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Abstract

The climate change and the depletion of most of the affordable tanks of conventional
fossil fuels in the next century challenge the contemporaneous societies in designing
post-carbon society. In France, buildings are a key point of the energy policies. They
represent about 40% of the French final energy consumption and are characterized by a
high potential of energy savings due to the building long life cycle. In the past decades,
sophisticated climate modeling systems that implement three dimensional urban effect
canopy parameterizations and simplified building energy models in mesoscale atmo-
spheric models, have been developed to consider the cross-scaled processes involve in
the urban climate and its linkage with the building energy use. With the reinforcement
of the role of the local authorities in the climate change mitigation strategies, those
climate modeling systems seem a promising tool in helping transferring the climatic
and energetic knowledge in the urban planning instruments.

This study aims to assess the capability of such climate modeling systems in helping
urban planners to implement energy saving strategies in the context of climate change
and aims to provide new insight on the interactions between the urban form, the urban
climate and the building energy use for designing sustainable cities.

For this, we used the WRF/ARW-BEP+BEM climate modeling system provided by
the American atmospheric research center and performed various sensitivity tests con-
sidering firstly, the territory of the city council of Strasbourg (France) in 2010, and
secondly, the residential development of the Strasbourg-Kehl urban region by 2030. At
last, we developed a canopy interface model (CIM) to improve the surface represen-
tations in the climate modeling systems. The philosophy is that microscale climate
models and sophisticate building energy use models can better consider the hetero-
geneity of the surface and can compute more accurately the surface fluxes accounting
for the topology of the obstacles than traditional urban canopy parameterizations. The
results of the sensitivity analyses revealed that the climate modeling system achieves
estimating the building energy requirement of a given area and period, but is highly
sensitive to the intrinsic building properties and internal heat gains. In addition, we
found that the urban form has few incidences on the building energy requirements and
that building forms are prevailing factors in the building energy requirements. We
therefore plaided in favor of down scaling the scale of investigation at the level of the
neighborhood. To such extent, the CIM interface model seems appropriated to bridge

the gap between the microscale and the mesoscale climate models.

Keywords: Urban climate, planning policies, urban form, building energy, climate

modeling system, mesoscale atmospheric model, 3D urban canopy parameterization
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Chapter 1

Introduction



Since the 1970’s-1980’s, the rapid growth of the world energy use raises increasingly

concerns for energy supply and energy-related environmental impacts. In particular,
climate change becomes one of the major scientific and political preoccupations [Pérez-
Lombard et al., 2008, UN, 2012]. To date, climate change is unequivocal and is observed
both in the mean and variability of the climate properties. The global surface temper-
ature has increased by +0.74°C over the past 100 years (1906-2005), and twelve of the
latest years are ranked among the warmest years. The driver of the present warming is
with a ”very high confidence” attributed to the unprecedented increase of atmospheric
greenhouse gases (GHG) concentrations such as methane, ozone, and carbon dioxide.
The combustion of fossil fuels by human activities and by-products represents 70% to
75% of the carbon dioxide emissions in the atmosphere [Hoel and Kverndokk, 1996].
To date, the carbon dioxide atmospheric concentration exceeds from far the natural
maximum ranges recorded over at least the last 800,000 years. Due to the long time
scales associated with climate processes and feedbacks as well as the long GHG life
cycle, the resilience of many ecosystems will be exceeded in the next century [I[PCC,
2007]. The urban ecosystem, in the absence of mitigation and adaptation strategies, is
one such.
[EA [2008] estimated that around 84% of the world energy supplies up to 2030 will
come from fossil fuels. Considering the finite affordable reserves of fossil fuels and
maximum world productions (the peak oil) the reserves of oil are estimated to be equal
to 40 years, 60 years for natural gas and 350 to 150 years for coal [Shafice and Topal,
2009]. As a consequence, this urges the energy transition of our contemporaneous so-
ciety. Nevertheless, the peak oil may be delayed depending on the population growth
and fuel price, the international energy policies of the OPEP countries, the discovering
of additional tanks, the use of unconventional hydrocarbons as well as the improvement
of oil salvage technologies (by now only one third of the tank is exploited according to
TAURIF [2008]) [IEA, 2012].

1.1 The energy challenge in urban areas

In the one hand, although urban areas represent approximatively 2% of the emerged
Earth surface, they concentrated around the half of the world population in cities of
100,000 to 500,000 inhabitants or megacities of more than 10 millions of people. By
2050, the World Health Organization estimates that 7 out 10 people will be urban
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dwellers [UN, 2012]. In France, urban areas represent 21.8% of the metropolitan ter-
ritory in 2010 and gather in 2007 more than 77.5% of the metropolitan population
[INSEE, 2011].

Due to this high population density, more than two third of the total world en-
ergy consumption occur in cities. More, it is expected to be 73% by 2030 with the
worldwide demographic and economic growths[IEA, 2008]. The building sector is one
of the largest world energy end-use sectors accounting approximatively for the entire
daily oil production of the OPEP countries and almost 40% of the final energy use
[Santamouris, 2001, OECD and IEA, 2008]. In France it represents 44% of the final
energy use, far ahead from the transportation sector in which residential houses count
for the two third [ADEME, 2012]. Thermal comfort remains the main energy use. In
particular, space heating accounts for 54% of building energy use in the IEA countries
and 68.3% in France [OECD and TEA, 2008, ADEME, 2012]. The energy mix in build-
ings is dominated by the electricity and natural gases [[EA, 2013]. In France, they
count respectively for 38% and 32%. Oil (16%), renewable energies (14%), and coal
and peat (0.4%) supply the remaining energy requirements [Global-Chance, 2010]. In
the world, fossil fuels mainly supply the electricity generation. Coal represents 41.3%
and natural gas 21.9%, respectively. By 2030, a rise in the building energy require-
ments is projected due to the improvement of life standards and demographic growth
[Santamouris et al., 2001]. On the new power generation capacity that is built for 2035,
one third is already needed to replace the production of aging power plants. A half
will be supplied by renewables energies while the remaining by coal [IEA, 2012].

A focus on the French situation points out that the building sector is less dependent
than the others to the fossil fuel reserves. Indeed, 50% of the building energy use is
supplied by electrical power. In contrast to other countries, a large share of the power
generation in France is supplied by nuclear energy (74.8% of the power generation in
France and 11.7% in other countries according to the world energy outlook in 2012).
In France, hydropower represents the second source of electricity accounting for 11.8%
of the total generated power. It is mainly used to offset the variations of the energy
demand. As nuclear and hydro-power generations depend both on the water supplies,
climate change may alter the efficiency of the electricity generation along with the re-
duction of water discharge and availability of cooling liquid in nuclear power plants [US
Climate change science program, 2008]. A fortiori, nuclear power plants and electricity
grids come in age. In 2011 only 80.7% of the potential of power production by nuclear

power has been used due to maintenance operations [RTE, 2012]. Meantime according
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to the electricity supply company the electricity demand has raised by +2.4% per year
since 2002 [RTE, 2012]. The rise is partly explained by the development of electric
heating system in new constructions (60% of them are supplied by electricity) and by
the increasing use of specific electricity for telecommunication and informatics. Other
socio-economic factors due to an ageing population structure are also mentioned: such
as smaller household size and hence, an increasing demand in energy per dwelling unit
[ADEME, 2012, Castéarn and Ricroch, 2008].

In the other hand, since the 60’s the rapid urbanization has been accompanied by
urban sprawl, the spatial extension of urban areas out of their fringe within the rural
countryside [INSEE, 2011]. In France it is the equivalent of one district (610,000 km?)
each 7 years that is built up to the detriment of crops and meadows. More than building
areas, impervious built-up areas dedicated to transport and commercial activities and
urban green areas (defined as the whole vegetative areas located within or at vicinity
of an urban area [Selmi et al., 2013]) count for the highest rise [Agreste, 2011]. Hence,
the radiative, thermal and aerodynamics surface properties are modified. Over cities,
the substitution of the humid and vegetative areas by impervious built-up areas leads
to the formation of a warm atmospheric dome (i.e. the urban boundary layer) above
and downwind to the urban areas. This urban boundary layer is often several degrees
warmer than the rural boundary layer and is characterized by convective uplifted wind
motions [Oke, 1987]. This phenomenon is called the Urban Heat Island (UHI) and re-
sults from the expression at regional scale (mesoscale) of physical processes occurring

at street and building scales that are listed below:

i) Surface shadowing effect and multiple interceptions of short waves and longwaves
radiations due to numerous obstacle vertical facets modify the amount of radiative

energy absorbed at the surface;

ii) The higher thermal admittance of construction materials allow the absorption

and storage of large amount of energy in the urban fabric materials;

iii) Since vegetation-covered soils are fewer in urban areas compared to rural areas
(e.g.vegetation areas represent 57% to 0.01% of the total urban surface in Arca-
dia and in Mexico, respectively according to Grimmond and Oke [1999b]), the
incoming solar radiative energy is mainly partitioned into heat (i.e. sensible heat)

and ground heat fluxes that contributes to warm the air at local scale (street);

iv) Additional ejections in the street of heat and humidity as well as particles and

greenhouse gases emissions due to human activities reinforce the air warming;
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v) At last, friction and drag forces acting on the obstacles facets reduce the natu-
ral ventilation in the streets. Deflections occur at building edges leading to wind
speed reduction and formation of recirculation regions at the top of the obstacles,
and at its upwind and downwind sides. The recirculation regions are character-
ized by the presence of turbulent eddies and vortices that may interfere according
to the obstacle density [Baik and Kim, 2003].

With the global warming the heat wave are expected to be more frequent, and the
UHI is expected to harsher the urban dwellers heat stress in summer as the European
2003 heat wave witnessed. Although, UHI may have negative feedbacks on energy
requirements in winter, it has positive feedbacks in summer enhancing the use of elec-
tricity and the production of anthropogenic heat due to the use of air conditioning in
buildings [Hunt and Watkiss, 2011, Yang et al., 2014]. More, several studies showed
that the energy demand is more sensitive to weather conditions when using electricity
heating or cooling system than when using oil or natural gas-fired boiler plants. Akbari
et al. [2001] reported a +2 to +4% rise of the urban peak electricity demand each 1°C
rise in the daily maximum temperature ranging above 15-20°C for six American cities;
Global-Chance [2010] reported a doubling of the peak electricity demand for space
heating between 2009 and 1996 concomitant with an increasing number of heating
electrical systems in houses. As a conclusion the UHI effect may enhance the thermal
stress of the urban dwellers in summer, while a shift in the seasonal energy demand is
expected with an increasing share of the electrical power energy in the building energy

mix.

1.2 Mitigation and adaptation strategies to cope

with the climate change impacts

Mitigation strategies, which refer to lessen GHG emissions to reduce the magnitude of
changes cannot cope alone with the climate change impacts. Even more if the mag-
nitude of the climate change impacts is projected to increase with time [IPCC, 2007].
Adaptation strategies are then required in addition. In this context cities, as driver of
political and socio-economical changes and land-use planning, are relevant places for

driving such strategies.



1.2.1 Mitigation strategies

By 2050, a limitation of the temperature rise to +2°C is agreed as the related impacts
are still judged acceptable. To fit with this limitation, anthropogenic CO2 atmospheric
emissions are targeted [[PCC, 2007]. Thus, the French government targets a reduction
by a factor 4 of the GHG emissions with respect to the 1990’s GHG emissions. To this
extent, buildings, which contribute to 25% of the total French CO2 emissions, offer a
high potential of reduction of the GHG emissions.

The substitution of low carbon or renewables energies (EnR) for power generation
and direct heating could achieve those objectives. In France the use of nuclear gener-
ated electricity plays a key role in mitigation policies. However, is the use of electricity
efficient in reducing GHG emission? To such extent, Global-Chance [2010] demon-
strated that the reduction in GHG emissions between 1997 and 2007 by using nuclear
produced electricity in new houses despite fossil fuels (natural gas) is few. It repre-
sents less than 1% of the building total emissions. A fortiori, higher variations of the
electricity demand and decrease of the nuclear power generation capacity due to the
aging of the power system will reinforce the use of thermal power plants that used
hydrocarbon fuels to supply the electricity demand [RTE, 2012]. Moreover, the use
of nuclear energy raises ethical issues: radioactive cores are finite and thousand years
estimated [National academy of technology of France, 2004], while the safety of the
installations, the retirement of the long timescale radioactive wastes, and the potential
military usages of this civil technology are far to achieve any opinion consensus in the
population on the sustainability of the nuclear energy supplied-power generation.

In parallel, the share of the EnR in the space heating energy mix is projected to increase
by 33% since 2050. The biomass, which counts for the two third of the EnR energy mix,
represents 85% of the 2015 objectives [[AURIF, 2008]. The biomass presents the advan-
tage that it could be used for power generation as well as for direct heating. Although
considered as ”clean energies”, the analysis of its lifecycle shows non null contributions
to GHG emissions. It contributes to the ozone formation and emits methane and ni-
trous protoxide, which have a 4 fold and 100 fold higher global warming potential than
carbon dioxide. A fortiori large conversions of arable toward non-alimentary produc-
tions and deforestation of ecologically rich forested lands are ethical issues associated
with the biomass exploitation. Pressure on the water resources, eutrophication of the

aquatic biotope and impoverishment of soil organic matter are other related environ-



mental concerns [Pehnt, 2006]. In conclusion even with the EnR, the production of
energy remains economically and environmentally costly: the adaptation of the power
transmission system requirs almost 1,224 million Euros in 2012, while the support of
the EnR penetration on the energy mix markets is mainly provided through short-term

subsides and taxes incentives that ensure artificial competitiveness [RTE, 2012].

For these reasons, other ways such as energy conservation measures should be investi-
gated. Energy conservation relies on the enhancement of the building energy efficiency,
and acts both on the energy production and demand patterns. To this extent, new con-
structions have the largest potential as a significant proportion of the consumed energy
might be wasted during the buildings lifespan due to defaults in their construction and
design [Wang et al., 2012]. The French thermal regulation sets the maximum energy
requirements at 50 kWh since 2012. More, by 2020, the whole new constructions should
produce from renewables more energy than used. However building stock in France is
dominated by energy intensive buildings built before 1974, the first thermal regulation,
in which oil and gas-fired boiler plants were widely used. With an existing building re-
placement rate equal to about 1% per year, ADEME [2005] estimated a 1974’s building
park turnover of about 100 years. For this reason,the French law Grenelle 1 adopted in
2009 sets a renovation rate of 400,000 lodgments per year so as to reduce the building
energy consumption by 38% by 2020 for existing buildings. Although a reduction of
-44% of the heating consumption between 2001 and 1973 is attributable to renovations
[ADEME, 2005], the energy savings due to building renovations are limited. The ren-
ovations are often done once after the building purchase and focused mainly on the
building shell (e.g. thermal insulation and reflective coatings) as the improvements of
the thermal envelope can reduce the space heating requirements by factor two to four
at a few percent of the total cost of residential buildings [I[PCC, 2007, Desjardin et al.,
2011].

Additionally, occupant behavior, culture and consumer choice are major determi-
nant of energy conservation measures [[PCC, 2007]. Several studies on rebound effect
[Greening et al., 2000, Herring and Roy, 2007, Brannlund and Ghalwash, 2007], indeed,
pointed out that the price elasticity resulting from the enhancement of the building
efficiency may result in the increase of the building energy consumption. Abrahamse
[2005] demonstrated that frequent feedbacks on energy use through monitoring and
monetary reward are efficient strategies to reduce energy use. And Yang et al. [2014]
reported a cooling energy savings of about 30% when increasing the set point temper-

ature. As a consequence, it seems that the energy consumption has a socio-economical



dimension relative to the thermal comfort perception that is socio-culturally deter-
mined and that is often neglected in mitigation studies [[EA, 2008].

Indeed, technical proven solutions are rather considered to alleviate the forthcoming
disaster as they are more "transferable and readily applicable to other technically similar
solutions” than behavioral ones [Guy, 2004]. A fortiori thinking on the social dimension
of the energy consumption can raise issues on the human own nature and its linkage
with its environments as humans are often described as rational actors taking rational
decisions: so how believe that the result of myriad rational choices (behaviors) can lead

to such unprecedented threat?

