglables

Figure 37 : Perméabilisation de la peau par sonophorese exemple du Dermafocus 30

(Dermafocus 30®, Nuovolaser, LASER3X)

3.4.5.5. L’usage des micro-aiguilles

L’administration transdermique utilisant la technologie basée sur les micro-aiguilles est en
pleine expansion. Cette technologie se base sur une multitude d’aiguilles disposées sur un
support (Figure 38) permettant de créer de manicre transitoire des micro-ouvertures dans les
couches superficielles de la peau pour permettre le passage des macromolécules. Le diametre
des aiguilles est suffisamment large pour permettre le passage de macromolécules, de
nanoparticules etc... mais suffisamment petit pour éviter toute douleur lors de son application
sur la peau. Il est possible de fabriquer des micro-aiguilles de différentes géométries et
matériaux (métal, silicone, polymere biotoléré). Des études ont montré I’efficacité de cette
technique pour augmenter la perméabilité de 1’insuline au travers de la peau. Martanto W. et al.
(2004) ont montré que [I’utilisation de micro-aiguilles permet d’obtenir un effet

pharmacologique de I’insuline similaire a une administration sous cutanée d’insuline (0.5 UTI).

Figure 38 : Exemple d’un dispositif a microaiguille (source : futura-santé)

Malgré les nombreuses stratégies employées pour augmenter la délivrance transdermique

d'insuline, le succes reste limité compte tenu de la faible biodisponibilité qu’offre cette voie
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comparée a une administration sous-cutanée, de la réactivité immunitaire de la peau et de son
imperméabilité.
3.4.6. La voie orale

Chez I’individu sain, en état postprandial, le pancréas sécréte de 1’insuline suite a
I’augmentation de la glycémie. L’insuline est alors déversée dans le la veine porte pour
rejoindre le foie ou est son premier site d’action. L’injection sous cutanée d’insuline de méme
que les autres voies d’administration développées ci-dessus (buccale, nasale, pulmonaire,
transdermique...) rejoint la circulation générale avant de passer par le foie et échappe donc au
métabolisme de premier passage hépatique. L’insuline orale a I’instar des autres voies
d’administration présente I’avantage de suivre la voie de sécrétion physiologique de I’insuline
en subissant le métabolisme de premier passage hépatique avant d’étre distribuée dans tout
I’organisme (Figure 39). Ce premier passage hépatique est un point de controle avant I’acces a
I’organisme des xénobiotiques mais également des substances physiologiques comme par
exemple, les sels biliaires ou I’insuline. Pour assurer cette fonction, la totalité du sang issu du
tube digestif est drainée par la veine porte. Celui-ci représente pres de 80 % du débit sanguin
hépatique. Ainsi I’insulinosécrétion physiologique peut étre mimée par une administration par

voie orale (Figure 39).

Figure 39 : Comparaison de la biodistribution apres administration par voie sous-cutanée vs

orale

Pour développer une insuline orale, il est indispensable de prendre en considération les
barrieres biologiques que celle-ci doit franchir pour arriver dans la veine porte. De la bouche a
la veine porte, I’insuline doit traverser tout le tractus gastro-intestinal. L’estomac est I’organe
de digestion du corps humain, I’intestin joue également un réle primordial dans la digestion et

a le role d’absorption des nutriments et des molécules thérapeutiques. L’épithélium intestinal
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assure aussi la fonction de protection de 1’organisme contre I’entrée de toxines et de
microorganismes.

A T’heure ou l'administration orale d'insuline est potentiellement attirante, cette voie
d’administration se développe sans pour autant avoir rencontré de succes jusqu’a présent. De
nombreuses stratégies individuelles et combinées ont été développées afin d’augmenter
l'absorption d'insuline. Ceux-ci incluent la co-administration d'insuline avec des inhibiteurs
d'enzymes et/ou I’utilisation de promoteurs de pénétration, la modification de la stabilité
chimique de I'insuline et l'utilisation de composés mucoadhésifs, de liposomes, d’émulsions et

systemes polymériques (Reix et al., 2012).

3.4.7. Bilan des voies d’administration
La revue des différentes voies d’administration de I’insuline révele que celles-ci présentent

toutes a la fois des avantages et des inconvénients. Ceux-ci sont listés ci-dessous :

Avantages Inconvénients
Dégradation limitée (pH neutre, activité Faible perméabilité, faible
Voie buccale ) ) )
enzymatique faible) surface d’absorption
Risque important
Voie Grande surface d’échange, alvéoles . o
o _ d’affection respiratoire et de
pulmonaire pulmonaire richement vascularisées
cancer
Grande surface d’échange, muqueuse Faible temps de contact
Voie nasale richement vascularisées avec une bonne (clairance mucocilliaire)
perméabilité
Indépendante du systéme digestif, présent
peu d’activité enzymatique et permet Nécessite 1’utilisation de
Voie rectale ] ) ) )
I’évitement (en partie) du métabolisme de promoteurs d’absorption
premier passage hépatique
Grande surface d’échange, facile d’acces et ‘ .
Voie ' ' Faible perméabilité aux
permet une libération prolongée du ) )
transdermique o _ ‘ o molécules hydrophiles
principe actif sans dénaturation de celui-ci.
_ ' . ' Présence de nombreuses
Libération de I’insuline dans le sang sous ) o
Voie orale ) contraintes chimiques et
contrdle hépatique )
physiques

Tableau 1 : Récapitulatif des avantages et inconvénients des différentes voies

d’administration pour l’'insuline
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La recherche de voies alternatives a I’injection sous cutanée est motivée par le souhait
de simplifier le traitement, d’améliorer la qualité de vie et I’observance des patients diabétiques.
Le choix d’une nouvelle voie d’administration outre tout I’aspect physiologique doit aller dans
le sens de la simplification du traitement en répondant a des critéres comme une utilisation la
plus simple et la plus discrete possible, 1’absence d’injection, la limitation des hypoglycémies

séveres et enfin permettre a I’insuline exogeéne le métabolisme de premier passage hépatique

(plus physiologique).
o Permettant le
Utilisation '
' _ o métabolisme
simple, Ne nécessitant pas | Limitation des '
' L . de premier
rapide d’injections hypoglycémies
. passage
et discrete ‘
hépatique
Voie buccale v v
Voie pulmonaire v v
Voie nasale v v
Voie rectale v v
Voie
. v v
transdermique
Voie orale v v v v

Tableau 2 : Comparaison des différentes voies d’administration possibles de l’insuline

La voie orale est la seule voie qui permet de répondre a I’ensemble de ces critéres. Cette
voie d’administration permet de reproduire la sécrétion physiologique de I'insuline par le biais
de son passage par la veine porte pour rejoindre le foie. Ceci représente un avantage
thérapeutique indéniable dans la gestion du diabete. Mais de par sa nature peptidique,
I’administration orale d’insuline est un défi majeur car les contraintes imposées par la

physiologie du tractus gastro-intestinal doivent étre surmontées.

3.5. Limites de ’administration orale d’insuline

Malgré tous les avantages décrits, I’administration orale d’insuline présente des limites. En
effet, de par sa nature protéique, I’insuline est sensible aux conditions rencontrées dans le
tractus gastro-intestinal. La premiere barri¢re est de nature chimique : I’acidité de I’estomac,

I’activité enzymatique s’y produisant ainsi que dans I’intestin peuvent entrainer sa dégradation.
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La seconde barriére est de nature physique : 1’épithélium intestinal tapissé par du mucus

présente la propriété d’étre imperméable aux macromolécules.

3.5.1. Les contraintes chimiques
La limite majeure de I’administration orale de protéine est d’ordre protéolytique (Figure
40). Dans I’estomac, la protéolyse est opérée majoritairement par la pepsine alors que dans
I’intestin, plusieurs enzymes dont la trypsine, la chymotrypsine et la carboxypeptidase sont
présentes. Cette activité protéolytique réduit la biodisponibilité des principes actifs de nature

peptidique administrés par la voie orale.
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Figure 40 : pH et composition enzymatique du tractus gastro-intestinal

3.5.2. Les contraintes physiques

La couche de mucus est composée de glycoprotéines et est sécrétée par les cellules
caliciformes. Cette couche de mucus, de par sa fonction de barriere physiologique, joue un réle
important dans la variation de I’absorption et de la biodisponibilité des principes actifs
administrés par la voie orale. Aoki et al. (2005) ont démontré 1’existence d’une activité
enzymatique dans le mucus impliquant une absorption limitée de I’insuline. Cette étude visait
a comparer la perméabilité apparente de I’insuline sur des segments d’intestin avec mucus ou
sans mucus. Cette couche de mucus tapisse I’épithélium intestinal qui est lui-méme une barricre
physique a I’absorption de macromolécules. La barriere intestinale est composée du coté séreux
par des couches musculaires et de son coté luminal de structures digitiformes richement

vascularisées se projetant dans la lumicre et correspondant aux villosités intestinales (Figure
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41). Ces villosités sont elles-mémes constituées de repliements appelés microvillosités
permettant a I’intestin d’offrir une grande surface d’échange (200 m?). La couche directement
en contact avec le milieu extérieur est 1’épithélium intestinal et est constituée d’une
monocouche continue d’entérocytes (80%), de cellules caliciformes (sécrétrices de mucus,
15%) et de cellules M jointes par des jonctions de trois sortes uniformisant la surface de
I’épithélium intestinale.
- Les jonctions « serrés » ou « zonula occludens » qui sont étanches et imperméabilisent
la membrane,
- Les jonctions d’ancrage, « zonula adherens » et « desmosomes » qui assurent la liaison
intercellulaire
- Les jonctions communicantes, «jonctions de type gap » qui permettent de véhiculer les

signaux chimiques et électriques entre les cellules.
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—z=, Replis
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conjonctif absorbant M?Imlbrane Lumiere de
celluraire Fintestin

Glande a
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chylifere

Capillaires Microvillosités
Une cellule épithéliale
Une villosité absorbante

Figure 41 : Histologie de I’intestin

De par la structure de cet épithélium, I’absorption des molécules pour rejoindre la
circulation générale se fait globalement par deux voies : la voie transcellulaire et la voie

paracellulaire (Figure 42).
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Par la voie transcellulaire, 1’absorption impliquant des mécanismes actifs ou passifs a
lieu au travers des entérocytes de I’épithélium intestinale et des cellules M des plaques de Peyer.
La surface d’absorption offerte par le passage transcellulaire est largement supérieure a celle
du passage paracellulaire qui s’effectue entre 1’espace intercellulaire. La diffusion passive a
travers les cellules épithéliales de l'intestin se produit par des voies de perméabilité non
spécifiques. Ce type de transport transcellulaire se différencie du transport facilité, qui se
produit via des canaux ou transporteurs spécifiques associés a la membrane.

La voie paracellulaire représente 1% de la surface de I’épithélium intestinal. C’est la
voie préférentielle pour le passage des molécules hydrophiles. Cette voie n’est adaptée qu’aux

petites molécules, aux ions et a I’eau. Cette sélection fait intervenir les jonctions serrées.

Absorption par les entérocytes Absorption par les plaques de Peyer
Voie paracellulaire Voie transcellulaire Voie lymphatique
- objets < 50 nm et 100-300 nm - objets > 300 nm via les cellules M
- hydrophiles - hydrophobes - objets > 1 ym

- positivement chargés

- - - - -
. p— . B Mucus

Particules

Jonction
intercellulaire

Lymphocyte \ Macrophage

Figure 42 : Voies d’absorption transépithéliale (Reix et al., 2012)

3.5.3. Les méthodes permettant de surmonter les contraintes physico-chimiques
3.5.3.1. Les promoteurs d’absorption
La perméabilité des cellules de 1’épithélium intestinal peut étre modifiée en ciblant la
bicouche lipidique. Afin d’accroitre la perméabilité a travers la bicouche, les sels biliaires, les
surfactants, les chélateurs de calcium et les acides gras sont les plus majoritairement employés.
I1 existe néanmoins des limites a I’usage de ces promoteurs d’absorption. En effet, I’altération
de I’intégrité membranaire offre I’opportunité aux pathogénes et toxines résidents de I’intestin
de rentrer dans la circulation générale (Whitehead et al., 2008). Des études ont montré que la
co-administration de I’insuline avec de 1’acide palmitique par voie orale permet de réduire la

glycémie chez le lapin. Par contre, I’administration d’insuline avec des acides gras insaturés
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n’a aucun effet. L’usage d’un chélateur de calcium est une approche permettant d’augmenter
I’absorption paracellulaire des médicaments en jouant sur I’ouverture des jonctions serrés
(Ichikawa and Peppas, 2003). Les polymeres avec une fonctionnalité cationique qui reste
protonée a pH intestinal est une autre approche intéressante. Le groupement amine chargé
positivement peut se lier a des protéines de la zone pellucide de 1'assemblage des jonctions
serrées menant a la signalisation qui aboutit finalement a 1'ouverture des jonctions serrées. En
dehors de toutes ces approches, 1’utilisation de la toxine zonula occludens a également été testée
pour son effet sur la perméabilité des jonctions serrées. Vibrio cholerae, une bactérie qui infecte
le tractus intestinal et provoque le choléra est la source de la toxine zonula occludens (Fasano
et al., 1995). 1l est rapporté que la toxine zonula occludens agit spécifiquement sur les filaments
d'actine du zona occludens sans compromettre 1'intégrité ou la fonction intestinale. L'ensemble
est efficace surtout au niveau des récepteurs dans le jéjunum et I'iléon (Fasano et al., 1995). In
vivo, la toxine zonula occludens augmente l'absorption de l'insuline dans I'iléon et le jéjunum
de lapin mais n'a aucun effet dans le colon. L'effet de la toxine est réversible, non toxique et est
localis¢ dans une petite région intestinale. En effet, la plupart de la flore microbienne intestinale
étant présente dans la région du colon, si I'intégrité des jonctions serrées était compromise, elle

pourrait conduire a l'entrée de ces microbes dans la circulation.

3.5.3.2. Les inhibiteurs enzymatiques

L’activité protéolytique se produisant dans le tractus gastro-intestinal est la limite majeure
a ’administration d’insuline par voie orale. Initialement, les travaux menés avaient pour but
d’employer des inhibiteurs enzymatique en co-administration pour palier au probléme. Des
¢tudes ont montré ’efficacité de la co-administration d’inhibiteurs enzymatiques avec des
principes actifs peptidiques (Yamamoto et al., 1994). La co-administration de cinq inhibiteurs
enzymatiques (sodium glycocholate, aprotinine, bacitracine, inhibiteur de la trypsine et
camostat mesilate) et de ’insuline sur des segments d’intestin de rat permet d’augmenter
I’absorption de I’insuline. Agarwal et al. (2001) ont décrit une nouvelle classe d’inhibiteur
enzymatique issue du blanc d’ceuf (poule et canard) et évalué son influence sur I’absorption de
I’insuline en présence de trypsine et d’a chymotrypsine. Les résultats ont montré que
I’augmentation de la biodisponibilité de I’insuline est due a I’inactivation de I’a. chymotrypsine
qui est I’enzyme responsable de la dégradation de I’insuline. D’autres études (Liu Chen et al.
2003) ont confirmé le potentiel intéressant de la co-administration de I’insuline avec des
inhibiteurs enzymatiques. Cette piste est aujourd’hui exploitée par de grands laboratoires

pharmaceutiques pour administrer de I’insuline par la voie orale (Oramed Pharmaceuticals Inc.
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Isragl). Cette formulation est aujourd’hui en phase 2b d’essai clinique. La multiplicité de la co-
administration d’insuline avec des inhibiteurs enzymatiques peut cependant entrainer de sérieux

effets déléteres sur le métabolisme chez I’Homme.

3.5.3.3. Les systemes mucoadhésifs a base de polymeres

Le terme «mucoadhésiony fait référence a 'adhérence entre des supports polymeres et des
mugqueuses et se manifeste par certains polymeéres qui deviennent adhésifs lors de 1'hydratation.
Ainsi, les objectifs des systemes de délivrance de médicaments muco-adhésifs sont de
prolonger le temps de résidence au niveau du site d'absorption du médicament, d'intensifier le
contact avec le mucus pour augmenter le gradient de concentration du médicament, afin
d’assurer une absorption immédiate sans dilution ou dégradation dans le fluide luminal, et de
localiser le systéme de délivrance de médicament pour un certain site. Les systémes
d'administration contenant des polymeres muco-adhésifs fournissent un contact intime avec la
mugqueuse, ce qui réduit la dégradation du médicament entre le systeme d'administration et la
membrane absorbante. Les systemes polymériques de petite taille chargés d’insuline ont montré
une libération et une absorption rapide de l'insuline par rapport aux systemes de plus grandes
tailles, entrainant un effet hypoglycémiant sans dommage détectable sur la muqueuse (Khafagy

El Sayed et al., 2007).

3.5.3.4. L’encapsulation
L’encapsulation vise a protéger une substance, et a en controler sa libération sur son site.
Quel que soit la méthode employée, elle génére globalement deux types de structures

particulaires : les nano capsules (Figure 43A) et les nano spheres (Figure 43B).

A B

Substance encapsulée , f
Substance dispersée

Membrane polymérique Matrice polymérique

Figure 43 : Structures de nanoparticules (A) nanocapsule, (B) nanosphéere.
L’encapsulation est considérée comme étant la technique la plus adaptée pour administrer
per os des composées de nature protéique car elle permet de pallier aux contraintes physico-
chimiques du tractus gastro intestinale tout en conservant 1’activité biologique du principe actif.

Plusieurs méthodes permettent de générer des nanovecteurs encapsulant des composés
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bioactifs. Les propriétés de ses vecteurs dépendent de la nature des composants utilisés pour la

formulation ainsi que des méthodes de fabrication utilisées.

3.5.3.4.1. Les systémes particulaires d’administration

La plupart des stratégies de formulation d'insuline se basent sur des supports particulaires

pour contourner les obstacles de ’administration d’insuline par voie orale. Ils protégent

efficacement les principes actifs peptidiques contre la dégradation enzymatique dans

I'environnement hostile du tractus gastro-intestinal,

fournissent un haut transfert de

médicaments a travers la muqueuse épithéliale, controlent la vitesse de libération, et ciblent des

sites spécifiques de libération du principe actif. L'entrée de particules submicroniques au travers

de lintestin se fait par l'intermédiaire des entérocytes, des cellules M et par des voies

paracellulaires. L'évaluation histologique de coupes de tissus a montré que les particules de 100

nm diffusent a travers la couche sous-muqueuse, tandis que les particules plus grosses (10 pum)

sont localisées principalement dans la muqueuse épithéliale. Des études similaires avec des

cellules Caco-2 ont montré que 1’absorption des particules dépendant de leur taille (Guhmann

P.,2013).
Oral nsulin delivery systems
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Insuln soh /N-lauryl-{i d In vitro/Ussing chamber Fnh d colon p bilsty
WAO/W emulsion/DHA or EPA In sitw/rat ntestine PA® was 43.2%
Entenic-coated capsule/Witcpsol W3S + NaSal In vivo/dogs PA" was 12.6%

Insulin solutio/AP, SGC, SC or Na;EDTA

Enzyme inhibitors

Drug  camicr matnu/BBI and clastatinal
Insulin solution/AP, SGC, STI, CM or BAC
Insulin solution/SGC, BTT, LPT, CTT or BAC
Insulin solution CkOVM or DkOVM

In sitw/rat wicstine

PA® was 0.1% 5.5%

In vitro/artaficial

In sindrat testine

In situ/rat wiestine

In vitro/diffusion chamber

giun o
PA® was 0.1%-5.1%
PA” was 0.1%2.3%
rwnfoldmnmlnﬁhlﬂyndﬂunhn

Insubin solution/hyaluromdase In sitw/rat testine Sigr dy m blood g! levels

Mucoadhesive polymeric systems

P(MAA-¢-EG) lvy&ugcl muuupmcb In vivo/rats PA® was 9.5%

Lectin-conjugat 13 microg In vivo/rats Hypoglycemic cffect lasted for ~8 h
Chitosan NPs In vivo/rats PA" was 14.9%

Chitosan  TBA - msuln tablcts In vivo/rats PA* was 1 .69%

Particulate carrier delivery systems

Lecithin-based microcmulsion In vivo/rats 30% reduction m blood glucose levels

Double hiposomes In vivo/rats PA” was 0.39%-5.5%

Fusogenic liposomes In sitw/rat micstine PA® was 10.1%-15.7%

Fudragit S100 microspheres In vivo/rsbbits 24% reduction m blood glucose levels

Insulin - phospholipsd complex NPy In vivo/rats PA" was 7.7%

Taryyeted delivery systems

Colon-targeted delivery system (CODES™) In vivo/dogs BA was 0.5%

Colon-targeted delivery system (Azopolymer-coated pelicts)  In vivo/mats PA® was 0.89% 3.38%

Insuln transfornn conjugate In vivo/rats 70% reduction m blood glucose levels

Abbreviations: DHA, docosahexacnoic acid, EPA, cicosapentacnoic acid; PA, ph log: y; NaSal, sodium sahcylate; RH, relative hypoglycemaa,

AP, ap SGC, sodi glycocholate; SC, sod

caprate; Na,EDTA, cthyl

4

ic acd disod: salt; BBI, Bowman Birk mhibitor;

STI, soybean trypsin inhibitor, CM, 1
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y. PA of msulin systems was determuncd based on the extent of the hypoglycemic response n:hl:v:lullul-chmvd
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»
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Tableau 3 : Récapitulatif des approches développées pour permettre I’ administration de
I’insuline par voie orale (E.-S Khafagy et al., 2007)
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3.5.3.5. Méthodes d’encapsulation
L’encapsulation est considérée comme étant I’approche la plus adaptée pour administrer
per os des composées labiles comme les protéines. Elle permet de pallier aux contraintes
physico-chimiques du tractus gastro intestinale tout en conservant 1’activité biologique du
principe actif. Il existe une multitude de particules permettant d’encapsuler ces principes actifs

(Figure 44).
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Nanocapsule Nanosphere de Mlcelle polymeére Nanocapsule Nanosphere
lipidique lipides solides  coeur lipophile Dendrimer coeur huileux coeur hydrophobe Lipasome

Figure 44 : Schéma récapitulatif des différents types de particules permettant [’encapsulation
de principes actifs (Vauthier, C. and Couvreur, P., 2008 (tiré de la these de Callet A., 2010))

Plusieurs méthodes permettent de générer des nano vecteurs encapsulant des composés
bioactifs. Les propriétés de ses vecteurs dépendent de la nature des composants et des méthodes

de fabrication utilisées dont quelques exemples sont listés ci-dessous (tableau 4) :
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Exemple de

Technique Avantages Limites
Polymere
Formation des particules
dans des conditions douces
(sans solvant) permettant la | La libération du principe
Gélation . préservation de I’activité actif a partir de ce type de
' ' Alginate _ ‘ '
ionotropique biologique du composé particule n’est pas
encapsulé. Cette méthode controlable sur la durée.
est simple a mettre en ceuvre
et est industrialisable
Une adaptation de la
Elle offre une large gamme | pression de formation des
o d’applications. Des gouttelettes est nécessaire
Atomisation de ) _ ) )
polymeres hydrophiles en fonction de la viscosité
séchage _ ‘
comme hydrophobes (choix | de la solution de polymére
«Spray-drying» _ _ _
du solvant) peuvent étre sinon il y a risque
employés d’agrégation des
particules formées.
Elle permet 'utilisation de ‘
. Les particules obtenues
divers monomeres pour .
) par cette technique sont
former une multitude de ) ]
_ souvent fragiles, ce qui
membranes polymériques. o
. les rend difficile a
o ‘ Les particules formulées par _ _
Polymérisation | Dichlorures, travailler. L acide
. . o cette méthode ont tendance ‘ ‘
interfaciale diamines,... _ chlorhydrique produit par
a sédimenter permettant une _
. _ la réaction entre le
récupération aisé, une )
. chlorure d’acide et
suppression des solvants .
. I’amine peut dénaturer le
résiduels et donc sont
] ] composé a encapsuler
rentable industriellement
Double . Cette technique permet Libération des composés
‘ PLA (Acide
émulsion | d’encapsuler efficacement encapsulés par le
. . poly : . .
évaporation de ' dans des micro/nanospheres phénomene de «burst
lactique),

solvant

de polymere des composés

releasey, celui-ci
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PLGA de petites tailles et d’en engendre des pertes de
(acide poly contrdler la cinétique de principe actif dans le
(lactique- libération (utilisation de tractus gastro-intestinal ou
co- polymere biodégradable) en | des réponses biologiques
glycolique)) | jouant sur le processus de inappropriées si celui-ci
yere synthese et de dégradation. se produit dans le sang.
Possibilité d’utiliser des
solvants approuvés et ne
dégradant pas le principe
actif
Elle permet d’encapsuler _
_ La complexation entre
des protéines dans une seule
. deux polyélectrolytes de
phase aqueuse. Cela évite )
) ) charges opposées se fait
Chitosane, | toute forme de dégradation _
_ o ‘ dans une fenétre étroite de
_ alginate, du principe actif. Ce
Coacervation ) pH. Les complexes ne
gélatine, | procédé permet de formuler .
complexe . sont pas stable en milieu
gomme des particules avec un _ _ _
) _ biologique et nécessite
d’acacia... contrdle de la taille des
) ) des étapes de
particules associ€ a une _
_ ‘ durcissement comme
efficacité d’encapsulation ‘ ‘
I’ajout d’agents réticulant.
¢levée.

Tableau 4 : Comparatif des différentes méthodes de formulation de particules encapsulant
des composés bioactifs

Parmi ces techniques, la coacervation complexe et la double émulsion évaporation de
solvant permettent 1’encapsulation de principes actifs fragiles comme les protéines sans risquer
de I’endommager. Bien que ces techniques présentent des inconvénients, elles sont les seules a
permettre une libération controlée du principe actif et ce, sans ajout de tensioactif ou d’autre
stabilisant dans le cas de la coacervation complexe. De plus, le fait de les formuler en milieu
aqueux (possibilité de retirer le solvant par évaporation dans le cas de la double émulsion) en

fait des approches intéressantes pour une utilisation a des fins cliniques.

3.5.4. La coacervation complexe
La coacervation complexe se définit comme une séparation en deux phases liquide dans un

systeme colloidal (de Kruif et al., 2004), séparation induite par des interactions électrostatiques
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entre polyélectrolytes de charges opposées. La phase la plus concentrée est dite coacervat et la
phase dite d’équilibre est I’autre phase (D. J. Burgess, 1990). La désolvatation simultanée des
deux polyélectrolytes hydrosolubles portant des charges opposées est le plus souvent provoquée

par une modification de pH du milieu aqueux (Figure 45).

(o]

® @

Figure 45 : Principe de la coacervation complexe (Benoit J. P. and Richaud J., 2000)

(a) le composé (sous forme liquide ou solide) est dispersé dans une solution aqueuse contenant
les deux polymeéres. (b) la coacervation est induite par un ajustement du pH de la solution, de
fagon a ce que les charges positives du premier polymere équilibrent les charges négatives du
second polymeére. L’attraction électrostatique des deux polyélectrolytes provoque 1’apparition
d’un coacervat mixte. (c) les gouttelettes de coacervat formées viennent s’adsorber a la surface
de la matiere active a encapsuler et (d) former un enrobage continu. (¢) Cet enrobage est
consolidé par réticulation des macromolécules constitutives du coacervat.