1.2.2 Adaptation strategies

According to Smit and Wandel [2006] adaptation strategies refer to the long-term ad-
justment of the system behavior and characteristics that enhance its ability to cope
with or take advantage of a stimuli, here, the forthcoming global warming. Improv-
ing of the urban climate is one of them [Bitan, 1992, Landsberg, 1973]. Bitan [1992]
pointed out that most of the adaptation strategies refer to the building scale and the
adoption of vernacular architecture principles such as: the optimization of the build-
ing orientation and glazing systems to take advantage of natural ventilation and solar
passive gain, the reduction of the envelope surface exchange with the atmosphere by
adopting compact and semi-detached houses, the optimization of the building density
for improving the natural ventilation of the streets and taking advantage of the shad-
owing of the building facets [Oke, 1988], the use of high-reflective surfaces [Akbari
et al., 2001] and so on. Other adaptation strategies rather refer to behavioral measures
such as the renunciation of certain activities that produce anthropogenic wasted heat

according to the weather conditions.

Among adaptation strategies, the enlargement of urban green areas in urban areas
have more and more recognition in alleviating climate change impacts through the
optimized usages of their ecological functions at building, city-block and city scales
[Gill et al., 2008]. Indeed urban green areas, more than ensuring the ecological diver-
sity, provide many other ecosystem services. Among them, ventilation of appropriate
space, the provision of cooler air at building and neighborhood scales through direct
shading of the surface, and at lesser extent through evapotranspiration is of interest
[Dimoudi and Nikolopoulou, 2003, Kuttler, 2012]. To date, the research and public
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institution communities have mainly focused their investigations on three types of veg-
etation: trees, green roofs that could be intensive (tall vegetation) or extensive (low

vegetation), and green parks.

e Trees

Trees, in particular veteran trees with densely foliated crowns, have focused the
attention of the researcher communities in the past decades and forester the de-
velopment of urban forestry services in urban areas [Nowak, 2004, 2006]. Akbari
et al. [1997] observed a potential cooling energy savings ranging from -30% up to
-50% by planting trees when surveying two experimental houses in Sacramento.
Heisler et al. [1986] and Akbari and Taha [1992] reported energy savings in win-
ter of 23% to 256% and 10% to 15% due to the trees wind-shielding effects. In
contrast Shashua-Bar et al. [2009] and Huang et al. [1987] emphasized that trees
could harsher thermal comfort and increase the cooling energy demand: trees
intercept longwave radiations from the ground and neighboring building surfaces
and inhibit as well the natural ventilation. To such extent, Kuttler [2012] showed
that placing a tree in the middle of the road bordering by trees should be avoid
because the tunnel effect created could lead to street-level exhaust-gas accumu-
lation, and hence reduce the street natural ventilation. In parallel, Simpson and
McPherson [1998] also outlined a +2.8% rise of the space heating demands due
to shading of the building surface by branches and trunks. The effects of trees

on building energy saving is therefore controversial.

e Green roof

Recently, green roof biotechnologies are regularly cited as the solution of the
future temperature rise mitigation. Green roofs consist in a layered system com-
prising a waterproofing membrane, growing medium and the vegetation itself.
Roofs, indeed, are waste surfaces that are located within the human habitat and
that absorb the largest amount of solar radiation [Alexandri and Jones, 2008,
Castleton et al., 2010]. An investigation on the future of Manchester in 2080 re-
ported a temperature reduction by -7.6°C by greening all the roofs by 2080 [Gill
et al., 2008]. For building energy performance, Liu and Minor [2005] reported
from a field campaign a reduction of the heat gains of building shell in summer

by -70 to -90% and a reduction of winter heat losses by -10 to -30% resulting in



a decrease in the building energy load.

e Green park

At last, green parks are often cited as cool oasis in urban areas. Several studies
like TAU [2010] reported that green parks lessen the air temperatures up to 1-
2°C around 100 m downwind the parks. Green parks could, however, stress the
human comfort when dry as they then act as bare and impervious soils. Their
wide use may also originate extensive use of lands that are energy intensive urban
form [Chang et al., 2007, Mehdi et al., 2012, Haines, 1986] and may reduce the
convective mixing of the air above urban areas by lowering the boundary layer

height and thus, increase the concentration of the pollutant in the streets.

Thus, the benefits of the vegetation in lessen the air temperature and save building
energy is mitigated. More, some urban green forms, such as green parks that provide
other ecological services for urban dwellers (e.g. recreative, physchological, aesthetic,
educational) seem to have unwanted effects on the urban development with general-
ized usage. Therefore, how to conciliate the urban dweller’s desire for nature and the

preservation of the ecological services provided by green areas?

Since the 1987’s the urban planning receive increasing recognition in helping opti-
mizing the use of the natural resources, and in framing the different elements of the
urban ecosystem [Holden and Norland, 2005].

By controlling the location of the urban activities (e.g. residential, work, leisure and
so on) the local development plans act simultaneously on the energy production and
consumption chains. The home to work distance influences the automobile traffic and
the correlated use of fossil fuels. Again the home-to-work distance, and the land use
policies and prices influence the homebuyers residential choices as well as the residen-
tial housing types (e.g.individual, collective) that are often associated with particular
building energy performance properties (i.e.insulation, surface on volume ratio). As a
consequence, several planning instruments include energy efficiency and climate quality
dimensions [Chanard et al., 2011]. As an example, the French Plan Climat Energie Ter-
ritorial (PCET) that is set mandatory since 2012 for agglomerations of 50,000 residents
and more aims to inventory the energy use and GHG emissions over the administrative
limits of the urban agglomerations; it determines objectives and action plans in matter

of GHG emissions reduction and building energy performance.
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In the past, two contrasted urban forms were assigned to produce sustainable ur-
ban ecosystems: the compact city and the short-cycle city. The sustainability of the
compact city relies on the statement that urban sprawl by originating numerous indi-
vidual cars home-to-work commuting, low dense human settlements and segregations
of activities are urban form that enhance the energy use. The idea, mainly promoted
by the works of Newman and Kenworthy on the home-to-work trips of several megaci-
ties in the world, is that high-density development of built-up areas close to or within
an existing built-up areas with a mixture of activities may result in promoting public
transportation services, pedestrian trips, multi-family dwellings that are characterized
by high energy use per capita. Although the compact city concept has entrenched many
policies, high density has been demonstrated to have prohibitive effects. Bailly and
Bourdeau-Lepage [2011] stressed that compact cities are unrealistic and undesirable as
they do not answer to the individual’s desire of privacy and nature that urban dwellers
have to find elsewhere such as in compensatory long-distance travels [Holden and Nor-
land, 2005, Desjardin et al., 2011] The Commissariat général au développement durable
[2010] also highlighted that the scale economy due to high-density disappears after a
given marginal cost threshold at which rural towns modify their planning policies lead-
ing to push farthest away the population settlements. At last ,although high density
can improve the winter climate quality by enhancing the UHI intensity in particular
in high-latitudes, it may cause other problems associated with the melting of the per-
mafrost and may harsher thermal comfort in summer in middle-latitudes [Hinkel et al.,
2003, Taha, 1997, Smith and Levermore, 2008]. Other studies questioned a fortiori
the assumption that has originated the compact city theory [Haines, 1986, Dujardin
et al., 2014]. Dujardin et al. [2014] demonstrated that the age of construction rather
determined the energy efficiency than the urban form and that energy efficient urban

from could be found also in rural and semi-rural less dense built-up settlements.

At the opposite, short-cycle cities seem to be energy efficient alternatives to com-
pact cities and dispersed cities [Haines, 1986]. It relies on a local conception of the
environmental sustainability as Ebenezer Howard theorized in the Garden Cities. It
consists in decentralized concentration of population and activities, and short-circuit
production-consumption patterns for energy and agriculture. The provision of periur-
ban agricultural lands can indeed offer a larger access for urban dwellers for natural
services and amenities that can attenuate the urban sprawl. Short-circuit in particular
for energy can forester the use of renewable energies and the recycling of wastes. At

last short-circuit also promote the mix of usage, economical functions and dwelling
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social obedience at local scale.

In contrast to the compact city, the short-cycle city rather consists in an urban hierar-
chical network in which intermediate cities play a key role in attracting population and
activities by proposing public transport offers, mix usages and proximity services. To
such extent, Tannier [2009] demonstrated that fractal cities can promote short-cycle
as fractal elements are invariant or quasi-invariant in scales and therefore provide a
greater access to natural amenities and services than other urban form. As a draw-
back, it seems that this urban form is more convenient for new towns in which the
efficiency of the whole urban system could be anticipated at the planning stage. To
date, concretized short-cycles realizations are rather found at city-block scale in the
form of Eco-neighborhoods that favor energy efficient building (compact semi-detached
zero energy housings), social and local economical activities mixes, local and periur-
ban agriculture that could figure as familial gardens or AMAP associations (a direct
association between a producer and consumers), local energy production and cogen-
eration principles, and at last, waste and water recycling circuits. The public spaces
such as the pathways are then thinking as multifunctional lanes that can be used for
soft transportation ways (bicycles, pedestrian), and for ensuring the connectivity of
the ecological network. Individual cars are often excluded like in the German eco-
neighborhood Vauban in Freiburg-im-Breisgau or their use mutualized. However, in
real, it seems that the ownership in such neighborhood rather concerns a social elite
class. More, although the projects have flourished during the last decades, short-cycle
patterns figure more as an exception than a norm. As a conclusion, the question of

sustainable urban form is still open.

In designing sustainable cities, Landsberg [1973] considered the "climatologist as a
Johnny-come-lately”. Oke [1984] estimated that little of the large body of knowledge
concerning urban climate has permeated through to working planners”. Inversely, the
non-accurate appreciation of the urban planning scales in meteorological models that
are used to foretell the climatic conditions over urban areas, explains partly the lack
of communications between urban planners and urban climatologists.

In the one hand, operational mitigation and adaptation strategies issued from urban
planning rather work at city-block or building scales: i) the urban morphology can
not be dramatically changed as it is often inherited from long term planning policies
on transportation and accommodation [Anderson et al.,; 1996]; and iz) the operational
planning regulatory instruments are rather set for building or building lots. For in-

stance, the local French development plan (PLU) gives the main 5-10 years planning
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orientations in matter of social diversity, optimization of the land-usage between natu-
ral resources, agricultural lands, and built-up areas, but even more provides the build-
ing codes and operational legal informations for each building lots. Indeed the PLU
defines the thermal regulation in vigor for the lots, the maximum built-up areas per
lots, the maximum construction height that all have direct impacts on building energy
performance and local climate. A fortiori, urban planning operations are often dele-
gated to property developers that limit the architectural coherence and the scope of

the mitigation and adaptation strategies at the city scale.

1.3 A brief review of the building energy perfor-
mance methodologies: their actual limits and

opportunities

With the forced energy transition, diagnostics of building energy performance and esti-
mations of building energy consumption become necessary to design sustainable cities.
Several building scale- or regional scale-focused methods exist that assess the building
energy performance. Most of them rely on a bottom-up approach in which the knowl-
edge of the building energy use intensity (EUI) (i.e. the energy consumptions per
floor square meter, the energy losses per floor square meter, the energy requirements
per square meter) of a benchmarked building owning to a particular segment of the
building stock provides the overall building energy performance knowing the share of
this segments in the whole building stock.

The EUls are often provided by building energy use sub-metering campaigns, deseg-
regations of energy bills per end-uses or analysis of the radiant energy emitted by
the buildings in thermal infrared images. Although those methods permit to consider
quickly the changes induced by the urban development on the building energy perfor-
mance of a given area through the compilation of up-dated dwelling datasets, the EUIs
neglect the interactions between the building and the local climate.

In the EUlIs that consider the variation of the climate, numerical building energy use
models enables to dynamically assess the building energy requirements of a prototype
building by resolving the heat and humidity diffusion in the building materials that
constitute the building envelope. Nevertheless, the outdoor climate conditions are often
inherited from fix meteorological synoptic stations that are located out of the built-up

areas leading to over-estimate the building energy requirements.
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With the climate change, the enhancement of the local extreme phenomenon such
as the UHI those methods seems no more appropriated as they do not reproduce the
local climate interactions with the building energy requirements. More, the release of
anthropogenic heat in atmosphere due to the human activities are recognized to in-
crease the air temperature by +2°C, and the urban heat island intensity in particular in
winter and at night when the solar forcing is low. Kikegawa et al. [2003] besides, found
an increase in the cooling energy demand due to the activation of the heat ventilation
air conditioning system in summer.

To include the energetic and dynamic alterations of the regional airflow due to the
presence of urban areas and anthropogenic activities, some studies used numerical re-
gional atmospheric models like ASPA [2012] to produce more accurate air temperature
and the climate correction by using the degree-day as climate correction factor. The
degree-day represents the cumulative temperature differences over a period of the daily
outdoor temperatures taken from the closest meteorological stations and a pre-defined
base temperature. The latter corresponds to the temperature at which there are no
more building energy needs. It is often taken at 17°C or 18°C and appears to be par-
ticularly sensible to the building types (residential, commercial) and fuels [Valor et al.,
2001]. The daily outdoor temperatures are usually provided by the fix observational
meteorological networks, which are often located out of the urban areas. The estimates
of the building energy requirements thus, neglect the effect of the urban heat island
on the building energy requirements. To such extent, Taha [1997], Spitz [2012] demon-
strated that the non consideration of the local warming induced by the built-up areas
results in the over-estimations of the building energy requirements by +30% .

The regional atmospheric models in contrast resolve a set of mathematical equations
that depict the physics of the atmosphere to compute the meteorological fields over a
coarse domain of thousand kilometers such as the air temperature, the humidity, the
wind speed and orientation. The effect of the urban areas are then considered in aver-
age in each grid cells of the domain by adapting the surface properties of the natural
lands, and in particular by increasing the thermal admittance and the roughness of the
built-up areas compared to natural lands. Nevertheless, in the past 20 decades, the
increasing computing capacities have spurred the development of sophisticated urban
parameterizations that reproduce the three dimensional energetic and dynamic effects
of the buildings on the atmosphere (e.g. shadowing effect, multi reflection, and so on).
They are able, therefore, to reproduce the urban heat island effect. In addition, some
of the sophisticated urban parameterizations include simplified building energy models
[Kusaka et al., 2001, Kusaka and Kimura, 2004, Salamanca et al., 2010, Krpo, 2009],

and shape as a whole a climate modeling system able to dynamically assess the building
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energy use considering jointly the complexity of the urban climate, the influence of the
urban heat island on the building energy requirements, and the particular features of
the urban surface. They therefore held a renewal potential for studying various urban

environmental issues [Chen et al.; 2011].

As a conclusion, accurate estimations of the building energy requirements are re-
quired for guiding the necessary energy transition in urban areas. A particular attention
has to be paid for accounting for the urban climate interactions with the building en-
ergy requirements. To such extent the newly developed climate modeling systems seem
promising tools. More details on the building energy performance methodologies are

found in chapter 2.

1.4 Research objectives

The present study aims to develop a methodology able to quantitatively and dynami-
cally assess the building energy performance in terms of building energy requirements
over any area and period by considering the complexity of the urban climate that is
at the origin of the urban heat island phenomenon, as well as the consequences of the
residential development on the local climate and building energy needs.

Relying on the recent advance in the urban atmospheric modeling capacities, the study
aims also to investigate the ability of the regional atmospheric models and their so-
phisticated urban surface parameterizations to provide accurate building energy and
climate informations to urban planners and any urban stakeholders. In particular, the

question of the sustainable urban form is raises.

1.5 Structure of the thesis

Firstly, a review of the building energy performance assessment methods is presented.
We particularly developed the numerical approach that enables considering various

possible futures. The basis in atmospheric physical modeling is given meanwhile a
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presentation of the atmospheric modeling system is carried on.

Second, we investigate the ability of climate modeling systems to provide urban plan-
ning guidelines. For this, we simulate the meteorological fields and building energy
requirements of the Eurodistrict region. The climate modeling system that is used in-
cludes the WRF/ARW research mesoscale atmospheric model [Skamarock et al., 2008],
the BEP three dimensional building effects parameterization [Martilli et al., 2002] and
the BEM building energy model [Salamanca et al., 2010]. Particular attentions were
given to depict as much as possible realistic study case. We analyze a broad set of fine
resolution geospatial databases of the region to assign the physical properties of the
surface (e.g. land cover type, albedo, heat capacity, and so on) in each atmospheric
grid that describe the study area .

Doing so a significant correlation between the simulated building energy requirements
for space heating and the daily outdoor temperatures is found. Like in the degree-day
method, we proposed to linearly fit the building energy requirements-outdoor temper-
ature function to define two parameters: the base temperature and the cold sensitivity.
The first is the interception of the linear fit with the outdoor temperature axis. The
second is the slope of the linear fit. Their determination allows us to quickly estimate
the building energy requirements for any period knowing the air temperature distribu-
tions over the period or at least the annual average air temperature. The linear fit is
referred to the statistical model. The study case, the settings of the climate modeling

system, and the statistical model are presented in chapter 3.

Then, we propose to use the statistical model to assess the impacts of urban sprawl
countermeasures on the building energy requirements (chapters 4 and 5).
Chapter 4 is dedicated to the simulation of contrasted and archetypal urban develop-
ment scenarios over the Eurodistrict region. Chapter 5 focuses on the impacts of those
urban development scenarios on the building energy requirements. The modified ver-
sion of the american urban growth cellular automata model SLEUTH* [Doukari et al.,
2013] is used to simulate the urban development for each scenario meanwhile the Mor-
phoLim and Graphab computing programs [Tannier et al., 2011, Foltéte et al., 2012]
help to: i) constrain the urban development either within the morphological areas or
at their vicinity; and i) consider in addition ecological network preservation policies.
We demonstrate that the climate modeling system achieves reproducing the changes
in the building energy requirements with respect to the simulated built-up patterns.
Nevertheless, the changes seem to be mainly due to changes in the building volume
to be heated between the urban development scenarios whereas the location of the

urban development seems to have no influence on the building energy requirements.
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No changes in the urban heat island intensity according to the urban development
scenarios are found. It seems that local changes induced by the urban development are

too small to be "seen” by the climate modeling system.

At last, we propose a canopy interface model (CIM) to improve the computation
of the vertical structure of the wind speed and air temperature in the urban canopy
layer. Several studies pointed out that local thermal conditions and air ventilation
produce non-negligible effects on the building energy requirements. They stressed in
addition that urban parameterizations, although being more and more complex, still
do not simulate correctly the near surface temperature and wind speed [Miiller, 2007,
Salamanca et al., 2011, Kusaka and Kimura, 2004, Britter and Hanna, 2003].

The CIM model computes the vertical wind speed profiles for a high resolution column
that is immersed in the canopy layer. It considers explicitly the presence of the obstacles
in the largest atmospheric grid through volume and surface porosities. This porosities
enable us to reduce the momentum exchange in the canopy layer and consider any
obstacle shape. In this first version, obstacles are modeled like parallelograms which
dimensions vary with the height in z-and y- directions. Moreover, the CIM model is
developed so as to interface any surface fluxes model that could come either from urban
parameterizations or from more sophisticate micro-scale models to take benefit from
the finest resolution of the latter type of model (meter). The development of the CIM
model is presented in chapter 6 of the thesis. We discuss the possible influence of the

model on the building energy requirement estimations when implementing in climate
modeling system like the WRF/ARW-BEP+BEM.

17



Chapter 2

Methodologies allowing for the
assessment of the building energy
requirements



Abstract

This chapter addresses a review of most of the usual methods used for assessing the
building energy performance. Several quantitative bottom-up methods have been de-
veloped in the past to address energy issues. In the quantitative methods, numerical
physically based methods present in particular a certain advantage: they dynami-
cal consider the meteorological conditions over a given spatial elements (a building, a
region) and can be used for investigating probable futures (changes in the surface prop-
erties, changes in the global climate, and so on). At regional or city scale, "mesoscale
atmospheric model-based” climate modeling systems seem promising tools to address
building energy issues. They include regional atmospheric models that compute the me-
teorological field over domains of thousand kilometers and sophisticated urban surface
representations (or parameterizations) that account for the three dimensional effects
of the buildings on the energetics and dynamics of the atmosphere and the building
energy requirements. Hence, a particular focus is given in this chapter to the mesoscale
atmospheric model-based climate modeling systems. Their basics in physics and their
urban parameterizations are described. Nevertheless, due to their coarse resolutions
(few kilometers) the mesoscale atmospheric model-based climate modeling systems
are, however, limited for operational climate applications. The resolution of the at-
mospheric grids are too coarse to represent in details realist urban surface conditions
that are required at the level of the local developers, and it seems that the definition
of the urban entity also suffer from a lack of consensus between the climatologist and
the urban planners. It can be problematic even more when several studies showed the
sensitivity of the operational guidelines with the urban area delimitations. Recently,
new attempts are inventoried in the climatologists, geographers and urban planners
communities to transfer climate and energy knowledge in the urban planning instru-

ments. They have been listed in this chapter.

Keywords: Urban canopy parameterization-mesoscale climate models- building en-

ergy performance -urban areas
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2.1 Introduction

This chapter aims to present the actual set of quantitative building energy requirements
methods. In particular the numerical physically based mesoscale atmospheric modeling
approach is developed. Indeed, new surface parameterizations designed for representing
with more accuracy the three-dimensional radiative, aerodynamic and thermal effects
of buildings on the thermodynamic of the atmosphere and simplified building energy
models that estimate the building energy requirements for space heating or cooling
have recently been developed and implemented in regional atmospheric models. Thus,
the whole atmospheric scales involves in the urban climate is by now represented in
such climate modeling systems. It is then expected to provide new opportunities to
assess the building energy efficiency, and to provide climate and building energy guide-
lines for urban planners in the climate change and energy transition background.

Nevertheless, the transfer of the climate knowledge in the urban planners’ community is
still harshening by the physical approximations adopted in the mesoscale climate mod-
eling systems. The atmospheric grids are usually ranging from 1 km to 5 km width
to consider homogeneous surfaces and average meteorological quantities that enable
to simplify the classical mathematical equations used to depict the airflow dynamics
and energetics. Basically, it leads to neglect the sub-grid advective effects due to the
surface heterogeneity. The sub-grid heterogeneity is, however, represented by com-
puting separately the heat, moisture and momentum that are exchanged between the
surface and the atmosphere (the surface fluxes) for each types of land cover included in
the atmospheric grids, and by considering latter an average of all of them accounting
for the coverage of each type of land cover. Although this approach (tile approach)
is recognized to produce accurate meteorological field, it is far to represent realistic
surface conditions, especially the urban heterogeneity observed at the neighborhood
scale and at the level of the urban planners. More the surface conditions are recog-
nized to be crucial for representing accurate local climate and hence, building energy
requirements. Therefore, more and more studies try to improve the representation of
the surface in the climate modeling systems by using high resolution surface datasets.
The latter are then expected to bridge the gap between the level of accuracy required
by the urban planners and the coarse resolution of the climate modeling systems. In
this chapter, we firstly present the atmospheric scales and inherent physical mecha-
nisms that influence the urban climate, and hence, the building energy requirements.
Then, the different methods used for assessing the building energy performance in the
urban planners and climatologist communities are addressed. In particular, numerical

physically-based climate models and their underlying physics are developed. A focus is
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given on the mesoscale climate models, and their surface parameterizations. At last, a
review of the existing attempts for providing operational climate guidance at the level

of the urban planners is proposed.

2.2 The climate scales and the existing building en-

ergy performance assessment methodologies

2.2.1 Modeling the building energy requirements: a multi-

scale problem

2.2.1.1 The horizontal scales

The building energy demand is closely linked with the surrounding building micro-
climate. The latter results from physical processes of length and time scales ranging
from global to local scales and from years to less than one hour. Figure 2.1 shows the
time and length scale related to the building energy requirement. Governing factors

are outlined for each scale.

The climate at a given site is first influenced by the atmospheric circulations oc-
curring at global scale (A) and the succession of weather conditions. The global
atmospheric circulation is first driven by the difference all around the Globe in the
solar irradiance, i.e. the part of the solar radiations that reaches the ground. The so-
lar irradiance may vary with time according to long quasi-periodic astronomic cycles,
the Milankovitch cycles (e.g. 100,000 years, 40,000years and 20,000 years), that influ-
ence the elliptic courses of the Earth around the sun as well as the distance between
the Earth and the sun, and according to shorter periods of 11 years during when the
intensity of the solar activity may change. Other climate system forcings are the atmo-
spheric concentration in greenhouse gases (like the carbon dioxide CO, and the water
vapor H,0) and the changes in the surface properties due to changes of the global land
cover. Indeed surfaces may absorb, emit and transmit radiative energy according to
various patterns. Ice cover may absorb only a little fraction (10%) of the incident solar

radiative energy, while the forested areas and water bodies may absorb quasi the total-
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Figure 2.1: Representation of the horizontal spatial scales involved in determining the
building energy requirement (adapted from Mauree [2014]).

ity of the incident solar energy. Changes in the land covers may, hence, alter the global
temperature and the atmospheric circulation. Mahmood et al. [2013] indeed reported
that land cover changes influence as much the extreme temperatures as a doubling in
the C'Oy atmospheric concentration. At last, episodical volcanic eruptions by emitting
particles and water vapor in the upper atmosphere may cause annual global cooling by
directly scattering the sunlight and serving as condensation nuclei for clouds [Zhang
et al., 2013].

At regional scale (or mesoscale, (B)) the heterogeneous mosaic of land-covers
offers contrasting thermal responses to the radiative forcing because of their different
properties and energy balances. At this scale, urban areas represent warmer (cooler)
and rougher spots in humid (arid) areas compare to its surroundings [Rothach, 1999,
Mahmood et al., 2013]. The presence of such surfaces directly modifies the vertical
structure of the planetary boundary layer, i.e. the part of the troposphere that is in-
fluenced by the surface in timescale of about one hour or less. Fully-developed daily
turbulent convective and warm boundary layers over urban areas are often reported
during clear sky and calm wind weather conditions. This effect is known as the Urban
Heat Island (UHI). Advection effects such as evaporating cooling and fetch effects that

depict modifications of climate phenomena with changes in the land covers along the
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transition area are of particular interest. Hence, the differential in warming between
urban and rural areas may produce countryside breezes from rural to urban areas while
the differential in air moisture may trigger under calm wind, precipitations downwind
to the urban areas. To such extent, Unger [1999] described an excess of humidity at
night and in winter over urban areas due to the release of water vapor and combustion
particles by the anthropogenic activities that can serve as condensation nuclei. At
night, stable atmospheric conditions may retain this humid air mass in the nocturnal
urban boundary layer while the dewfall reduce the air moisture availability in rural
areas. With the sunrise the faster air mass convection in urban areas may push the
humid urban air mass downwind to the urban area producing a saturation in water
vapor of the rural air mass (increase air moisture due to sunrise evaporative dewfall
and evapotranspiration, advection of urban moisture, lower temperature and dew-point
temperature compared to urban areas) and originate frequent precipitation episodes.
In the same way, Bornstein and Lin [2000]observed in summer a maximum cumulus
convective clouds activities and more frequent precipitation episode downwind to the
Atlanta urban areas due to the enormous production of hygroscopic condensation nu-
clei, water vapor and heat by human activities.

At last, the topography induces local radiative variations and specific winds patterns
across the slopes of the rough elements. Wind sheltering effects, anabatic and katabatic
winds across the slope of a valley, gravity waves damping and secondary turbulent cir-

culations as well, are some often inventoried topographical effects.

By downscaling at city block scale (C), the myriad of surfaces have unique
combination of intrinsic properties and spatial configuration that originate complex
turbulent structures and thermal zones [Roth, 2000]. City-blocks form uniform mor-
phological units composed by regular pattern of buildings and infrastructure networks
[Long, 2003]. Its surfaces due to their specific properties could be wet or dry, shaded or
sunlit inducing local differentials in cooling and heating that nourish in addition local

advections of heat, mass and moisture plumes.

At last, processes occurring at building scales (D) directly affect the human liv-
ing conditions. Usually the morphological unit is the street-canyon. It is composed
by a street and its adjacent building. The presence of one or more obstacle induces
secondary turbulent recirculation flows across the individual rough elements and wind
deflections at the windward side of the obstacles. The turbulent recirculation struc-
tures reduce the momentum and energy exchanges between the street and the above

lying atmosphere. In particular Baik and Kim [2003] found interfering turbulent struc-
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tures and disconnections of the street flow with the above lying flow with dense urban
fabrics. In addition with dense urban fabrics the absorption of the solar radiation
in the street-canyon is attenuated meanwhile the longwave radiations emitted by the
facets of the street-canyon are trapped in the canyon. Then, the orientation of the
building facets and the radiative and thermal properties of the construction materials
influence the interactions between the building envelop and the atmosphere. In partic-
ular, construction materials are characterized by higher thermal admittance and hence
have a stronger thermal inertia than vegetative areas. It is then common to observe
over urban area a slower nocturnal cooling compared to the rural countryside cool-
ing leading to a difference in the air temperatures between the urban and rural areas.
Note that the differences in the air temperatures are the highest few hours after sunset.
Because buildings home also economical and residential activities, additional wasted
anthropogenic heat and moisture may be ejected in the atmosphere. It could raise the
air temperature up to +2°C [Sailor, 2011] in particular in high latitudes and winter
when the contribution of the solar radiation in the surface energy budget is low. The

anthropogenic heat alters in turn the space heating and cooling energy requirements.

2.2.1.2 The vertical scales

Commonly the atmosphere is divided into several layers characterized by contrasting
vertical thermal gradient. The troposphere is the lower ones and reaches up to 7 km
at poles and 17 km at equator [Seinfeld and Pandis, 2012]. The lower part of the
troposphere that is directly influenced by the surface is the Planetary Boundary Layer
(PBL). It is divided in:

i) the mixing layer (ML) that is highly turbulent during day. The ML grows during
the day because surfaces continuously warm up and generate convective motions, and
also by the entrainment of the upper air parcels from the transition zone or capping
inversion zone;

ii)the surface layer (SL) only represents 10% of the PBL but is of particular con-
cerns as the phenomena that occur there directly impact the human living conditions.

Its elevation is referred below as z;. Figure 2.2 sketches the vertical structure of the SL.

The surface layer (SL) is by convention divided into the urban canopy layer (UCL),
which extents from the ground up to the average height H of the obstacles, the rough-
ness sublayer (RSL), which extents from the ground up to z*, with z* ~ 1.5H- 3H,
and the inertial sublayer (ISL), which extends from z* to the ISL top. Oke [1988§]
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Figure 2.2: Vertical structure of the surface layer (after Rotach [1993])

assumed that the ISL top is equal to be z;s;, = 0.1z;. The typical features of each of

this atmospheric layers included in the SL are given in table 2.1.

25



Layers Features

the UCL  -Surface forcings: drag forces, up-take of radiative en-
ergy, surface exchanges of heat and moisture with the at-
mosphere, attenuation of the solar radiation absorption
(shading effects), longwave radiations multi-reflections
(trapping effects), emission of anthropogenic heat and
SO on.
-Morphological site’s characteristics dependence of the
flow dynamic and thermodynamics that induce complex
dynamical processes (airflow ducting and trapping) [Col-
lier, 2006a].

the RSL - Non-permanent and horizontal inhomogeneous turbu-
lent flows that are influenced by length scales associated
with the individual roughness elements and heat and
moisture local-scales advections [Roth, 2000].

the ISL - Homogeneous horizontal turbulent flows those are
quasi-constant with height [Rothach, 1999, Collier,
2006a).
- Semi-logarithmic vertical profiles of meteorological
variables

Table 2.1: Description of the vertical structure of the surface layer. UCL=Urban
canopy layer; RSL=roughness sub-layer, ISL=inertial sub-layer

2.2.1.3 Scales interactions

Even though, the interactions of the whole scales is at the origin of the well known
mesoscale urban heat island effect, i.e. a differential in the surface heating and cooling
between the urban and the nearby humid areas, it is commonly accepted that the local
climate does not have direct and significant influences on the global climate. The ur-
ban areas represents only about 2% of the global land area and the urbanization does
not produce intense land cover changes that are able to affect the climate of remote
regions [Parker, 2006]. Therefore at global scale, the impact of the land cover changes
in the climate are limited to the changes in the vegetative covers due to reforestations,
afforestations and expansions of irrigated agriculture [Mahmood et al., 2013]. The
influence of the urban areas on the global climate has been then limited to their contri-
bution in increasing the anthropogenic greenhouse gas emissions. Recent studies like
Zhang et al. [2013], however, suggested that the energy consumption of the urban areas
can disturb on a relative short time the global atmospheric circulation. Note that the
energy consumption intensities (i.e. energy consumption per atmospheric grid areas)

are directly incorporating in the physical equations of the lowest layer (Az=130 m)
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of the National Center for Atmospheric Research (NCAR) Community Atmosphere
model (CAM3) as a time invariant heat source. It could therefore over-estimate the

impact of the heat release due to the human activities on the global climate.