Les particules obtenues selon le procédé décrit dans la Figure 44 sont des capsules (exemple
Figure 43A). La taille de ses particules peut étre trés variable, de quelques dizaines de
nanometres a quelques micrometres. Elle dépend essentiellement de la taille initiale des
gouttelettes dispersées de matiere active. Seuls les principes actifs lipophiles peuvent étre
encapsulés selon ce procédé avec des taux d’encapsulation élevés de 1’ordre de 80 %. Une
méthode dérivante de celle décrite permet d’encapsuler des composés hydrosolubles. Cela
consiste a préformuler une émulsion inverse eau/huile puis a encapsuler cette émulsion. La
difficulté de cette approche réside dans la formulation d’une émulsion double eau/huile/eau
(e/h/e) stable, condition nécessaire a une bonne encapsulation. Une des limitations du procédé

concerne le choix limité de matériaux puisque seul un couple de polyé€lectrolytes portant des

charges opposées peut convenir.
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Tiebackx (1911) est le premier a avoir décrit la coacervation complexe. Mais Bungenberg
de Jong et al. (1929) ont largement étudié la coacervation complexe entre la gélatine et la
gomme arabique. Ils démontrérent que la coacervation complexe dépend des masses
moléculaires, de la concentration, du ratio des polyélectrolytes ainsi que du pH et de la
température du milieu réactionnel. De ces études découlent les premiers modeles théoriques
développés par Overbeek et Voorn (1957). Ceux-ci supposent qu'il existe une configuration
aléatoire en bobine des polyions dans les deux phases, que les interactions solvant-soluté sont
négligeables, et que les forces électrostatiques interactives sont de nature distributive. Si les
polyions étaient completement dépliés, plutdt que dans la configuration de bobine, il serait
difficile pour piéger I'eau a l'intérieur des écheveaux de polyions et la coacervation ne serait pas
susceptible de se produire (Figure 46). Les interactions électrostatiques distributives permettent
une neutralité électrique globale dans le coacervat. Cependant, les molécules sont libres de se

déplacer a I'état liquide.

Figure 46 : Structure d’un coacervat complexe entre la gomme arabique (ruban blanc) et [5-
lactoglobuline (spheres rouges) selon C.G. de Kruif et al., 2004
Un second modele dit « modele global en phase dilué » est décrit par (Veis et Aranyi, 1960)
a partir d’un cas pratique de coacervation complexe de gélatine. Ce modele considere la
coacervation comme étant un procédé s’opérant en deux phases contrairement a ce que décrit
le modele de Voorn et Overbeek. Selon ce modele, la premiére phase est une agrégation
spontanée des gélatines de charges opposées lors de 1’agitation produisant des agrégats de faible
entropie. Puis ces agrégats se réorganisent progressivement pour former la phase de coacervat.
Cette réorganisation se produit lentement dans le temps et est entrainé par le gain en entropie.
Sur la base des travaux de Veis, Tainaka (1980) décrit que les polyanions et polycations

forment des agrégats en phase diluée sans aucune spécificité d’appariement des charges. Dans
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la phase de coacervat, les agrégats se chevauchent I'un l'autre avec pour résultat un gain
d'énergie électrostatique découlant de I'augmentation de la densité des ions dans le domaine de
chevauchement. La séparation de phase est entrainée par des forces d'attraction entre les
agrégats, qui ont les masses moléculaires les plus hautes et plus de densité de charge de
polyions. Nakajima and Sato (1974) ont conduit une étude sur des polymeéres a forte densité de
charge et modifié la théorie de Voorn en y incorporant les parametres d’interaction d’Huggins.
Ils confirmérent ainsi la répartition des charges dans les deux phases comme le décrit Voorn et
Overbeek (1957) mais conclurent que le terme électrostatique calculé selon Voorn était

beaucoup trop faible.

3.5.4.1. Encapsulation de ’insuline par coacervation complexe

La formation de nanoparticules par coacervation complexe se fait dans des conditions
douces a température ambiante et sous une agitation lente (pas d’ultrasons). Elle ne requiert pas
de solvants organiques ni de stabilisants comme c’est le cas dans la majorité des techniques
décrites dans la littérature. La technique de coacervation complexe est donc idéale pour
encapsuler des composés peptidiques fragiles comme 1’insuline. La formation du complexe est
gouvernée par ’attraction €lectrostatique entre les groupements de charges opposées présents
sur les chaines de polyélectrolytes. La mise en présence de deux polyélectrolytes de charges
opposées, conduit sans aucun apport d’énergie extérieure, a la formation d’un coacervat
complexe stable. La stabilité du complexe sera d’autant plus grande que les masses des deux
polyélectrolytes mis en présence seront différentes. Ainsi, il sera plus favorable d’ajouter le
polyélectrolyte de faible masse dans celui de plus grande masse afin d’optimiser la stabilité des
liaisons électrostatiques formées (Figure 47). De plus, les solutions de polyélectrolytes doivent
étre diluées de facon suffisante afin d’éviter toute agrégation macroscopique des composés

présents en solution.
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Figure 47 : Encapsulation par coacervation complexe entre polyélectrolytes de charges

opposées (d’apres Callet A. 2010)

Les coacervats formés sont des structures homogenes dont les cceurs sont généralement
globalement neutres (neutralisation de charge par appariement de charges) et la surface est
fortement chargée. Les complexes arborent la charge du polyélectrolyte de plus haut poids
molaire (Figure 48). Cette charge de surface permet a la fois une répulsion électrostatique des

complexes et le maintien d’une dispersion homogene et stable de la suspension colloidale.
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Figure 48 : Schématisation de la formation de coacervat complexe (D apres Callet A. 2010)

Comme le décrivirent Bungenberg de Jong et al. (1929), plusieurs facteurs comme la
masse moléculaire, la concentration, le ratio de polyé€lectrolytes ainsi que du pH et de la
température du milieu réactionnel influencent la formation des coacervats. La théorie
développée par Tainaka (1980) explique le fait qu'une forte concentration en sel inhibe la
formation des complexes par masquage des charges présentes sur les polyélectrolytes ou induit

la déstabilisation des complexes.

3.5.4.2. Les propriétés physicochimiques de I’insuline
L’insuline est un polypeptide disposant de groupements ionisables portés par les résidus de

certains acides aminés. L’ insuline peut arborer de ce fait une charge globale dépendante du pH.
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Un point isoélectrique est défini pour une valeur de pH pour laquelle une €lectro-neutralité de
la molécule est observée. Li et al. (1954) ont déterminé le point isoélectrique de 1’insuline par
¢lectrophorese dans une gamme de pH comprise entre 5,3 et 5,4. En fonction du pH, 1’insuline
peut étre considérée comme un polyélectrolyte soit chargé positivement soit chargé

négativement (Figure 49).

pr
Q‘/) Tnsuline globalement nevtre @

Apparition de charges négatives |

Insuline globalement Insuline globalement
positivement charge négativement chargée

Figure 49 : Charge globale de I'insuline en fonction du pH

Les conditions idéales permettant la formation de nanoparticules d’insuline par
coacervation complexe correspondent a une valeur de pH ou D'insuline est a la fois
biologiquement active et chargée soit a la valeur du pH physiologique (pH 6,2). L’insuline peut

donc étre complexée idéalement avec un polyélectrolyte de charge positive.
3.5.4.3. Le choix du chitosane

Le chitosane est un polymere naturel, dérivé de la chitine, présentant des propriétés
particuliérement intéressantes qui en font un matériau fréquemment utilisé dans le domaine des
biomatériaux. Le chitosane présente une structure similaire a celle de la cellulose, sa structure
moléculaire consiste en un enchainement linéaire d’unités de B-D-glucosamine liées en (1—4)

(Figure 50).
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Figure 50 : Structure primaire du chitosane (Agnihotri S.A. et al., 2004)

Les groupes amines primaires confeérent au chitosane des spécificités particulieres qui le
rendent particulieérement intéressant pour des applications pharmaceutique : régénération des
tissus, reconstruction osseuse ou encore la vectorisation de molécules actives (Agnihotri S.A.
et al., 2004). Le chitosane est obtenu a partir de la désacétylation de la chitine, un
polysaccharide biocompatible d'origine naturelle et disponible en abondance (crustacés).
Toutefois, les applications de la chitine sont limitées en comparaison au chitosane. En effet, la
chitine est structurellement similaire a la cellulose mais elle est chimiquement inerte. Les
groupements d’acétamide de la chitine peuvent étre convertis en groupements amines pour
donner le chitosane; cette conversion s’effectue par traitement alcalin de la chitine. La chitine
et son dérivé, le chitosane sont des polymeéres a longue chaine ayant des masses moléculaires
pouvant aller jusqu'a plusieurs millions de daltons. Le chitosane est un polysaccharide
cationique dans des conditions de pH neutre ou basique, contenant des groupements amines
libres. Par conséquent, il est insoluble dans I'eau. Dans un pH acide, les groupements amines
peuvent subir une protonation le rendant soluble dans I'eau. Le chitosane se dégrade sous
l'action de la flore bactérienne. Il est non toxique et est facilement éliminé de 1'organisme sans
provoquer de réactions indésirables. Le chitosane possede des propriétés antimicrobiennes et
absorbe les métaux lourds comme le mercure, le cadmium, le plomb, etc... (Agnihotri S.A. et
al., 2004). Sa toxicité est nulle, le DLso du chitosane est proche de celui de composés comme
le sel ou le sucre (Arai K. et al., 1968). Le fait que le degré de désacétylation et le poids
moléculaire du chitosane puissent étre controlés en fait un matériau de choix pour le
développement de micro / nanoparticules. En effet, le chitosane offre une possibilité de controle
de la libération des agents actifs encapsulés. Il évite 'utilisation de solvants organiques dans la
fabrication de particules, car il est soluble dans une solution aqueuse acide. Le chitosane est
une polyamine linéaire contenant un nombre de groupements amines libres qui sont facilement
disponibles pour une réticulation avec des anions polyvalents. Il présente de plus d’un caractere

muco-adhésif, permet d’augmenter son temps résiduel au niveau du site d'absorption.
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3.5.4.4. Formulation de micro/nanoparticules a base de chitosane

Les systemes colloidaux polymériques ont montré une efficacité dans I'administration orale
de protéines thérapeutiques. De nombreux efforts sont en cours pour améliorer la
biodisponibilité orale de macromolécules bioactives en utilisant ces systémes de vectorisation.
Les nanoparticules formulées a partir de polymeres naturels, tels que le chitosane, sont d'intérét
en tant que porteurs de protéines (Sarmento et al., 2007). Le chitosane présente de nombreux
avantages pour le développement nanoparticulaire, dont la biocompatibilité, la
biodégradabilité, et une faible immunogénicité et toxicité (Agnihotri et al., 2004; Pandey et al.,
2005). Les propriétés mucoadhésives du chitosane sont liées a sa densité élevée de charges
positives (Plapied et al., 2010). Par conséquent, le chitosane est un candidat idéal pour
I'administration de médicaments ciblant les tissus muqueux (Sayin et al., 2009) comme la

lumiére intestinale.

Avantages

Les nombreux groupements amines libres sur le squelette du chitosane se traduisent par des
propriétés intéressantes, permettant une utilisation étendue dans des applications de délivrance
de médicaments. Dans un environnement acide, les nanoparticules se forment spontanément,
dues a I’établissement de liens intra et intermoléculaires entre les especes chargées positivement
et négativement (Veis Arthur, 2011), qui forment les complexes de polyélectrolytes ou
coacervats. Les nanoparticules formées par appariement d'ions et les interactions
¢lectrostatiques conservent l'intégrité des polymeres. L'absorption gastro-intestinale des
protéines, y compris l'insuline, peut étre améliorée par inclusion de cette derniére dans les
nanoparticules, qui la protégent contre la dégradation enzymatique. Ces transporteurs ont
amélioré les rendements d’administration de peptides par la voie orale (Xue et al., 2015), en
raison de leur rétention prolongée dans le tractus gastro-intestinal et de leur excellente
pénétration dans la couche de mucus (Jwala Renukuntla et al., 2013) médiée par les groupes
amines libres. La charge positive peut réagir avec de nombreuses surfaces chargées
négativement, y compris les membranes cellulaires, 1'acide sialique dans le mucus et les
polymeres anioniques. Ces systémes particulaires montrent également une forte affinité pour
les macromolécules chargées négativement (Mohammadpourdounighi et al., 2010), telles que
la mucine sur la surface de la muqueuse. En outre, ils sont absorbés par les cellules intestinales,

ce qui représente la voie principale d'absorption.
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Limites
Toutefois, il est bien connu que les coacervats complexes sont instables dans des milieux
contenant du sel Tainaka et al. (1980). Ainsi, ces complexes doivent étre stabilisés pour

utilisation en tant que vecteurs de médicaments (Jiexiu Chen et al., 2015 ; Xue et al., 2015).

3.5.4.5. Stabilisation
La réticulation avec du tripolyphosphate de sodium (TPP) ou la lyophilisation peuvent étre

des solutions intéressantes pour augmenter la stabilité de ces nanoparticules.

3.5.4.5.1. La réticulation

La stabilité des nanoparticules de chitosane peut étre améliorée par la réticulation en
utilisant des agents de réticulation tel que le glutaraldéhyde (Ko J.A. et al., 2002), mais ce
composé chimique ne peut étre employé dans le cadre d’un développement pharmaceutique a
cause du risque accru de toxicologie. Le tripolyphosphate, le sulfate de dextran et I’acide poly-
D-glutamique permettent de stabiliser les nanoparticules a base de chitosane (Raja MA et al.
2015) est sont utilisable compte tenu de leurs propriétés biodégradables. Le sodium
tripolyphosphate est I’agent réticulant le plus couramment utilisé, celui-ci est un anion
polyvalent avec trois groupes de phosphate et est donc chargé négativement. Cette propriété
permet la réticulation du chitosane (Rekha MR et al., 2009). Les nanoparticules se forment
spontanément en mélangeant du sodium tripolyphosphate, du chitosane, et de 1'insuline par le
biais de liaisons inter et intramoléculaires entre phosphates et groupes amines du chitosane (Wu
Y. et al., 2005). Le sodium tripolyphosphate a été utilis¢ pour améliorer la stabilité¢ des
nanoparticules en augmentant la qualité de I'interaction électrostatique. Choisi comme agent de
réticulation polyanionique, il présente 1’avantage d’étre non-toxique et de s’associer
instantanément au chitosane (de Moura et al., 2009). A des concentrations suffisantes, 1'agent
de réticulation améliore la qualité des interactions électrostatiques qui se produit au cours de la
coacervation. Cette qualité d’interaction au sein du coacervat garantit la stabilité de celui-ci en

réduisant la distance intermoléculaire, ce qui ne se produit pas dans les coacervats non-réticulés.

3.5.4.5.2. La lyophilisation
La lyophilisation est une méthode bien établie pour préserver des molécules instables sur
de longues périodes de temps, y compris les médicaments biotechnologiques, telles que les
protéines et les peptides (Sameti et al., 2002). La lyophilisation est un procédé de déshydratation
réalisé a basse température. Celle-ci consiste a éliminer I’eau contenue dans une préparation

préalablement surgelée par sublimation. La lyophilisation présente les avantages de produire
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des produits finaux de trés bonne qualité avec conservation des propriétés des composés
lyophilisés et leur permet une réhydratation (dispersion) aisée. La lyophilisation peut stabiliser
les colloides intrinséquement instables, mais peut induire 1'agrégation des nanoparticules.
L'ajout de molécules pour réduire I'énergie de surface reste avantageux. Le saccharose a été
utilisé pour inhiber l'agrégation des nanoparticules de méthoxy-poly (oxyde d'éthyléne) -poly
(acide lactique) pendant lyophilisation (Zambaux et al., 1999). Le mannitol est un autre produit
qui peut étre employé. Il s’agit d’un polyol et d’un glucide quasiment non métabolisable. I est
¢liminé de 1’organisme par les glomérules rénaux. Il est employé dans des produits

pharmaceutiques comme excipient dans la lyophilisation (Beheti A. et al., 2010).

3.5.5. La double émulsion évaporation de solvant

La double émulsion eau/huile/eau (e /h/e) est une méthode couramment utilisée pour
formuler des systemes nanoparticulaires biodégradables. La méthode classique de la double

émulsion (e/h/e) évaporation de solvant est réalisée en quatre étapes (Figure 51) :

(a) une premiere émulsion est réalisée ; une solution aqueuse (phase aqueuse) dans laquelle
le principe actif est solubilisé (cceur aqueux) est émulsionnée (agitation, ultrasons...) dans une

phase organique dans laquelle le polymere constituant la membrane de la capsule est dissout.

(b) La dispersion de la premiére émulsion (e/h) est réalisée dans une seconde phase aqueuse

pour donner I’émulsion compléte (e/h/e).

(c) La solidification : par extraction/évaporation du solvant permet la stabilisation des

particules (par précipitation du polymere).

(d) les particules sont purifiées le cas échéant ou lyophilisées en fonction de leur application.
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Figure 51 : Protocole de synthése par double émulsion eau/huile/eau

Cette méthode de formulation permet d’obtenir des particules de tailles controlées et un
haut rendement d’encapsulation. Mais cette méthode d’encapsulation présente une limite
majeure pour les composés bioactifs labiles comme les protéines. En effet, I’émulsion risque
de dénaturer la protéine et de la rendre biologiquement inactive due aux forces de cisaillement,
a I’interaction protéines-solvant lors du procédé et d’induire des effets secondaires (Meng F.T.
et al., 2003). Les solvants les plus utilisés pour solubiliser les polymeres pour cette méthode
sont le chlorure de méthyléne, I’acétate d’éthyle, le dichlorométhane etc... 11 est rapporté que
parmi les solvants les plus hydrophobes, 1’acétate d’éthyle est celui qui posséde le moins
d’effets déléteres sur les protéines encapsulées. De plus, la solubilité de I’acétate d’éthyle dans
I’eau et son haut point d’ébullition est a la fois un avantage est un inconvénient a I’utilisation
de ce solvant dans la double émulsion évaporation de solvant. En effet, sa solubilité relative
dans I’eau (8,7% m/v) permet une extraction efficace du solvant des particules en solution par
évaporation et facilite la précipitation du polymere dans la membrane en formation. Son point
d’ébullition (76°C) quant a lui rallonge le délai d’évaporation du solvant et donc la précipitation
du polymere résultant en un temps de contact prolongé entre le principe actif et le solvant. Une
double émulsion est un systéme thermodynamiquement instable, une solidification rapide peut
réduire efficacement la coalescence des gouttelettes aqueuses internes au sein de gouttelettes
d'huile. Ainsi, un moindre phénomene de « burst release » (Reix et al., 2012) et une libération
constante peuvent étre attendus.

Afin de formuler des particules stables par le biais de ce procédé, il est important de prendre
en compte un certain nombre de parameétres. L’utilisation d’agents de stabilisation (tensioactifs)

peut notamment s’avérer nécessaire. En effet, ceux-ci ont un role important dans la production
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de nanoparticules car ils réduisent la tension interfaciale entre les phases lipophiles et
hydrophiles de la nano-émulsion et simplifient la formation de nanoparticules en stabilisant
celles-ci pendant 1'émulsion. Les tensioactifs sont classés comme anionique (charge négative),
cationique (charge positive), zwitterionique ou amphotere (chargé en fonction du pH du milieu)
et non ionique (non chargé). Les tensioactifs non ioniques sont couramment utilisés dans des
formulations pharmaceutiques pour améliorer la biodisponibilité aprés administration orale de
principes actifs hydrophobes. Ces tensioactifs non chargés ont plusieurs avantages: (a) ils sont
plus hydrophobes que les tensioactifs ioniques, (b) ils possédent une meilleure capacité a
dissoudre les médicaments insolubles dans 1'eau, (c) ils sont, de facon générale, moins toxiques
pour les membranes biologiques et (d) plusieurs tensioactifs non ioniques se sont avérés
influencer la pharmacocinétique des médicaments en modulant I’efflux de pompes
membranaires telles que la P-glycoprotéine (P-gp) ou la protéine MDR (Multi Drug Resistant
protein). Les tensioactifs sont a la fois hydrophiles et lipophiles, et sont caractérisés par
I’équilibre de ces deux propriétés rapportées par la valeur HLB (Hydrophilic-Lipophilic
Balance). Le systeme HLB est le rapport entre les portions hydrophiles et la partie lipophile du
tensioactif. Cette propriété décrite des tensioactifs impacte la qualité des particules. En effet,
un tensioactif a haute valeur de HLB peut entrainer la déstabilisation de I’émulsion alors qu’un
tensioactif de basse valeur de HLB crée une instabilité entre les objets. Les Pluronics (oxyde-
b-oxyde de polypropyléne-b-polyéthyléne copolymere oxyde tri bloc polyéthyléne) et 1'alcool
polyvinylique (PVA) sont classés parmi les tensio-actifs non-ioniques et ont diverses
applications dans divers domaines biomédicaux allant de I’administration de médicaments a
l'imagerie médicale en passant par la gestion des maladies et des troubles vasculaires.
L’utilisation d’un tensioactif (alcool polyvinylique (PVA)) peut étre nécessaire pour permettre
la stabilisation des émulsions formées. Celui-ci maintient la structure de la membrane
polymérique.

Les polymeres biodégradables employés dans la double émulsion sont 1’acide poly lactique

(PLA), la polycaprolactone, 1’acide poly (lactique-co-glycolique) (PLGA).

3.5.5.1. Le PLGA
Les matériaux biodégradables sont soit naturels ou d'origine synthétique et sont dégradés in
vivo, que ce soit par voie enzymatique ou non enzymatique voire les deux. Les sous-produits
sont ensuite €liminés par les voies métaboliques. Depuis quelques années, on note une
recrudescence du nombre de parutions faisant référence aux biomatériaux employés soit comme

adjuvant soit comme composant majeur dans la formulation de dispositifs a libération
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prolongée/controlée de médicaments. Ces biomatériaux peuvent étre classés comme étant (a)
des polymeres synthétiques biodégradables, qui comprennent des matériaux relativement
hydrophobes tels que les acides alpha-hydroxy (une famille qui comprend le PLGA), les poly
anhydrides, etc., et (b) des polymeres d'origine naturelle, tels que des sucres complexes (le
chitosane) et inorganiques (hydroxyapatite). Parmi tous ces biomatériaux, le PLGA (Figure 52)
a montré un immense potentiel en tant que vecteur de médicament et comme structure pour
l'ingénierie tissulaire. Le PLGA appartient a la famille de polymeéres biodégradables approuvés
par la FDA (Food and Drug Administration) qui sont biocompatible et ont été largement étudics
en tant que vecteur de médicaments, de protéines et divers autres macromolécules telles que
I'ADN, I'ARN et des peptides. Le polyester PLGA est un copolymere d'acide poly lactique
(PLA) et d'acide poly glycolique (PGA) (Figure 52).

O,

Acide

et Vindiquent le nombre de répétitions de chaque unités

Figure 52 : Formule chimique du PLGA.

La dégradation du PLGA peut étre utilisée pour la libération prolongée du médicament a
des doses souhaitables par implantation sans procédure chirurgicale. En outre, il est possible
d'ajuster les propriétés physiques globales de la matrice polymére-médicament en contrdlant
les paramétres pertinents tels que le poids moléculaire du polymeére, le rapport acide lactique/
acide glycolique et la concentration du médicament pour obtenir une dose et un intervalle de

relargage souhaité en fonction du type de médicament encapsulé.

3.5.5.2. Connaissances sur les NPs de PLGA

Les particules en PLGA sont des vecteurs de médicaments courants et tres efficaces, en
général congus comme une capsule creuse encapsulant un principe actif, enveloppé d’une
membrane en polymere jouant le role de protection (Figure 43A). Elles présentent des diameétres
d'environ 200 nm et peuvent étre entourées d'un stabilisant comme I'alcool polyvinylique (PVA)
par exemple qui est un stabilisant couramment utilisé et qui détermine la charge de surface de
ces particules (-5mV). Il est rapporté dans la littérature 1’efficacité des nanoparticules de PLGA
comme transporteurs de médicaments. En effet, celles-ci augmentent le passage des

médicaments au travers des barri¢res biologiques tels que la barriere hémato-encéphalique
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(Costantino Luca et al., 2006) ou la muqueuse gastro-intestinale (Alf Lamprecht et al., 2001),
mais Reix etal ., (2012) ont démontré que les particules de PLGA chargées d'insuline présentent
une biodisponibilité faible, inférieure a 20%, lorsqu’elles sont administrée par voie
intraduodénale chez le modele de rats diabétiques. Ceux-ci suggerent I'intérét d’une
modification des propriétés de surface des nanoparticules pour les rendre mucoadhésives afin

d'améliorer leur biodisponibilité.

3.5.5.3. La mucoadhésion

Les caractéristiques colloidales, la taille des particules et leur charge de surface sont
considérés comme les déterminants les plus importants dans la capture cellulaire et le trafic des
particules. La mucoadhésion est une autre approche de formulation prometteuse pour améliorer
la biodisponibilité de l'insuline encapsulée (Yu QIAN et al. (2013) (US 2013/0034602) ; Fei
Yu et al (2015)). L'intérét de la mucoadhésion est de créer une interaction entre les particules
et la couche de mucus intestinal de maniére a augmenter le temps de résidence des particules
au contact des entérocytes et donc de favoriser l'absorption et I’augmentation de la
biodisponibilité de l'insuline encapsulée. Afin de créer une interaction mucus/particules, les
particules de PLGA doivent étre modifiées; la stratégie couramment utilisée consiste a revétir
les particules d’un manteau fait d’un polymere possédant des propriétés mucoadhésives (Noha
Nafee et al., 2007). Le chitosane présente de nombreux avantages dans le développement de
particules (Diop et al., 2015), y compris la biocompatibilité, la biodégradabilité, et une faible
immunogénicité. Les propriétés mucoadhésives du chitosane sont liées a la densité de charges
positives élevées (Plapied et al., 2010). Les particules de PLGA revétues de chitosane sont
générées par une approche physique, basée sur une interaction électrostatique comme le
décrivent Yue Yu Zhou et al., (2010). La simplicité de ces complexes de polyélectrolytes auto-
assemblés est un avantage et un inconvénient. En effet, les complexes sont faciles a produire
mais sont toujours caractérisés par une large distribution de tailles pouvant influencer leur
absorption cellulaire.

Le greffage de motifs polyéthyléne glycol (PEG) a la surface des particules de PLGA est
une autre stratégie intéressante (Park Jason et al., 2011). En effet, la modification chimique d'un
polymere comme le chitosane avec du PEG augmente la biocompatibilité de celui-ci (Zhang et
al., 2002) et réduit son adsorption sur les protéines plasmatiques circulantes. L’enrobage de
particules avec le PEG s’est avéré avoir un grand potentiel dans la protection des particules en
raison de la répulsion stérique résultant d'une perte d'entropie de configuration des chaines de

PEG liée a leur mouvement rapide dans des milieux aqueux. En outre, les PEG hydrophiles
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peuvent former une coque extérieure hydratée protégeant ainsi les particules, permettant une
absorption rapide, une extension de la demi-vie de la molécule encapsulée, une meilleure
distribution tissulaire (Parveen Suphiya et al., 2011) et enfin générant des particules hautement

chargées négativement.

3.5.6. Limite des systémes nanoparticulaires a I’administration orale

Afin de mettre a I’insuline de rejoindre la circulation générale aprés son administration par
voie orale, son encapsulation dans des systémes nanoparticulaires représente un atout majeur.
En effet D’encapsulation de ID’insuline dans une matrice polymérique 1’isolerait de
I’environnement empéchant ainsi la dégradation du principe actif par hydrolyse. Les
nanoparticules sont cependant sensibles au pH et ne résiste pas au pH acide de I’estomac ce qui
a pour conséquence la libération du principe actif encapsulée et sa dégradation dans le milieu
stomacal. L’encapsulation de I’insuline dans des systémes nanoparticulaires est un moyen
majeur vers |’obtention d’une efficacité biologique de I’insuline administrée par voie orale mais
celle-ci doivent étre protégé tout au long de leur temps de résidence dans 1’estomac contre le

pH et I’activité enzymatique.