2.2.2 The building energy requirement quantitative methods

Recently energy quantitative approaches that rely on the construction of quantifiable
building Energy Performance indicators (EPIs) such as building energy use intensity
(EUT in kWh/m?), have received more recognition in helping local authorities to im-
plement more sustainable energy policies [Jones et al., 2007]. The EPIs can be de-
termined by measurements-based, calculation-based or any hybrid approaches [Wang
et al., 2012]. Although in the following sub-sections the whole methods will be in-
troduce, degree day and numerical physically-based modeling methods will be more
specifically developed. The first one is a fast and simple method used to estimate
building energy consumption over any region of interest while the second has the ad-
vantage to consider the complexity of the urban climate system, and in particular the

feedback of the urban heat island intensity on the building energy consumption.

2.2.2.1 Measurement based techniques

In-situ energy use monitoring, disaggregation of building energy consumption from en-
ergy bills, and analysis of building thermal images are measurement-based techniques

that could only be applied to existing building.

e In situ monitoring

End-use sub-metering is an intrusive method for investigating the building en-
ergy performance. Usually real instantaneous energy consumptions are measured
periodically over period of 15 or 20 years so as to depict various patterns of en-
ergy loads. The energy consumptions can be given in litter for gas and oil, in
Watt hour (Wh) for electricity for each end-use as in Asdrubali et al. [2013]. One
of the advantage of the method is that energy data when reading are instanta-

neously accessible compared to utility bill that are given few days or weeks after
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the reading of the energy meters. Because the Heat Ventilation and Air Con-
ditioning system, the light and other appliances are often installed in the same
electrical circuit, sub-metering can be difficult to install and a disaggregation of
the electricity consumption could be necessary for analyzing specific end-uses.

Limitations of the method arise as real consumptions are only periodically moni-
tored and therefore involved the implications of occupants and building managers
to complete the energy consumption time series over the entire year. In the other
hand, the method is often applied on few sample of buildings that are assumed
to be representative of a given segment of the building stock. Asdrubali et al.
[2013] for instance chose 9 buildings and sample flats in each of them that share
similar floor area and number of occupants to carry on the in-situ monitoring.
However, the energy consumption may not only change with the number of oc-
cupants but also with the structure of the household (e.g. age, median income).
More than assessing the building energy performance or consumption alone, the
method seems to measure also the social dimension of the energy consumption
and the penetration of energy conservation policies like in Abrahamse [2005]. The
interpolation of the results of the monitoring campaign for the whole urban areas

should be then be done cautiously.

e Remote and non-intrusive measurement methods

— Disaggregation of energy bills

The utility bills are delivered by every companies of energy suppliers. The
utility bills provide a large set of informations. They usually indicate the in-
terval between readings, the corresponding number of days, the total energy
consumption, the cost, the maximum electrical demand measured during
that interval. By using such informations it is possible to derive the energy
use intensity in kWh/yr/m?, in energy cost $/yr/m? or, the load factor (i.e.
the ratio of the total energy consumption on the maximum peak energy
demand) that indicates how steady an electrical load is over time. Thus, by
analyzing such a document it is possible to depict the patterns of energy use
in buildings. It can show how the heating load is spread over the year, how
the consumption has changed relative to a same period of previous years due
to the arrival of a new occupants, the installation of new boilers, appliances

or new insulation systems.
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The energy disaggregation on its own refers to the method that breaks down
the whole building energy consumption into appliance level itemized bills (or
into end-uses) and time-of-use. The disaggregation relies on autoregressive
analysis. The use of the energy bills is, however, limited as monthly utility
bills are too coarse to provide time-use energy and a disaggregation into
hourly energy consumption data is pre-requested for studying the daily pro-
file of energy loads. More, the survey is usually carried over few buildings

(7-10 buildings) and cannot be easily extended at city scale.

Thermal images

Thermal images represent the spatial mapping of the thermal infra-red ra-
diations emitted by the buildings and streets facets. The radiant energy
emitted by the surface is indeed captured by a camera placed on an aircraft
(300 m elevation) during expensive campaign or taken from the ground.
The principle relies on the association of a color scale with a correspondent
thermal energy level. Thermal images are often used to provide a rapid
overview of the building energy performance in terms of building energy
losses of a given areas and help identifying defaults in the construction of
the buildings FLIR services [2011]. To such extent APUR [2011] performed
505 thermographs of sampled buildings that are classified according to their
date of construction to provide an overview of the energy performance of
the building stock of Paris in 20009.

It should be however stressed that the monitored radiant energies that are
emitted by the surfaces are integrated energy signals that combines different
sources of energy. The energy stored in the construction of the materials
during a diurnal cycle, the radiant solar energy reflected by the surface dur-
ing the day, the internal heat gains due to the human activities are as much
sources of energy that are then monitored. It is then difficult to address one
specific energy end-uses.

More, the method suffers from the weather conditions and the resulting en-
ergy signal is corrected from the climate conditions. The presence of water
droplets, greenhouse gases and particles may absorb a part of the emitted
infrared thermal radiations while the energy losses through humid surfaces
may be under-estimated due to their lower skin temperatures. In addition,
contrasts in thermal inertia of the buildings cause interpretation errors of

the signal because the thermal balance is not achieve at the same time for
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all the buildings. At last, it should be stressed that thermal images taken
from the ground for characterizing an entire building stock may suffer from
the sampling techniques, while the thermal images taken from an aircraft
over-estimate the contributions of the roofs compared to walls and integrate

in addition the radiative response of the streets.

2.2.2.2 Statistical techniques

e Statistical multivariate analysis

Statistical multivariate analysis is often employed when evaluating and map-
ping the building energy consumption over extended areas. The energy cadastre
proceeds of such a method. It relies on a bottom-up approach in which the EUIs
of prototype buildings owning to a particular segment of the building stock are
statistically interpolated over a given area knowing the share of this particular
segment in the total building stock [ANAH, 2008, CUS, 2008, ASPA, 2012].
The segmentation of the building stock is determined according to building phys-
ical descriptors that permit assumptions on the building energy performance. For
instance, the building age seems to be well correlated with the building insulation
performance and types of fuel as demonstrated by CUS [2008]. The air quality
association of Strasbourg (France), called ASPA, also used such technique to map
the 2010 estimated building energy consumption [ASPA, 2012]. The ASPA took
advantage of the well-described INSEE dwelling database in which figure the age
of the construction, the nature of the building (e.g. single or multifamily) the
type of fuel, the number of occupants, the number of rooms, the surface of the
floors and so on and that is available for several urban planning scales (e.g. mu-
nicipalities, county). In parallel, they used the energy consumptions of prototype
buildings (unitary coefficients for a given end-use) provided by the CEREN (Cen-
tre d’Etude et de Recherche Economique sur ’éNergie) that details the end-uses
and fuel types. For the space heating, the unitary coefficient results from the
survey of a panel of 3,500 households characterized according to the type of the
lodgment, the type of heating system and the type of the fuel. Note that the
energy consumption is corrected from the climate variations.

Thus a broad set of data is required when using such method. It present the
advantage to relies on datasets that are directly at the disposal of the urban

planners’ services. It allows to account dynamically for the influence of the ur-
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ban growth on the building energy consumptions as showed by Viejo-Garcia and
Keim [2008] in their ”Stuttgart 2030”7 case study, but it neglects the influence of
the climate on the energy consumption: the dynamic of the weather conditions is
then often reconstructed by using a climate severity index to weight the building
energy consumptions. The latter relies most of the time on the well-known degree

day method.

The Degree day methods

The degree-day method is a simple and fairly reliable procedure for assessing
dynamically the building energy demand for cooling (CDD) or heating (HDD)
when internal temperature, thermal gains (e.g. occupant and equipment wasted
heat, solar energy) and building properties are relatively constant over time. The
method relies on the strong empirical linkage found by previous empirical studies
between the air temperatures and the heating or cooling energy consumptions
that are provided by energy companies or energy institutions and documented
since the 1950’s [Thom, 1954]. Such a relationship exhibits a non-linear form
over a year. In winter the building energy consumptions decrease with the air
temperature rise. In summer the building energy consumptions increase with
the air temperature rise. A temperature threshold that rather shapes a plateau
is found In between the winter and summer trends. It represents the building
energy uses that are non-sensitive with climate variations and mainly due to the

use of light, hot sanitary water, or cooking devices.

Although the function is non-linear, several studies proposed to consider sep-
arately the winter and the summer branches and to model each of the branche
by a linear fitting as sketched in figure 2.4 [Quayle and Diaz, 1980, Valor et al.,
2001]. The resulting slope P represents the sensitivity of the building with cold
or warm temperatures (in Wh/°C) while the interception of the linear fits with
the air temperature axis defines the base temperature (or balance point) tem-
perature Tq. It is the temperature at which there is no more needs of energy, or
thetemperature at which the internal and solar energy gains offset the building

energy losses through its envelop.

From such relationship one can define the degree-day which mathematical formu-
lation is given in equation2.1. The degree-day is a proxy-measure of the heating

or cooling energy requirement considering the relationship between the building
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Figure 2.4: Theoretical relationship between energy consumption and air temperatures
(adapted from Amato et al. [2005])

energy requirements and the thermal loads between the building and its surround-
ing. Thermal loads are the temperature differences between the base temperature
(or balance point temperature) Tp, and the outdoor temperature 7; that could
be computed like in equations 2.2 or 2.3.

The energy requirements () ; over a period At are then calculated by using the
time integration over the time period At of the distributions of the thermal loads

when the outdoor temperature are below (for space heating) or above (for space
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cooling) the base temperatures, and by considering the sensitivity of the building
energy requirement with the temperature rise P like in equation 2.4. Usually,
the integrating time step 0t is taken to be 1 hour. Actually, several definitions
of degree-days co-exist in the literature. Christenson et al. [2006] computed the
thermal load as the difference between the base temperature taken at 20°C and
the outdoor temperatures and integrated the latter difference when the outdoor
temperature is below the chosen base temperature Tp. Cartalis et al. [2001] con-
sidered in addition the efficiency of the heating system by using the coefficient of
performance of the heat pump system (COP).

D = "2 min(T, — Ty; 0) (2.1)
&
Li=5:2.T (2.2)
7j=1
T; max T} min
T, = (7, jimin) (2.3)
2
At At
i=1 i=1
Where the base temperature could be defined as:
A
TO - Troom - ?g (25)

With D the degree-day, AT the period of investigation, dt the period of integration
in hours, T; the daily averaged outdoor temperatures, T; the hourly temperature,
T maz the mazimum hourly temperature of the day i, T} pmin the minimum hourly
temperature of the day 1. Ty is the base temperature, Troom the Toom set point tem-
perature and Ag the passive energy gains from solar radiations and internal heat
gains (equipment and human metabolism). P is the sensitivity of the building en-
ergy conditions to the outdoor temperatures, and at last Q); is the building energy

requirements in Watt hours (Wh).

The base temperature is often set predefined. The American Society of Heating,

Refrigerating and Air Conditioning Engineers (ASHRAE) standard recommends
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the use of base temperatures set equal to 10°C and 18.3°C (65°F) for heating
and cooling respectively. Christenson et al. [2006] chose base temperatures set
equal to 8°C, 10°C and 12°C that correspond better to the Switzerland building
standards. Indeed the base temperature Ty depends on the room thermostat set
point temperature T, and the passive energy gains Ag that can come from
the penetration of longwave and shortwave radiations from outdoor, equipment

and occupant wasted heat, and walls heat storage.

The outdoor temperatures are often taken from fix observational meteorological
networks that provide long temperature time series. For this, the airport meteo-
rological stations is often used. Several studies have however showed that the use
of synoptic stations instead of local weather stations cause discrepancies in the
estimations of the building energy use. Hence, the heating degree days reported
by Taha [1997] over the 1993-2006 periods by using successively observational
stations located in the urban core and at the airport for several US cities show
an average relative difference of about +12% that could be up to +46% for Los
Angeles meaning that the energy use will be over-estimated when considering the
airport temperatures. The use of airport data series is often justified as the urban
meteorological field campaigns are often intensive and concentrated on one year
(e.g. BUBBLE in Basel (Switzerland) and CAPITOUL in Toulouse (France)) or
less over summer periods (e.g. ESCOMTE in Fos-Marseille (France), DESIREX
in Madrid (Spain)).

So as to bend this drawback, recent studies have investigated the benefits of
using outputs from numerical meteorological models to reproduce the distribu-
tion of the degree-day over an entire year. For instance, the ASPA [ASPA, 2012]
used daily air temperatures issued from the 3 km-urban grids of the AtmoRhena
regional model and a base temperature set equal to 17°C to build according to

equation 2.1 a climate severity index.

2.2.2.3 Methodology using numerical physically-based models

As cheaper and faster technique, numerical physically-based building energy models

are of regain interest with climate change as it allows predicting future meteorological

conditions and forthcoming stresses on human thermal comfort and building energy

use. On the contrary to the heating or cooling degree day method, the whole meteo-
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rological field is explicitly addressed.
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Figure 2.5: Sketch of the grid of a global numerical climate model (La météorologie
2000).

Indeed meteorological numerical models forecast the wind velocity, the temperature,
the mass and the moistures field over a domain of interest 2 that is discretized into
elementary volume, the grid-boxes (Figure 2.5). The evolution of the meteorological
variables are obtained by solving mathematical partial differential equations (PDESs)
that depict the non-linear behavior of a flowing air parcel (i.e. a volume of air bounded
by walls taken small enough with respect to the variation of the physical properties
and not too big to allow a clear identification of this air volume within the atmospheric
fluid). The space and time resolutions of the numerical climate model are forced by
the particular time and length scales associated with the studied phenomenon and the
aims of the model. It could be used for operational meteorological forecasting, climate
change impacts assessment, air pollutant dispersion studies, and so on. As a result a

broad set of numerical physically-based meteorological models exists.

e Global climate models (GCM)

GCM models aim to forecast the global circulation at spatial resolutions of about
1° (~100 km) to 5° (~ 500 km) in latitude or longitude and time scale ranging
from day to multi-century. Table 2.2 lists the current spatial resolutions adopted
in the GCM models in latitude and longitude respectively. Altough many of them
have already supported the IPCC’s 215 century projections on climate change,

their coarse resolution prevents the simulation of the detailed flow field around
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GCM models

Spatial resolution

References

NOAA’s GFDL 2° and 2.5° Delworth et al. [2003]

Hadley Centre’s  2.5° and 3.75° Gordon et al. [2000]

HadCM3

NCEP’s GFS 28 km to 70 km (ac- Environmental Mod-
cording to the simulation elling Centre [2003]
length)

LMD’s LMDZ4 2.5% and 3.7° Houdin et al. [2006]

Table 2.2: Examples of GCM models and their spatial resolution.

buildings. Cities are besides often not represented as they represent a tiny frac-
tion of the land-uses included in the grid-boxes. If there are, they are regards as
a fraction of bare soil whose physical surface parameters (e.g. the heat capacity,
the roughness, the albedo, the soil water content) are chosen to be adapted for
cities. As a consequence, their influence on the atmosphere due to the resolution

of the climate model is likely to be smaller than in reality [Best, 2005].

Nevertheless, improvements in the accuracy of the Earth land-cover-mapping
by using high resolved satellite images [Friedl et al., 2002] and computational
capacity have already allowed implementing advanced urban canopy parameter-
izations.

The Met Office Surface Exchange Scheme (MOSES) considers urban areas as
an impervious warmer and rougher slabs composed of roofs and street-canyons
whose physical parameters (e.g. the albedo, roughness and heat capacity) are
walls and canyon floors averaged parameters [Best et al., 2006]. Although this
surface scheme reproduces the capacitive effect of cities and roughness, it does
not fairly reproduce the three-dimensional effects of the buildings on the wind,
and the three-dimensional radiative and energy exchanges as well. Furthermore,
MOSES does not include a building energy model to compute the building en-
ergy requirement. Several studies have, however, demonstrated the influence of
anthropogenic heat on urban climate in particular during winter when the so-
lar contribution in the surface energy budget is low [Kylski, 1996, Taha, 1997,
Ichinose et al., 1999]. In particular Taha [1997] reported that the release of the
anthropogenic heat in the atmosphere increases the air temperatures by about
2-3°C.

In a more complex parameterization, Oleson et al. [2008a] specified the urban

areas with the help of three urban fabrics of increasing building density whose
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typical canyon is supposed to be infinite long and form by a wall, a roof and a
canyon floor that could be pervious or impervious. Shading, multiple radiation
reflections and building drag effects due to the obstacle geometry are consid-
ered as well as canyon surfaces’ separated energy budgets to compute a canyon
specific air temperature and moisture. Anthropogenic heat from traffic and air
conditioning are also modeled by imposing for the latter a room temperature
comfort range and solving a specific room energy budget. Results indicate that
the canopy parameterization qualitatively fairly reproduces the urban heat island
features [Oleson et al., 2008b)].

In conclusion, GCM have the capacity to consider long time scale and dynami-
cal global climate changes. The entire Greece may cover 2 grid-boxes according
to Giannakopoulos and Psiloglou [2006]. To date their low spatial resolutions,
prevent the description in details of the urban areas and surface processes, but
the implementation of much more sophisticated urban canopy parameterizations
seems promising to address the climate feedbacks of the urban areas on the global

climate.

Building energy micro-scale models (BEM)

In contrast, micro-scale physically-based models that are often used to assess
building energy efficiency and energy savings policies basically work at building
scale by using grid boxes of few decametres and time scale of one hour.[Simpson
and McPherson, 1998, Akbari et al., 2001]. Due to their fine resolutions, realis-
tic buildings and surroundings site’s characteristics are considered in the BEM
models.

For instance, the windows and glazing systems include the description of the win-
dows size and orientations, the glass radiative properties, and sun-control devices
characteristics as well. The hourly sun positions, the sky cloud covers, as well as
the shading of the exterior shading surfaces are other example of the surround-
ing details considered in the BEM simulations. As a consequence, BEM models
constitutes a suitable tool for city planners and architects.

In the BEM models, the buildings are composed by thermally homogeneous
spaces. The indoor temperatures are calculated by accounting for the thermal
dynamic of the building envelop according to the outside weather conditions,
the thermal dynamic of the building mass, the time varying building internal

activity and heat gains, and the unintentional ventilation. The resulting thermal
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loads, the differences in temperatures between the indoor and the outdoor of
the building, are then used to compute the whole building energy demand. The
more sophisticated BEM models such as EnergyPlus and DOE-2 of Birdsall et al.
[1990] and Crawley et al. [2000] respectively consider in addition the dynamics of
the activation of the Heat Ventilation and Air Conditioning (HVAC) system, its
characteristics and its fuel requirements given the efficiency of the plant equip-

ment.

While the fine resolution of BEM models allows simulating accurate building
energy demands, the large amount of user-inputs for describing the building fea-
tures and the miss-evaluation of the variations of the local climate limit their
usages. Indeed the weather conditions are given by Typical Meteorological Year
files (TMY). The TMY files issued from the averaging over 30 years of hourly
meteorological observations that are considered to represent typical weather con-
ditions of the study area. As a result, long meteorological campaigns are required
to build suitable and statistical robust TMY files. Long time series are often doc-
umented by the fix-meteorological stations that are most of the time located out
of the urban core. To such extent, Spitz [2012] estimated that the use of TMY
files without considering the local climate and the heat island caused by the ur-
ban impervious areas leads to over-estimate the energy demand by up to +30%.
A fortiori this scholars noticed that the averaging procedure smoothens the daily

weather perturbations and hence, miss-evaluates the peak energy demand.

Therefore and during the last thirty years, several investigations have been car-
ried out to improve the considerations of weather conditions in the BEM models.
Some studies investigated the advantage of using CFD models (i.e. Computa-
tional Fluid Dynamics) like FLUENT or TRNSYS that resolve the whole length
scales of the turbulent flows generated by the presence of an obstacle as in Bouyer
et al. [2011], while others devised statistical downscaling approaches in which the
outputs of the global atmospheric models are statistically interpolating to build
station-scale meteorological TMY time series like in Loverland and Brown [1989],
Richardson et al. [2013] and in Xu et al. [2009]. The fundamental assumption is
then that consistent and stable empirical relationships between large scales and
local processes can be established over an historical period and extended over
years [Willby et al., 1998]. The latter assumption seems compromising with fast
urban growth. Other approaches consist in dynamically downscaling the outputs

of the global climate models by using intermediate climate models. Taha [1997]
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for example used the outputs of the urban boundary layer model of [Bornstein,
1975] URBMET to dynamically downscale the global climate fields at the local
levels. Other scholars preferred using mesoscale atmospheric models, which res-
olutions range between 1 km and 5 km, and which include a fortiori since the
past 20 years sophisticated urban canopy parameterizations able to reproduce

the urban heat island found at the building, neighborhood and city scales.

The mesoscale atmospheric model (MM)

Conventionally, mesoscale atmospheric models are designed to provide a through-
out knowledge on the climate at a regional scale, and in particular they investi-
gate the energetic and dynamic processes that occur in the atmospheric boundary
layer [Arnfield, 2003]. They account from the alteration of the atmospheric cir-
culation due to the orography and the presence of built-up and non built-up
areas. They usually consider study area (domain) of thousand kilometers and
taken height enough in the vertical to account for the air ventilation of the urban
areas by the countryside breezes induced by the contrasted urban-rural surface
energy budgets, and the daily variations of the planetary boundary layer height.
The domain is also taken not too much large for considering the changes in the
shearing stress, the buoyancy intensity, and the contrasting surface energy bud-
gets included by the mosaic of land covers at regional scale. Therefore, classical
horizontal and time resolutions fall between 100 km to 1 km, and from 1 hour
to a day. Hence, several studies showed that mesoscale atmospheric models due
to their intermediate resolutions achieve to reproduce the dynamic of the urban

heat island and the slow nocturnal cooling that occur above urban areas.

However, the increasing interests in the global warming and its impacts on the
urban climate and the building cooling and heating energy requirements triggered
new applications.

Some studies then, used mesoscale atmospheric models and their urban canopy
parameterizations to dynamically down-scaling the meteorological outputs of the
GCM models to study the interactions between the urban climate and the build-
ing energy requirements in the context of climate change. Seljom et al. [2011]
for instance used a numerical climate modeling system consisting in the cou-
pling of the Hadley Global Climate Model, the regional HIRHAM model and
the building energy SolDat model from the UiO Norway meteorological Office.
Hinkel et al. [2012] used the Colorado state University mesoscale model CSU-
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MM to obtain the spatial and temporal distribution of the air temperatures over
the Tokyo metropolitan area meanwhile the energy consumptions of commer-
cial and residential buildings are deducted from empirical statistical models that
link the energy consumptions and the air temperatures. Pigeon et al. [2014]
proceeded with the same philosophy. These scholars coupled the Town Energy
Budget urban canopy parameterization (TEB) of Masson [2000] with the simpli-
fied building energy model BEM of Bueno et al. [2011] to evaluate the cooling
and heating building energy requirements considering successively the climate of
Paris and Cordoba to simulate the effect of the global warming over the Paris
urban region. The authors successively showed that the building energy simula-
tions are particularly sensitive to the air infiltration and natural ventilation, and
that the use of such type of climate modeling systems can provide more accurate

building surroundings’ climate conditions than traditional approach.

In parallel, other studies investigated the influence of the additional release of
anthropogenic heat and water vapor due to human activities on the air tem-
peratures and the formation of hydrometeors (e.g. clouds, liquid and solid pre-
cipitations). For this, the studies usually adopted encapsulated domains, which
resolutions is successively increased, and which domains are two-way nested. In
the two-ways nesting approach, the meteorological boundary conditions of the
domains are inherited from the coarser domains (parent domains) meanwhile the
finest domain provide the surface fluxes (the source) to its parent domain.

As an example and by adopting a two-way nesting approach, Kikegawa et al.
[2003] proposed the use of a climate modeling system to assess the sensitivity
of the cooling peak electricity demands with the air temperatures for a central
business district of the great Tokyo. The system consists in coupling a mesoscale
atmospheric model with a one-dimensional urban canopy model and a building
energy analysis model. Doing so, they demonstrated that the use of more sophis-
ticated urban canopy parameterizations improves the accuracy of the meteoro-
logical and indoor thermal condition simulations used to calculate the building
energy requirements. They also found that the cutting-off of the air conditioning
system may save up to +6% of the cooling energy. Salamanca et al. [2011] and
Martilli [2014] by following such an approach used the urban canopy model BEP
of Martilli et al. [2002], the box-type building energy model BEM of Salamanca
et al. [2010], and the WRF /ARW mesoscale atmospheric model [Skamarock et al.,
2008]. In particular Salamanca et al. [2011] determined the optimum degree of

complexity that should be adopted in the urban canopy parameterizations and
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evaluated some building energy conservation strategies. Their study that have
been carried out over Houston demonstrated that the building energy and the
meteorological simulations are considerably improved when using much more de-
tailed informations on the urban morphology. They found that the use of more
sophisticated urban parameterizations improves the simulations of the 2 m air
temperatures. They also stressed that the use of such sophisticated urban pa-
rameterizations by considering the local climate and the urban heat island may
produce differences in the building energy requirements by factor 1.7 and 2.2
compared to classical statistical bottom-up approaches in which the influence of

the local climate on the building energy requirements is miss-evaluated.

In this study, we therefore took advantage of the intermediate resolution of the
mesoscale atmospheric models and the results of such pioneer studies to design
such a climate modeling system and dynamically assess the building energy re-
quirements considering the complexity of the urban climate and the urban heat

island effects.

2.3 Mesoscale meteorological models: promising tools

to help urban planners?

The recent studies mentioned in the previous sections plaid in favor of designing climate
modeling systems based on the use of mesoscale atmospheric models and sophisticated
urban canopy parameterizations to dynamically assess the building energy requirements
for space heating or cooling by considering accurate building surrounding thermal and
dynamical conditions. With the reinforced roles of the local authorities in designing
post carbon cities and mitigate the effects of the climate change, such tools is expected
to provide interesting climate and energy knowledge that can serve guiding the energy
and urban planning policies in the next decades. Indeed climate modeling systems,
and the intermediate resolutions of the mesoscale atmospheric models allow consider-
ing the interactions between the urban morphology and hence the urban planning, the
inherited physical properties of the surface and the physical processes that occur in the

atmosphere at regional scale.

In this section, we first propose a description of the physical equations resolved by

the mesoscale atmospheric models to simulate the variations of the meteorological
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fields (e.g. wind, humidity, temperature, mass) over regional areas of thousand kilo-
meters. Then we focused on the different urban canopy parameterizations that have
been developed for mesoscale atmospheric models to consider the effect of the urban
areas on the atmosphere. We secondly propose a discussion on the urban concept
in both the meteorologist and urban planners communities in a second sub-section.
Indeed, the increasing concerns on new urban environmental issues and the recogni-
tion of prevailing roles for urban planning raise questions on the representation of the
complexity and heterogeneity of the urban areas in the mesoscale atmospheric models.
More, the definition of the urban entities is showed to suffer from a lack of precision
in the climatologist communities compared to the various existing definitions found in
the urban planners communities. Nevertheless, the transfer of the climate and build-
ing energy knowledge between the two communities requires the adoption of common
langage and concepts to create common understandings on the interactions between
the urban climate and the building energy requirements. We, therefore, present at last
a review of the existing research studies that attempt to bridge the gap between the

two communities.

2.3.1 Mesoscale physical formulations

Mesoscale atmospheric models resolve the classical conservative equations for momen-
tum, energy, mass and moisture that have been set by Navier and Stokes for describing
the motion of any newtonian fluid. The effects of the surface on the atmosphere in
mesoscale atmospheric model are introduced by the specific calculations of the surface
skin temperatures, the thermal radiant energy restituted by the surface to the atmo-
sphere, and the surface turbulent fluxes for momentum, energy and moisture by surface
schemes. Because the physical properties of the surface differ from one land cover to
another, it is a common approach to consider specific surface schemes or parameter-
izations for each land cover that represent the average effects of the surface on the
atmosphere. Therefore this subsection is divided into two parts. The first one presents
the atmospheric conservative equations while the second one presents the different sur-
face schemes adopted to represent the effect of the urban areas on the dynamic and

thermodynamic of the atmosphere.
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2.3.1.1 The atmospheric conservative equations

The evolution of the meteorological field at a given place is given by the Navier-Stock
conservative system of equations that is presented by the equations 2.6, 2.8, and 2.9.
Note that the Einstein formulation, where ¢ = 1,3 is adopted for describing the three
components of the vector variables in the equations. By convention the x direction
is assigned to i=1, the y direction to i=2, and the z direction to i=3. Following the
components of the wind vector U assigned to Uy, Uy, and Uj refer respectively to
the components U, V, and W. Note also that the air density is p (in Kg.m™3). The
wind velocity according to the chosen direction i or j is U; or U; (in m.s™'), p; (in
Kg.m™'.s71) is the pressure perturbation from the hydrostatic pressure pg, u is the
kinematic viscosity (in m?.s7!) that represents the ability of mixing of the fluid, S;; the
stress tensor that depicts the anisotropic deformations of the fluid, d;3 the Kronecker
delta, which represents a square matrix in which the Kronecker delta is equal to 1 for
i = j and 0 for the other cases. © (in °K) is the potential temperature, H is the
hydrostatic potential temperature, g the universal gravitational constant set equal to
9.81 m.s!, f. the Coriolis force, and at last, €;;3 a unit tensor. Additionally 7' is the

air temperature (in °C) and K the coefficient of heat conduction.

First in the system of conservative equations, we have the conservation equation

for momentum. It is defined as:

oUs , OWU;pU) _ Op; , 0(psy) 5521
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Then, we have the conservation equation for mass. It is:

dp  9(pUi)
st — 2.
Equation 2.7 gives for incompressible fluid:
d(pUs)
=0 2.8
o (2.8)
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And at last, we have the conservation equations for energy. It is written like:

opf Ul 1 TO(KEE)
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Equation 2.6 is used to describe the variation of the momentum.
The local variation of the wind speed (term Ia) of an air parcel and its advection (term
Ib) is there showed to result from the actions of five unbalanced forces acting on the
walls of the air parcel.
The pressure gradient forces (term II) may deform the fluid by compression or dilata-
tion. The viscosity forces (term III) originated by the heterogeneities in the wind ve-
locity within the fluid, cause anisotropic deformations of the parcel by shearing stresses
and wind speed reductions as well. The buoyancy forces drive convective and uplifted
motion within the fluid that the weight (term IV) counteracts by stratifying the fluid
according to the mass of the air parcels. At last, the Coriolis force (term V) deflects
the wind due to the rotation of the Earth.
Equation 2.8 is used to compute the local change in the density of the air parcels.
The first term of the equation represents the variation in time of the density. This
variation is only due to the ongoing and outgoing of momentum fluxes through the
walls of the volume of air for which the budget is done. In our case, the atmospheric
fluid is assumed incompressible meaning that the density and the volume of the fluid
keep constant with time.
At last, to solve the momentum equations one should establish the additional conser-
vative equation for energy (2.9). In equation 2.9 term I.a represents the the temporal
variation of the temperature. It is driven by supplies or losses of energy provided by
solar direct and diffuse radiations, water phases transformations, exothermal chemical
reactions that constitute sources of energy (term III). Advection (term I.b) and/or
molecular convection (term II) may also modify the energy budget at a given site, and

hence the air temperature.