3.5.7. Nanotechnologie et affaires réglementaires

L’Agence européenne du médicament (European Medecines Agency, EMEA) définit la
nanotechnologie comme la production et 1’application de structures, de dispositifs et de
systémes caractérisés par la forme et la taille de matériaux a 1’échelle nanométrique, de 0.2 a
100 nm. L’application des nanotechnologies dans le but de traiter, de prévenir les maladies ou
encore d’établir un diagnostic médical, définit la nano médecine. De nos jours, les principales
utilisations des nano-objets dans le domaine médical sont essentiellement la vectorisation des
médicaments, ’imagerie médicale, la thérapie génique, la délivrance des vaccins et le
traitement hyperthermique des tumeurs. Les nano-objets peuvent étre de nature biodégradable
ou non biodégradable. Les nanoparticules biodégradables comprennent les liposomes et les
nano-émulsions. Ceux-ci sont des systemes colloidaux vésiculaires, biocompatibles et
biodégradables, composés d’une ou de plusieurs bicouches de phospholipides. Ils sont utilisés
comme vecteurs permettant d’améliorer 1’efficacité et la sécurité des principes actifs. Parmi les
nano-objets biodégradables, on trouve ceux a base de polymeéres. On distingue de plus les
micelles, les nanospheres, les nanocapsules et les polysomes. Ces systemes se caractérisent par
leurs structures et leurs propriétés physico-chimiques et permette une libération progressive des

principes actifs au fur et a mesure que le polymere se dégrade dans I’organisme. Les nano-
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objets non biodégradables sont principalement de nature métallique possédant souvent des
propriétés magnétiques. Ces nanostructures en métal ont été développées pour des applications
comme la réparation des tissus, la vectorisation des médicaments, I’imagerie en résonance
magnétique et dans I’hyperthermie des tumeurs malignes. De par son potentiel en terme
médical, la production et I’administration de ses nanostructures doit s’inscrire dans un cadre
réglementaire. Cette réglementation est la source de «guidelinesy définissant leur critere de
pureté, leur toxicité (principe actif sous forme de nanoparticule), les solvants a utiliser et a

proscrire ainsi que leur taux dans la formulation finale.

3.5.7.1. Solvant résiduels

L’ICH (International Conference on Harmonisation of Technical Requirements for
Registration of Pharmaceuticals for Human Use) définit les limites de teneur en solvants
pouvant subsister dans le produit fini des principes actifs, des excipients et des médicaments.
La pharmacopée européenne indique la nécessité de rechercher dans 1’ensemble des produits
pharmaceutiques d’éventuelles traces de solvants qui subsisteraient apres le processus de
fabrication. Les solvants employés ainsi que les taux résiduels doivent étre consignés dans le
dossier de demande de mise sur le marché. En effet, ceux-ci n’ayant aucun avantage
thérapeutique, il est nécessaire de les éliminer autant que possible pour satisfaire aux exigences
de qualité (Jean Yves Pabst, 2007). La classification des solvants tient compte de leur toxicité.
Ainsi les solvants de classe 1 (acide acétique, acétone, butanol...) sont a proscrire dans la
fabrication de médicaments sauf si leur utilisation s’avere indispensable au regard du rapport
bénéfice sur risque. Les solvants de classe 2 (acétonitrile, cyclohexane, chlorobenzene...)
doivent avoir une utilisation limitée dans les préparations pharmaceutiques et enfin les solvants
de classe 3 (acétate d’éthyle, acétate de propyle, éthanol...) qui doivent étre utiliser en priorité
dans la fabrication de composés pharmaceutiques.

La pharmacopée européenne décrit les modeles analytiques permettant de les identifier en
décrivant la préparation des solutions a analyser (concentration, diluants...) et les taux résiduels

acceptables dans les échantillons (1000 ppm ou 0,1% dans le cas de I’acétate d’éthyle).

3.5.7.2. Toxicité nanoparticulaire
La taille des nanoparticules leur confere des propriétés physiques, chimiques ou
biologiques. Comme toute substance administrée, leur devenir dans I'organisme ainsi que leur
toxicité potentielle dépend de ces propriétés physico-chimiques et doivent faire I’objet d’une
analyse approfondie. Cependant, en raison notamment des propriétés spécifiques lices a leur

taille, les connaissances scientifiques sur les substances classiques ne sont pas directement
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transposables aux formes nanoparticulaires. Si I’absence de toxicité du principe actif vectorisé
est connu, la structure dans laquelle il est encapsulé risque d’en modifier la toxicité. D’un point
de vu réglementaire, les nanoparticules sont considérées comme un nouveau principe actif lors
des études toxicologiques. En effet, la forme nanoparticulaire peut engendrer des risques
spécifiques (formation d’agglomérats), véhiculer par adsorption des impuretés, générer par
dégradation ou solubilisation des matériaux qui les constituent, des produits toxiques, franchir
des barrieres physiologiques (hémato-encéphalique, foeto-placentaire, membranes cellulaires
et nucléaires, etc.). Ces nouveaux systémes constituent ainsi un nouveau domaine d’évaluation
toxicologique. Malgré la progression des connaissances scientifiques, les incertitudes restent
importantes quant aux effets des nanoparticules sur la santé. Les effets d’une exposition chez
I’homme peuvent étre trés divers et complexe a appréhender (r-nano, nanogenotox). Malgré le
défaut de textes réglementaire spécifique aux nanoparticules, il est possible de se référer au
document « Technical Guidance Documents for New and Existing Substances for Assessing
the Risks of Nanomaterials » de la commission européenne publi¢ en 2007 (AFSSAPS, 2008)
qui sans étre spécifique aux nanoparticules renferme des éléments qui leur sont applicables.
Ainsi, il est nécessaire de mettre au point et de valider des méthodes in vitro permettant de se
renseigner par exemple sur la cytotoxicité, la génotoxicité, la reprotoxicité, I’immunotoxicité,
et le risque de formation d’agrégats des nanoparticules. De plus, des études in vivo devront étre
conduites en y incluant I’évaluation de paramétres biologiques, hématologiques et
anatomopathologiques aprés une seule administration ou en administration réitérée des
nanoparticules chez le modé¢le animal.

L’évaluation de la sécurité des nanoparticules se base sur les stratégies conventionnelles
d’évaluation de la sécurité des médicaments. Elle doit se conformer aux critéres comme celui
d’évaluer le caractere adéquat des méthodes d’évaluation de la sécurité, de 1’efficacité et de la
qualité des produits sous forme nanoparticulaire mais également de promouvoir le
développement de nouvelles méthodes de caractérisation, d’évaluer le comportement et le

devenir in vitro et in vivo des produits sous forme nanoparticulaire.

4. Encapsulation de I’insuline pour administration per os

Pour rejoindre son site d’absorption, I’insuline doit étre protégée tout au long de son trajet
dans le tractus gastro-intestinal. Il lui faut étre protégée d’une part du pH acide et de I’activité
enzymatique de I’estomac, d’autre part du pH basique et de 1’activité enzymatique de I’intestin

et enfin lui permettre de traverser 1’épithélium intestinal pour rejoindre la circulation portale.
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Pour permettre une administration de I’insuline par voie orale, il faut que la solution proposée
puisse permettre a I’insuline d’échapper a toute forme de dégradation le long de son trajet et lui

permettre de passer dans le systéme circulatoire.

4.1. Solution proposée dans la littérature

Des solutions sont proposées dans la littérature permettant une double encapsulation de
I’insuline en vue de son administration par voie orale basée sur la formulation de
nanoparticules. En effet, Yu QIAN et al. (2013) déposent un brevet d’invention (US
2013/0034602) sur cette approche. Ce brevet protege un concept de double encapsulation de
I’insuline lui permettant de franchir le tractus gastro intestinal sans risque de dénaturation en
vue de son administration per os. Les inventeurs ont développé des nanoparticules
mucoadhésives (afin d’augmenter leur absorption intestinal) a base de PLGA par double
émulsion évaporation de solvant. Les nanoparticules sont ensuite encapsuler dans un vecteur
gastrorésistant. Ainsi I’insuline administrée par voie orale réduit la glycémie chez le modele
streptozotocine de rat diabétique. Fei Yu et al (2015) ont publié¢ des travaux portant sur une
triple encapsulation de I’insuline. En effet, les auteurs ont formulé des nanoparticules en PLGA
par double émulsion évaporation de solvant encapsulant I’insuline. Celles-ci sont ensuite
encapsulées dans des microparticules puis dans un véhicule gastrorésistant a base d’alginate.
Les résultats obtenus par Yu Qian et al. (2013) sont confirmés par ceux de Fei Yu et al. (2013)
en obtient une réduction de la glycémie apres administration orale de I’insuline encapsulée. Ces
données montrent I'intérét d’une double encapsulation de [I’insuline en vue de son
administration orale de I’insuline. Cette multiplicit¢ de niveau d’encapsulation offre une

protection du principe actif au niveau de chaque segment du tube digestif.

4.2. Solution proposée par dans le consortium ORAIL

Le Centre européen d’étude du Diabete en collaboration avec 1’Institut Charles Sadron ont
développé un vecteur pharmaceutique complexe (brevet CeeD/CNRS : W02004096172) en
vue d’administrer 1’insuline par voie orale. Celui-ci est basé sur le double encapsulation (2
niveaux) de I’insuline (Figure 53):

- Dans le premier niveau d’encapsulation, I’insuline peut étre encapsulée dans une
enveloppe polymérique (formulation par la méthode de double émulsion eau/huile/eau
en présence de PLGA (acide poly (lactique-co-glycolique)) ou par la formation de
coacervats en présence de chitosane (coacervation complexe) pour former des

nanostructures appelées particules (NP). Ces nanoparticules doivent étre obtenues a
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partir de polymeres bio tolérés, d’une formulation ne nécessitant pas de solvant,
présentant une taille inférieure a 500 nm permettant leur passage a travers la barriere
intestinale. Elles ont pour objet d’encapsuler efficacement [’insuline, d’étre
suffisamment stable en milieu intestinal pour y protéger le principe actif et lui permettre
d’étre transporté de la lumiére intestinale vers le sang.

- Dans le deuxieme niveau d’encapsulation, les NP sont encapsulées dans un vecteur
gastro résistant. Celui-ci est composé d’un dispersant lipophilique dans lequel les
nanoparticules d’insuline sont dispersées, encapsulées/recouvertes d une tunique gastro
résistante qui a pour objectif de protéger les particules dans le milieu gastrique et

permettre leur libération dans le milieu intestinal site cible d’absorption du principe

actif.
Insuline *
Nanoparticule
Enveloppe en polymére O | D
1
|
i -:) Gélule Gastrorésistante : enc]a?:sﬁ:ion
1
1% nliveau 2¢ niveau
d’encapsulation d’encapsulation

Figure 53 : Principe de la double encapsulation (brevet CNRS/CeeD W0O2004096172).

5. Objectif de la thése

Les objectifs poursuivis lors des travaux réalisés au cours de cette these étaient dans une
premicre phase de mettre en place une méthode permettant de formuler un systéme
nanoparticulaire par coacervation complexe entre I’insuline et le chitosane. Cette méthode de
formulation doit générer des nanoparticules stables permettant leur caractérisation, leur
validation in vitro sur des modeles d’épithélium intestinal et in vivo sur un modele de rat
insulinopénique. La seconde phase était de transposer les connaissances acquises dans le
développement des nanoparticules a base de chitosane sur les nanoparticules de PLGA obtenues
par double émulsion évaporation de solvant afin d’en modifier les propriétés de surface. La
modification de surface a pour but de les rendre mucoadhésives pour augmenter la
biodisponibilité de I’insuline encapsulée. La troisieéme partie était enfin d’optimiser le protocole

de syntheése des nanoparticules a 1’échelle préindustrielle. La derniére partie de la thése

78



consistait a optimiser le vecteur pharmaceutique complexe renfermant les nanoparticules
d’insuline optimisées et a valider son efficacité biologique aprés administration par voie orale

chez le rat.
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II1. Matériel et méthode



1. Préparation des nanoparticules de chitosane

1.1. Matériel

Le chlorhydrate de chitosane (CL113) (Figure 54) présente un degré de désacétylation de
75 4 90% et une masse moléculaire comprise entre 70 000 et 150 000 Da (Protasan UP CL113).
Ce chitosane hydrosoluble a une production standardisée et est commercialisé par Nova Matrix
(FMC BioPolymer, Norvege). De par ses propriétés, le chitosane (CL113) est un candidat de

choix pour la formulation de nos nanoparticules.

[ cH,0H 1
H 0]
N H
olkon H 0
H
H NHCOCH3 H NH3+ C|'

- —n
Figure 54 : Schéma de la molécule du chlorure de chitosane (CL 113)

La solution mere d’insuline utilisée peut étre préparée soit a partir d’insuline cristalline
(Sigma Aldrich, Etats-Unis) (Figure 55) dissoute dans de 1’acide chloridrique (HCI) (Sigma
Aldrich, Etats-Unis) a 10 mM avec réajustement du pH a 7,2 avec de I’hydroxyde de sodium
pour une concentration finale de 3,5 mg/mL, soit a partir d’insuline couplée a I’isothiocyanate
de fluorescéine (FITC) (Sigma Aldrich, Etats-Unis) (Figure 56) soluble dans I’eau pour la
formulation de nanoparticules fluorescentes, ou encore I’insuline commerciale Umuline®
(Umuline®100 IU/ml, Eli Lilly Pharma, Etats-Unis). Le mannitol est fourni par Sigma Aldrich
(Etats-Unis)
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Figure 55 : Schéma de la molécule d’insuline
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Figure 56 : Représentation schématique de la molécule d’insuline couplée au
groupement FITC
Le sodium tripolyphosphate d’une masse molaire de 367 g/mol (Figure 57) se présente
sous forme de poudre blanche et est commercialisé par Sigma Aldrich (Etats-Unis).
o0
P P P Na*

5
Figure 57 : Schéma de la molécule du tripolyphosphate de sodium

L’eau déminéralisée ultra pure (MilliQ) utilisée dans ces études est obtenue par un

dispositif d’ultra filtration de paillasse développé par Millipore (Millipore, Etats-Unis).

1.2. Formation d’un polyélectrolyte complexe

Une solution mere de chitosane a la concentration de 1 mg/mL est préparée en dissolvant
le polymeére dans de I’eau déminéralisée. La solution de chitosane est maintenue sous agitation
(300 tr/min) a température ambiante (20°C) pendant 24 heures pour permettre une dissolution
et une homogénéisation de la solution.

Dans un tube a essai de 12 mL, un volume de 500 pL de la solution de chitosane est placé
sous agitation (300 tr/min). Une solution d’insuline y est ajoutée goutte a goutte manuellement
grace a une seringue surmontée d’une aiguille 27G a une vitesse de 2 gouttes par seconde
(environ 5 min de temps d’ajout). Le mélange est maintenu sous agitation pendant 30 minutes
pour permettre la formation et la stabilisation des nanoparticules (figure 58). Du fait de la
présence du groupement FITC sur I’insuline, celle-ci ne peut étre complexée seule avec le

chitosane pour former des nanoparticules. Un ratio 1/9 d’insuline FITC/insuline non marquée
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est requis pour encapsuler efficacement I’insuline et ainsi formuler des nanoparticules

¥

-
|

fluorescentes pour les besoins des études in vitro.

500 pL -
. Solution d’insuline
43,5 mg/mL

-

W

30 minutes de maturation

j Solution d’insuline
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Figure 58 : Protocole de synthése des nanoparticules de chitosane/insuline par coacervation

complexe

1.3. La réticulation

La réticulation consiste en I’introduction de charges négatives supplémentaires dans le
coacervat afin d’y ajouter des liaisons supplémentaires et ainsi améliorer la stabilité des
nanoparticules.

Une solution mere de tripolyphosphate de sodium est préparée dans de I’eau déminéralisée
a une concentration de 27 mmol/L. Une fois les particules formées (Figure 58), 50 uL de la
solution de tripolyphosphate sont ajoutés manuellement gouttes a gouttes grace a une seringue
et une aiguille 27G. Les complexes sont gardés sous agitation (300 tr/min) pendant 30 minutes

supplémentaires apres 1’ajout de la solution de tripolyphosphate de sodium (Figure 59).
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Figure 59 : Protocole de synthese des nanoparticules de chitosane/insuline réticulées par

coacervation complexe

1.4. La lvophilisation

La lyophilisation consiste en la sublimation du solvant dans laquelle les nanoparticules sont
dispersées. Cette approche permet de faire passer I’eau de son état liquide a gazeux tout en
préservant la structure des nanoparticules et la biofonctionnalité du principe actif encapsulé.
Cette lyophilisation peut s’opérer en présence ou non de cryoprotecteur comme le mannitol
(Sigma Aldrich).

Un bain de carboglace/isopropanol permet la surgélation de la suspension colloidale dans
un ballon de lyophilisation d’un volume de 100 mL. Une fois surgelé, le ballon est raccordé au
lyophilisateur de paillasse Freeze-one (Labconco, Etats-Unis) qui permet de maintenir le vide
dans le ballon (0,036mbar), a une température de -50°C et pendant 12 heures.

L’introduction du cryoprotectant s’effectue avant la phase de surgélation. Apres plusieurs
essais, la quantité de mannitol a introduire est déterminée. Une masse de 5 mg de D-mannitol
est dissoute dans chaque millilitre de suspension nanoparticulaire (5 mg/mL); ceux-ci sont
surgelés avant la lyophilisation. Une fois le lyophilisat récupéré, celui-ci est dispersé dans de

I’eau déminéralisée en fonction de la concentration finale souhaitée (Figure 60).
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Figure 60 : Protocole de lyophilisation des nanoparticules de chitosane/insuline.

1.5. Combinaison des deux approches

La coacervation complexe est une méthode qui permet la combinaison de la réticulation et
de la lyophilisation en vue d’augmenter la stabilité¢ des nanoparticules de chitosane. Afin de
bénéficier des avantages des deux approches, celles-ci peuvent étre combinées (Figure 61). Les
nanoparticules une fois obtenues par coacervation peuvent étre réticulées et lyophilisées selon

les deux protocoles décrits ci-dessus.

Coacervation
complexe
chitosane/insuline
Réticulation
au sodium
tripolyphosphate

Lyophilisation

Avec
D-Mannitol

Sans
D-Mannitol

—‘[ Caractérisation, Validation biologique }*

Figure 61 : Protocoles de formulation des nanoparticules de chitosane/insuline.
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2. Préparation des particules par double émulsion évaporation de solvant

2.1. Matériel

Le PLGA (Resomer® RG 502H) de masse moléculaire 14 000 Da est fourni par Boehringer
Ingelheim (Allemagne) (Figure 62). Le Pluronic® F68 est en provenance de BASF (Etats-
Unis). L’acétate d’éthyle de grade pharmaceutique est fourni par Carlo Erba (France). Le
PLGA-Pegylé (PEG-Block) de masse moléculaire de 9 000 Da est synthétisé sur demande par
Specific polymers (France). Le chlorhydrate de chitosane (CL113) (Figure 54) d’un degré de
désacétylation de 75 a 90% et d’une masse moléculaire de 70 000 a 150 000 Da (Protasan UP
CL113) est fourni par Nova Matrix (FMC BioPolymer, Norvege). Le PVA 18-88 d’une masse
moléculaire de 130 000 Da, I’insuline cristalline, I’insuline FITC, le D-mannitol, le chlorure de
sodium (NaCl), le sulfate de sodium (NaSO4), 1’acétonitrile, le bicarbonate de sodium
(NaHCO:3) et carbonate de calcium (CaCOs3) proviennent de Sigma Aldrich (Etats-Unis).
L’Umuline® et I’Insuman® sont gracieusement fournis respectivement par Eli Lilly (Etats-
Unis) et Sanofi Aventis (Allemagne). Nous nous sommes procuré de 1’alginate de sodium
aupres d’Alfa Aesar (Etats-Unis) et de 1’huile pharmaceutique Mygliol 812 aupres de Caesar &
Loretz GmbH (Allemagne).

O

H

HOT o]
e

X = le nombre d’unités d‘acide lactique
Y = le nombre d’unités d’acide glycolique

Figure 62 : Représentation schématique de la chaine de PLGA.

2.2, Double émulsion évaporation de solvant

2.2.1. Synthése a ’échelle du laboratoire

Une masse de 200 mg de PLGA et 100 mg de Pluronic F68 sont dissouts séparément dans
500 pL d’acétate d’éthyle dans des contenants en verre hermétiquement fermés a 37°C. La
solution de Pluronic est transvasée dans la solution de PLGA et celles-ci sont homogénéisées.
Le tube en verre contenant la solution de polymere est placé dans un bain de glace. 400 pL de
phase aqueuse (solution d’insuline) sont ensuite introduits dans la solution de polymeéres (phase

organique). Une premiere dispersion correspondant a la D1 est réalisée par ultrason (66W)
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pendant 15s. Puis un volume de 2 mL d’une solution aqueuse de PVA a 2,5% (m/v) est ajouté
a la premiere dispersion. La seconde dispersion (D2) est alors réalisée par ultrason (66W)
pendant 10s. La dispersion obtenue est alors transvasée dans un cristallisoir contenant 10 mL
d’une solution aqueuse de PVA a 0,15% (m/v) sous agitation (130 tr/min) permettant

I’extraction du solvant par évaporation (Figure 63).

Préparation des solutions m _- -u
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e ‘

| — | —
Solution de PLGA Salution de Pluronic ® F68 . :
200 mg de PLGA 100 mg de Pluronic® Selution:ds-polymices
500 ul. d'acétate d'éthyle 500 ul. d*acétate d*éthyle "Pl;‘ﬁ-“ * Pluronic
Préparation des nanoparticules s
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Insuline Concentration croissante 2 %
Jéme dispersion
Mélange par Ultrason Mélange par Ultrason

Figure 63 : Protocole de formulation des nanoparticules par double émulsion

évaporation de solvant.

2.2.2. La modification de surface

2.2.2.1. La formulation de nanoparticules PEGylées ou sans tension actif par

double émulsion évaporation de solvant

La formulation de particules sans tensioactif (sans PVA) ou avec du PLGA-Pegylé suit
le méme protocole (Figure 63) en remplacant la solution de PVA par I’eau déminéralisée et le

PLGA par du PLGA-Pegylé.

2.2.2.2. Recouvrement des nanoparticules de PLGA par du chitosane

Le recouvrement des particules de PLGA se base sur le principe d’une interaction
¢lectrostatique entre le poly¢lectrolyte de charge positive et 1a nanoparticule de charge négative.
Une solution mere de chitosane (CL 113) est préparée a la concentration de 7 mg/mL dans de

I’eau déminéralisée. Un volume de 1,5 mL de la solution de chitosane est mélangé avec 400 pl
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de suspension de nanoparticules dans un tube a centrifuger de 50 mL. Ce mélange est placé
sous agitation pendant 1 heure pour permettre un recouvrement optimal des nanoparticules. Une
étape de centrifugation (20 000 g a 25°C) permet d’enlever le chitosane en exces. Les
nanoparticules sont ensuite remises en suspension dans 400 pL d’eau déminéralisée (Figure

64).

1,5 mL d’une solution Agitation en trois dimension Centrifugation a 20 000g Elimination du chitosane
de chitosane a 7 mg/mL pendant | heure et a température pendant 1 heure a 20°C non complexé et reprise
+ ambiante du culot dans de I"eau
400 pL de la suspension déminéralisée
de particules

Figure 64 : Protocole de recouvrement des nanoparticules avec du chitosane par interaction
électrostatique.

2.2.3. Svnthése a I’échelle préindustrielle

Une masse de 120 g de PLGA et une masse de 60 g de Pluronic® F68 sont dissouts
séparément dans 300 mL d’acétate d’éthyle dans des erlenmeyers hermétiquement fermés a
température ambiante (25°C) pendant 48 heures sous agitation (300 tr/min). La solution de
Pluronic est réchauffée pendant 25 minutes a 75°C, la solution de PLGA pendant 10 minutes a
45°C. La solution de Pluronic est transvasée dans la solution de PLGA et celle-ci sont
homogénéisées. La solution organique est déversée dans la cuve du Becomix® (A. Berents
GmbH & Co. KG, Allemagne), un mélangeur rotor-stator industriel d’une capacité de 5 litres,
dont la température est préalablement réglée 25°C. Apres un temps de refroidissement 20
minutes pour que la solution de polymeres atteigne 30°C, un volume de 240 mL d’insuline
(Umuline® ou Insuman®) y est introduit. Apres fermeture du Becomix®, la premicre
dispersion (D1) est réalisée a la vitesse de 22 m/s pendant 5 minutes. La seconde dispersion est
réalisée en ajoutant dans le réacteur un volume de 1200 mL de solution aqueuse (eau
déminéralisée ou solution de PVA a 1% (m/v)). L’homogénéisation est réalisée a 22 m/s
pendant 5 minutes. Afin d’extraire le solvant, la cuve du Becomix est mise sous vide (110 mbar)
et les particules sont maintenues sous agitation grace a une pale tournant a une vitesse de 1 m/s.
La température de la cuve est augmentée de 5 degrés toutes les 30 minutes pour atteindre 35°C

en une heure. Toutes les heures a compter du début de I’évaporation et ce pendant 5 heures, un
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prélevement est réalisé afin de suivre la cinétique d’évaporation du solvant et des parametres
granulométriques (Figure 65).

Apres synthese, les particules sont caractérisées (mesure de taille, de potentiel zéta et de
I’efficacité d’encapsulation) et validées en in vivo par administration orale des particules soit
libres, soit encapsulées dans le vecteur complexe.

Mélange des solutions de

PLGA et de Pluronic F68

(55°C) : ! : 2
@ Vitesse de la pile (mode Vitesse de la pale (mode Vitesse de la pale (mode

droite) : 1 m/s droite) : 1 m/s gauche) : 1 m/s

&

’ . Solution aqueuse de
@ S o Denmmioll PVA 4 1% ou Eau

thermostatée a 25°C Cuve du Becomix®
(température avec les thermostatée a 30°C pendant

solutions 33°C) g§ QB 30 min puis 35°C

Insuline (Umuline® Vitesse de I’homogénéisateur Vitesse de I’homogénéisateur Mise sous vide de la cuve

ou Insumant®) (rotor-stator) : 22 m/s (rotor-stator) : 22 m/s (110mbar) grice 4 une pompe
a membrane.
Prélévements effectués a
Premiére dispersion D1 Premiére dispersion D2 intervalle régulier (suivi de la

taille et du solvant résiduel).

B— RIS

Figure 65 : Protocole de synthese des nanoparticules a l’échelle préindustrielle
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3. Caractérisation

3.1. Mesure de la taille

La taille des particules est mesurée par diffusion dynamique de la lumiére ou DLS pour
dynamic light scattering. Cette technique permet de déterminer la taille des nanoparticules en

suspension par mesure des variations aléatoires d'intensité de la lumiere diffusée (Figure 66).

Mesure de taille pour
échantillons dilués

Mesure de taille pour
échantillons concentrés

|
T
I \| Capteur de
oy [ . lumiére
532 nm, 10 mW 0o sl

Dilution des échantillons dans I’eau déminéralisée :
Nanoparticules en PLGA : 1/500¢
Nanoparticules en Chitosane : 1/200¢

Figure 66 : Principe de la diffusion dynamique de la lumiere.

Cette technique est fondée sur la mesure du mouvement brownien des particules
(mouvement aléatoire des particules provoqué par les impacts des molécules du solvant sur la
surface des particules). La fréquence et I’amplitude de ce mouvement brownien dépendent de
la taille des particules et de la viscosité du solvant. La vitesse de déplacement des particules
définie par le coefficient de diffusion translationnel (Dy) qui, selon la loi de Stokes-Einstein, est

en relation avec le diaméetre hydrodynamique des particules (taille des particules).

kT

Equation de Stokes-Einstein : [, = ﬁ
mnD,

Avec :
o D le diametre hydrodynamique, donc la taille des particules en suspension,
o D le coefficient de diffusion transversal obtenu par la diffusion dynamique de la
lumiére,
o Kg la constante de Boltzmann,
o T latempérature (controlée par systeme Peltier),

o 1 la viscosité du solvant.
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Cette technologie permet d’obtenir la taille moyenne des nanoparticules en dispersion. La
mesure s’effectue dans un environnement dilué, dans un volume utile de mesure de 1 mL d’eau
déminéralisée. Dans une cuve, sont respectivement dilués 2 pL de suspension de nanoparticules
de PLGA ou 20 pL de suspension de nanoparticules de chitosane. Aprés homogénéisation, la
mesure est réalisée trois fois pour chaque échantillon grace au granulométre Horiba Nanopartica
SZ100 (Horiba, Japon). Ce granulométre permet de mesurer la taille des particules selon deux
angles de mesure en fonction de la concentration des échantillons. Pour un échantillon
concentré, la mesure s’effectue a 173° (positionnement du photodétecteur) et a 90° pour les
¢chantillons dilués (Figure 66).

La mesure de taille permet aussi de renseigner ’homogénéité de distribution des tailles dans
la synthéese, celle-ci est fourni par la valeur du PDI (indice de polydispersité). Cette valeur de
PDI est d’autant plus petite que la distribution des tailles est monodisperse (toutes les particules

en présence ont des tailles trés proches).