As the fluid is moving, random perturbations within the fluid, which size can be
millimeter up to meter can appear. Such flows are qualified to be turbulent. Pre-
cisely, a flow becomes turbulent when the inertia forces, which tend to bring closer
heterogeneous fluid particles present in the moving fluid, overcome the viscosity forces,
which tend to homogenize the fluid by opposing resistance to the motion. The relative

strength of the two forces is given by the Reynolds number R.. Thus, high Reynolds
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number indicate high turbulent flow. However, if it is possible to observe the transition
between a laminar flow that is characterized by well-organized and parallel streamlines
into turbulent flow from the experimentation, the broad variety of initial conditions
that causes the flow to become turbulent is not possible to predict. Nevertheless, a
critical value that has been empirically determined is often mentioned to qualify the
transition of a laminar flow into a turbulent flow. This value is equal to R, = 3500
[De Moor, 1983].

The random perturbations within the fluid can be mechanically and/or thermally orig-
inated. The presence of shear strains within the fluid due to high velocity gradients,
obstacles protruding from a surface or due to the contact of the flow with an opposite
directed flow, cause mechanical perturbations. The relative strength of the buoyancy
force compared to the weight may also produce micro-scale and macro-scale thermal

perturbations, which famous form is represented by the convective cells.

Due to the broad diversity of turbulent flows and initial conditions at the origin of
such flows, it is a common approach to characterize the flow with phenomenologic
properties. As characterized by Tennekes and Lumley [1972] first, the ”Turbulence is a
state of a flux not of a fluid”. Because the perturbations are propagated and amplified
throughout the fluid by the combined effects of swirls and their reverse currents (the
eddies), turbulent flows are said highly diffusive. They are also qualified to be highly
dissipative because the turbulent kinetic energy contained in the biggest eddies is suc-
cessively dissipated by vortex stretching and tiling into smaller eddies of higher vorticity
according to the Kolmogorov cascade until a certain eddy size, the Kolmogorov length
scale le. At the Kolmogorov length scale, the turbulent kinetic energy contained in the
eddies is too low to counterbalance the molecular viscosity and the turbulent kinetic
energy is then dissipated into heat. The turbulence spectrum that is sketched in figure
2.6 depicts the relationship found between the turbulent kinetic energy and the eddy

size (in wavelength k).
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Figure 2.6: The turbulence spectrum (log-log scale) according to Rasheed [2009].

In figure 2.6, it is showed:
i) that large eddies of length scale [;, contains more Ej than small eddies;

i1) and that eddies quickly disappear below the Kolmogorov length scale.

It should be noted that the length scales le and [, may vary according to the tur-
bulence intensity. The latter is given by the turbulent kinetic energy budget set in
equation 2.10 in which the time evolution of E} is influenced by the mechanical shear
stresses (term IV) that use to be always a source of turbulence, the buoyant production
of turbulence (term V) that is positive during day and sink terms. The sinks are the
gravitational force at night that tends to suppress the turbulent instabilities and cause
the stratification of the fluid (term V) and the molecular viscous forces (term VII).At
last Fj could be transported by advection (term II) and by the turbulent flow itself
(term III). The contribution of the pressure perturbation (term VI) is often neglected.

OpE}, (973/)Ek aPU;Ek ,—,071 g —— 18pu'»p’
- — pulu — 4+ 852 (pu'l’) — = — 2.10
ot ox, G, P gy Hoaglowt) =25 = o (210)
—— , N — VN —~ L Term VII
Term I Term 11 Term III Term IV Term V Term VI

Although the description of the turbulent flows remains one of the greatest chal-

lenges in physics, laboratory experimentations have proved that turbulent flows are
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however predictable in average. Indeed, due to the high variability of the turbulent
flow, diverse realizations of a turbulent flow cannot be qualified by a unique value
taken at an identical point in the flow and time, but rather by a set of value that can
be described by probability law. Hence, the average used for describing the turbulent
flow is often associated to a statistical ensemble average of independent flow events.
Nevertheless, because the the turbulent flow highly sensitive with the initial conditions
and the initial conditions difficult to control even in experimentations, the ensemble
average is then associated to a time average according to the ergodic theory. Indeed
under stationary conditions, the events are like in the ensemble average independent
[De Moor, 1983].

Thus, it is a common approach to split the instantaneous meteorological variables
U, 3 into an averaging predictable portion (indicated with an over bar m) and a fluc-
tuating one (with a prime @) when considering a stationary period, and by using the
reynolds averaging decomposition procedure. The averaging predictable portion rep-
resents then the large scale motions in the flow, while the fluctuating portions refers

to the small scale motions in the flow like in equation ?7?.

Hence, by averaging the equations 2.6, 2.8 and 2.9, non linear terms, referred as
the Reynolds stress tensors, emerge from the advection terms. Equations 2.11 and 2.12
and 2.13 present the stationary reynolds averaged (RANS) conservative equations for

momentum, mass and energy.

Although the method is widely employed, the relying assumptions are questioned:
the spectral gap between large scale motions and fast small scale motions is in doubt
while steady conditions are unrealistic as synoptic forcing are uncontrolled [Rasheed,
2009].

For momentum:
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For energy:
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The presence of the unknown non-linear terms requires additional equations that
contain as much unknowns as the order of the system of equation. This is known as the
turbulent closure problem. Hence, non-linear terms are often approximated in terms
of known variables and parameters set in relation with the flow. Among turbulent
closures, the "K-theory” is widely used. It is a local first order closure that considers
the first prognostic equations of mean quantities and that approximates the non-linear
terms in analogy with the molecular diffusion, so that:

u;N' = MN’jg_Z (2.14)

With N any meteorological quantity, pun ;, the eddy viscosity set in relation with the
flow ability to exchange the quantity N.

Close to the surface the RANS equations are simplified and modified so as to con-
sider with more accuracy the influence of the surface, and in particular the urban

surface, on the airflow.

2.3.1.2 The surface schemes used for representing the effects of the urban

areas in mesoscale atmospheric models

According to Voogt and Oke [1998] and Pielke and Niyogi [2011] surface properties
are ”critically important” as the surface, by exchanging momentum, heat, moisture
and mass with the atmosphere, conditions the atmospheric turbulence structure. In
the past, several approaches have been investigated to improve the representation of
the urban areas and their influences on the air flow in mesoscale atmospheric models.

Those approaches are presented in the following sections.
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e The surface layer scheme and the Monin-Obukhov similarity theory

Close to the ground, in the surface layer, the effects of the surface become pre-
dominant. As the turbulent research has traditionally focused on flow other
homogeneous and smooth surfaces, it is a common approach to consider a large
and high enough layer, the boundary layer, that allows ”seeing” the rough and
heterogeneous terrain like the urban areas as an effective rough and homogeneous
surface in which the spatial distribution of rough elements is assumed uniform
[Rothach, 1999]. It is the boundary layer approximation.

By applying the boundary layer approximation, the vertical fluxes become rela-
tively more important compared to horizontal fluxes. It allow the simplification
of the conservative equations. Due to the boundary layer approximation, the

equation 2.12 becomes:

d(pW)
61’1‘

—0 (2.15)

Since the wind speed is null at ground, the W-component of the mean wind speed
is null everywhere. As a consequence, the Term I.b) in equation 2.11 falls.
More, other assumptions can be done in the boundary layer resulting in the sim-
plification of the RANS equations. Such assumptions are listed here:

- the Coriolis acceleration is assumes to balance the horizontal pressure forces;

- the horizontal wind is considering to be not geostrophic;

- the vertical pressure forces may be given by the weight with the hydrostatic
approximation;

- and at last the molecular viscosity force could be neglected compared to the
turbulent diffusivity that is more efficient to mix the air [Stull, 1988].
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Therefore the RANS equations can be simplified like in equations 2.16 and 2.17.
This leads to consider constant vertical turbulent fluxes with height in the surface

layer.

— for momentum:

I upw')y 0, OU;

B P v B (2.16)
— for energy:
Oupd) 0, 00,
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In the classical formulation of Monin and Obukhov (the Monin Obukhov Simi-
larity Theory or MOST) the wind velocity and temperature profiles within the
surface layer are described by dimensionless functions using dimensional scales
such as the friction velocity u,, the temperature scale 6, and the length scale
z [Monin and Obukhov, 1954, Foken, 2006]. Accordingly, the surface fluxes for
momentum is considered to be equal to u? and the surface fluxes for the energy

is set equal to u,0,.

More, the momentum and heat eddy diffusivity coefficients p; in equations 2.16
and 2.17 that have the dimension of a velocity scale time a length scale, are then
defined as the product of the friction velocity u, with the mixing length [, the
size of the tallest eddies contained in the airflow. Those eddy sizes are assumed
to freely and linearly increase with the height within the surface layer so that the
mixing length is set equal to: [ =z or [ = kz

Where k is the von Kdrmdn constant that is often set equal to 0.35 or 0.40
[Hégstrom, 1990, Businger et al., 1971] and z the height above the ground.

Therefore, the eddy diffusivity is:

ukz
My = P

(2.18)

Where ® could be @y or @y and represent statistical empirical functions that

are used for considering the influence of the atmospheric stability on the momen-
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tum and heat turbulent surface fluxes, respectively. For neutral conditions those
functions are: @y =0 and @y = Pr. The Prandtl number Pr is then considered
to be equal to 0.95 and represents the ratio between the momentum and the heat
diffusion coefficients [Jacobson, 1999].

By substituting all those parameters in the respective equations, the vertical
profile for momentum is then given by equation 2.19 and for the energy by the

equation 2.20 :
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In the equations 2.21 and 2.22 it is showed that the dynamical effects of the
surface are represented through the definition of a single length scale, the rough-
ness length (e.g. zpas). The roughness length represents the maximum average
resistance of the surface to the airflow and corresponds to the height at which
the wind speed is null. This approach is sometimes referred as the roughness
approach. Hence, from zj ps up to the top of the surface layer, the integration of
equations 2.19 and 2.20 gives mean vertical profiles of wind speed and potential
temperature. The profiles are then showed to be nearly logarithmic (as showed

in 2.21 and 2.22) in the surface layer.

Because urban areas are among the roughest surfaces on the Earth, the pres-

sure drag forces are much more pronounced than in rural flat areas, an increasing
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2o,m 1s usually adopted in urban areas. Classical value of zy s are of the order
of 0.01 m for roofs and 0.6 m for urban canopy [Kusaka et al., 2001]. Tt could be
determined by anemometric or morphometric methods [Maruyama, 1999, Grim-
mond and Oke, 1999a, Grimmond, 1998]).

More, in urban area where the RSL can amount for several tens meters [Rothach,
1999, Hogstrom et al., 1982], a zero plane displacement d is considered in addi-
tion so as to fill in the domain of validity of the MOST. Indeed turbulent fluxes
are constant with height in the inertial sub-layer. Therefore, the first layer of
the atmospheric mesoscale model is often displaced at the height d and the wind

speed is set null at zy s + d.

In the same manner, the heat turbulent fluxes over urban areas are represented
by a gradient-flux relationships (equation 2.20) in which a roughness length for
heat zy i is adopted to represent the average effect of the surface. It is set bigger
over urban areas compared to rural areas to represent the greatest heat capacity
of the urban materials, ans represents the height at which the equivalent sur-
face temperature Ty is equal to the ground temperature T;. Additionally several
physical parameters of the surface are adapted in the radiative and energy bud-
gets for urban areas: i) a lower facets’ averaged albedo is used for accounting to
the interceptions of the radiations by vertical walls; ii) the soil water content is
reduced or set null; iz) the heat capacity of the building fabric is at last increased

so as to represent the building thermal inertia.
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Figure 2.7: Slab model (adapted from Kusaka et al. [2001] T, and U, are respectively
the air temperature and the wind speed of the mesoscale grid (I;,/5, and so on), the
obstacle average height is 2y, d is the displacement height, zy ¢ is the roughness length
for heat. Tys is the equivalent surface temperature, and T of the ground. Then, H, is
the sensible heat flux from the canyon to the atmosphere.

However, the roughness approach is showed to be inadequate in urban areas
where it tends to over-estimate the urban heat island intensity as well as the
nocturnal cooling as Miiller [2007] and Kusaka et al. [2001] highlighted.

e Use of 1-dimensional canopy parameterizations

Recent improvements of the computer power capacity and the regain of inter-
est on processes that directly affect human living conditions within the urban
canopy layer require direct simulations of the fluid dynamics and thermodynam-
ics in and around urban structures. It triggered the development of sophisticated
urban canopy parameterizations (UCPs). The effects of the different surfaces
of the street-canyon on the atmosphere are explicitly taken into account by the
re-calculation of the surface fluxes terms, fg also called the source, that are di-
rectly inserted in the RANS conservative equations to force the meteorological

conditions at the lowest level of the atmospheric domain (e.g. term VII and V
of 2.23 and 2.24).
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Like in the roughness approach the average effects of the obstacles that are immersed
in an atmospheric grid is considered. Nevertheless, each of the street-canyon sur-
faces are treated separately to improve the computation of the skin temperatures, the
canopy temperature, and hence the energy surface fluxes that are exchanged with the
atmosphere. Therefore, the urban canopy parameterizations usually consider three di-
mensional and infinite long street-canyons composed by building walls and roofs and
their afferent streets. Street-canyons are considered to be uniformly distributed in
the atmospheric grid and separated by square horizontal cross-sections. The obstacle
height can be assumed uniform and set equal to the average obstacle height [Masson,
2000] or heterogeneous. So far Kusaka et al. [2001] adopted a standard deviation of
the obstacle height while Martilli et al. [2002] defined a vertical distribution function
to account for the variations of the obstacle height.

The radiative energy budget is also modified to account for the three dimensional ef-
fects of the buildings on the shortwave and longwave radiations accounting for the
shadowing and multiple radiative reflections that occur in the urban canopy layer.

By considering such an approach, two types of urban canopy parameterizations exist.
They are referred as the single and multiple-layer urban canopy parameterizations. In
the first one, the urban canopy layer is described by a single level while in the second
urban canopy parameterization considers multiple vertical grid levels (respectively fig-
ures 2.8 (a) and 2.8 (b)).

(a) Single layer models (sketch (a) in figure 2.8) describe the urban canopy layer with
a unique grid level in which the roof in the one hand, and the street-canyon floor
and walls in the other hand are treated separately when computing the surface energy
budgets. The street-canyon floor and wall surface energy budget permits to deter-
mine a canyon-system effective surface temperature that is used to compute accurate
vertical heat fluxes according to the MOST formulation. In the same manner, a roof

energy budget and a roof turbulent heat fluxes are computed according to equation

o4



(a) pomm o (b)
Talua,l Tal Ual |1 ___________________________________
UrTa,3 |3
2P S G .- ]
[ - N -
Ha UrTa,Z HRT a |2
T R I (S
[ ] *—\|N—e
TW TCanvon __U_J-_ra,_'l__ —— - IW __________ %_frg. |
1
Tel t H, . T5 e

Figure 2.8: Distinction between single and multilayer canopy models (adapted from
Kusaka et al. [2001] T, is the air temperature of the mesoscale grid (1;,/2, and so on),
the obstacle average height is zy. Tg is the roof surface temperature, Ty, the one of
the walls, Tz of the ground. Then, H, is the sensible heat flux from the canyon to the
atmosphere, Hy, and Hg are that from respectively the walls and the ground to the
canyon, and Hg that from the roof to the atmosphere.

2.20 to represent the sensible heat exchanged between the roofs and the above lying
atmosphere. The roof and street-canyon surface heat fluxes are then introduced in the
conservative equation for energy as a source terms according to their respective cover-
age contributions to dynamically force the meteorological field in the lowest level of the
mesoscale atmospheric grid. Note that the lowest level of the mesoscale atmospheric
grid is usually displaced above the roof tops as showed in figure 2.8.