3.2. Mesure de la charge globale de surface

La dispersion et la stabilité d’une émulsion ou d’une suspension au cours du temps dépend
de I’équilibre entre les forces attractives de Van der Walls et répulsives électrostatiques. Le
potentiel z&ta est le potentiel électrostatique des particules en solution. Ce dernier est la charge
qu’une particule acquiert quand elle est mise en solution. Le potentiel z&ta est proportionnel a
la densité de charge a la surface de la particule. L’apparition d’une charge a la surface d’une
particule affecte la distribution ionique dans la région interfaciale entre la particule et le solvant
de dispersion (Figure 67).

. «——— Surface de la particule

< Plan de cisaillement

Figure 67 : Principe de base de la mesure du potentiel zéta
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Dans une solution meére de chlorure de sodium (NaCl) d’une concentration de 1 mM, les
suspensions de nanoparticules sont diluées (1/50° pour les nanoparticules de PLGA et 1/10°
pour les nanoparticules de chitosane). Les nanoparticules diluées sont introduites dans une cuve
dotée d’électrodes et disposées dans le granulométre Horiba Nanopartica SZ100 (Horiba,
Japon). Celui-ci grace a I’application d’un champ électrique permet de mesurer la mobilité
¢lectrophorétique des nanoparticules en dispersion. L’application du modéle mathématique

(modele de Smoluchowski) permet de calculer la valeur du potentiel zéta.

(4)
£ W,

Laser
532 nm, 10 mW

— " . N
Dilution des ¢échantillons dans une solution de NaCl a Immol/L : \
Nanoparticules en PLGA : 1/50° \
Nanoparticules en Chitosane : 1/200¢

Capteur de
0 R . lumiere
[ I A, transmise

N

Figure 68 : Principe de la mesure du potentiel zéta
La valeur de cette charge de surface permet de comprendre et de prédire les interactions
entre particules en suspension. Sa manipulation permet d'en améliorer leur stabilité et leur

absorption cellulaire.

3.3. Analyse au MET (Microscope Electronique a Transmission)

Une tranche de mica a été rendue hydrophile grace au dép6t d’une fine couche de carbone
a partir d’un segment de graphite a 1'aide d’une impulsion électrique réalisée sous vide. Un
volume de 2 pL de suspension de nanoparticules a été déposé sur ce support pendant 1 min.
L’exces de suspension est éliminé grace a un papier absorbant Whatman®. Une solution
d’acétate d'uranyle a 1% est ajoutée puis retirée apres une minute de contact avec 1’échantillon.
Les échantillons ont été analysés par un microscope €lectronique a transmission modele Tecnai

G2 Sphera (FEI Company, Hillsboro, Etats-Unis).

34. Détermination de ’efficacité d’encapsulation

L'efficacité d’encapsulation est déterminée soit par la méthode indirecte, soit par une
méthode directe. La méthode indirecte consiste en une centrifugation des dispersions de

nanoparticules (20 000 g pendant 1 heure a 4°C) et la quantification du principe actif non
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encapsulé dans le surnageant par chromatographie liquide haute performance (CLHP). La
méthode directe consiste en une désencapsulation de 1’insuline contenue dans les
nanoparticules. Apres une étape de centrifugation des nanoparticules (20 000 g pendant 1 heure
a 4°C), le surnageant est collecté pour le dosage en indirect. Le culot quant a lui est repris dans
un volume d’acétonitrile et incubé a 37°C sous agitation douce pendant 25 heures. A la suite de
I’incubation, une centrifugation est réalisée (20 000 g pendant 1 heure a température ambiante)
et le surnageant est éliminé (I’insuline est précipité par I’acétonitrile). Le culot obtenu est repris
dans du PBS (solubilisation de 1’insuline), une derniére centrifugation est réalisée dans les

mémes conditions et le surnageant contenant 1’insuline est analysée en CLHP (Figure 69).

Méthode indirecte
Surnageant

LN
C Centrifugation 20000 g.
s 1 heure a 4°C
1 mL de suspension
de nanoparticules

Surnageant ¢liminé Surnageant
Suri { elimin¢

\' 20000 g. 1h
20000 g, 1h
Culot + 1 mL
dacétonitrile

Culot repris dans 1
mL de PBS Culot éliming

Méthode directe

Figure 69 : Protocole d’évaluation de [’efficacité d’encapsulation

Les analyses sont effectuées selon la méthode de la Pharmacopée Européenne
(monographie n°0838) sur une chaine de chromatographie liquide modéle Varian (Agilent
Technologies, Les Ulis, France). Le systéme comprend une pompe ProStar 210, un Injecteur
ProStar 410, un détecteur ProStar 330 a barrette d’iode et une colonne C18 Symmetry 4.6 mm
x 250 mm, 5 pm, 300 A (Waters, Milford, Etats-Unis). L’exploitation des résultats est réalisée
par le logiciel Star Chromatography Workstation version 6.14.

La phase mobile A est composée d’une solution aqueuse de sulfate de sodium (Na>SO4) a
0,2 mol/L et a pH 2,3. La phase mobile B est un mélange de la phase mobile A et de I'acétonitrile
(55:45, v/v). La proportion de phase mobile lors de I’analyse est composée d'un mélange de
phase A / phase B (42:58, v/v) avec un débit d’injection de 1 mL/min. La température de la
colonne est maintenue a 40 ° C, et la longueur d'onde de détection est de 214 nm (Figure 70).

L'efficacité d’encapsulation (EE) a été calculée en utilisant I'équation suivante:
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EE: (%) = ((quantité d'insuline non encapsulée - quantité totale théorique d'insuline) / quantité
totale théorique d'insuline) * 100

EE> (%) = (quantité d'insuline encapsulée / quantité totale théorique d'insuline) * 100

U Principe (s)
! actif (s)

./ ‘ ,/;
“ (=]
) | Proportion : 1 mL/min
42 A:58B
Phas§s m)obilcs Injection Clscsc:flrzr::ztry —
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Figure 70 : Principe de la chromatographie liquide haute performance (CLHP).

3.5. Profil de libération de ’insuline encapsulée

Les nanoparticules ont été incubées avec du PBS a 37 © C sous agitation douce pendant le
temps prédéterminé: Tx = 0, 0,25, 0,5, 1, 2 et 4 h. La quantité¢ d'insuline libérée par
nanoparticules a été mesurée par UV a une longueur d’onde Azgonm. Les résultats ont été
exprimés en pourcentage de I'augmentation de la concentration de l'insuline dans le liquide de
dispersion de la maniére suivante:

Quantité d’insuline libérée = ([Insuline] To/ [Insuline] Tx)*100.

3.6. Profil de libération dans les milieux simulés

Les milieux gastrique (NaCl 35 mmol/L, HCI 80 mmol/L a pH 1,2) et intestinale (KH2PO4
50 mmol/L, NaOH 15 mmol/L a pH 6,8) ont été préparés selon les directives de la pharmacopée
européenne. Les nanoparticules ont été incubées avec les différents milieux a température
ambiante et a 37°C pour des valeurs de temps prédéterminés: To=0h, Tx=0,5, 1, 1,5, 2, 4, et
7 h. La densité optique des échantillons a été mesurée a une longueur d’onde Asoonm
(absorbance). Les résultats ont été exprimés en pourcentage de diminution de la densité optique,
comme suit:

Stabilité en milieux simulés = (Abs.Tx / Abs.To) * 100.

Cette approche est appliquée aux nanoparticules obtenues par coacervation complexe. Pour

les nanoparticules formulées par double émulsion évaporation de solvant, I’insuline libérée est

quantifiée par la méthode CLHP décrite précédemment.
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3.7. Vieillissement dans le temps

Les nanoparticules de PLGA aprés purification sur colonne Sephadex (paragraphe 3.8) sont
aliquotées dans des tubes a centrifuger et conservées soit dans 1’eau soit diluée au 2 dans du
PBS (Phosphate-Buffered Saline, Invitrogen, Cergy Pontoise, France) a 4°C pendant 21 jours.

Tous les 7 jours, une mesure de la taille et du potentiel zéta est effectuée par granulométrie.

3.8. Purification des nanoparticules

Apres évaporation de 1’acétate d’éthyle, les nanoparticules sont purifiées sur une colonne
Sephadex G-25. Avant la purification des nanoparticules, un volume de 25 mL d’eau est élué
de la colonne par fraction de 2,5 mL. Un volume de 2,5 mL de synthése est disposé sur la
colonne et est élué avec deux fois 2,5 mL d’eau. Puis la colonne est rincée avec 10 mL d’eau et
la procédure est répétée cinq a 6 fois pour purifier une synthése (une colonne utilisée par

synthese).

4. Formulation du vecteur pharmaceutique complexe

Le vecteur pharmaceutique complexe est formulé par gélation ionotropique de 1’alginate
avec des ions calcium. Une solution aqueuse d’alginate a 4% (m/v) est préparée dans un milieu
basique (bicarbonate de sodium (NaHCO3) a 0,1 mol/L) 48 heures avant la synthése. Celle-ci
est maintenue sous agitation (300 tr/min) et a 20°C pour permettre une dissolution homogene
du polymere. Dans la solution d’alginate, du carbonate de calcium (CaCO3) est dispersé a 1%
(m/v). Un volume de 10 mL de suspension de nanoparticules est mélangé a 30 mL de la solution
d’alginate. Grace a un pousse seringue, le mélange est introduit dans un volume de 100 mL
d’huile pharmaceutique (Mygliol 812) sous agitation (1200 tr/min) a un débit de 2 mL par
minute. Apres injection, le milieu est maintenu sous agitation a la méme vitesse pendant 1 heure
a température ambiante (20°C) pour permettre la formation des gouttelettes d’eau de taille
homogene dans I’huile. Un mélange d’huile pharmaceutique (Mygliol 812) et d’acide acétique
(20/2 ; v/v) introduit au méme débit et sous la méme intensité d’agitation permet de former la
couche interne des billes d’alginate par réticulation du polymere par libération du calcium a
partir de CaCOs3. Apres une heure sous agitation, 160 mL d’une solution aqueuse de chlorure
de calcium a 5% (m/v) sont ajoutés au méme débit. Une heure apres, la vitesse d’agitation est
réduite a 300 tr/min et maintenue pendant 12 heures. Une ampoule a décanter permet une

séparation de phase huile/eau pour récupérer les billes encapsulant les nanoparticules. Les
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microparticules sont lavées sur un tamis d’une porosité de 0,2 pm avec du tween 80 a 2% (m/v)

(Figure 71).

2
Yo 2 K
= &

1
Injection du mélange aqueux d’alginate \™
(Alginate dissout dans du NaHCO3 0,IM a =]
4% + 1% CaCO3) et nanoparticules \

o

Injection du mélange huile
pharmaceutique/acide acétique (20/2; v/v)

Injection de la solution de chlorure de
calcium a 5%

Phase Huileuse

Phase aqueuse contenant
les vecteurs complexes

Récupération et lavage au

Tween 80 2% des billes
d’alginate

Figure 71 : Protocole de formulation des vecteurs pharmaceutique complexe par gélation
ionotropique.
Apres la synthese, les billes formées sont observées au microscope optique et sont

administrées par voie orale chez le rat.

5. Validation in vitro

5.1. Matériels

Nous nous sommes procur¢ les cellules Caco-2 aupres de I’ATCC (American Type Culture
Collection, Manassas, Etats-Unis) et les RevHT29MTX nous sont généreusement fournies par
le Dr. Thécla Lesuffleur (INSERM U505, Villejuif, France). Les plaques de culture (24 et 96
puits) sont obtenues aupres de Falcon® (Etats-Unis), les inserts thincert® 33,6 mm? d’une
porosité de 1um aupres de Greiner Bio-One (Etats-Unis). Le DMEM (Dulbecco’s Modified
Eagle’s Medium), I’HBSS (Hank's Balanced Salt Solution), le PBS (phosphate buffered saline),
I’ABAM (antibiotique-antimycotique) sont fournis par Invitrogen (France), le SVF (sérum de

veau feotal) par Gibco® (Etats-Unis) et le kit Annexin-V + iodure de propidium par Millipore

(Etats-Unis).
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5.2. Modéles cellulaires

Deux modeles de culture de cellules ont été utilisés: les cellules Caco-2 seules et une
coculture avec 75% de cellules Caco-2 et 25% de RevHT29MTX pour obtenir un modele
d'épithélium intestinal in vitro, comme le décrivent Nollevaux et al. (2006). La culture cellulaire
a été réalisée comme décrit par Reix et al. (2012). Brievement, les cellules (passage entre 30 et
60) ont été ensemencées a hauteur de 73000 cellules/cm? pour une culture en plaques (plaque
24 puits traitées de 1,9cm?*/puits) et 200 000 cellules/cm? pour une culture sur insert (thincert®
33,6 mm? d’une porosité de 1um) dans du DMEM (Dulbecco’s Modified Eagle’s Medium)
supplémenté avec 20% de SVF (sérum de veau feotal), une solution antibiotique-antimycotique
(1%), et 1% de solution d'acides aminés non essentiels (solution stock a 10 mM). Les cellules
ont été cultivées pendant 21 jours a 37°C dans atmosphere contenant 5% de CO», afin qu’elles
acquicrent un phénotype entérocytaire (Figure 72).

Modele Caco-2 Modéle coculture

Cellules Rev HT29 MTX Caco-2/RevHT29 MTX (75/25)
(Sécrétrice de mucus)

Couche de mucus

Cellules Caco-2

Support de culture (plaque)

Cultures cellulaire réalisées par ensemencement des
cellules a une densité de 73 000 cellules/cm?. Le milieu de
culture contenant du SVF, de 'ABAM et des acides
aminés est renouvelé tous les deux jours pendant 21 jours.

—.

/

Section de plaque 24 puits
P P Section de plaque 24 puits

Figure 72 : Protocole de mise en place des modeéles et culture cellulaire

5.3. Evaluation de P’internalisation

Afin d’étudier l'absorption des nanoparticules par les cellules, la cytométrie en flux est
choisie car elle permet de quantifier I’association cellules-nanoparticules. Celle-ci est réalisée
comme décrit par Reix et al. (2012). Apres 21 jours de culture dans des plaques de 24 puits
traitées pour permettre une adhésion cellulaire, les cellules sont incubées, apres ringage au PBS,

avec des nanoparticules fluorescentes (formulées avec de 1’insuline FITC) a la quantité de 10
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U/ puits pour les nanoparticules de chitosane et 4 Ul/puits (20 mg de PLGA) pour les
nanoparticules en PLGA dans du milieu DMEM sans rouge de phénol et sans SVF pendant 4
heures. Apres incubation, les cellules sont lavées 3 fois (10 min) avec de I’HBSS (Hank's
Balanced Salt Solution) sans calcium et sans magnésium. Les cellules sont détachées par
trypsination, centrifugées, et remises en suspension dans de ’HBSS. Un volume de 200 uL de
suspension cellulaire est déposé dans une plaque 96 puits non traitée en triplicata pour lecture.
La viabilité cellulaire est évaluée par l'ajout de 2 pL d'iodure de propidium et 2 pL d’annexin-
V APC par puits avant lecture. Les échantillons ont été analysés en considérant 50000
événements par puits par un cytométrie en flux BD LSR II (Becton Dickinson and Company,
Etats-Unis) (Figure 73). Les résultats sont exprimés comme la moyenne géométrique de

l'intensité de fluorescence multipliée par le pourcentage de cellules positives au FITC.

Nanoparticules fluorescentes
- 100% insuline FITC pour les particules formulées par double émulsion
- (10% insuline FITC+ 90% insuline humaine) pour les particules formulées par coacervation complexe

Trypsination et détachement des cellules

® .o. .
® [] ]

Caco-2/coculture & ~ 3 5 Z -| 1 5 z .
aprés 21 jours . M.JE ) oje}d) {of3je) (o
Incubation Ringage \‘/

(4 heures a 37 "C)\/ des cellules

R I/\SZ.S —

"\ T '1 e T T
Insulin FITC Insulin FITC

o
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# Cells

# Cells

Evaluation de la fluorescence associée aux cellules

Figure 73 : Protocole d’évaluation de l’internalisation par cytométrie en flux.

Le bleu de trypan permet de quencher la fluorescence extérieure et permet donc de
distinguer la fluorescence associée et la fluorescence interne aux cellules (Nuutila Jari and Esa-
Matti Lilius (2005)). Dans un volume de 400 pL de suspension cellulaire, un volume de 100
puL de bleu de trypan est introduit. Apres homogénéisation (vortex), les cellules sont de nouveau

centrifugées (pour supprimer le bleu de trypan) et reprises dans 400 uLL d’HBSS (Figure 74).
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Plaque 24 puits aprés 4h d’incubation Décollement et Centrifugation a 1500 rpm Suspension des cellules
avec les nanoparticules récupération des cellules pendant 10 minutes dans de 'HBSS

Mise en plaque et Suspension des cellules Centrifugation a 1500 rpm 400uL de suspension cellulaire
lecture dans de I'HBSS pendant 10 minutes + 100uL de bleu de trypan

Figure 74 : Protocole d’extinction de la fluorescence extérieure aux cellules.

54. Evaluation de la résistance transépithéliale

Le principal parametre pour évaluer 1’intégrité d’une barriere tissulaire est sa résistance
électrique transépithéliale (TEER). Une barriere tissulaire intacte est caractérisée par une haute
résistance électrique transépithéliale traduisant une intégrité et le maintien des jonctions serrés.
Pour mesurer la résistance transépithéliale, les voltmeétres épithéliaux (Millicell® ERS,
Millipore, Etats-Unis) sont employ¢s, ceux-ci permettent de mesurer la différence de potentiel
entre les coté apical et basolatéral grace a une électrode dédiée (Figure 75). L’introduction de
I’électrode dans un puits (de part et d’autre de 1’insert) permet de mesurer la valeur de la

résistance €lectrique de la monocouche cellulaire.

Comparthnest spical Q Mesure de la résistance
Monocouche électrique transépithéliale
cellulaire

Compartiment basolatéral

-
-
- -
Support/filtre perméant

Figure 75 : Protocole d’évaluation de la résistance électrique transépithéliale.
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La valeur de la TEER est exprimée Ohm.cm? puis représentée en pourcentage par rapport a
la valeur initiale. Il est possible ainsi de suivre I’impact des nanoparticules (2 mg de
PLGA/inserts), de I’insuline non encapsulée ou encore de 'EGTA utilisé comme contrdle
positif d’ouverture des jonctions serrées et de diminution de la TEER. Cette valeur renseigne

donc sur la toxicologie des nanoparticules étudiées.

6. Validation in vivo

6.1. Matériel

Les animaux sont en provenance de 1’élevage Charles River (Saint-Germain-Nuelles,
France), la streptozotocine est fournie par Sigma-Aldrich (Etats-Unis). Le Rompun, I’Imalgéne
et ’héparine Choay sont respectivement commercialisés par Bayer (France), Merial (France)
et Sanofi Aventis. Le peptide-C est quantifié grace a un Kit ELISA Rat C-peptide fourni par
Mercodia (Suéde) et la glycémie est mesurée grace au glucométre AccuChek® fourni par Roche

Diagnostic (Suisse).

6.2. Modéle animal

Toutes les expériences sur les animaux ont €té effectuées en conformité avec les directrices
des institutions européennes concernant les soins et l'utilisation d’animaux dans des procédures
expérimentales (numéro d'agrément de 1’animalerie du laboratoire: C67-482-28, numéro de
saisine AL / 60/67/02/13). Des rats males Wistar (Charles River) de poids compris entre 120 et
140 g sont placés dans des cages collectives standards dans une salle a une température
ambiante régulée (23 £ 1°C). Les rats sont maintenus dans un cycle circadien de 12 heures
d'obscurité et 12 heures de lumicre, et sont nourris avec un régime standard pour animaux de
laboratoire sous forme de granulés (SAFE A04, Villemoisson-sur-Orge, France). Les animaux
ont acces a la nourriture et a 1'eau ad libitum. Le diabéte est induit par une dose unique de
streptozotocine (Sigma Aldrich) par voie intrapéritonéale a la dose de 100 mg/kg. Le diabéte
(statut insulinopénique des animaux) est établi apres 3 jours (glycémie> 6 g/L et C-peptide

<100 pmol/L).
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6.3. Implantation de cathéters

Les rats diabétiques subissent une chirurgie qui permet d’implanter des cathéters en
intrapéritonéale (IP) qui est la voie de référence et intraduodénale (ID) qui est le site cible des
nanoparticules.

Les rats diabétiques sont anesthésiés par injection intra-péritonéale d’un mélange xylazine
/ kétamine ; soit 2,7mL de Rompun 2% (Bayer) ajoutés a 10mL d’Imalgéne 1000 (M¢rial), a
une dose de 100uL/100g de masse corporelle. Apres vérification du stade d’endormissement
(vibrisses inertes, perte du reflexe palpébral, non réactivité a des stimuli externes), 1’animal est
placé en décubitus dorsal pour I’intervention chirurgicale.

L’abdomen des animaux endormis est aseptisé de facon modérée a I’aide d’éthanol 70% et
est rasé a I’aide d’une lame de scalpel, d’une part au niveau de la nuque entre les deux oreilles
et d’autre part au niveau supérieur de I’abdomen.

- Une incision longitudinale d’un centimétre environ des plans cutanés et musculaires

jusqu’a péritoine est réalisée au milieu de la zone dégagée.

- Un cathéter, exempt de fuites et rincé avec une solution d’héparine a 1,5% (héparine
Choay 2500UI) dans du sérum physiologique, comportant a son extrémité deux
encoches successives, est délicatement introduit dans le péritoine de I’animal.

- Le cathéter est fixé sous une des berges du péritoine en faisant une ligature (point
simple) sur la premiere encoche du cathéter, a I’aide de fil de suture 4-0. Puis, ’autre
encoche du cathéter est fixée au-dessus de I’autre berge du péritoine de la méme manicre
que précédemment.

- Les deux berges sont ensuite suturées par un surjet simple avec un fil de méme type.

- Le cathéter est ensuite passé sous la peau par tunnélisation a 1’aide d’une canule pour
venir atteindre la nuque de 1’animal, par laquelle le cathéter doit ressortir apres une
légere incision de la peau a cet endroit.

- Les berges de la téte sont ensuite suturées (1 ou 2 points) et celles de 1’abdomen
¢galement (en surjet simple) a I’aide du fil 4-0.

- Un sparadrap est enroulé autour du cathéter afin qu’il reste droit. Un « bouchon » réalisé
a ’aide de fil de péche permet de fermer le cathéter (2 cm maximum de la base de la

tete) (Figure 76).
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Bouchon du cathéter
Cathéter

Figure 76 : Animal apres implantation et tunnélisation.

L’animal est ensuite placé en cage individuelle et le suivi postopératoire de I’animal est
assuré (fréquence cardiaque, respiration, température de ’animal, puis réveil). Aprés 48h, les
rats vigiles regoivent par ce cathéter du sérum physiologique, de I’insuline encapsulée ou en
solution (2 UI/200 gramme de masse corporelle) directement dans le péritoine.

Afin d’implanter le cathéter en intraduodénale, le protocole d’anesthésie et de préparation
de I’animal est identique a ce qui est décrit ci-dessus.

- Apres avoir ouvert la paroi abdominale, et repéré le début du duodénum, une légére

incision de celui-ci est réalisée sur 2 millimetres.

- Puis, un cathéter ayant a une de ses extrémités une olive, est inséré dans le duodénum

et fixé grace a une suture réalisée avec du fil de suture 6-0 (Figure 77).

Vers I’extrémité d’injection
Cathéter

Estomac

Duodénum

Site d’implantation

Points de suture

Figure 77 : Schématisation de I’implantation du cathéter dans le duodénum
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- Le cathéter est ensuite glissé sous la peau par tunnélisation jusqu’a ressortir derriere la

téte.

- Les différents plans de ’abdomen et les berges de la peau de la nuque sont refermés a

’aide de fil de suture 4-0.

- Un morceau de sparadrap et un bouchon en fil de péche sont disposés comme

précédemment écrit.

Quarante-huit heures apres 1’opération, les rats vigiles recoivent par ce cathéter du sérum
physiologique, de I’insuline encapsulée ou en solution (10 U200 grammes de masse
corporelle). Le volume d’injection n’excede pas 200uL (nanoparticules purifiées/concentrées)
et ’injection se fait de fagon trés lente afin d’une part, d’éviter une vidange gastrique chez
I’animal et d’autre part, de permettre une meilleure absorption des nanoparticules.

La biofonctionnalité de I’insuline encapsulée est évaluée par mesure de la glycémie a jeun
(AccuChek®) toutes les 30 min pendant 4 heures chez les rats traités en intrapéritonéale et toutes

les heures pendant 12 heures pour ceux traités en intraduodénale.

6.4. Administration par gavage

Le but de cette manipulation est de vérifier la biofonctionnalité du vecteur pharmaceutique
complexe sur des rats diabétiques. Une fois le diabéte constaté, le véhicule complet (taille

<200um) est administré par gavage chez le rat a la dose souhaitée.

Figure 78 : Administration des vecteurs pharmaceutique complexe par gavage chez le rat
insulinopénique.
Des nanoparticules libres ou encapsulées dans le vecteurs complexe ainsi que des vecteur

contenant des nanoparticules vides sont administrées a la dose de 10 UI/200g de masse
corporelle grace a une aiguille de gavage. La biofonctionnalité de 1’insuline encapsulée est

¢valuée par mesure de la glycémie a jeun (AccuChek®) toutes les heures pendant 24 heures.
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IV. Résultats



1. Coacervation complexe



1.1. Introduction

La coacervation complexe définit la séparation en deux phases liquide se produisant dans
un systeme colloidal. Cette séparation est induite par des interactions €lectrostatiques entre
polyélectrolytes de charges opposées, ce qui a pour résultat la formation de complexes
dénommés coacervats complexes. La formation des dites coacervats est gouvernée par
I’attraction électrostatique entre les groupements de charges opposées présentes sur les chaines
de polyélectrolytes. La stabilité des coacervats complexes sera d’autant plus importante que les
masses des deux polyélectrolytes seront différentes. Le polyélectrolyte de plus haut poids
moléculaire sert de matrice a celui de plus faible masse conférant ainsi ses propres propriétés
aux complexes formés. En effet, ceux-ci arborent la charge du polyélectrolyte de plus haut poids
moléculaire. La coacervation complexe se fait dans des conditions douces a température
ambiante et sous une agitation lente. Contrairement a la majorité des techniques de formulation,
elle ne requiert ni solvants organiques ni stabilisants. Elle représente de ce fait une approche
intéressante pour 1’encapsulation de principes actifs labiles comme I’insuline en vue de leur
administration par voie orale. Ces systémes colloidaux polymériques ont montré une efficacité
dans l'administration orale de protéines thérapeutiques et font [’objet d’une constante
amélioration en vue d’une amélioration de la biodisponibilité des macromolécules bioactives
administrées per os. Les nanoparticules formulées a partir de polymeres naturels, tels que le
chitosane, sont d'intérét en tant que vecteurs de protéines. En effet, le chitosane présente de
nombreux avantages qui en font un candidat idéal pour I'administration de médicaments dont
la biocompatibilité, la biodégradabilité, une faible immunogénicité, et des propriétés
mucoadhésives liées a sa densité¢ élevée de charges positives. De par ses propriétés
mucoadhésives, le chitosane permet la délivrance de médicament au niveau de tissus cibles de
types muqueux comme la lumiere intestinale. Il permet ainsi d’améliorer les rendements
d’absorption des peptides aprés leur administration par voie orale, en raison de leur rétention
prolongée dans le tractus gastro-intestinal et d’une excellente pénétration dans la couche de
mucus médice par les groupes amines libres. De par ce fait, les complexes sont absorbés par les
cellules intestinales entérocytaires, ce qui représente la voie principale d'absorption. Toutefois,
il est bien connu que les coacervats complexes sont instables dans des milieux contenant du sel
comme le décrivent Tainaka et al., (1980). Ainsi, ces complexes doivent étre stabilisés pour
leur utilisation en tant que vecteurs de médicaments. La réticulation avec du tripolyphosphate
de sodium (TPP) est une des approches choisies. Le sodium tripolyphosphate permet

d’améliorer la stabilité des coacervats en se complexant avec le chitosane en liant des amines
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libres sur sa chaine (Emmanuel N. Koukaras et al., 2012). Ceci a pour conséquence une
amélioration de la qualit¢ d’interaction au sein du coacervat en réduisant la distance
intermoléculaire (compaction plus importante). La lyophilisation est une autre solution
intéressante. En effet, cette procédure largement décrite dans la littérature permet la
conservation dans le temps de principes actifs ou la stabilisation de systéemes colloidaux (Bohr
A et al., 2015). Celle-ci consiste en 1’extraction du solvant de dispersion des coacervats par
sublimation dans 1’objectif de leur conférer une rigidité structurelle.

Le développement de ces deux approches afin de stabiliser le coacervat complexe
insuline/chitosane en vue de leur administration orale dans le traitement du diabete a fait 1’objet

d’une parution dans International journal of pharmaceutics en juin 2015.
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1.2. Discussion générale et conclusion

Les résultats ont montré que la formulation de nanoparticules auto-assemblées chargées
d'insuline est une approche simple, reproductible qui permet d’obtenir un haut rendement
d’encapsulation. Cette méthode de formulation génére des nanoparticules dites natives d’une
taille d’environ 400 nm, une polydispersité de 0,3, une charge de surface positive (+36 mV) et
une efficacité¢ d’encapsulation de prét de 70%. Ces parametres physicochimiques sont les
mémes que ceux obtenus par Abbad S. et al. (2015) qui formulaient des nanoparticules
d’insuline a base de chitosanes modifiés (chitosane N-Arginine et chitosane N-histidine).
Comme décrit précédemment, ce type de formulation présente 1’inconvénient d’étre peu stable
dans les milieux biologiques rendant difficile la validation biologique de leur efficacité d’ou
I’introduction de deux approches distinctes ou combinées pour permettre leur validation. La
réticulation permet d’obtenir des nanoparticules plus petites (346 nm) en comparaison aux non-
réticulées, améliorant ainsi 1’efficacité d’encapsulation sans modification de I’indice de
polydispersité ni de la charge de surface. Dans une étude comparative de différents agents
réticulant (comme le tripolyphosphate, le sulfate de dextran et 1’acide poly-D-glutamique) pour
stabiliser des nanoparticules de chitosane encapsulant des siRNA, Raja MA et al. (2015) ont
montré que le tripolyphosphate permet d’obtenir de plus petites tailles et une meilleure
efficacité d’encapsulation. La lyophilisation des nanoparticules natives induit une augmentation
de leur taille (490 nm), une hétérogénéité de leur distribution et une augmentation de leur
potentiel zéta (+44 mV). La lyophilisation n’a pas d’impact sur les nanoparticules réticulées
mis a part une augmentation du potentiel de surface, sans modification des efficacités
d’encapsulation. L’ajout d’un cryoprotecteur comme le mannitol permet de limiter
I’augmentation de taille observée. Rodrigues S. et al. (2015) montrent que la lyophilisation en
présence de glucose ou de sucrose permet de conserver les propriétés physicochimiques des
nanoparticules obtenues par auto-assemblage (chitosane/tripolyphosphate/ carraghénane). Ces
¢tudes corroborent également 1’hypothése formulée a partir des résultats physicochimiques
d’une formulation plus efficace en combinant la réticulation et la lyophilisation. Les études de
stabilit¢ en milieux simulés gastrique et intestinal ont montré que les coacervats sont
immédiatement détruits dans le milieu gastrique quel que soit la méthode de formulation,
mettant en lumicre le besoin de la seconde encapsulation gastrorésistante faisant 1’objet du
développement du vecteur pharmaceutique complexe. Ces mémes études montrent que dans le
milieu intestinal, les coacervats non lyophilisées (réticulées ou non) libérent plus de 80% de

leur contenu au bout de 7 heures, libération réduite a 20% lorsque ceux-ci sont lyophilisés. De
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plus, la méme cinétique de libération est observée dans le milieu salin (PBS). Le but poursuivi
par la lyophilisation peut donc étre considéré comme atteint car ce procédé réduit de manicre
importante la libération aspécifique de I’insuline encapsulée. La présence du mannitol pendant
la lyophilisation permet de réprimer la déstabilisation des particules et réduit le phénomene de
« burst release ». Les études de cytométrie en flux sur deux modeles cellules : caco-2 seules
(cellules entérocytaires) et coculture (Caco-2 et RevHT29MTX (productrice de mucus))
¢valuant 1’aptitude des nanoparticules a traverser la barriére intestinale montrent que les
nanoparticules indépendamment de la réticulation sont internalisées sur le mod¢le caco-2 et
sur le modéle coculture (présence de mucus), mais que les nanoparticules réticulées sont les
mieux internalisées. Des résultats similaires sont rapportés par Raja MA et al. (2015) et Abbad
S. et al ; (2015). D’un point de vue physicochimique comme in vitro, les résultats mettent en
¢vidence I’efficacité d’une combinaison de la réticulation et de la lyophilisation. Cependant, la
présence de mannitol au cours du processus de lyophilisation semble inhiber 1’internalisation
des nanoparticules. Il a pourtant été montré par Malkov D. et al. 2005 que le mannitol peut
traverser la monocouche de caco-2 en culture sans affecter la membrane plasmique ni
I’intégrité des jonctions serrés. Cette inhibition n’est donc pas directe mais pourrait étre
attribuée a une interaction particuliére du cryoprotecteur avec la nanoparticule qu’il reste a
définir. La validation in vivo sur un modele streptozotocine de rat diabétique par le biais de
deux voies (intrapéritonéale et intraduodénale) montre que les coacervats complexes
administrés par la voie intrapéritonéale sont en mesures d’induire une réduction de la glycémie
équivalente a I’injection d’insuline non encapsulée a la méme dose en 2 heures. De méme, leur
administration en intraduodénale induit une réduction de la glycémie plus importante quand les
particules sont formulées par combinaison de la réticulation et de la lyophilisation. Les résultats
montrent que les nanoparticules formulées par auto-assemblage entre I’insuline, le chitosane et
le tripolyphosphate sont en mesure d’encapsuler efficacement I’insuline, de la protéger dans le
milieu intestinal, et de la libérer dans les milieux biologiques et tout en conservant son activité
biologique.

Cette étude a permis de montrer 1’intérét de la coacervation complexe pour formuler des
nanoparticules d’insuline en vue de leur administration par la voie orale. La combinaison
réticulation et lyophilisation est une approche prometteuse dans le développement de I’insuline
orale car elle permet d’obtenir des nanoparticules stables dans les milieux biologiques en
limitant les libérations indésirables et en offrant une meilleure efficacité biologique.

L’efficacité des nanovecteurs formulés par auto-assemblage peut étre améliorée en utilisant

des dérivés amphiphiliques du chitosane. En effet, Zhang ZH et al. (2013) et Abbad S. et al ;
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(2015) ont montré que I’efficacité des nanoparticules d’insuline a base de chitosane N-arginine
¢tait améliorée in vitro et in vivo. Des résultats similaires ont été obtenus par Yu F. et al. (2014)
lors de I’encapsulation de 1’acide gambogique employé dans le traitement du cancer (inhibition
de la croissance du glioblastome). Un autre dérivé, le chitosane N-histidine a montré son
efficacité dans I’administration de principes actifs. En effet, Kai-Ling Chang et al. (2010) ont
obtenu une amélioration de la transfection du plasmide grace a sa complexation avec cette
catégorie de chitosane. De méme Park J.S. et al. (2006) ont amélioré la délivrance
intracytosolique du paclitaxel grace a son encapsulation par auto-assemblage avec le chitosane
N-histamine.

La limite majeure de cette technologie est son manque de stabilité dans le milieu gastrique
requérant son encapsulation dans un vecteur gastrorésistant en vue de son administration par
voie orale. Malgré une simplicité de mise en ceuvre dans le cadre d’une industrialisation, la
stabilité limitée des coacervats qui rend difficile leur inclusion dans le véhicule gastro résistant

tel qu’il est définit dans le concept du vecteur pharmaceutique complexe.
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2. Double émulsion évaporation de solvant



2.1. Introduction

De nombreuses méthodes permettant I’encapsulation de composés bioactifs hydrosolubles
dans des particules biodégradables ont été¢ développées dont la double émulsion et évaporation
de solvant. La double émulsion eau/huile/eau (e /h/e) est la méthode la plus répandue. Cette
méthode de formulation permet d’obtenir des particules de taille controlée et un haut rendement
d’encapsulation. L’acide poly (lactique-co-glycolique) (PLGA) appartient a la famille de
polymeres biodégradables approuvés par la FDA (Food and Drug Administration). Il est
biocompatible et a été largement étudié en tant que vecteur de médicaments, de protéines et de
diverses autres macromolécules telles que I'ADN, I'ARN. Il représente donc un candidat de
choix pour la formulation de nanoparticules pour une administration orale d’insuline. La
méthode d’encapsulation par double émulsion présente cependant une limite majeure pour les
composés bioactifs labiles comme les protéines. En effet, les ultrasons utilisés pour formuler
des émulsions de petite taille (<200 nm) risquent de dénaturer la protéine et de la rendre
biologiquement inactive. De plus, 1’interaction protéines-solvant obtenue lors du procédé de
formulation peut induire des effets secondaire non prédictible chez le patient (Meng F.T. et al.,
2013). Pourtant, les particules en PLGA formulées par double émulsion (e/h/e) sont des
vecteurs de médicaments courants et trés efficaces. En général, elles sont congues comme des
capsules creuses encapsulant le principe actif, enveloppées d’une membrane en polymere et
peuvent étre entourées d'un stabilisant comme 1'alcool polyvinylique (PVA). Ces vecteurs
présentent en général un rayon hydrodynamique d’environ 100 nm, une charge de surface
faiblement négative a neutre et sont biologiquement efficace (Reix et al., 2012). En effet, ils
augmentent le passage des médicaments au travers des barricres biologiques tels que la barriére
hémato-encéphalique (Costantino Luca et al., 2006) ou la muqueuse gastro-intestinale (Alf
Lamprecht et al., 2001) mais n’offrent qu’une biodisponibilité faible pour I’insuline administrée
par voie intraduodénale chez le rat. Les connaissances acquises sur les nanoparticules de
chitosane ainsi que la littérature suggerent qu’une approche mucoadhesive permettrait
d’augmenter 1’efficacité biologique de I’insuline. L'intérét de la mucoadhésion est de créer une
interaction entre les particules et la couche de mucus intestinal de maniére a augmenter le temps
de résidence des particules au contact des entérocytes et donc de favoriser l'absorption et
I’augmentation de la biodisponibilité de l'insuline encapsulée. Afin de créer une interaction
mucus/particules, les particules de PLGA décrites doivent donc étre modifiées. La stratégie
couramment utilisée consiste a revétir les particules d’un manteau fait d’un polymere possédant

des propriétés mucoadhésives comme le chitosane (Chronopoulou Laura et al., 2012 ; Guo M
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et al., 2013). Le chitosane tire ses propriétés mucoadhésives de la densité de charges positives
¢levée sur son squelette. De ce fait, le recouvrement des nanoparticules s’effectue par un simple
procédé physique d’interaction électrostatique entre les particules et les chaines de chitosane.
Le greffage de motifs polyéthyléne glycol (PEG) a la surface des particules de PLGA est
¢galement une stratégie intéressante pour optimiser la bioadhésion (Semete B. et al., 2010). 11
a été¢ démontré que I’enrobage de particules avec PEG permet de protéger les particules grace
a une répulsion stérique (Makadia et al., 2012). Les motifs PEG peuvent ainsi protéger les
particules et leur permettre une absorption rapide (Lin D. et al., 2013). Le développement et
I’évaluation de cette approche mucoadhesive fait 1’objet d’une soumission pour publication

dans International journal of pharmaceutics en novembre 2015.
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Abstract

Encapsulation aims to protect insulin against gastrointestinal tract environment for its
oral delivery. Poly (D, lactic-co-glycolic) acid (PLGA) particles (NP) are known to be effective
drug carrier with a long acting profile, but have less than 20% of bioavailability. The aim of
this work was to increase encapsulated insulin bioavailability modifying the surface properties
of NPs to improve their interaction with the mucus layer. Particles were prepared in presence
or not of polyvinyl alcohol (PVA), with PEGylated-PLGA or coated with chitosan chloride. /n
vitro internalization was tested on epithelial coculture (Caco-2/RevHT29MTX) by flow
cytometry. NPs were then administrated in vivo intraperitonealy (2UI) and intraduodenaly
(10UI) in diabetic rats. Without PVA and PEGylated-PLGA NPs were smaller (154 + 24 nm)
than chitosan coated NP which size (236 + 29 nm) is increased in comparison to the control
(200 = 9 nm). Compared to classical NPs (PLGA+PVA) cells uptake was improved by
PEGylated-PLGA and without PVA, in contrast to chitosan coated NPs which adhered outside
cells. Administration of NPs (2UI) by intraperitoneal route reduced glycaemia as fast as non-
encapsulated insulin. Unlike of NPs, 10UI of no encapsulated insulin applied by the
intraduodenal route had no effect. Mucoadhesive particles formulation is definitely not the good
approach to improve the bioavailability of encapsulated insulin, negative NPs were the most
efficient both in vitro and in vivo, and represent a promising formulation for oral insulin

delivery.
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1. Introduction

Oral route is the most promising method to deliver protein drugs as insulin; it involves
no pain or trauma associated with injections. Oral administration of insulin results in a low
pharmacological effect, due to the harsh conditions of the gastrointestinal tract, less than 0.1%
of the orally dosed insulin reaches intact the blood stream (Aaron C. Foss and al., 2004).
Encapsulation is a promising approach to protect insulin for its oral delivery. PLGA particles
(NP) are common and efficient drug carriers, generally designed as a matrix-like core for drug
encapsulation and protection with diameters ranging around 200 nm, surrounded by a stabilizer
as Polyvinyl alcohol (PVA) e.g. which is a commonly used stabilizer and determines the NP
surface charge (-5mV). PLGA NPs shown great efficiency as drug delivery vehicles, rising the
drug amount crossing biological barriers such as the blood-brain barrier (Luca Costantino and
al., 2006) or gastrointestinal mucosa (Alf Lamprecht and al., 2001), but Reix and al., 2012
demonstrated that insulin-loaded particles present a low bioavailability, less than 20%, when
delivered intraduodenaly on diabetic model rats. These ones suggested surface properties
modification in order to improve bioavailability of encapsulated insulin. Depending on the
stabilizer used in formulation, uptake and cytotoxicity profiles of particles can change (Nadeége
Grabowski and al., 2013). Fei Yu and al., 2015 showed that PLGA particles can be formulated
without any stabilizer which provide them high negative surface charge and a biological
efficiency. Several authors indicate that drug carrier’s behaviour in biological environment is
greatly influenced by their size and surface characteristics. The colloidal characteristics of the
particle size and surface charge are considered the most significant determinants in the cellular
uptake and trafficking of the particles. Formulating high negatively charged particles by double
emulsion and solvent evaporating method described by Reix and al., 2012 has to be investigated
to highlight their potential to improve bioavailability of encapsulated insulin. Mucoadhesion is
another promising formulation approach to improve bioavailability of encapsulated insulin. The
interest of mucoadhesion is to create interaction between particles and intestinal mucus layer in
order to increase the time residence of particles in contact of enterocytes and therefore the
uptake and bioavailability of encapsulated insulin. In order to create mucus-particles
interaction, described PLGA particles should be modified; the commonly used strategy is to
coat particles with a mucoadhesive polymer (Noha Nafee and al., 2007). Chitosan exhibits
many advantages in the development of particles (Diop and al., 2015), including
biocompatibility, biodegradability, and low-immunogenicity without any toxicity.

Mucoadhesive properties of chitosan are related to the high positive charge density (Plapied
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and al., 2010). Insulin-loaded PLGA particles coated with chitosan are generated by a physical
approach, based on an electrostatic interaction as described by Yue-yu Zhou and al., 2010. The
simplicity of these self-assembling polyelectrolyte complexes is an advantage and a drawback,
such complexes are easy to generate and are always characterized by a broad size distribution
compared to naked NPs. Grafting of polyethylene glycol (PEG) group patterns at the PLGA
particle’s surface is another interesting strategy to coat PLGA particles for bioadhesion (Jason
Park and al., 2011). Chemical modification of polymer like chitosan with PEG increases the
biocompatibility of chitosan (Zhang et al., 2002) and reduces the adsorption of circulating
plasma proteins. PEG coated particles have been found to be a great potential in shielding
particles due to steric repulsion resulting from a loss of configurational entropy of the bound
PEG chains and their rapid motion in aqueous media. In addition, hydrophilic PEG can form a
hydrated outer shell; thereby protecting the particles from being quickly up taken, extending
the half-life of drugs and their tissue distribution (Suphiya Parveen and al., 2011) and generate
highly negatively charged particles. Thus, we speculate that a PEG coating on PLGA particles,
due to their unique properties could serve as an ideal carrier system for the delivery of insulin
by enhancing permeability of the PLGA particles in mucus. We aimed to coat insulin loaded
PLGA particles with hydrophilic polymers such as chitosan and PEG to improve their
bioadhesion properties and therefore their cell uptake compared to described and negatively

charged particles.
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2. Materials and methods
2.1.Materials

PLGA (Poly (D,lactic-co-glycolic) acid) 50:50 Resomer® (RG 502H, My,14,000) was
purchased from Boehringer Ingelheim (Ingelheim, Germany). PEGylated-PLGA (Peg-Block
9000 Da) was purchased from Specific polymers (Castries, France). Rapid insulin (Umuline®
100 IU/mL) was generously supplied by Eli Lilly (Indianapolis, USA). Polyvinyl alcohol (PVA
18-88, My130.000) was purchased from Fluka (Buchs, Switzerland). Pluronic® F68 was
obtained from BASF Corporation (Mount Olive, USA). CL113 (Chitosan chloride My, 70.000
to 150.000; DD 75 to 90%) was purchased from Nova Matrix (Sandvika, Norway). Human
crystallin insulin, FITC labelled insulin, isopropanol, FBS (foetal bovine serum), trypsin,
streptozotocin, 24 wells plates CELLSTAR® (organic Greiner) and ethyl acetate were provided
by Sigma Aldrich (Saint-Louis, MO, USA). Chemicals used for HPLC were of LC grade.
Acetonitrile was from VWR (Fontenay-sous-Bois, France), anhydrous sodium sulfate from
SDS (Peypin, France). The cellular lineage of human adenocarcinoma (Caco-2) was obtained
from the American Type Culture Collection (ATCC, USA) and the lincage RevHT29MTX was
supplied by Dr Thécla Lesuffleur (INSERM U505, Villejuif, France). DMEM (Dulbecco
Modified Eagle Medium), Antibiotic and Antimitotic, no essential amino acids glutamine, PBS
(Phosphate Buffer Sodium), HBSS (Hank Buffered Salt Solution) was purchased from

Invitrogen (France).

2.2.Particles preparation

NPs were prepared by double emulsion and solvent evaporation method as described by
Vauthier and Bouchemal, 2009 and Reix and al., 2012. PLGA and Pluronic® F68 at the weight
of 200mg and 100 mg respectively were dissolved separately in 500 pL of ethyl acetate and
mixed after dissolution. A volume of 400 mL of insulin/FITC-labeled insulin (3.5 mg/mL) or
deionized water was added in the organic phase and then emulsified under a 66 Watt sonication
over 15 seconds in an ice-cold bath. A volume of 2 mL of a PVA aqueous phase (2.5%) was
added to the resulting water-in-oil (w/0) emulsion, the mixture was sonicated additional 10
seconds. The double emulsion (w/o/w) obtained was then transferred into 10 mL of PVA
aqueous solution (0.15%) and gently stirred overnight. Particles were coated with chloride
chitosan by electrostatic interaction. A volume of synthesis (300uL) was mixed with a volume

of chitosan (1.5mL) at 7mg/mL (w/v) under a gentle stirring. For PEGylated-PLGA
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formulation, change based on substitution of PLGA by the PEGylated one in the described
synthesis protocol.

2.3.Particles characterization

Size distribution of particles was determined by dynamic light scattering using Horiba
NanoZS (Horiba, Japan) at 25 °C. NP characterization covered the measurement of three
parameters: particles mean size (diameter is calculated from the cumulative function of particles
light scattering intensity); surface charge (Zéta potential) and determination of polydispersity
index (Pdi). The morphology was examined by transmission electron microscopy (TEM;
Hitachi High Technologies Corporation, Tokyo, Japan). The entrapment efficiencies were
determined after filtration of NP dispersions (4,000 x g, 4 °C for 0.5 h) and measurement of the
drug amount using HPLC. The system consisted of two Prostar 210 solvent delivery systems,
a Prostar 410 autosampler and a Prostar 330 Photodiode Array (PDA) UV/vis detector (Varian,
Les Ulis, France) and a Water’s Symmetry C18 5 pm, column (Milford, USA). Eluent A was
composed of 0.2 M Na2SO4 in water at pH 2.3 and eluent B was a mix of eluent A/Acetonitrile
(55:45, v/v). The mobile phase consisted of a mixture of eluent A/eluent B (42:58, v/v) at a
flow rate of 1 mL/min. The column temperature was kept at 40°C and the detection wavelength

was 214 nm. The entrapment efficacy (EE) was calculated using the following equations:

EE| (%) = ((theoretical total amount of insulin—free insulin)/theoretical total amount of
insulin)*100

EE: (%) = ((encapsulated amount of insulin)/theoretical total amount of insulin)*100

2.4 Particles stability test

Particles were divided in aliquot and keeped at 4°C, particles size and zéta potential
were measured as previously described once a week during three weeks. The gastric and
intestinal media were respectively prepared: 35 mM NaCl, 80 mM HCI at pH 1.2 and 50 mM
KH2PO4, 15 mM NaOH adjusted at pH 6.8. Particles were incubated with media (v/v) at room
temperature or 37°C and at predetermined time points, samples were centrifuged and the
amount of free insulin were measured by HPLC. Results were expressed in percentage of

insulin release.
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2.5. Biological validation of particles
2.5.1. Invitro validation
2.5.1.1.Models and cell culture
Two models of culture were used: caco-2 and Coculture (75% caco-2 + 25%
RevHT29MTX) as described in G. Nollevaux and al., 2006. Cell culture was performed as
described by Reix and al., 2012. Briefly, cells were seeded at the density of 73.000 cells/cm? in
DMEM containing 4.5 g/L glucose and 1-glutamine. The medium was supplemented with 20%
FBS, 1% antibiotic—antimycotic solution and 1% of non-essential amino acids solution 10 mM.
Cells were grown over 21 days (to acquire enterocyte phenotype) at 37°C in an atmosphere of
5% COz before testing and were used from passage 30 to 60.
2.5.1.2.Study of particles uptake by flow cytometry

To study the uptake of particles in cells, flow cytometry was realized as described by
Reix and al., cells were cultured in 24-well plates. Cells were incubated with FITC-insulin
loaded NPs (20 mg of PLGA/well) in DMEM without FBS for 4 hours. Cells were washed
thrice (10 min) with calcium- and magnesium-free HBSS solution, detached by trypsinization,
centrifuged and suspended in HBSS. Samples were analyzed by a flow cytometer BD (Becton
Dickinson and Company) LSR II (New Jersey, USA) in triplicate, 50000 events were recorded
per well first to have whole associated fluorescence. Trypan blue was used to quench the

external fluorescence in the second hand before recording.

2.5.1.3.Transepithelial Electric Resistance (TEER) measurement

On 0.336 cm? insert disposal 200.000 cells were seeded and cultured as previously
describe during 21 days. NPs were incubated with cells and TEER was measured each hour
during 4 hours. EGTA was used as positive control of gap junction opening reflecting possible

cell toxicity.
TEER (Ohmcmz) = (chlls - Qempty insert)*O.336
Results were expressed in percentage of decrease:

TEER (%) = TEER@Tx/ TEER@T,
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2.5.2. Invivo validation

All animal experiments were performed in accordance with European Institutes of
Health Guidelines regarding the care and use of animals for experimental procedures, approval
AL/60/67/02/13). Male Wistar rats (120-140 g) were placed in standard collective cages, they
were kept under 12 h light/12 h dark cycles and were fed with a standard laboratory rodent diet
in pellets form (Safe, France). Food and water were available ad libitum. Diabetes induced by
an intraperitoneal injection of streptozotocin at the single dose of 75 mg/kg, it allowed leading
a state of hyperglycemia in 3 days. Diabetic rats undergo a surgery to implant catheters in
intraperitoneal (IP) and intraduodenal (ID) routes. The proximal end of the catheter was
tunneled subcutaneously to exit at the back of the neck, and sutured. Two days after surgery;
animals received treatments at the dose of 10UI of insulin in ID route and 2UI in IP route. The
biofunctionality of particles was assessed by following the evolution of the fasting glycaemia

(every 30 min during 4 hours in IP and each hour during 12 hours in ID).

2.6.Statistical analysis

Data were analyzed with Statistica version 10 (StatSoft, USA) and GraphPad prism 4
(USA). Results are expressed as means £ SEM. All data were analyzed by one-way ANOVA
with a Tuckey HSD post hoc test. For in vivo validation repeated measurement test was applied.

Differences were considered significant at p < 0.05.
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3. Results

3.1.Particles characterization

Particles formulated with PVA (+ PV A particles) present a size of 203 £ 9 nm and a
neutral zéta potential -1 = 1 mV. Without PVA (- PVA particles) particles and those made with
modified PLGA (PEGylated-PLGA particles) present sizes of 154 + 24 nm and 150 + 4 nm
respectively and a zéta potential of —26+ 2 mV for both formulations. Size was increased to 236
+ 29 nm for chitosan coated particles with a reversed zéta potential to + 53 =3 mV. Non coated
particles present polydispersity index lower 0.2, and 0.3 for coated particles. TEM image
revealed smooth and spherical NPs (Picture 1).

+ PVA particles - PVA particles Pegyle(IIPLGA Cl’ntosa{l coated
particles particles
) a a a,b
Size (nm) 203+ 9 154+ 24 150+ 4 236 + 29
a a, b
PDI 0,14 £ 0,01 0,17 £ 0,02 0,20 £ 0,01 0,291 0,04
Zéta Potential 1+1 26+2 ¢ 26+1 2 53403 &P

Table 1: Physicochemical characteristics of modified insulin-loaded PLGA particles

Dynamic light scattering measurement, data are presented in mean + SD. ANOVA one-way Tukey was
applied to compare all groups *p<0.05 vs + PVA particles; p<0.05 vs - PVA particles.

Picture 1: Transmission Electronic Microscopy picture of PLGA nanoparticles (natives)
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HPLC quantifications indicated high encapsulation efficiency (100%) for each
formulation (Fig.1 A and B)

A

5

T
"

B
o ‘77

N EE (%)
+ PVA particles 3 100
- PVA particles 3 100

Fig.1: Encapsulation efficiency of insulin loaded PLGA particles

No encapsulated insulin was quantified by HPLC using the european pharmacopea monography. Data are presented in mean
+ SD, ANOVA Oneway Tukey was applied to compare all groups *p<0,05 vs + PVA particles.

3.2.Particles stability test

Fig. 2 showed than all formulation of insulin loaded particles are stable in their synthesis

media (A) and in PBS (B) at 4°C during 21 days. At room temperature (Fig. 3).
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Fig.2: Stability of insulin loaded PL.GA particles

Stability of insulin loaded PLGA particles were evaluated by following the physicochemical parameters : size (dark pattern)
and ZP (clear pattern) during time. Stability were evaluated in synthesis environment (A) and in PBS (B) at 4°C. The pattern
(~e=) for + PVA particles, (<) for - PVA particles, (-4=) for PEGylated PLGA particles and (-#=) for Chitosan coated PLGA
particles. Data are presented in mean £ SEM, ANOVA Oneway Tukey was applied to compare all groups.
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Fig.2: Stability of insulin loaded PLGA particles

Stability of insulin loaded PLGA particles were evaluated by following the physicochemical parameters : size (dark pattern)
and ZP (clear pattern) during time. Stability were evaluated in synthesis environment () and in PBS (B) at 4°C. The pattern
(~e=) for + PVA particles, (@) for - PVA particles, (-4) for PEGylated PLGA particles and (=e=) for Chitosan coated PLGA
particles. Data are presented in mean £ SEM, ANOVA Oneway Tukey was applied to compare all groups.
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NPs did not release encapsulated insulin (less than 6%) neither in gastric or intestinal
simulated media after 5 hours of incubation. Additionally, nanoparticles released 100% of

encapsulated insulin in gastric medium at 37°C and 20% in gastric medium after 5 hours.