Usually, the surface fluxes for momentum is computed by using an appropriated rough-
ness length and a zero-plane displacement height according to the MOST formulation.
The surface wind speed is then set equal to zero. The reduction of the wind speed
within the urban canopy layer and its influence on the thermal exchanges in the urban
canopy layer is however consider in addition by interpolating the logarithmic vertical
wind profile until the ground by using an exponential function.

At last, like other three-dimensional urban canopy parameterizations, sophisticated
single layer models consider in addition the three-dimensional effects of buildings such
as:

i) the radiation trapping and shadowing effects through three-dimensional radiative
energy budget by using sky view factors or extinction functions to reduce the amount
of solar energy that reaches the ground, and by accounting for various building orien-
tations and the variations of the solar azimuth angles;

i1) the heat storage within the construction materials by solving the 1-dimensional heat

conduction equations for each layers of a layered canyon facets;
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and 7i) the anthropogenic heat emissions caused by the use of the HVAC system, and
the vehicles traffic in the canopy layer [Masson, 2000, Kusaka et al., 2001].

(b) In multilayer canopy parameterizations, the canopy layer is described through sev-
eral vertical layers (canopy grid) that are immersed in the atmospheric mesoscale model
(sketch (b) in figure 2.8). It means that the first level of the atmospheric model is lo-
cated at ground. The additional source terms fg, are computed for each level of the
canopy grids each time the building interacts with the atmosphere. Contrary to the
single layer canopy parameterization, the pressure and viscous drag forces induced by
the obstacles are usually represented through a distributed drag force approach derived
from the study of the airflow dynamic in tree canopies [Dupont et al., 2004, Uno et al.,
1989, Ca et al., 1999, Otte et al., 2004, Martilli et al., 2002, Kondo et al., 2005, Hamdi
and Masson, 2008].

It consists in computing at each canopy level and each time the airflow interacts with
the obstacles, vertical and horizontal drag forces and friction forces respectively, as well
as additional sources of turbulent kinetic energy (production or sink) induced by the
obstacles. Indeed a k — € turbulent closure is generally adopted in the canopy multi-
layer parameterizations so as to better consider the effect of the obstacles on airflow. It
consists in parameterizing the turbulent diffusion coefficient by resolving the equation
of turbulent kinetic energy and parameterizing the viscous forces. The reduction of the
mixing length induced by the presence of the obstacles is reproduced by adapting the
Kolmogorov and dissipation length scale. Like single layer canopy parameterization,
separated energy budgets are computed for each canyon facets (walls, roofs and streets)
and canopy grid levels to compute accurate surface heat fluxes and skin temperatures.
Therefore, an average surface heat fluxes is at last computed for each canopy grid lev-
els according to the coverage of each street-canyon surface as in Martilli et al. [2002].
Like in single canopy models, the radiative budget is 3-dimensional and a 1-D heat
conduction equation is resolved for each layered of the canyon facets to simulate the

storage of the energy in the building materials.

Recently, several simplified BEM models have been developed and implemented within
the urban canopy parameterizations to address energy related urban environmental
issues[Kikegawa et al., 2003, Ohashi et al., 2007, Kikegawa et al., 2003, Bueno et al.,
2011, Salamanca et al., 2010]. Figure 2.9 sketches the climate modeling system forming
by the MM, UCP, and building energy model.
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Figure 2.9: The climate modeling systems. The inputs of the models are surrounded
by a circle and symbolized by dashed arrows. The outputs are symbolized by black
arrows. The interactions between the building energy model and the urban climate
models are symbolized by large arrows.

The building energy models usually consider the building as a box and compute either
a unique indoor energy budget for the entire building or several indoor energy budgets
for each floor of the building accounting for the solar heat gains through windows, the
wasted from equipment and human metabolism, as well as the unintentional natural
ventilation. Thermal and humidity loads are calculated and then compared to user-
defined thermal and humidity comfort ranges for activating a heat pump model each
time the comfort range is overpassed and for assessing the building heating or cooling
energy requirements. The excess of heat and the wasted-heat generated by the heat
pump are then directly ejected in the street. The coupling of the urban canopy param-
eterization with the building energy model is usually achieved by balancing the internal
latent and sensible heat fluxes of the indoor and outdoor energy budgets through the
resolution of a one-dimensional heat conduction equation for each layer of a layered

wall system.

As a conclusion the MM+ UCP+ BEM climate modeling systems provide new cross-
scale urban modeling capacity to address environmental urban issues. For some authors
like Chen et al. [2011] the application of such urban modeling system will help bridging
the gap between climatologists and urban planners. However, it is without counting on
the retained physical approximations and the mismatch between the urban planners

and climatologists in urban area definitions and representations.
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2.3.2 Towards a better representation of the complexity of the

urban areas in mesoscale meteorological models (MM)

2.3.2.1 A shift in the preoccupations of the urban climate community

A brief review of applicative studies that used MM+ UCP+ BEM climate modeling
systems helps to identify a shift in the scientific preoccupations. To date, meteorolog-
ical modeling systems have been widely applied on extended worldwide metropolitan
areas of ten millions inhabitants or more (e.g. Beijing, Honk-Kong, New York city,
Taipei according to Chen et al. [2011]) for assessing landscape and building adaptation
strategies designed to cope with the climate change impacts. Salamanca et al. [2011]
investigated the effects of some air conditioning energy conservations policies over the
city of Houston (2.16 million people according to the US census). Kikegawa et al.
[2003] and Ohashi et al. [2007] studied in particular the contribution of the anthro-
pogenic heat on the local climate over the great Tokyo (37 million people according
to the United Nations). Pigeon et al. [2014] studied the growth in the building en-
ergy demand in Paris (12 million people according to INSEE in 2011) considering the
temperature rise induced by the climate change. Salamanca et al. [2012] simulated

building energy demands over the great Madrid (6.5 million people).

In parallel, the number of projects that focus on one million, half-million or less
populated metropolitan areas flourishes [Giovannini, 2012]. Although most of them are
not directly commissioned by local authorities, they however, clearly assert providing
materials for building energy and urban planning policies. In France, the ACCLIMAT
(2010-2013) project of the CRNM laboratory aimed to study the effects of the urban
development and climate change by 2100 on the urban climate and building energy
requirements of the great Toulouse (1.2 million inhabitants in 2011). For this, the
scholars coupled a system of urban growth models with the climate modeling system
of Météo-France. The economic urban growth model NEDUM of Gusdorf et al. [2008]
is used to model the residential development of the great Toulouse by taking into ac-
count mono centric urban areas, the cost of the lands and transportation, the household
incomes and life style preferences. It provides the number of dwellings that should be
built and the cost maps used by the urban growth cellular automata model SLEUTH*
of Aguejdad et al. [2012] to constraint the built-up areas developments. The urban
growth cellular automata model SLEUTH* simulate the development of the built-up

areas considering four transition rules that prioritize either the development close to
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the motorways, the existing built-up areas, or assumes spontaneous built-up areas de-
velopment or new spreading centers. The GENIUS urban fabrics model of CNRM
and LRA at last consist in an urban fabric database that allows specifying according
to the number of dwellings and the cost of the lands the types of building and their
physical features. The climate modeling system then includes the Météo-France meso-
NH mesoscale atmospheric model, the TEB-Veg urban canopy parameterization that
accounts for the presence of low vegetation in the street-canyons of [Lemonsu et al.,
2012] and the BEM building energy model of [Bueno et al., 2011]. To provide accurate
urban planning informations and represent accurately the surface heterogeneity, the
resolution of the climate modeling system is set equal to 250 m. The scenarios that are
used to constraint the residential development of the SLEUTH* model are co-imagined
by various urban planners and stakeholders as well as architects. The MApUCE (2014-
2018) project aims moreover to develop a building energy behavioral model and aims
to develop quantitative microclimate and energy data that could be directly integrated
in legal landscape planning instruments. Toulouse, Aix-en-Provence (nearly 141, 000
inhabitants) and La Rochelle (206,000 inhabitants) are the areas that are retained as

study areas.

Other projects are more specifically dedicated to the study of the ecological ameni-
ties provided by the green areas at various scales (the building roofs, the neighborhood
and the city scales) like in the VegDUD project (2010 to 2014). The ANR TVU (2009-
2012) and CCTV2 (2011-2013) for instance, particularly investigated the biodiversity
and local climate ecological services provided by the urban green areas over the Ile de
France region and Strasbourg city council (nearly 450,000 inhabitants).

At last other projects aim to qualify and quantify the vulnerability of urban area to heat
stress. The AMICA Interreg IT1IC project (2005-2007) characterized the Urban Heat
Island (UHI) patterns of the great Lyon (2.1 million people in 2011). The PhD work
of Julita Dudek integrates in addition the analysis of the UHI patterns of the Grenoble
(675,000 inhabitants in 2011) and Saint Etienne (506,000 inhabitants in 2011) agglom-
erations and compares the accuracy of several quantitative techniques in providing the
UHI patterns. More recently, on the behalf of the Great Dijon, the climate laboratory
CRC (CNRS/University of Bourgogne), and the laboratories of geography of ThéMa
(CNRS/University of Franche-Comté and Bourgogne) and LIVE (CNRS/University of
Strasbourg) collaborated for depicting the UHI patterns of the great Dijon so as to
help designing the Plan Climat Energy Territorial of the Great Dijon city council. For
this, those scholars performed a meteorological monitoring of the microclimate fields

during an intensive observational period, and simulated the urban heat island intensity
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by using the BEP+BEM urban canopy parameterization of Martilli et al. [2002] and
Salamanca et al. [2010] included in the WRF American mesoscale atmospheric model
of Skamarock et al. [2008]. For this, the atmospheric grid resolution is set equal to
150 m. Thus it can be stressed that more and more operational studies are performed
to permit the transfer of climatologist and building energy knowledge in the urban

planning documents of both large and medium-sized urban areas.

Nevertheless, one should be aware that the consideration of urban climate data in
the urban planning instruments and policies is not a recent preoccupation. The Hy-
gienist current in the 19, century that could be illustrated by the Garden city of E.
Howard, pleaded in favor of green open spaces and large streets to favor the natural
ventilation of the urban areas. More, yet Thomas More in 1516 introduced climate
principle in the urban area of Amaraute in Utopia. At last it could be stressed that
since the late 1970’s Germany particularly developed urban climate informations for
urban planning by building urban climatic maps [Ren et al., 2011]. The region of
Stuttgart, of the Ruhr (e.g. Dortmund, Essen, Bochum and so on) and the Bayern
(e.g. Muenchen, Augsburg) were particularly studied [Matzarakis and Mayer, 2008,
Beckroge, 1988]. Barlag and Kuttler [1991] and Kuttler et al. [1998b] particularly in-
vestigated the influence of regional and local winds on urban ventilation like in Cologne
(Germany ), while others scholars defined urban climatic maps. All this works give birth
to city-scale and operational climatic maps. Climatic maps constitute evaluation tools
that integrate both maps of urban climatic factors relevant for each land use and town
planning considerations. Hence, the 10 to 100 m resolution local wind circulations (e.g.
channeling effect, local winds types and directions), the thermal environment charac-
terized by UHI intensity and heat or cold stress indices, as well as the air pollution
level are captured to define Climatopes at pedestrian levels. The Climatopes are then
type casted into climate sensitive class describing by planning recommendations (e.g.
preservation of the thermal effect, modification of the channeling effect and so on) that
could be visualized in the urban climatic planning recommendation map at district or

city scales.

So finally what is new is the wide integration of quantitative climatic and energy
data in prospective local planning policies and legal instruments [Godinot, 2011]. What
is also new is the new capacity of mesoscale climate modeling systems to integrate the
three dimensional effects of the buildings on the boundary layer dynamics and the inter-

actions of the building energy with the microclimate. Although collaborative studies
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emerged between scientific communities and urban planners, there is still some the-
matic limitations that arise from the difficulties in adopting the same urban definition
in the urban planners and climatologist communities, and in representing the complex-

ity of the urban ecosystem.

2.3.2.2 Representations of the urban areas in the MM models

In a climate perspective, the urban areas are considered as built-up areas that are
mainly impervious in which human lives. This neutral definition is inherited from the
land cover surveys and maps that are used in the climate modeling systems to define the
static physical parameters of the surface. Those land covers issued from remote sensing
images that are often provided at the global scale. To such extent, the US Geological
Survey (USGS) dataset is commonly used to provide the surface properties and the
land cover maps used in the climate modeling systems. Nevertheless, it comprises im-
portant limitations. The primary sources, the NASA high-altitude aerial photographs
and the Advanced Very High Resolution Radiometer (AVHRR) satellite images are
out-dated (respectively collected during the 1970’s and the 1992-1993’s). Therefore
they are inaccurate to depict the periurban areas of the main built-up areas that are
considerably and quickly grown during the pas decades. More, the classification of
the USGS database is not based on surface morphological characteristics and therefore
could not permit any distinction among urban fabrics (e.g. residential, commercial,
or industrial estates) as stressed by Burian et al. [2004]. The second largest source
is the International Geosphere-Biosphere (IGPB) land cover database. It is based on
the analysis of the 2001 MODIS (MODerate resolution Imaging Spectroradiometer)
satellite images that have a spatial resolution including between 250 m to 1 km [Chen,
2007]. Due to the use of 15 channels dedicated for land surface vegetation, the MODIS
images allow better considering croplands and forested areas compared to the AVHRR

radiometer. However, again solely a single class describes the built up areas.

In parallel, the sub-grid interactions between the different types of land cover included
in a mesoscale atmospheric grid (e.g. the fetch effect, the oasis effect, the thermal
plume and so on) are neglected in the atmospheric mesoscale model. Indeed, the spa-
tial topology of the sub-grid elements is not considered. The presence of several types
of land cover is either represented by the definition of average surface physical parame-

ters: an average street-canyon albedo, heat capacity, and so on, or by the tile approach.
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The tile approach consists in computing for each types of land-cover included in the
atmospheric grid specific land cover vertical surface fluxes. The latter do not interact
with each other before the first level of the atmospheric grid where they are weighted
according to the respective coverage of the land cover types. the resulting average
surface fluxes are then incorporated in the conservation equations as additional source
terms [Essery et al., 2003]. Hence, the more the mesoscale atmospheric grid is resolved
the more the sub-gridded advection is reproduced by the climate modeling system.

The increase in the horizontal atmospheric grid is, however, unrealistic as it leads to
increase the computing power demand and may also question the boundary layer ap-

proximation.

Thus to date, it could be stressed that regional atmospheric models even through the
implementation of sophisticated urban canopy parameterizations are not able to assess
the retrofit of small scale urban planning actions on the urban climate and building
energy requirements such as the microclimatic effects of green parks on the ventilation
and thermal environment of the adjacent lanes or the effects of water pounds in public
places because of the non-consideration of the spatial topology within the atmospheric
grids. Such limit is particularly detrimental for representing vegetative areas in resi-
dential districts where a wide variety of vegetation categories and irrigated green areas
are present [Grimmond et al., 2010] and significantly impacts the performance of the
regional atmospheric model as stressed by Grimmond et al. [2011]. For such reason,
several urban schemes recently incorporated vegetation effects within the urban canopy
models [Dupont et al., 2004, Lemonsu et al., 2012]. Most of the time it consists in sim-

ple low vegetation located on the canyon floor or roof.