Amount of released insulin from NPs (%)

Time (hours)
Fig.3: Stability of insulin loaded PLGA particles in simulated media

Released insulin was quantified by HPLC using the european pharmacopea monography. The pattern (-e-) for + PVA
particles, (4 ) for - PVA particles. Red is for gastric environment and green for intestinal one. Data are presented in mean +
SD (n=2).
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Fig. 5: Stability of insulin loaded PLGA particles in simulated media

Released insulin was quantified by HPLC using the european pharmacopea monography. The pattern (-¢- ) for + PVA
particles (n=1), (4@ for - PVA particles. Data are presented in mean + SD.

3.3.Particles uptake

Fig.5 showed that highest associated fluorescence was quantified on cells incubated
with chitosan coated particles. After outside fluorescence quenched a huge decrease of
associated fluorescence was observed for chitosan coated particles. Cells associated of without

PVA particles were higher compared to with PVA and PEGylated-PLGA particles. The same
127



observation was made on coculture model (Fig.6). Without PVA particles were the most

associated particles in both models in quenched environment.
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Fig.5: Uptake of insulin loaded PLGA particles on Caco-2 model

Associated fluorescence measurement were performed by flow cytometry, 50000 events were recorded per well and datas
were expressed by Geo mean multiplied by the percentage of fluorescent cells per each well N=3 (nine time measurement
per N). The pattern () represent free FITC labeled msulin, ( B ) for + PVA particles, (g ) for - PVA particles, (B )
for PEGylated PLGA particles and (BJ) for chitosan coated PLGA particles. Data are presented in mean = SEM, ANOVA
Oneway Tukey was applied to compare all groups *p<0,001 vs free FITC labeled insulin, bp<0,001 vs - PVA particles,
“p<0,001 vs quenched - PVA particles and ¢p<0,001 vs chitosan coated PLGA particles.
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Fig.6: Uptake of insulin loaded PLGA particles on Caco-2/RevHT29 MTX coculture model
Associated fluorescence measurement were performed by flow cytometry, 50000 events were recorded per well and datas
were expressed by Geo mean multiplied by the percentage of fluorescent cells per each well N=3 (nine time measurement
pet N). The pattern ([ZJ) represent free FITC labeled insulin, ( B ) for + PVA particles, ( g ) for - PVA particles, (B2 )
for PEGylated PLGA particles and (B for chitosan coated PLGA particles. Data are presented in mean = SEM, ANOVA
Oneway Tukey was applied to compare all groups *p<0,001 vs free FITC labeled insulin, bp<0,001 vs - PVA particles,
“p<0,001 vs quenched - PVA particles and 9p<0,001 vs chitosan coated PLGA particles.

3.4. Transepithelial electric resistance

Fig.7 showed any significant TEER change when incubated with the different type of

NPs formulation compared to cells without treatment. In contrast, there was a high difference
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between cells incubated with particles and cells incubated with EGTA used as positive control
of gap junction opening (toxicity).
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Fig.7: Transepithelial electric resistance (I EER) of Caco-2/RevHT29 MTX coculture model in presence of
particles

Transepithelial electric resistance (TEER) were measured with an ohmmeter, 3 batches of NPs type were evaluated and results
were expressed in percentage. The pattern (-# ) represent cells without treatment, ( =) for + PVA particles, ( —— ) for - PVA

particles, (-»=) for PEGylated PLGA particles, (-a- ) for EGTA as positif control of gap junction opening and (-a-) for empty
particles. Data are presented in mean + SEM, ANOVA Oneway Tukey was applied to compare all groups *p<0,001 vs EGTA .

3.5./n vivo validation

In intraperitoneal (Fig.8A) route empty particles did not have any effect on fasting
glycaemia, otherwise, free insulin and encapsulated insulin induced a decrease of fasting
glycaemia in 3 hours. Area under the curves representation (Fig.8B) showed a significant
decrease of rat’s glycaemia receiving free insulin and particles compared to empty particles.
There is a statically difference between free insulin and PEGylated PLGA particles. By
intraduodenal route (Fig.9A), a global decrease of fasting glycaemia was observed. At 4 hours
a statistic difference was observed for without PVA particles compared to free insulin. Area
under the curve representation (Fig.9B) any difference were observed compared insulin loaded
particles with the empty one, free insulin or particles together. But there were a statistical trend

between free insulin and without PV A particles.
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Fig.8: Intraperitoneal administration of insulin loaded PLGA particles

A single dose of 2UI of free insulin or particles was administrated and rats glyceamia was measured at defined points. [A] is a
representation of glycemia evolution and [B] is a representation of AUC. Patterns (-e- ;I ) represents empty particles
administration (n=11), (- ;) free insulin administration (n=11), ( - ; me@) for + PVA particles (n=13), ( = ; &) for —
PVA particles (n=9), ( < ;& ) for PEGylated PLGA particles (n=8). Results were expressed in mean £ SEM ANOVA
Oneway (repeated measurement [A]) Tukey was applied to compare all groups *p<<0,001 vs empty particles
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Fig.9: Intraduodenal administration of insulin loaded PLGA particles

A single dose of 10 UI of free insulin or particles was administrated and rats glyceamia was measured at defined points. [A] is a
representation of glycemia evolution and [B] is a representation of AUC. Patterns (-e- ;Hll ) represents empty particles
administration (n=11), (4 ;) free insulin administration (n=11), ( - ; mm) for + PVA particles (n=13), ( » ; ) for —
PVA particles (n=9), (-~ ;B ) for PEGylated PLGA particles (n=8). Results were expressed in mean £ SEM ANOVA Oneway
(repeated measurement [A]) Tukey was applied to compare all groups *p<0,05 vs empty particles
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4. Discussion

PLGA particles (NP) are common and efficient drug carriers. They show great efficiency
as drug delivery vehicles, rising the drug amount crossing biological barriers such as the blood-
brain barrier or gastrointestinal mucosa, but insulin-loaded PLGA particles present a low
bioavailability when delivered intraduodenaly on diabetic model rats according to Reix et al.
(2012). Nadeége Grabowski and al. (2013) indicated that the colloidal characteristics of the
particle size and surface charge are considered the most significant determinants in the cellular
uptake and trafficking of the particles. Formulating high negatively charged particles
(formulated without surfactant according to Fei Yu and al., 2015) and mucoadhesive (particles
coated with mucoadhesives polymer chains as chitosan Noha Nafee and al., 2007 or
polyethylene glycol (PEG) Park Jason and al., 2011) are promising formulation approaches to
improve bioavailability of encapsulated insulin. In this study we aimed to formulate the cited
nanoparticles, characterized them and further validate there bioefficiency in vitro and in vivo.
Nanoparticles formulated by double emulsion in presence of PVA presented a size of 200 nm
and a neutral zéta potential (-1 mV). By removing PVA, results showed that particles are
smaller (150 nm) and negatively charged (-26 mV), in contrast to those made with PVA
according to results obtained by Fei Yu and al. (2015). This negative charge allowed a greater
recovery rate and thus a greater density of positive charge on the particle surface explaining the
reverse of the zéta potential sign from -26mV to +53 mV. Mengshu Wang and al. (2013)
observed a significant reversion of chitosan coated Exendin-4 loaded PLGA particles and
considered it as the adhesion of polymer on particles surface. In fact, it was reported that
chitosan can adhere to the surface of negatively charged PLGA nanoparticles by
electrostatic attraction to form the first monomolecular adsorption layer. The hydrogen bond
or van der Waal’s force would be the dominant driving force for the further adsorption
of chitosan. During the formation of the first few molecular adsorption layers, the chitosan
density on the surface of PLGA nanoparticles increases with increasing concentrations of
chitosan. But it seems to have a concentration limit of chitosan (chitosan solution) at 7 mg/mL
(w/v) in our case, any difference in higher concentration were observed. Results obtained from
high performance liquid chromatography (HPLC) showed that the encapsulation efficiency of
PLGA nanoparticles is maximum (100%) independently of the presence of PVA. Double
emulsion and evaporation allow a high encapsulation efficiency, it was reported a rate
encapsulation of 100% for DNA sequences Kai Zhao and al. (2014) or over 90% for
polypeptides Fei Yu and al. (2015). Stability studies showed that in a saline medium (PBS) as
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in their synthesis environment, nanoparticles preserved their physicochemical properties during
21 days at 4°C. There studies showed also that nanoparticles did not release their content in
gastric or intestinal simulated medium at room temperature but at 37°C 60% of encapsulated
insulin is released after five hours in gastric medium against 20% in intestinal environment
(Reix and al., 2012). In vitro validation performed on caco-2 and coculture intestinal epithelial
tissue models (Diop and al., 2015) showed that, chitosan coated nanoparticles were more
associated with cells than other formulation types and this on both culture models. However,
since the cells external fluorescence were quench carried out by trypan blue, there were a
significant drop in their fluorescence highlighting that increasing the mucoadhesion is not
associated with an increase of nanoparticles uptake. Marie Gaumet and al., 2009 evaluated the
influence of surface hydrophilicity of biodegradable polymeric nanoparticles on cellular uptake
using Caco-2 cells model and chitosan coated PLGA particles. They revealed a high association
of coated particles with cells and confocal microscopy showed that only small particles were
observed intracellularly and larger particles were associated with the apical membranes. This
study supported our data, indicating that negatively charged particles were effectively
internalized by cells, with higher up take for particles without any pattern (without PVA). In
vivo validation on streptozotocin diabetic model rats showed the ability of insulin loaded in
nanoparticles to induce a decrease in blood glucose as unencapsulated one when administrated
in intraperitoneal way, showing the preservation of insulin biological activity after
encapsulation. In intraduodenal route, the biological efficiency of nanoparticles is difficult to
highlight due to the fasting effect on the model, but it seems that without PVA nanoparticles
are the most effective. The blood glucose level decreasing observed on control group is
amazing, it is more logical to expect a holding of blood glucose level in a high values over time.
It is rare to see data in the literature indicating a decrease of blood glucose level in streptozotocin
diabetic rat model. We had risen until 1994 to find a report on the subject. In fact, Takeuchi and
al., (1994) observed this phenomenon without being able to give an explanation, but identified
the involvement of gastric mucosal lesions following injection of streptozotocin. Goldin Eran
and al. (1997) got the same results and highlight the involvement of glutathione (GSH) in the
mucosal injuries on fasting streptozotocine rat model, but all involved mechanism remind
undetermined and represent a major technical lock to validate delivery systems on rat model.
Mucoadhesion is the widely used approach to enhance the effectiveness of polymeric drug
carriers, we demonstrated here that is definitively not the good way to manage the problem of
the weakness of bioavailability offered by encapsulated system for oral delivery of insulin.

There are new formulation approach proposed to coat PLGA particles using modified chitosan
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(chitosan N-Arginine and N-Histamine) to improve bioavailability of encapsulated drug. The
PEG pattern on PLGA particles remain to be interesting to formulate muco-penetrating
particles. The formulation of PLGA particles without surfactants is the simplest way to obtain
efficient vector with a high potential for insulin delivery by oral route. In fact, it can lift all
technological and regulatory locks in the high scale development of insulin orally

administrable.
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5. Conclusion

Results showed that formulating negatively charged particles is the simplest approach to
formulate insulin loaded particles. These particles are smaller and more homogenous than our
previous formulations. We show that the mucoadhesion strategy is definitely not the right way
to improve the bioavailability of encapsulated insulin. Negatively charged particles are more
efficient both in vitro and in vivo than the mucoadhesives one. This formulation is a promising
approach for per os insulin delivery. The next step is scaling up formulation and the whole

vehicle manufacturing process for preclinical trials.
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2.2. Discussion générale et conclusion

Nous avons pu démontrer au cours de ce travail qu’en absence de tensioactif, les particules
formulées par double émulsion sont plus petites (150 nm), sont chargées négativement (-26
mV) par rapport aux nanoparticules formulées en présence de 2,5% de PVA (200nm, -5mV).
Fei Yu et al. (2015) ont formulé des nanoparticules de PLGA/insuline (polymere dissout dans
le dichlorométhane) sans tensioactif présentant les mémes caractéristiques. Cette charge de
surface négative permet d’améliorer le recouvrement des nanoparticules par le chitosane
comme [’atteste I’apparition de la charge positive (+53 mV) obtenu sur les nanoparticules
recouvertes. L.’augmentation de la charge de surface témoigne de I’adsorption du chitosane a la
surface des nanoparticules de PLGA. Laura Chronopoulou et al. (2012) et Mengshu Wang and
al. (2013) ont décrit des résultats semblables démontrant que le chitosane peut adhérer a la
surface des nanoparticules de PLGA présentant une forte charge négative. Cette adhésion
s’effectue dans un premier temps par une attraction électrostatique entre le chitosane et la
membrane de la nanoparticule pour former la premiére couche. Dans un second temps, la liaison
hydrogene ou les forces de Van der Waal seraient la force motrice dominante pour la poursuite
de l'adsorption du chitosane expliquant I’augmentation de la charge de surface. Les données en
chromatographie liquide haute performance montrent que I’efficacité d’encapsulation de
I’insuline est maximale (100%) avec ce procédé¢ de formulation que les particules soient
formulées en présence de PVA ou non. Fei Yu et al. (2015) en employant la méme méthode
décrivaient un taux d’encapsulation supérieur a 92%. Kai Zhao et al. (2014) rapportaient, quant
a eux, une efficacité d’encapsulation de 100% lors de la formulation de nanoparticules en PLGA
renfermant des séquences d’ADN. Les études de stabilité montrent que dans un milieu salin
(PBS) comme dans leur milieu de synthése, les nanoparticules préservent leurs propriétés
physicochimiques pendant 21 jours a 4°C. Cependant, les nanoparticules présentent une
stabilité¢ dépendante des milieux auxquelles elles sont exposées. En effet, a 37°C, pres de 60%
de I’insuline encapsulée est libérée au bout de 5 heures en milieu gastrique contre 20 % en
milieu intestinal alors qu’a température ambiante, on ne note aucune libération. La validation
in vitro a été réalisée sur deux modeles cellulaires : caco-2 seules (cellules entérocytaires) et
coculture (Caco-2 et RevHT29MTX (productrice de mucus). Nous avons pu démontré que les
nanoparticules recouvertes de chitosane sont mieux associées aux cellules que les autres types
de formulation et ceci sur les deux types cellulaires. Guo M. et al., (2013) a précédemment
montré une augmentation de l’internalisation des nanoparticules de PLGA recouvertes de

chitosane et encapsulant du SN-7-ethyl-10-hydroxycamptothecin (le métabolite actif de
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I’inhibiteur de la topoisomérase 1) un anti-cancéreux : I’Irinotecan (Camptosar®, Pfizer). La
cytométrie en flux est une méthode efficace et courante pour évaluer I’endocytose de systémes
nanoparticulaires par des cellules. Cependant, cette méthode n’est pas en mesure de dissocier
les nanoparticules présentes en intracellulaire et celles associées a la surface cellulaire. Cette
différentiation permettrait de se rendre compte réellement des propriétés d’interaction entre les
cellules et les particules. Jari Nuutila and al. (2014) s’étonnaient du peu d’attention consacré a
la distinction entre ces deux aspects. Ils suggéraient 1’utilisation de « quencher » comme le bleu
de trypan ou le cristal violet pour masquer toute fluorescence extérieure a la cellule compte tenu
du fait que ces « quenchers » sont expulsés de cellule vivante. D¢s lors que 1’extinction de la
fluorescence associée aux cellules est réalisée par ajout de bleu de trypan, nous avons pu mettre
en évidence une chute importante de leur fluorescence mettant en lumicre que 1’augmentation
de la mucoadhesion n’est pas associée a une augmentation de I’internalisation des
nanoparticules par les cellules. A I’opposé, les nanoparticules négativement chargées (sans
tensioactif et recouvert de PEG) sont tres efficacement internalisées par les cellules (Chih-Hang
Chu et al., 2011).

La validation in vivo sur un mod¢le de rat diabétique a permis de montrer que les
nanoparticules sont en mesure d’induire une baisse de la glycémie de mani¢re comparable a
I’insuline non encapsulée en administration intrapéritonéale démontrant une conservation de
I’activité biologique de I’insuline encapsulée. En revanche, par voie intraduodénale, 1’efficacité
biologique des nanoparticules sans PVA est supérieure aux autres nanoparticules formulées.
Cependant, le modele d’injection intraduodénal pose des limites techniques. La difficulté réside
dans le fait que la glycémie des rats contrdle chute aussi au cours du temps. Cette chute, due a
I’effet du jeun est accentuée par I’intervention chirurgicale subit lors de la mise en place du
cathéter, ce qui ne permet pas d’établir clairement un effet des systémes nanoparticulaires. La
baisse de la glycémie chez le modele de rat diabétique induit par streptozotocine lors d’un jeun
est trés rarement observée dans la littérature. Il est cependant admis que la streptozotocine outre
sa destruction sélective des cellules  pancréatiques a beaucoup d’autres effets déléteres sur
d’autres organes (rein, foie,...). Takeuchi et al., (1994) identifiaient les Iésions sur les
muqueuses digestives suite a l’injection de la streptozotocine comme responsable de
I’hypoglycémie observée lors du jeun sur ce modele. Mais les auteurs n’étaient pas en mesures
d’identifier le lien entre ces lésions et ’hypoglycémie lors du jeun. Cependant, ils ont décrit des
modifications dans la sécrétion de mucus avec une mise en place progressive de la sévérité des
lésions. Plus récemment, Goldin Eran et al. (1997) sur les bases des travaux de Takeuchi (1994)

obtiennent les mémes résultats lors d’une étude mettant en évidence I’implication de la
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réduction du GSH (glutathion) dans le processus d’ulcération des muqueuses chez le modele
streptozotocine pendant le jeun.

La formulation des particules mucoadhésives par recouvrement de chitosane n’ont pas
apporté les résultats attendues ; rendues plus mucoadhésives, les nanoparticules ne sont plus
internalisées par les cellules ne permet pas de potentialiser leur activité biologique. A 1’opposé,
les nanoparticules négatives sont plus efficaces a la fois in vitro et in vivo, et représentent une
formulation prometteuse pour l'administration d'insuline orale. En effet, la formulation de
particules de PLGA chargées négativement est I'approche la plus simple pour formuler des
particules chargées d'insuline stables, fonctionnelles. Cette formulation simple doit maintenant
étre transposable a 1’échelle industrielle et étre formulées dans un vecteur pharmaceutique

complexe pour sa validation in vivo.
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Figure 80: Schéma récapitulatif des travaux sur la bioadhesion des nanoparticules de PLGA
Mucoadhesion as a strategy to improve Insulin loaded PLGA particles bioavailability (en
soumission)
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3. Augmentation de I’échelle de production des nanoparticules

de PLGA



3.1. Introduction

Les travaux réalisés dans cette these s’inscrivent dans le cadre du projet ORAIL (Oral
Administration of InsuLin) Bis. Le projet Orail est un programme collaboratif dans lequel sont
impliqués des laboratoires publiques du CNRS (I’Institut Charles Sadron (ICS) et I’Université
Paris Sud (UPS)), un laboratoire de recherche associatif de statut lucratif (le Centre européen
d’étude du Diabete (CeeD)) et deux entreprises (Catalent et la PME Photon and Polymers
(PnP)). Le projet Orail a été labélisé par le pole de compétitivité Alsace Biovalley et bénéficie
d’un financement du Fonds Unique Interministériel (FUI) complété par la BPI (Banque
publique d’investissement), de la région Alsace, le FEDER (Fonds Européen de
Développement Régional) et de la CUS (Communauté Urbaine de Strasbourg aujourd’hui
appelée Eurométropole). L’objectif de ce consortium est de conduire le systeme breveté de
double encapsulation de 1’échelle du laboratoire a 1’échelle industrielle par la formulation d’un
lot préclinique. De par la voie d’administration, le consortium doit lever un certain nombre de
verrous technologiques. En effet, I’insuline doit étre encapsulée dans des nanoparticules
industrialisable. Ces nanoparticules doivent présenter les mémes propriétés physicochimiques
qu’en laboratoire, présenter un bon passage de la barriere intestinale et offrir une bonne
biodisponibilité de I’insuline encapsulée. Ces nanoparticules doivent étre encapsulées a leur
tour dans un vecteur gastrorésistant dont la technologie reléve du savoir-faire du partenaire
industriel Catalent. Catalent est une entreprise pharmaceutique spécialisée dans la galénique et
dans la production de capsules molles. Le vecteur pharmaceutique complexe définit dans le
projet est donc une dispersion de nanoparticules d’insuline dans un dispersant lipophilique
(polyéthyléne glycol, miglyol...) enrobé d’une tunique en alginate/gélatine assurant la gastro
résistance et la libération des nanoparticules dans le milieu intestinal.

La premiére partie des travaux consistait a développer des nanoparticules présentant une
bonne mucoadhésion sur la barriére intestinale afin d’améliorer leur internalisation et donc la
biodisponibilité¢ de I’insuline encapsulée. Des travaux ont été entrepris sur la modification de
surface afin de les rendre bioadhésives (partie 2 des résultats). Il ressort de ces travaux que les
nanoparticules négativement chargées étaient les mieux absorbées par les cellules et présentent
un intérét pour leur développement industriel en vue de devenir un vecteur efficace pour
administration orale de I’insuline. En effet, celles-ci présentent une homogénéité de
distribution, une taille et une charge de surface permettant de privilégier leur absorption par les
cellules entérocytaires de l’intestin et ainsi permettre le métabolisme de premier passage

hépatique de I’insuline encapsulée. D’autre part, la suppression du tensioactif (PVA) permet de
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diminuer la quantité¢ de polymere dans la formulation ce qui permet de s’écarter d’un possible
verrou réglementaire. Comme tenu du potentiel de cette formulation, nous sommes passés a
une phase de validation du processus d’augmentation de 1’échelle de production vers un volume
préindustriel. Des études préliminaires sont alors conduites en encapsulant de 1’eau ou de
I’insuline commerciale (Umuline®, 100 Ul/mL, Eli Lilly) dans des nanoparticules dont la
membrane est fait de polycaprolactone en remplacement du PLGA. La polycaprolactone est un
polymere semblable au PLGA mais moins couteux. Son utilisation nous a permis de suivre
1’évolution des nanoparticules en fonction des volumes de synthése. Les résultats encourageants
obtenus avec ce polymere de substitution nous ont conduit vers les essais d’augmentation
d’échelle avec du PLGA. L’ensemble de ces travaux de mise au point ont été, dans cette

premiere phase, réalisés par un chercheur post-doctorant, Nathalie Auberval, a I’'ICS.
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3.2. Résultats

3.2.1. Augmentation d’échelle

Cette partie du projet est consacrée a I’application du transfert de technologie permettant de
passer de I’échelle du laboratoire (13,5 mL) a une échelle industrielle (2,04 L). Cette
augmentation d’échelle s’est faite par étape en changeant les volumes de synthése et des
systemes d’agitation qui permettent progressivement d’augmenter les volumes des formulations
et de se rapprocher du systéme d’agitation type rotor/stator de Catalent. Ainsi, nous sommes
passés d’un systéme a ultrasons (13,5 mL) a un systéme d’agitation « tube drive » (50 mL) puis
a un mixeur « Blender » commercial (1 L) et enfin le « Blender » modifié (1 L) en adaptant
dans celui-ci une reproduction fide¢le du systéme rotor-stator du Becomix® (Figure 81).
L’ensemble de cette premicre phase a été réalisé¢ a I’ICS par Nathalie Auberval. Cette phase
d’augmentation d’échelle pose cependant la problématique de I’extraction du solvant. A
I’échelle du laboratoire, pour de petits volumes, cette extraction se fait sous un flux d’air (hotte,
boa...) mais I’augmentation des volumes implique de mettre au point des moyens d’extraction
rapide et efficace des solvants, d’autant plus que pour une industrialisation pharmaceutique, les
solvants doivent étre recueillis et traités. De plus, le Becomix® ne permet pas de réaliser la
dispersion D3 comme avec la technique des ultrasons car cela impliquerait la mise en ceuvre de
volumes trop importants. Des essais d’extraction du solvant sous vide ont donc été réalisés a
I’ICS avec succes grace a un évaporateur rotatif (Rotavap®, BUCHI, Suisse) sur de grands
volumes de synthése («Blender» et «Blendery modifié sans D3). Celui-ci permet de recueillir

les vapeurs condensées de solvant dans des ballons.

\ / Blender
\ modifié

400 &
1000mL

Figure 81: Les phases d’augmentation de [’échelle de production des nanoparticules

PLGA/Insuline (Akkiz Bekel et Nathalie Auberval)
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Pendant la phase d’augmentation d’échelle, la taille des nanoparticules est conservée
malgré I’augmentation des volumes de synthese. L’absence de la D3 et I’extraction du solvant
sous vide n’affecte pas la formation des nanoparticules qui conservent leur taille dans la méme
gamme tout au long de 1’augmentation de 1I’échelle de production. Les résultats dans les phases
d’augmentation d’échelle au laboratoire nous ont permis de réaliser les premiers essais de
formulation dans le Becomix® pour un volume de plus de 2 L par lot de particules. Dans la
synthése au Becomix® sont mise en jeu des quantités 600 fois plus importantes que celles

utilisées au laboratoire.
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Figure 82: Résumé des étapes prédominantes de |’ augmentation de [’échelle de production

des nanoparticules (en collaboration avec Auberval N.).

La figure 82 montre que les nanoparticules, de la paillasse a 1’échelle industrielle
conservent leurs caractéristiques physicochimiques en présentant des tailles d’environ 200 nm,
une homogénéité de distribution, une charge de surface légerement négative a neutre et un

aspect sphérique.

3.2.2. Premiére phase de synthése des lots précliniques

Pour les besoins de 1’étude de toxicologie réglementaire (administration, distribution,
métabolisme et excrétion ainsi que la toxicité particuliere des nanoparticules), des
nanoparticules formulées dans le Becomix® et encapsulées dans un vecteur gastrorésistant
doivent étre administrées par gavage chez le rat. Des prélévements d’organes vont ensuite étre

réalisés afin d’évaluer I’accumulation des nanoparticules ou des polymeéres les constituants dans
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les organes cibles (intestin et foie). Afin d’obtenir une concentration de principe actif optimale
et réduire le volume a administrer, une insuline quatre fois plus concentrée (Insuman®, 400
Ul/mL, Sanofi-Aventis) que celle utilisée dans les phases d’augmentation d’échelle
(Umuline®, 100 UI/mL, Eli Lilly) est encapsulée dans les nanoparticules formulées sans

tensioactif (sans PVA).

Figure 83: Vidange du Becomix apres synthése des nanoparticules encapsulant de
[’Insuman®
La figure 83 montre le résultat obtenu a la fin du processus de synthese des
nanoparticules PLGA/Insuman®. Apres I’évaporation de I’acétate d’éthyle sous vide pendant
4 heures, I’Insuman combiné a 1’absence de tensioactif conduisent a une agrégation massive

des nanoparticules.
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Figure 84: Cliches au microscope électronique a transmission des nanoparticules apres 4
heures d’évaporation de [’acétate d’éthyle.

Les clichés au microscope ¢€lectronique a transmission montrent que les nanoparticules
formées apres 4 heures d’évaporation restent prisonnieres d’une matrice et/ou sont liées les unes
aux autres. Ce transfert de technologie infructueux met en lumiere la nécessité d’introduire pour
ce type d’insuline une quantité minimale de tensioactif permettant de stabiliser la dispersion.
Nous avons également identifié des points de surveillance, a savoir un contrdle strict de la
température des solutions dans le réacteur, et un suivi des tailles a intervalles réguliers pendant

la phase d’évaporation.

3.2.3. Seconde phase de synthese des lots précliniques

Apres 1’échec du transfert de technologie, des études ont été menées au laboratoire afin
de déterminer la formulation optimale nécessaire pour empécher 1’agrégation des
nanoparticules contenant I’Insuman® tout en permettant une conservation de leur absorption
par les cellules intestinales. Nous avons ainsi formulé a I’échelle du laboratoire différents types
de systémes nanoparticulaires avec Umuline® ou Insuman®, sans PVA ou avec 0,5, 1 ou 2,5%
de PVA (m/v). Nous avons également testé deux types d’évaporation lente (sous hotte) ou

rapide (sous Rotavap) pour identifier si le type d’évaporation pouvait impacter sur cette

agrégation (Figure 85).
Umuline Insuman
PVA 0% | PVA0,5% | PVA1% | PVAO0% | PVA0,5% | PVA 1%
Taille (nm) 155 150 160 474 190 190
PDI 0,14 0,11 0,09 1,22 0,14 0,14
Potentiel Zéta -24 -12 -7 / 2.2 0,6

Figure 85: Influence de la quantité de tensioactif sur les propriétés physicochimiques des
nanoparticules (évaporation sous flux d’air).
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Ces ¢tudes ont montré que 1’encapsulation de 1I’Insuman® produit des nanoparticules de
charge neutre et ce méme en 1’absence du tensioactif. Des études physicochimiques ont montré,
qu’en présence d’Insuman®, I’ajout d’une quantité¢ minimum de PVA a 1% (m/v) dans la D2
permet d’obtenir des nanoparticules de taille, de dispersion homogeéne sans processus
d’agrégation alors que sans PVA ou avec 0,5% de PV A cette agrégation est observée quel que
soit le type d’évaporation utilisé. Cette agrégation est spécifiquement obtenue pour les
formulations en présence d’Insuman® suggérant que soit la concentration d’insuline, ou soit
les additifs ou stabilisants utilisés dans cette formulation, sont a I’origine de cette agrégation.
Nous avons également pu observer qu’en présence d’Insuman®, la charge de surface des
nanoparticules est trés faiblement négative, voire neutre que ce soit en présence ou non de PVA
suggérant de nouveau que cette formulation particuliere impacte fortement les propriétés
physico-chimique des nanoparticules. A 1’opposé, en présence d’'Umuline®, cette agrégation
n’est pas observée. De plus, la charge de surface des nanoparticules est fortement négative sans
PVA, mais se rapproche de la neutralité dés qu’on rajoute du PVA. Une fois cette étape réalisée,
nous avons cherché a vérifier ’internalisation de ces nanoparticules présentant une quantité
minimum de PVA. Cependant, pour des raisons techniques, ces expériences sont réalisées avec
de I’insuline FITC et ne tiennent donc pas compte du type d’insuline utilisée qui peut fortement
impacter sur cette internalisation. Par contre, nous avons systématiquement mesuré la charge
de surface des nanoparticules formulées pour vérifier que nous étions dans des valeurs

comparable a celle formulées en présence d’Umuline® ou d’Insuman® (Figure 86).
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Figure 86: Influence de la quantité de tensioactif sur l’internalisation des nanoparticules sur
les différents modeles in vitro : [A] sur le modéle caco-2 [B] sur le modéle coculture.

Les résultats obtenus montrent que les nanoparticules formulées en présence d’une

quantité minimum de PVA, malgré leur charge de surface proche de la neutralité, présentent
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une mucoadhésion et une internalisation comparable aux nanoparticules sans PVA. Ces
résultats sont en contradiction avec I’hypothése réalisée précédemment sur I’impact de la charge
de surface sur la I’internalisation des nanoparticules mais suggerent que ce n’est pas forcément
la charge de surface qui impacte 1’internalisation des nanoparticules mais la présence de PVA.

Suite a cette étape, la méthode a pu étre transposée directement a 1’échelle du Becomix®
ou un volume de 1200 mL de PVA 1% est introduit lors de la seconde dispersion D2. Des
prélevements sont effectués a intervalle régulier a partir du début de 1’évaporation pour suivre

I’évolution de la taille des particules et de leur morphologie.

Etapes ApERe. 12 d’ifr;;isr::;on dl’:‘\)'l;é:oi;fi:n cﬁg\f:;:;:tsiohn d’i’r;f:rftl:on
Taille (nm) 21151 21542 220+ 1 224 + 4 22242
PDI 0,08 + 0,02 0,06 + 0,01 0,08 = 0,03 0,09 = 0,01 0,09 + 0,01
Potentiel zéta (mV) -6+03 -43+03 -33+04 -28+0,1 25+02

Morphologie

Figure 87: Suivi de [’évolution des nanoparticules PLGA/Insuman en cours de synthése dans
le Becomix.

L’ajout du PVA a hauteur de 1% permet de réprimer I’agrégation observée lors de la
premicre phase d’augmentation d’échelle avec I’Insuman®. Il permet d’obtenir des tailles, une
distribution et un potentiel de surface conforment a ceux obtenus au laboratoire. Les clichés au
microscope ¢lectronique a transmission montrent des nanoparticules indépendantes et
sphériques. Le dosage CLHP de I’efficacité d’encapsulation par la méthode indirecte montre

un taux d’encapsulation de 98%.
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3.3. Conclusion et discussion

Cette étude a permis de mettre en évidence la nécessité d’incorporer une quantité de
tensioactif dans le processus de synthése des nanoparticules encapsulant I’ Insuman®. La valeur
de la charge de surface est proche de la neutralité mais ceci est dii au type d’insuline et de ses
adjuvants. La quantification de [D’efficacit¢ d’encapsulation en CLHP donne un taux
d’encapsulation de 98% confirmant les premiers résultats obtenus. Le transfert de technologie
est aujourd’hui une réussite néanmoins, car nous avons pu démontrer qu’avec une quantité
minimum de PV A, nous pouvions formuler des nanoparticules de taille homogene, sans agrégat
qui conservent leur propriété d’internalisation. Cependant, la problématique de la charge de
surface et son role sur I’internalisation doit encore étre élucidé. Nous nous heurtons dans cette
étape également a la limite technique de I’étude de I’internalisation in vitro sur des modeles
cellulaires qui nécessitent 1’utilisation d’insuline FITC. Or, nous avons pu remarquer dans cette
¢tude que I’insuline elle-méme joue un rdle clé dans les propriétés physico-chimiques de nos
nanoparticules et il est raisonnable de penser que cela peut également impacter sur leur
internalisation. A notre connaissance, nous n’avons pas trouvé d’étude qui répertorie ce type
d’impact de la formulation d’insuline sur les propriétés physicochimiques et biologiques des
nanoparticules. Pour répondre a ces questions, deux types de stratégies peuvent étre envisagées.
La premiére consisterait a formuler des nanoparticules avec les adjuvants de 1’Insuman pour
identifier si c’est la concentration en insuline qui joue un role clé ou ses adjuvants. Il est en effet
important de rappeler que I’Insuman® est une insuline particuliere qui est formulée pour
maintenir 1’insuline plus de 2 mois dans une pompe implantable, c’est-a-dire a 37°C. Cette
expérience peut €tre réalisée grace aux diluants commercialisés avec I’ Insuman qui contiennent
exactement les adjuvants présents dans la formulation d’Insuman®. L’autre possibilité consiste
a réaliser I’étude du passage de la barriere intestinale sur intestin isolé grace a la chambre de
Ussing. Nous pouvons réaliser cette étude en présence de nanoparticules d’insuline (Umuline®
et Insuman®) et quantifier par HPLC la quantité d’insuline qui passe la barriere intestinale dans
le compartiment receveur. Ces ¢tudes n’ont pu étre réalisées au cours de cette these, les résultats
obtenus sur la phase de changement d’échelle ayant été obtenus, tres récemment. Pour 1’étape
industrielle, quelques analyses complémentaires doivent également étre réalisées pour valider
définitivement le processus. Il est notamment nécessaire de déterminer la quantité de solvant
résiduel qui doit étre minimum pour ne pas induire de toxicité. Enfin, les études de stabilité de
ces lots au cours du temps doivent également étre réalisées, la formulation devant étre conservée

a long terme. Ces études sont en cours de réalisation.
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Enfin, une formulation des nanoparticules avec une autre insuline plus concentrée,
I’Humuline® 500UT serait d’intérét. Sa formulation étant proche de celle de I’'Umuline®, elle
pourrait apporter d’autres réponses aux questions posées sur 1’impact de la concentration de
I’insuline sur les propriétés des nanoparticules. Enfin, d’un point de vue industriel, nous
pourrions ainsi augmenter de 25% la concentration d’insuline dans nos nanoparticules ce qui

n’est pas négligeable.
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4. Validation du vecteur pharmaceutique complexe



4.1. Introduction

Cette partie des travaux fait référence a la validation du vecteur pharmaceutique
complexe. En effet, celui-ci est basé sur le concept de la double encapsulation de 1’insuline. A
ce niveau de développement, il est donc nécessaire d’encapsuler les nanoparticules dans un
vecteur gastrorésistant et de valider la biofonctionnalité du systéme complet. Ce vecteur
gastrorésistant a pour objectif de protéger les particules dans le milieu gastrique pour permettre
leur libération dans le milieu intestinal qui est le site d’absorption préférentiellement ciblé par
cette formulation. Dans cet objectif, des vecteurs en alginate administrable per os chez le rat
sont formulés par gélation ionotropique de I’alginate de sodium en présence d’ions calcium
grace au protocole mis au point par Nathalie Auberval a I’'ICS. Ces véhicules doivent encapsuler
efficacement les nanoparticules et les protéger contre I’acidité et la dégradation enzymatique
en milieu gastrique pour permettre leur libération en milieu intestinal. D’un point de vue
moléculaire, ces vecteurs se présentent sous forme de réseaux denses de polymeres (alginate
dans notre cas) réticulés par des ions calcium. Ces réseaux forment un maillage qui emprisonne
les nanoparticules, la densité de ce maillage étant dépendante de la quantité d’ions calcium.

Pour cette étape, nous avons fait le choix de valider ce vecteur complexe avec le lot de
nanoparticules formulées dans le Becomix® avec la proportion de 1% de PVA et encapsulant
I’insuline concentrée. Afin de réduire au maximum le volume de véhicule administrer per os,
les nanoparticules sont concentrés par lyophilisation ou par évaporation du solvant de
dispersion grace au Rotavap®. Cette approche nous permet d’administrer moins de 100 pL de
suspension de microbilles contenant 10 UI d’insuline. Aprés administration, les glycémies des
animaux sont suivies dans le temps pendant 24 heures. En parall¢le, et pour vérifier la
fonctionnalité du systéme complet, nous avons administrés par voie orale des nanoparticules

non encapsulées, et des vecteurs renfermant des nanoparticules vides.
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4.2. Résultats

Figure 88 : Morphologie d’un vecteur pharmaceutique complexe renfermant des

nanoparticules

\

Figure 89: Cliché au microscope électronique a transmission des véhicules contenant les
nanoparticules formulées grace au Becomix®

Les clichés au MET montrent un enchevétrement de polymere (filament noir) dans lequel
les nanoparticules (points blancs) sont piégées.
Nous avons vérifié leur stabilité en milieu gastrique et leur capacité a libérer les

nanoparticules en milieu intestinal (Figure 90).
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(37°0)

Figure 90: Etude de stabilité des véhicules renfermant des nanoparticules dans les milieux
gastrique et intestinal simulés (clichés réalisés au microscope optique X40)

Nous avons ainsi montré que nos véhicules sont gastrorésistants car ils conservent leur
forme sphérique en milieu gastrique simulé. Par contre, dés qu’ils sont placés en milieu
intestinal simulé, on peut distinctement voir que les véhicules perdent leur structure sphériques,

sont détruits et liberent donc les nanoparticules.
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Figure 91: validation du vecteur complet renfermant les nanoparticules issues de ['augmentation
d’échelle

Une dose unique de 10 UI est administrée par voie orale et la glycémie des rats a jeun est mesurée au cours du temps grace a un glucométre. Le
motif (-@) représente ’administration des nanoparticules libre formulées au laboratoire (n=10), (-m 3 I’administration des nanoparticules libres
formulées grace au Becomix® (n=10). (- @) représentent les véhicules contenant des nanoparticules vides (n=10), (=) pour ceux contenant les
nanoparticules issues formulées grace au Becomix® (n=10). Les résultats sont présentés en moyenne + SEM. Un test ANOVA Oneway mesures
répétées est appliqué pour comparer les différents groupes 2p<0,05 vs véhicules contenant des nanoparticules vides, °p<0,05 vs nanoparticules
libres formulées grace au Becomix®, °p<0,05 vs nanoparticules libre formulées au laboratoire

L’étude in vivo nous a permis de valider leur efficacité biologique (Figure 91). Apres
I’administration des différentes formulations, nous notons une baisse de la glycémie chez tous
les groupes d’animaux, chute liée a I’effet de jeun. Seuls véhicules contenant les nanoparticules
issues de ’augmentation d’échelle induisent une baisse significativement de ces glycémies par
rapport aux animaux contrdles (nanoparticules libres et véhicules renfermant des nanoparticules

vides) entre 16 et 18 heures post administration.
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4.3. Conclusion

La gélation ionotropique de D’alginate et des ions calcium permet d’obtenir des
microparticules encapsulant les nanoparticules d’insuline. Les microparticules obtenues
présentent la taille requise pour une administration per os chez le rat avec une forme sphérique.
Leur taux d’encapsulation et leur stabilité ne sont pas encore connus. Théoriquement, cette
encapsulation par ce procédé doit étre de 1’ordre de 100% et une stabilité dans le milieu
gastrique avérée avec une résorption en milieu intestinal compte tenu des propriétés de ce type
de vecteur. Cette étude a permis de montrer 1’efficacité biologique du systéme complexe et la
validation du concept de double encapsulation du vecteur pharmaceutique complexe. Des
¢tudes complémentaires doivent cependant étre réalisées pour valider la stabilité des systemes
complets. Ainsi, des formulations du systeéme complet ont été conservées et seront testées apres
deux mois sur les animaux afin de vérifier que le systéme complet reste biofonctionnel. De plus,
des études de stabilité des nanoparticules seules et du systéeme complet seront également
réalisées afin de s’assurer que cette formulation se maintient au cours du temps. Enfin, I’étude
de biofonctionnalité, bien qu’elle ait montré une efficacité biologique des systémes reste
nuancée par la durée de suivi pour démontrer 1’efficacité biologique (plus de 16h). Une étude
sera donc réalisée avec des quantités d’insuline supérieure (20Ul au lieu de 10U1/200g) pour
potentialiser cet effet. Il sera également nécessaire de vérifier la biodisponibilité de cette
insuline. Cependant, cette ¢tude est rendue difficile par la mod¢le animal utilisé. En effet, nous
réalisons nos études sur le rat et les prélévements de sang au cours de I’étude sont réalisé a la
queue, comme [’autorise la législation et le comité d’éthique. Les sangs prélevés dans ces
conditions sont fortement hémolysés, hémolyse qui conduit a des dosages d’insuline
complétement erronés. Nous avions réalisés a 1’échelle du laboratoire des expériences
comparables en encapsulant du C-peptide qui n’est pas impacté par I’hémolyse. Cette étape
n’est pas envisageable a 1’échelle industrielle car nous ne respecterions pas les conditions de
formulation du vecteur (type d’insuline, concentration, adjuvant ...)

Les nanoparticules issues de I’augmentation d’échelle font aujourd’hui I’objet d’une étude
de toxicologie (toxicologie réglementaire des nanoparticules) chez un prestataire de service
(Charles River, Royaume Uni). Pour cela, 4 types de formulations sont testées : animaux gavés
avec uniquement de I’eau, systtme complet avec une faible concentration d’insuline
(2UI/animal) ; systeme complet avec la concentration d’insuline ayant démontré une efficacité
biologique (10UI/animal) et systéme complet avec une forte quantité d’insuline (50Ul/animal).

Au cours de cette étude réalisée chez des rats males et femelles, le poids est suivi au cours du
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temps, et certains parametres toxicologiques (mesure de cytokines, ...). A la fin de 1’étude,
I’ensemble des organises seront analyses et le foie et I’intestin seront plus particulierement
¢tudié en microcopie électronique afin d’identifier une potentielle agglomération aupres de ces

organes cibles.
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V. Conclusion & perspectives



L’objectif de ce projet de thése était de développer un vecteur pharmaceutique
complexe, permettant de délivrer de l’insuline par voie orale. Le choix de cette voie
d’administration permet d’augmenter la compliance du patient en raison de sa simplicité
d’utilisation mais aussi d’avoir une délivrance plus physiologique, respectant le premier
passage hépatique et limitant ainsi les fluctuations glycémiques. Cette voie permettrait ainsi de
retarder 1’apparition des complications liées au diabéte.

Le projet Orail s’est essentiellement focalisé dans un premier temps sur la formulation
des nanoparticules qui encapsulent I’insuline. Celles-ci doivent étre obtenues a partir de
polymeres bio toléré, d’une formulation ne nécessitant pas de solvant ou tout au moins une
quantité minimum de solvant, présentant une taille inférieure a 500 nm permettant leur passage
a travers la barriere intestinale. Elles ont pour objet d’encapsuler efficacement 1’insuline, d’étre
suffisamment stable en milieu intestinal pour y protéger le principe actif et lui permettre d’étre
transportée de la lumiere intestinale vers le sang. Dans un second temps, la formulation d’un
vecteur complet a été mis en place afin de valider le concept de la double encapsulation chez le
rat (bioefficacité et toxicologie réglementaire).

Deux types de systemes nanoparticulaires a base de polymeres biocompatibles ont alors
été développés : les nanoparticules en chitosane par la méthode de la coacervation complexe et
les nanoparticules de PLGA par la méthode de la double émulsion évaporation de solvant.

En 2009, Madame Nathalie REIX dans le cadre de sa thése avait mis au point la synthese
de nanoparticules de PLGA par double émulsion évaporation de solvant permettant
d’encapsuler I’insuline. Lors de cette these, elle démontre la faisabilité de cette méthodologie
et le potentiel hypoglycémiant des nanoparticules tout en gardant I’aspect toxicologique dans
le choix des matériaux. Cependant, ces systemes présentent une biodisponibilité de 1’insuline
encapsulée inférieure a 20%. En 2013, Madame GUHMANN Pauline lors de sa these démontre
I’absence de toxicité des nanoparticules de PLGA et identifie leur mécanisme d’internalisation
(mécanisme actif clathrine/caveoline dépendant). Cette avancée dans la compréhension des
mécanismes cellulaires d’internalisation des nanoparticules en PLGA et [’absence de toxicité
in vitro nous ont poussés a développer de nouveaux types de nanoparticules en vue d’augmenter
la biodisponibilité faible identifiée par Madame REIX.

La formulation des nanoparticules de chitosane/insuline a fait 1’objet d’une these en
2010 soutenue par Madame Adeline CALLET. Cette thése a permis de mettre au point les
conditions nécessaires a la syntheése de nanoparticules par une méthode simple ne faisant pas
appel a I’utilisation de solvants ni de tensioactifs. Cependant, ces nanoparticules présentaient

I’inconvénient majeur d’étre instable pour permettre leur validation in vitro et in vivo. En effet,
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des que celles-ci sont en contact avec du milieu de culture (DMEM ou PBS), elles libérent le
principe actif encapsulé.

Les nanoparticules de chitosane sont développées pour pallier a la toxicité potentielle
des nanoparticules de PLGA.

L’objectif de la premiere partie des travaux de cette thése était de mettre au point une
méthodologie permettant de formuler des nanoparticules stables a base de chitosane. Pour
stabiliser ces nanoparticules, deux méthodes sont employées soit séparément soit combinées :
la réticulation et la lyophilisation.

La réticulation avec du tripolyphosphate de sodium (TPP) est I’approche choisie. Le
sodium tripolyphosphate permet d’améliorer la stabilité des coacervats en se complexant avec
le chitosane par liaison des amines libres sur sa chaine. Ceci a pour effet d’améliorer la qualité
d’interaction au sein du coacervat en réduisant la distance intermoléculaire (compaction plus
importante). La lyophilisation est une autre solution intéressante. En effet, cette procédure
largement décrite dans la littérature permet la conservation dans le temps de principes actifs ou
la stabilisation de nanoparticules. Celle-ci consiste en I’extraction du solvant de dispersion des
coacervats par sublimation dans 1’objectif de leur conférer une rigidité structurelle.

Les résultats ont montré que la formulation de nanoparticules auto-assemblées chargées
d'insuline est une approche simple, reproductible qui permet d’obtenir un haut rendement
d’encapsulation. Les études de stabilité en milieux simulés gastrique et intestinal ont montré
que les nanoparticules sont immédiatement détruits dans le milieu gastrique quel que soit la
méthode de formulation, mettant en lumiére le besoin de la seconde encapsulation
gastrorésistante faisant 1’objet du développement du vecteur pharmaceutique complexe. Cette
¢tude montre également que la combinaison de la réticulation et de la lyophilisation permet des
réduire de maniere importante la libération aspécifique de ’insuline dans I’intestin. Lors des
études in vitro (modele coculture) et in vivo (modele streptozotocine de rat diabétique), les
données démontrent de nouveau 1’efficacité d’une combinaison de la réticulation et de la
lyophilisation.

Cette étude a donc permis de montrer I'intérét de la coacervation complexe pour
formuler des nanoparticules d’insuline en vue de leur administration par la voie orale. La
combinaison réticulation et lyophilisation est une approche prometteuse dans le développement
de Dl’insuline orale car elle permet d’obtenir des nanoparticules stables dans les milieux
biologique en limitant les libérations indésirables et en offrant une meilleure efficacité

biologique. Mais cette approche reste limité, elle offre une excellent mucoadhésion mais celle-
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ci n’est pas suivie d’une internalisation efficace ce qui fait qu’elle ne sera pas la méthode
privilégiée pour la suite.

La seconde partie de mon travail a donc consisté en I’amélioration de la biodisponibilité
des systemes nanoparticulaires de PLGA formulés par la méthode double émulsion
eau/huile/eau. Pour augmenter cette biodisponibilité, la mucoadhésion est la stratégie choisie.
En effet, la bioadhésion est une stratégie largement décrit dans la littérature afin d’augmenter
la biodisponibilité des principes actifs encapsulés dans des nanoparticules. En 2013, Yu QIAN
et al. (2013) déposent un brevet (US 2013/0034602) protégeant un systéme d’administration
d’insuline par voie orale renfermant des nanoparticules mucoadhésives. Afin de rendre les
nanoparticules de PLGA mucoadhésives, leur recouvrement avec du chitosane est privilégié.
En parall¢le, nous avons formulé d’autres types de nanoparticules avec du PLGA modifié par
greffage d’un groupement PEG ou des nanoparticules formulées sans PVA.

L’étude a montré qu’en 1’absence de PV A, les particules formulées par double émulsion
sont plus petites, sont chargées négativement contrairement a celles formulées avec du PVA ou
recouvertes de chitosane. Les études montrent qu’en milieu gastrique, les nanoparticules
libérent leur contenu mettant en lumicre le besoin d’une seconde encapsulation permettant
d’offrir une résistance en milieu gastrique. La validation in vitro réalisée sur deux modeles
cellulaires : caco-2 seules (cellules entérocytaires) et coculture (Caco-2 et RevHT29MTX
(productrice de mucus) montre que les nanoparticules recouvertes de chitosane sont mieux
associées aux cellules que les autres types de formulation et ceci sur les deux types cellulaires.
Mais la méthode employée (cytométrie en flux) n’est pas en mesure de dissocier les
nanoparticules présentes en intracellulaire et celles associées a la surface cellulaire. L’utilisation
du bleu de trypan permet de discriminer la fluorescence intracellulaire de la fluorescence totale.
L’application de la méthode d’extinction de la fluorescence induit une chute importante de la
fluorescence associée aux cellules des nanoparticules recouvertes mettant en lumicre que
I’augmentation de la mucoadhesion n’est pas associée a une augmentation de 1’internalisation
des nanoparticules par les cellules tandis que les nanoparticules négativement chargées (sans
PVA ou/et recouvertes de PEG) sont quant a elles tres efficacement internalisées par les
cellules. Lors de la validation in vivo sur un modele streptozotocine de rat diabétique, nous
avons pu observer que toutes les nanoparticules sont en mesure d’induire une baisse de la
glycémie comme I’insuline non encapsulée a la méme dose par administration intrapéritonéale
démontrant une conservation de I’activité biologique de I’insuline encapsulée. En revanche, par
la voie intraduodénale, I’efficacité biologique des nanoparticules est plus difficile (li¢ au

modele d’étude) a mettre en lumiére mais il semblerait que les nanoparticules formulées sans
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PVA soient plus efficaces. Pour des raisons éthiques, les nanoparticules recouvertes de
chitosane n’ont pas étaient évaluées in vivo ((numéro d'agrément de I’animalerie du laboratoire:
C67-482-28, numéro de saisine AL / 60/67/02/13) car nous n’avions pas démontré d’efficacité
in vitro.

La formulation des particules mucoadhésives par recouvrement de chitosane n’a pas
apporté les résultats attendus. En effet, rendues plus mucoadhésives, les nanoparticules ne sont
plus internalisées par les cellules et ne peuvent donc plus exercer leur activité biologique. A
I’opposé, les nanoparticules négatives sont plus efficaces a la fois in vitro et in vivo, et
représentent une formulation prometteuse pour l'administration d'insuline orale. En effet, la
formulation de particules de PLGA chargées négativement (sans PVA) est 1'approche la plus
simple pour formuler des particules chargées d'insuline stables et facilement transposable a
grande échelle.

Il ressort de ces travaux que les nanoparticules négativement chargées étaient les mieux
absorbées par les cellules et présentent un intérét pour leur développement industriel en vue de
devenir un vecteur efficace pour administration orale de I’insuline. En effet, celles-ci présentent
une homogénéité de distribution, une taille et une charge de surface permettant de privilégier
leur absorption par les cellules entérocytaires de 1’intestin et ainsi permettre le métabolisme de
premier passage hépatique de I’insuline encapsulée. D’autre part, la suppression du PVA permet
de s’écarter d’un possible verrou réglementaire. Ces résultats nous conduisent vers une
augmentation de 1’échelle de synthése des nanoparticules dont les différentes phases du
protocole ont été mises au point par Nathalie Auberval et Akkiz Bekel a I’'ICS.

Cette partie du projet s’est donc ensuite consacrée a 1’application du transfert de
technologie permettant de passer de 1’échelle du laboratoire (13,5 mL) a une échelle industrielle
(2,04 L) grace au systeme d’agitation rotor/stator utilisé par 1’industriel appelé Becomix.
Pendant la phase d’augmentation d’échelle, la taille des nanoparticules est conservée malgré
I’augmentation des volumes de syntheése. Pour les besoins de 1’étude de toxicologie
réglementaire, des nanoparticules formulées dans le Becomix® et encapsulées dans un vecteur
gastrorésistant doivent étre administrées par gavage chez le rat. Afin de réduire le volume a
administrer, une insuline concentrée (Insuman®, 400 Ul/mL, Sanofi-Aventis) est employée
dans la formulation du lot. Le résultat obtenu montre que I’Insuman® combinée a 1’absence de
tensioactif conduit a une agrégation massive des nanoparticules.

Apres les résultats obtenus apres cette premiere phase d’augmentation avec I’ Insuman®,
des études sont menées au laboratoire afin de déterminer la quantité optimale de PV A nécessaire

pour éviter 1’agrégation des nanoparticules tout en permettant une conservation de leur
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absorption par les cellules intestinale. Des études physicochimiques et in vitro sur des
nanoparticules formulées avec différentes concentration de PVA ont montré que 1’ajout d’une
solution de PVA a 1% (m/v) dans la D2 permet d’obtenir des nanoparticules avec une taille,
une dispersion, et une charge de surface homogeéne accompagnée une bonne internalisation
cellulaire lors des phases de validation in vitro. La méthode a été donc transposée directement
al’échelle du Becomix®. Cette dose de PVA permet de formuler des nanoparticules homogenes
et non agrégées avec le Becomix. Le transfert de technologie est aujourd’hui une réussite et
I’efficacité d’encapsulation en CLHP donne un taux d’encapsulation de 98% confirmant les
premiers résultats obtenus.

L’administration orale des nanoparticules issues de I’augmentation d’échelle apres
encapsulation dans le vecteur gastrorésistant est biologiquement active et présente un profil
d’insuline lente. Ces nanoparticules encapsulées dans un vecteur gastrorésistant sont
aujourd’hui en phase d’étude (Charles River, Royaume Uni) afin d’évaluer la toxicité des
nanoparticules apres administration réitérées. Trois groupes d’animaux recevant trois doses
d’insuline (une fois par jour pendant 14 jours) : faible = 2UI, moyenne = 10 UI et forte =50 UI
sont constitués a partir d’un pool de 80 rats Wistar (40 males et 40 femelles). Apres euthanasie,
une étude histologique sera réalisée sur les prélevements d’organes (intestin et foi) afin de
déterminer I’accumulation des nanoparticules dans les organes et/ou les 1ésions tissulaires.

Des tests préliminaires permettant de remettre en dispersion les nanoparticules issues de
I’augmentation d’échelle dans un dispersant lipophilique (PEG 200, PEG 400, Miglyol...) sont
en cours. Cette étape permet de mettre en place la formulation permettant la construction des
lots précliniques. Ces vecteurs seront ceux développés par le partenaire industriel Catalent®
pour la validation chez le mini porc diabétique.

Des études sont actuellement en cours également afin de connaitre I’impact de la
formulation d’insuline sur la charge de surface des nanoparticules. D’apres les résultats obtenus,
il parait difficile aujourd’hui de conclure sur le role de la charge de surface sur I’internalisation
des nanoparticules. Nous avons clairement établi que la mucoadhésion joue un role délétere
dans ce processus mais les changements de formulation et la présence d’additifs dans ces
formulation semble avoir un impact non négligeable qu’il est nécessaire de clarifier. La
concentration d’insuline doit également étre investiguées plus précisément. De plus, le modele
cellulaire des entérocytes apporte une certaine limite technique dans la validation du passage
de la barriere intestinale car il utilise de I’insuline FITC qui n’est pas représentative des types
d’insulines utilisées lors de la formulation des lots précliniques. Un modéle plus représentatif

de la situation in vivo, la chambre de Ussing, utilisant une fraction d’intestin devra ainsi étre
9 9
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utilisé pour ces étapes de validation. Le dosage de I’insuline dans le compartiment receveur par
HPLC permettra d’avoir une idée plus précise de I’impact des formulations de I’insuline sur la
biodisponibilité du systéme nanoparticulaire.

Il sera également nécessaire de s’assurer de la stabilité a moyen et long terme des
systemes développés, que ce soit pour le systetme nanoparticulaire seul ou pour le vecteur
complexe. . Ces analyses nécessiteront de renforcer I’étape analytique par le dosage de
I’efficacité d’encapsulation tant par la méthode indirecte que nous avions fait le choix de
privilégier au cours de cette thése, que par la méthode directe qui nécessite aujourd’hui des
mises au point. De plus, les études de libération en milieux simulés doivent étre complété afin
d’obtenir un nombre suffisant d’essais pour avoir des résultats représentatifs. D un point de vue
in vivo la biodisponibilité offerte par les particules libres (administration intraduodénale) et
encapsulées dans le vecteur complet (administration par voie orale) doit étre évaluée en
encapsulant du peptide-C car celui-ci ne subit pas le métabolisme de premier passage hépatique.
Cependant, cette étape n’est pas envisageable sur des lots précliniques et pourrait donner des
résultats faussés liés a une formulation de C-peptide qui ne contient pas d’additifs contrairement
aux autres formulations réalisées.

Enfin, cette étude de vectorisation d’insuline pour son administration par voie orale a
I’aide d’un vecteur complexe n’est qu'une premiere étape. En effet, ’approche du vecteur
pharmaceutique complexe peut ensuite étre appliquée a d’autres principes actifs qui présentent
les mémes problématiques d’administration que 1’insuline comme le GLP-1 de nature protéique
également ou I’héparine qui est un glycosaminoglycane. Enfin, dans d’autres projets
développés par le CeeD sur 1’étude de composés bioactifs ayant un intérét thérapeutique dans
le traitement du diabete, il a souvent été mis en évidence une problématique de biodisponibilité
de ces principes actifs par voie orale, notamment lors d’études sur des extraits antioxydants de
nature lipophile. Leur formulation dans un vecteur pharmaceutique complexe pourrait donc étre

la solution.
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VI. Valorisation des compétences « Nouveau Chapitre de la

thése » NCT®
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1. Introduction

D'aussi loin que je puisse me souvenir, j'ai toujours été passionné par les sciences et la
technologie. Déja petit je me souviens encore entrain d'essayer de comprendre et de résoudre
des problemes liés a la stabilité de structures réalisées avec un jeu de construction.
Je me suis beaucoup intéressé a la recherche et au développement de beaucoup de choses allant
des médicaments, de I'automobile a l'aérospatial passant par les appareils d'imagerie médicale,
du chemin de fer etc....

Compte tenu de mon jeune age, ma seule source de documentation était la télévision. Je

ne manquais aucun épisode de mon émission favorite était «C'est pas sorcier».
Au college j'excellais dans les sciences de la vie et de la terre ainsi qu'en mathématiques, mais
je ne savais pas vraiment ce que je voulais faire dans la vie. Une chose était certaine, je voulais
faire un métier ou j'aurai a construire des «choses» comme il me plaisait de dire.

Outre I'aspect technique il me plaisait 1'idée de gérer un budget et d'avoir des responsabilités
au sein de la famille. Assez to6t mes parents m'ont formé en quelques sorte, la premicre étape
fit la mise en ma disposition du budget mensuel pour assurer les dépenses familiales récurrentes
«pain, boissons etc...». A 14ans j'ai été envoy¢ en France pour les études, je devais gérer l'argent
que mes parents m'avaient donné pour m'assurer le nécessaire du quotidien.

A T'université je visais l'industrie du médicament sans vraiment savoir ce que c'était ni quoi
y faire. Mon master a la faculté de pharmacie de Strasbourg fiit le déclic est m'a donné la passion
du médicament et de son développement.

Lors d'une intervention de ma directrice de thése dans ma promotion de master le sujet
expos¢ m'a tout de suite plu et je me suis directement projeter dedans.

Pour résumer, en y réfléchissant mon histoire détermine déja mes objectifs de carriere. Je
voudrais concilier mes deux passions : le coté scientifique et le coté gestionnaire.

Grace a ma these, actuelle j'embrasse un peu ce réve de carriere. Cette envie me permet
aujourd'hui de m’investir dans diverses activés annexes & mon parcours universitaire comme
'obtention d'un poste de vice-président de l'association des étudiants de I'université de
Bordeaux 1, mon investissement dans 1'association des docteurs et doctorants d’Alsace en tant
que responsable politique doctorale, mon implication dans le conseil de I’école doctorale en
tant que représentant des doctorants et mes diverses participations a des événements en vue de
la création d'entreprise comme les Doctoriales d’Alsace, Alsace-Tech, le concours SEMIA ou

encore le Start-up week-end.
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La volonté de réunir ma passion pour la recherche et le développement et mon appétence
pour le management et la gestion d'entreprise et de projet au sein d'un méme plan de carricre

me pousse a prendre part a cette nouvelle édition du nouveau chapitre de la these (NCT).

2. Cadre général et enjeux de la thése

2.1. Cadre général

Le diabéte est ce que 1'on appelle une maladie métabolique c'est a dire un déréglement de la
régulation du métabolisme de l'organisme. Celle-ci se traduit par une forte quantité de sucre
dans le sang due a une diminution (dans le cas du diabéte de type 2) voir une absence (dans le
cas du diabete de type 1) de la production de I'insuline. Cette derniére est I'hormone produite
par des cellules spécifiques du pancréas qui doit assurer la régulation du taux de sucre dans le
sang.

C'est une pathologie qui touche environ 365 millions de personnes dans le monde dont 2,9
millions en France. L'organisation mondiale de la santé prévoit une constante augmentation de
ce chiffre pour atteindre 438 millions en 2030 soit 7% de la population mondiale.

A l'heure actuelle, dans leur prise en charge, les patients doivent soit recevoir une greffe
totale de pancréas ou de cellules productrices d'insuline isolées a partir d'un pancréas et
transplantées dans le foie ou encore s'injecter en sous cutanée plusieurs fois par jour une
solution d'insuline afin de réguler leur glycémie grace a des seringues ou des pompes. Ces
méthodes de prise en charge sont extrémement difficiles pour les patients car trés

contraignantes, peu confortables et extrémement douloureuses.

2.2. Cadre de recherche du CeeD

Mes travaux se font au sein du Centre européen d'étude du Diabete (CeeD), dont les
recherches s’orientent vers une amélioration des protocoles d'isolement et de transplantation
des cellules productrices d'insuline, mais aussi la recherche de sites receveurs plus optimaux
pour la transplantation ainsi que le développement de voies alternatives pour 1'administration

de l'insuline.

2.3. Contexte sociologique et scientifique de la thése

Des chercheurs du monde entier ont proposé plusieurs autres voies pour administrer
l'insuline que la voie sous cutanée dont la voie orale. Cette derniére est plus physiologique et
présente ’avantage d'offrir ce qu'on appelle le premier passage hépatique. Tous les éléments

absorbés par l'intestin comme les nutriments et les molécules pharmacologiques passent par le
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foie qui les métabolise avant leur acces dans la circulation générale. Le foie est un site qui peut
étre défini de «checkpoint» pour tout élément exogeéne. Mais la voie orale présente deux limites
majeures, en effet, du fait de sa nature protéique, l'insuline est sensible I’acidité de 1’estomac
d'une part et de l'autre part la paroi de l'intestin représente une barriere physique qui empéche
l'insuline de rejoindre le sang.

Le Centre européen d'étude du Diabete en collaboration avec ses partenaires académique et
industriel développent le systeme breveté du vecteur pharmaceutique complexe. Celui-ci est
basé sur la double encapsulation de l'insuline. En effet, celle-ci est encapsulée dans des
nanostructures appelées nanoparticules qui sont en fait des capsules avec une enveloppe
polymérique. Ces nanoparticules vont protéger 1'insuline dans l'intestin et lui permettre de
traverser la barriére intestinale grace a leurs propriétés mucoadhésives. Les nanoparticules sont-
elles méme protégées dans une gélule gastrorésistante qui va les protéger contre 'acidité de
l'estomac.

A ce jour des grands laboratoires essayent de développer un systéme leur permettant

d'administrer 1'insuline par voie orale.

2.4. Mon role dans le projet

A ce jour nous avons des nanoparticules qui encapsulent efficacement l'insuline. Mon réle
dans ce projet est d’optimiser les méthodes de synthése de ces nanoparticules et de procéder a
des modifications de leurs propriétés de surface pour augmenter leur propriété mucoadhésive.
Je dois également valider d'un point de vue physico-chimique la faisabilité, la répétabilité des
méthodes de synthése en prenant en considération les besoins de l'industriel dans sa phase
d’augmentation d’échelle. J'ai pour mission également de valider en in vitro, en in vivo et en
ex vivo leur biofonctionnalité et I’absence de toxicité de ce systéme particulaire. Qui sont des
données importantes pour la constitution du dossier d'autorisation de mise sur le marché. Les
particules seront comparées et les meilleurs systeémes seront introduits dans le systéeme complet.

La prochaine étape est la production industrielle des nanoparticules les plus optimisées pour
des essais sur le gros animal, soit le mini porc. A la suite de quoi les premiers essais sur 'homme

seront réalisés.

2.5. Mon intérét pour le projet

Mon choix s'est porté sur ce projet pour la réalisation de ma thése pour quatre raisons:
- Son caractere multidisciplinaire : j'ai la possibilité¢ d'acquérir de nombreuses

compétences autant en biologie qu'en chimie. J'ai la possibilité d’interagir avec des
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experts de différents domaines qui partagent avec moi leurs connaissances et leurs
expertises.

Son caractere appliqué et la relation avec 1'industriel : ce projet vise a développer un
dispositif médical en collaboration avec un industriel. Le développement de ce dispositif
implique un respect des contraintes liées au développement pharmaceutique et a la
réglementation en vigueur.

Premiers pas dans I'apprentissage du management de projet : Le Dr Séverine SIGRIST
m'a laissé libre court dans la gestion de mon projet de thése. Apres avoir défini avec elle
lors d'une premiere réunion les objectifs a atteindre, elle m'avait demandé de définir les
sous projets, les livrables ainsi que la liste des ressources humaines et le découpage dans
le temps. C'était un exercice pratique trés intéressant et extrémement formateur car ce
flit une application concréte de ma formation de planification de projet suivie lors de
mon master. Exercice a la suite duquel j'ai commencé a prendre conscience de ce que je
veux vraiment faire apres la thése. J'ai ainsi défini les sous projets, les taches et les
livrables ainsi que le temps nécessaire a I'obtention des résultats ainsi que des personnes

a qui je dois faire appel pour la bonne marche du projet.
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3. Gestion et colit du projet

Ma these est financée par les fonds propres du Centre européen d’étude du Diabéte qui me

permettent de me focaliser entierement sur mes travaux de recherches et de suivre les

formations transversales.

Compte tenu de I’organisation au sein de la structure du centre européen d’étude du diabéte,

il y a certains frais qui sont englobé dans le fonctionnement général. De ce fait, les frais relatifs

au fonctionnement de la structure (€lectricité, gardiennage, internet, téléphone, reprographie

etc...) et a ’équipement général (ordinateurs, logiciels, le consommable de laboratoire et le

matériel de bureau) ne sont pas détaillés dans le tableau ci-dessous. Celui-ci récapitule le cott

financier de la thése a mi-parcours a travers cing thématiques :

Coiits totaux a mi-parcours (euros TTC)
Nature de la dépense Nombre (’j()ﬁ_t Quote-
oo ex unitaire part Total
d'unités e
moyen utilisation
1. Ressources Humaines
1.1 Doctorant 2373 16,68 100 31 815,00
1.2 Encadrant 1 450 63,99 20 8 254,00
1.3 Autre personnel (hors sous-traitance) 364 12,27 20 4 466,28
1.4 Master 840 100 2 616,00
1.5 Sous-total Ressources Humaines 47 151,28
2. Consommables
2.1 Fournitures expérimentales 88 559,01
2.2 Autres achats 27 000,00
2.3 Sous-total consommables 115 559,01
3. Déplacements
3.1 Missions en France 3179,90
3.2 Congres en France 928,26
3.3 Sous-total Déplacements 4 108,16
4. Formation
4.1 Formations 5 645,00
4.2 Autres frais (inscription Université, 0.00
sécurité sociale,,,) ’
4.3 Sous-total Formations 5 645,00
5. Documentation et communication
5.1 Pubhcrfe, commumca‘uon, 120,00
impressions
5.2 Documentation (périodiques, bases de
sonnées...)
5.3 Autres
5.4 Sous-total Docpmefntatlon et 120,00
communication

5. Charges exceptionnelles 0,00
5.1 Sous-total charges exceptionnelles 0,00
6. Total 172 583,45

166



4. Compétences et savoir faire
Au cours de mon expérience personnelle, professionnelle et scolaire j'ai acquis un certain
nombre de compétences qui peuvent €tre en partie ou totalement transférables dans le monde

de I'entreprise.

4.1. Compétences managériales, humaines et de gestion financiére

Le management et la planification de projet sont la clé de votite de ma future carriere. C’est
une compétence que je développe tout au long de ma thése en apprenant a adapter le planning
et le management a la réalité quotidienne. Outre mon activité principale de doctorat, je m'exerce
en participant a des événements/concours de création d'entreprise et de planification de projet
comme les «concours SEMIA», «Alsace Tech.», «Start-up Week-end» et les Doctoriales®

d'Alsace.

4.2. Compétences en communication et humaines

La participation a ses événements ainsi que ma thése m'ont donné la possibilité de travailler
en équipe avec des membres qui ne sont pas du méme domaine, de la méme culture ou de la
méme langue que moi. Cela a été une expérience enrichissante et particulie¢rement plaisante.

Ma désignation par les membres de I'équipe comme porteur et manager de projet lors de ces
événements m'a permis de mettre en pratique ma formation a la communication et de
planification de projet ainsi que la gestion d'équipe et des conflits au sein du groupe (différentes
personnalités au sein de 1'équipe). J'ai acquis une expérience en encadrement d'équipe, de les
coacher de les garder motiver dans I’intérét de 'objectif fixé.

Dans cette méme ligne j'ai actuellement un stagiaire en master 2 de pharmacologie qui est
sous ma responsabilité avec qui je planifie et conduit un sous projet de ma thése pour son
master. Ce stagiaire a fait un retour positif a mon sujet au Dr SIGRIST en mentionnant ma
disponibilité et ma volonté de conduire avec lui le projet. Je me tiens a son entiere disposition
pour trouver des solutions aux problemes qu’il peut rencontrer au quotidien afin que nous
puissions délivrer les livrables a temps selon les conditions définies par la planification.

Je prends part dans une association, 'ADDAL qui est I'association des docteurs et doctorants
d'Alsace ou je suis responsable de la politique doctorale. Je m’efforce de me tenir au service
des doctorants en leur apportant mon aide et mon soutien dans leurs démarches et en cas de
conflits avec leurs supérieurs. Dans cette association je suis force de proposition et participe

activement a la vie de l'association et des doctorants en allant a leur rencontre. Je suis aussi
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investi d'une fonction de représentant des doctorants au conseil scientifique de 1'école doctorale
ou je participe a la prise de décision concernant le doctorat.

Je me suis découvert une aptitude a un investissement total dans le but d'atteindre les objectifs
fixés. Je suis toujours volontaire pour participer a des rencontres pour définir d'une nouvelle
stratégie soit au sein de l'association soit au sein d'organismes comme le SEMIA qui m'a convié
a une réunion pour la définition d'une nouvelle stratégie d'évolution de l'incubateur.

Au sein de mon laboratoire je coordonne les relations expérimentales entre les différents
participants du projet. Je prends contact avec eux et organise les expériences et l'achat de
matériels.

Enregle générale je suis chargé de la présentation du projet insuline orale lors des journées

portes ouvertes, visite des médecins prescripteurs, journée des bénévoles du CeeD.

4.3. Compétences en gestion financiére

J'ai acquis des compétences en établissement des tableaux financiers prévisionnels dans le
cadre de la réalisation d'un projet avec une estimation des cotits et de la rentabilité. Compétences
que je mets en application au quotidien pour gérer mes avoirs et financer des projets personnels
en me servant d’un tableau financier sur lequel j’alloue un budget a chaque poste de dépense et
ainsi définir le montant a économiser.

Au sein du laboratoire j'ai été au coeur de 'acquisition de matériels onéreux et indispensables
a la marche du projet. J'ai pris contact avec les fournisseurs, négocié les prix, fait jouer la
concurrence entre fabricants pour tirer le prix des produits vers le bas pour rentrer dans le budget
alloué par le laboratoire. C'est ainsi que le laboratoire a acquis un systéme d'organe isolé et un

granulométre.

4.4. Compétences administratives

D'un point de vue administratif je suis réactif et organisé. Tres jeune j'ai appris a gérer mon
compte en banque a payer mes factures, loyer, et me présenter a la préfecture tous les ans pour
l'obtention de mon titre de séjour. Autre exemple j'ai récemment acquis la nationalité frangaise
qui est un parcours administratif assez difficile.

D'un point de vue personnel je suis tres créatif j'ai toujours des idées de création d'entreprise

d’ou ma participation aux concours SEMIA, Start-up week-end.
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4.5. Compétences techniques et scientifiques

Mes compétences scientifiques sont le fruit de ma formation en sciences de la vie et de la

santé ainsi que de ma theése de doctorat. Ma thése m'a permis d'acquérir des compétences dans

des techniques de pointes dans le développement de meédicaments. Des techniques qui

permettent de répondre a la demande de l'industrie pharmaceutique qui a I'heure actuelle essaie

de vectoriser des composants d'origine biotechnologique. Ma formation universitaire m'a

¢galement permis de suivre des formations sanctionnées par des examens qui me conferent des

connaissances mise en application pour les transformer en compétences.

Compétences scientifiques

Techniques

Management de la science

— Statistique

— Toxicologie

— Pharmacocinétique-
pharmacodynamique

— Expérimentation
animale

— Métabolomique

— pharmacie galénique

— Biologie cellulaire

— Biologie animale

Controle qualité des
produits finis
Pharmacocinétique-
pharmacodynamique
Expérimentation
animale
Toxicologie

HPLC

Interaction ligand-
récepteur (binding)
Validation In vitro
Validation /n vivo
Validation Ex vivo
Synthese de
nanoparticules
Caractérisation de
nanoparticules
Modification de la
surface des
nanoparticules

Planification et
management de projet
Expérimentation
animale

Utilisation de bases de
données comme
PubMed

Veille scientifique et de
brevet

Gestion de la
bibliographie (EndNote,
Zotero)

Encadrement (stagiaire)
Communication
Interaction avec mon
équipe

Interaction avec d'autres
équipes

En dehors de mon domaine pharmaceutique, les compétences listées dans ce documents me

permettent de pouvoir intégrer d'autres secteurs d'activités comme l'automobile, I’aéronautique,

la logistique car nécessite une compétence en gestion.
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5. Résultats et impacts de la thése

L'aboutissement de ce projet sera une avancée majeure dans la prise en charge du diabéte.
Car facilitera la prise de l'insuline et limitera les effets secondaires liés a la prise d'insuline
comme les hypoglycémies séveres.

Outre 1'aspect de santé publique, la technologie de 1'insuline orale représente une source et
une manne financiére importante, raison pour laquelle, bon nombre de laboratoires essayent de
formuler de 1'insuline orale.

Les premiers résultats démontrent la faisabilité technique et l'efficacité du systéme
nanoparticulaire. En effet, les études sur le petit animal de laboratoire ont démontré 1'efficacité
des nanoparticules en réduisant le taux de glucose circulant chez le modéle de rat diabétique et
ne montrant aucun effet toxique ni sur les cellules ni sur I'animal entier.

La mise sur le marché de ce systéme permettra une rentrée importante de fonds pour le
laboratoire et permettra de financer les projets en cours et d'en faire de nouveaux.

Pour moi l'aboutissement de cette thése m'aura donné les bagages nécessaires et
indispensables a mon insertion professionnelle. Cette thése m'a permis de me conforter dans
mon choix de carriere d'allier la recherche et le développement, la planification et gestion de
projet. Cette expérience m'a permis de prendre conscience de mes points faibles et sur lesquels
je vais travailler pour m'améliorer et de les corriger avant la fin de la thése :

- apprendre réagir avec un peu dhumour pour désamorcer les tensions lors des

provocations

- apprendre a prendre le temps de m'occuper de la partie administrative et ne pas me

focaliser sur la course aux résultats car cela me met en retard.

6. Pistes professionnelles

6.1. Identification des pistes professionnelles

Pour I'heure actuelle je suis en prospection dans le monde entier d'un poste qui correspond
a mon profil. Je souhaite un poste ou je peux allier planification management de projet et R&D.
J'ai pour I'heure commencé a m’intéresser aux start-up qui se créent dans le bassin du Rhin
(Alsace, Allemagne et Suisse). Je souhaite intégrer une entreprise dans son stade de
développement dans le secteur pharmaceutique et des dispositifs médicaux afin de participer a
la prospection et aux levées de fonds, la définition et la mise en place des stratégies de

développement.
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Et en second lieu les entreprises qui essayent de s'implanter a Dakar. En effet, lors de
l'implantation ces entreprises ont besoin de personnes pour conduire les projets en cours car il
y a tout a faire. Cela représente pour moi un challenge intéressant car il va falloir adapter les
enseignements et les méthodes de travail européens a la réalité locale. Mes recherches sur le
Web m'indiquent des laboratoires comme Sanofi qui a un site de production a Dakar, GSK,
Pfizer, Institut Pasteur et I'institut de recherche pour le développement géré par le ministére des
affaires étrangeres francais.

Mon réseau professionnel se constitue pour l'instant sur Linked In mais aussi les relations

nouées avec les collaborateurs et leur propre réseau.

6.2. Projet de centre de recherche a Dakar.

J'ai actuellement un projet en maturation pour Dakar sur lequel j'essaie de travailler. Ce
projet est né de la connaissance du caractere original de la société dans laquelle j'effectue ma
these. Je souhaite développer a Dakar une structure similaire au CeeD.

Celle-ci ne sera pas une copie conforme du CeeD car ce n'est pas la le but. Au Sénégal
actuellement il y'a un grand nombre de diabétiques avec une prise en charge médiocre voir
mauvaise. Outre le diabéte il y'a d'autre maladie non ou mal prise en charge. Il y'a un défaut de
formation, d'information et de diagnostic.

Raison pour laquelle j'ai imaginé le Centre Afrique Diabéte et Diagnostic, qui est une
structure qui va avoir une composante destinée a la formation des patients et de prévention, une
composante de location et d'entretien des pompes a insuline, un pole diagnostic équipé de
l'instrumentation d'imagerie médicale (scanner, IRM etc...)

Une composante de sous traitance pour de la validation in vitro, in vivo et ex vivo de candidats
médicaments pour le compte de grands groupes pharmaceutiques.
Avec une finalité de centre de recherche clinique pour des essais cliniques de phase II et III.
Pour cela dés la conception du projet je dois intégrer dans la planification I'accréditation
AAALAC, ISO 9001, ANSM et FDA.

Pour la levée de fonds je pense déposer des demandes de financement aupres de partenaires
industriels pharmaceutique, OMS, Aide au développement européen, Aide au développement
ONU, ministere local de la santé (avec le moins de financement publique étatique possible pour

éviter toute ingérence et corruption).
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Un grand merci a Jean-Jacques HINCKER
pour sa patience et ses précieux conseils.

Une pensée amicale pour Jennifer, Vivian,
Timothée et Yannick avec qui j’ai suivi
cette tres riche expérience du NCT.

Un grand merci a Séverine et Richard
pour leurs conseils, leur soutien et
surtout pour m’avoir transmis le virus
de I’entrepreneuriat.
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Résumé

Formulation, développement et validation de systémes particulaires d’insuline en vue de leur
administration par voie orale.

L’insulinothérapie permet aux diabétiques de réguler leur glycémie. La these s’inscrit dans le projet
ORAIL Bis qui vise a développer un systeme d’administration orale d’insuline basé sur la double
encapsulation de I'insuline. Le vecteur développé est composé d’une gélule contenant des particules (NP)
d’insuline formulées a partir de chitosane (CS) par coacervation complexe ou d’acide
(lactique-co-glycolique) (PLGA) par double émulsion. Les objectifs de la theése sont de stabiliser les NP de
chitosane par réticulation et lyophilisation, augmenter la biodisponibilit¢ des NP de PLGA par
mucoadhésion, les transposer a échelle industrielle. Les résultats ont montré que la combinaison des deux
approches permet de réduire la taille des NP de CS, de maintenir une charge positive, de leur conférer une
stabilité et une bioefficacité. LLa mucoadhésion n’a pas permis d’augmenter la biodisponibilité des NP de
PLGA. Une charge négative permet d’améliorer leur efficacité biologique et sont transposable a échelle
industrielle. I’encapsulation de ces NP dans une gélule a permis de valider iz vivo le concept de double
encapsulation de I'insuline.

Abstract

Formulation, development and validation of insulin loaded particulate systems for their oral
administration.

Insulinotherapy helps diabetics to regulate their glycaemia. This thesis is part of the ORAIL Bis project
which aims to develop an oral insulin delivery system based on the double encapsulation of insulin. The
developed vector is composed of a capsule containing insulin loaded particles (NPs) formulated with
chitosan (CS) by complex coacervation or poly (lactic-co-glycolic) acid (PLGA) by double emulsion
solvent evaporation. The objectives of the thesis are to stabilize chitosan NPs by crosslinking and
freeze-drying, increase the bioavailability of NPs PLGA by mucoadhesion and transpose them to the
industrial scale. Results showed that the combination of both strategies reduces the size of CS NPs,
maintain a positive charge, give them stability and bioefficacy. Mucoadhesion failed to increase the
bioavailability of PLGA NPs. A negative charge allows to improve their biological efficacy and are
transposed to industrial scale. The encapsulation of these NPs in an alginate capsule allowed to validate 7z
vivo the concept of double encapsulation of insulin.