2.3.2.3 Representations of the urban areas in the urban planning

The concept of city and urban are somewhat new in the human evolution as the propen-
sity of the society to become urbanized during the past century is striking [Frey and
Zimmer, 2001]. The qualification of urban itself is fleeting and has changed through
along the historical evolution of the city. Cities are first a social achievement of a group
for a certain goal [Laborit, 1971]. The goal could be either political, economic or some-
what else. Hence the Antique city was political, the Middle Age city was commercial,
the post-war city was industrial, and the nowadays city is global as stressed by Asher

[1995] and Viard [1974] with their respective concepts of metapolis and archipelago
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society. By chance and maybe the future city will be ecological and sustainable. Cities
have become as much complex and emerges from actions of a so large set of agents
(e.g. individuals, public authorities, associations and so on) that a unique definition
or conception cannot serve [Gleau et al., 1996]. The definition of a city by a politician,
an urban planner, an economist or a geographer may differ in various ways, so does
their physical limits. Usually, a simple opposition to the rural countryside in a polit-
ical (cities are then more complex social organization), demographic (cities are then
qualified by high dense population) and socio-economical perspectives (cities are then
depicts by the fact that the majority of the population not involved in the agricultural
production) is used. But the dilution of the urban way of life in the rural countryside

makes such definition out-dated. Hence, several criteria are used to define urban areas:

1. The population threshold as in Spain, Italy and Portugal in which a town is de-
fined by the concentration in the administrative boundaries of the city of more
than 10,000 inhabitants [Gleau et al., 1996]. Sometime an ecological criterion
could be added like the population density as cities gather population and hous-

ings;

2. Spatial contiguity criteria. According to the French economic and demographic
institute INSEE, an urban area is a continuous build-up unit with a distance
threshold of less than 200 meters that contains more than 2,000 inhabitants

which respectively represent more than 50% of the municipalities’ inhabitants;

3. Sociological and economic criteria as urban areas gather population, educational,
administrative and economical activities and favor innovation activities. The
daily number of resident-to-work commuting, the accessibility to urban ameni-
ties and services (e.g. water pipe system), the diversity and level of expertise
of the activities are some factors that are commonly used. Other sociological
criteria could be added. Indeed although elderly people do not participate to the
home-to-work trips they can however contribute to diffuse the urban way of life
[Schmitt et al., 2000]. The metropolitan area defines a functional and continu-
ously built-up area in which an urban pole offers more than 5,000 employments,

attracts 40% of the population of the satellites towns for working, the hinterland;

4. Political decisions. In United Kingdom (UK), or United States (US) cities are

legally assigned by monarchic or governmental decisions. The spatial extent is

63



then drifted by administrative boundaries where demographic and economic cen-

sus data are driven.

To conclude, in an urban planning perspectives urban areas are regards as a com-
plex socio-economic system which has material (population, buildings, transportation
fluxes) and immaterial entities (information fluxes), and that polarize an area, the hin-

terland.

2.3.2.4 New representations of the urban areas and its complexity in the
MM models

In a climatologist perspective, the urban area is rather confined to the built up en-
vironment that are extracted from remote sensing data whose resolution allow better
considering the spatial heterogeneity of the landscape. Neverthless so as to bridge the
gap between the two disciplines, recent efforts have been achieved for accentuating
the representation of the heterogeneity of the built-up areas in the mesoscale atmo-
spheric models and detailed land cover classifications have been devised for depicting
a large panel of urban fabrics [Burian et al., 2004, Lemonsu et al., 2008]. Those clas-
sifications require the interpretation of a large panel of high resolved geospatial land
cover informations, 3D digital building and vegetation provided by various sources
(e.g. multispectral imagery, airborne LIDAR, orthophotographies) that are treated us-
ing Geographical Information System (GIS) geo-processing. The resulting geospatial
databases usually provide geo-referenced land cover areas, predominant street orien-
tations, building maximum and minimum height that could be interpolated for each
node of a resolved mesoscale atmospheric grid (e.g. 250 m - 500 m horizontal res-
olution). The National Urban Database and Access Portal Tool (NUDAPT) project
proposes for several US cities databases that include 1 km and 250 m aggregated build-
ing morphological features, and that can serve in climate modeling systems to provide
accurate physical surface parameters [Ching et al., 2011]. However the management of
such datasets appears difficult when dealing with the entire domain of the atmospheric
mesoscale model and computational time expensive. Further sensitivity analysis of the
urban canopy parameterization to input surface parameters are required [Burian et al.,
2004].

Other authors focused on the definition of more relevant land cover classifications
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based on relevant local climate site characteristics to avoid the use of the obsolete ur-
ban/rural distinction [Stewart and Oke, 2006]. Hence, the sky view factors, the built
fraction, the soil moisture, the average building height and surface reflectivity and the
anthropogenic heat fluxes as well, specify the single urban category into homogeneous
urban terrain zones (UTZs). City are then described according to modern and old
cores, compact housings, industrial processing, blocks, extensive low-rise, house and
gardens and so on. There are then a broad variety of urban fabrics that is as much

documented as in the urban planning documents.

At last, some authors took benefits of the resolution of the detailed airflow around
a particular obstacle provided by classical CFD models (resolution of 1 m to 10 m).
Thus, Tewari et al. [2010] and Miao et al. [2013] proposed using the climate outputs
of the mesoscale atmospheric model WRF considering a resolution of 500 m as initial
and boundary conditions for a CFD model. In their study, the mesoscale atmospheric
model provides the boundary conditions to the CFD model each 5-15 minutes. Both
authors showed that the coupling of a mesoscale model with a CFD model significantly
improves the predictability of the urban plumes in the CFD model while the mesoscale
model is showed to capture reasonably well the wind and temperature fields near the
surface and in the boundary layer. Nevertheless, the complexity of the models are

always inducing high computational requirements.

At last, urban areas are like a living organism that always recomposes. Some eco-
nomical, residential, and commercial activities can decay meanwhile others could born
or become attractive and quickly developed. This may trigger the development of new
urban forms. In the geographer communities, a large branch of the research is focusing
on the development of residential growth model based on the use of cellular automata
model. The simplest ones use simple transition and neighboring rules to determine the
state of a grid. The more complex ones integrate the economic and social factors that
act on the household decision to settle down in a specific location and hence, the resi-
dential development. They are called the Land Use and Transport Integrated models.
The agent-based MobiSim model developed at ThéMa (Besangon) is one such [Antoni
and Vuidel, 2010]. It relies on the constitution of a synthetic population, the agents,
characterized by socio-economic attributes (e.g. age, sex, income, and so on). Each
agent can use a multimodal transportation infrastructure and occupy multifamily or
single family dwellings by always following rational choices that are defined in the user

settings of the model. For instance, the attractiveness of the green areas and the urban
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services are considering in the choices of residential locations according to a ranking of
the household preferences. The amount of new residential dwellings, the definition of
the developable built-up areas, and the rules that are used to depict the home-to-work
trips and mode of transportation of the agent rely on the geo-treatment of real urban
planning documents. Thus, the complexity of the mechanisms behind the residential
development and the mobility of the urban dwellers is step by step considered by so-
phisticated urban development models.

All those findings can serve improving the representation of the urban surface in the
climate modeling system and the simulations of the building energy requirements by
integrating in addition the behavior of the households in terms of residential locations

and thermal stress and much more details building architectures and surface fluxes.

2.4 Discussion and conclusion

In the methods used for assessing the building energy performance and operating land-
scape and building strategies to cope with the impacts of climate change, systems of
numerical and physically-based climate models receive more and more attention. They
are based on the use of a mesoscale atmospheric model and urban canopy parameteri-
zations that could include a simplified building energy model. The system of climate
models considers the whole urban climate scales from the building up to the urban area.
The mesoscale atmospheric model computes the evolution of the meteorological fields
across a region discretized into 10 km to 1 km (recently 500 m and 250 m) atmospheric
grids accounting for the presence of complex topography and built-up and non-built-up
areas. The recent implementations of sophisticated urban canopy parameterizations
permit to consider the sub-grid and average effects of a set of uniform buildings on the
airflow thermodynamic in the urban boundary layer,as well as the urban heat island ef-
fect on the building energy requirements. To date the urge of designing climate change
strategies and sustainable cities have led to develop a large set of quantitative meteo-
rological and building energy indices that are integrated in the legal instruments and
urban planning documents. It has fostered operational researches on the interactions
between the building energy requirements and the urban climate that can be carried
out also for 1 million or less populated metropolitan areas. Those new applications of
the climate modeling systems increase at the same time the necessity of collecting high
resolved spatial building and land cover informations to depict the heterogeneity of the

urban areas and for considering accurate microclimate conditions when assessing the
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building energy requirements.

Despite the increasing amount of high resolution urban databases, the application
of the mesoscale atmospheric models seems however limited for urban planning issues.
Indeed, the sub-grid heterogeneity is only partially accounting in climate modeling
system: the sub-gridded advective processes are neglected, the vegetation is most of
consider to be out of the street-canyon. More, the dynamics of the urban develop-
ment is not taken into account. Nevertheless, some recent works proposed to benefit
from the explicit resolution of CFD models of the airflow aerodynamic and thermo-
dynamic properties around a single building or obstacle. Meantime others proposed
using land cover-land-use classifications for specifying a large panel of urban fabrics in
the mesoscale atmospheric domain and increasing grid resolutions (up to 500 m to 250
m). If the use of detailed land cover classification can found some echo in the urban
planner communities, the adoption of high resolution may questioned the limits of the
physical approximations adopted in the climate modeling systems. The next chapters
are then dedicated to test the ability of the climate modeling systems to estimate the
building energy demand and integrate urban planner preoccupations like the control

of the residential development and the preservation of the green infrastructures.
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Chapter 3

Fast methodology to assess building
energy demand based on the use of
the WRF/ARW-BEP+BEM

climate modeling system
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Abstract

With the reinforcement of the role of local authorities in designing operational climate
change mitigation strategies, quantitative objectives of reductions of greenhouse gas
emissions and energy consumptions largely penetrated most of the planning instru-
ments. In this context, this study aims to develop a methodology capable of quickly
assessing the building energy demand of any region taking into account the dynamic
of the atmosphere, and in particular the effect of the urban heat island on the building
energy requirements.

The methodology relies on the significant relationships found by previous studies be-
tween observed building energy consumptions and air temperatures, and their modeling
through linear fittings (statistical model). The idea is to quickly reproduce for any sur-
face conditions, study area or period such relationship by using the building energy
and meteorological simulations of sophisticated climate modeling systems, in which
the three-dimensional effects of the buildings on the atmosphere and the urban heat
island are reproduced. The linear fittings permit to characterize the building energy
performance of an area by using two parameters, the interception of the statistical
model with the temperature axis or the base temperature, and the slope of the linear
fittings or the sensitivity of the building energy requirement with the air temperature.
Those two parameters are then used like in a degree-day method to quickly estimate
the building energy requirements knowing in addition, the distribution of the air tem-
peratures over a given period.

In this study, we simulated the air temperatures and the building energy requirements
over the city council administrative limit of Strasbourg (France) by using the Weather
Research and Forecasting (WRF) climate modeling system for 2010. It integrates the
WRF mesoscale atmospheric model, the BEP urban effect parameterization, and the
BEM building energy model. We gave particular attentions to reproduce in details the
urban surface conditions. The simulations showed that the meteorological fields and
the building energy requirements are well simulated by the WRF-BEP+BEM climate
modeling system, and that such system is able in addition, to reproduce the significant
relationships found between the building energy requirements and the air temperatures.
Then, by simulating the impacts of current energy savings strategies, and building their
corresponding statistical linear models, we showed that the climate modeling system
is particular sensitive to the building intrinsic properties. It therefore encourages the

development of sophisticate building energy behavioral models.

Keywords: building energy, degree-day method, climate modeling system, energy con-

servation strategies
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3.1 Introduction

Energy savings in buildings and in particular residential buildings are regularly quoted
in climate change mitigation strategies. Buildings represent about 40% of the end-use
energy, in which more than the two third are dedicated for the residential housings.
Accordingly, buildings represent 24% of the national greenhouse gas (GHG) emissions.
Despite this, buildings represent a high potential of energy savings. Most of the con-
sumed energy is dedicated for the thermal comfort. In France 62.1% of the 2011 end-use
energy is dedicated for space heating according to ADEME [2012]. The thermal com-
fort in the buildings is influenced by the surrounding thermal environment, but also
by the building intrinsic thermal properties. Thus, significant proportion of wasted
energy due to defaults in the building construction and design can be save along with
the building centennial life cycle with increasing thermal and energy performances.
In France for instance, half of the national residential building stock dates before the
adoption of the first thermal regulation (1974), and hence large energy savings can be

achieve by improving the building energy performance of the residential buildings.

During the last years, quantitative statistical or numerical approaches have been
increasingly used to assess the building energy requirements and help local authorities
to implement energy efficient policies [Jones et al., 2007]. In the statistical approaches,
the degree-day method produces fairly reliable statistical estimations of building energy
demand for cooling (CDD) or heating (HDD) when building properties are relatively
constant over time. The method relies on the strong linkage discussed by previous stud-
ies between the air temperatures and the heating/cooling energy consumptions [Thom,
1954, Quayle and Diaz, 1980]. The building energy requirement is estimated by using
the building energy consumption sensitivity with the air temperatures P, and the sta-
tistical distribution of the gradients between the daily air temperatures and the base
temperature. The base temperature represents the temperature at which the building
energy needs is null. Usually, the building energy consumption sensitivity with the air
temperatures P is obtained by linearly fitting the building energy consumptions-daily
outdoor temperatures observations [Christenson et al., 2006, ITEA, 2008]. The daily air
temperatures issue from observational meteorological stations, while the base temper-
ature, Ty, takes predefined values including between 10°C and 18°C. Recently Valor
et al. [2001], Cartalis et al. [2001] and Amato et al. [2005] extended the degree-day
method to estimate the electricity loads induced by the future climate change while

Viejo-Garcia and Keim [2008] estimated the changes in the building energy use of the
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Stuttgart metropolitan region (Germany) induced by its residential developments.

In parallel, the increasing power capacity of the computers triggers new interests in mi-
croscale building energy models. Microscale building energy models are characterized
by fine horizontal resolutions of few meters that permit to consider realistic build-
ing systems, and the surroundings site characteristics including the cloud covers and
the shading of the exterior shading surfaces. Buildings are divided into homogeneous
thermal rooms, in which the energetic dynamics of complex building envelop with the
surrounding climate and the time varying building internal activity (e.g. the human
occupancy patterns and the use of power equipment) are reproduced. A fortiori the
most powerful codes such as Energy Plus and DOE-2 consider the dynamics and per-
formance of Heat Ventilation and Air Conditioning systems used to meet predefined
comfort temperature and humidity [Birdsall et al., 1990, Crawley et al., 2000]. Since
the 1990’s, several studies already took profit of such detailed building energy model
for assessing the effect of cool roofs and tree shades on the building energy requirements
of prototype buildings [Akbari et al., 2001, Rosenfeld et al., 1998]. Nevertheless, Spitz
[2012] demonstrated that the use of standard climate (Typical Meteorological Year
files) leads to over-estimate by up to +30% the simulated building energy demands.
The TMY files are hourly meteorological files that are used to define the thermal en-
vironment of the buildings. They issue from 30 years averaged hourly meteorological
variables taken out of the urban areas, and therefore, they miss-evaluate the local

warming induced by the urban heat island.

Other studies took benefits of the numerical global or mesoscale atmospheric mod-
els [Christenson et al., 2006, Miller et al., 2008]. Despite their coarse resolutions (few
kilometers), the mesoscale atmospheric models are able to reproduce the dynamics of
the boundary layer, and in particular the urban heat island phenomenon. During the
past 20 years, sophisticated urban canopy parameterizations (UCPs) that reproduce
the three-dimensional effects of buildings on air dynamics and energetics (e.g. radia-
tion and wind sheltering effects, heat trapping effects) have been implemented in many
mesoscale atmospheric models. The SM2-U(3D) of Dupont et al. [2004] is implemented
in the MM5 atmospheric model of Grell et al. [1994]. The Building Effect Parameter-
ization BEP of Martilli et al. [2002] is coupled with the non-hydrostatic mesoscale
model WRF of Skamarock et al. [2005] and the FVM mesoscale atmospheric model
of Clappier et al. [1996]. The Town Energy Balance TEB of [Masson, 2000, Lemonsu
et al., 2012] is implemented in the Meso-NH model of Météo France and so on. Re-
cently and following the work of Kikegawa et al. [2003] and other scholars, the UCPs

have been connected to simplified building energy models, which allow new application
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studies on urban environmental issues (e.g. air pollution, anthropogenic heat, building
energy requirement and so on). The simplified energy models are able to compute the
energy dynamic of a floor considering internal heat gains due to the solar radiations,
the presence of humans, the use of equipment and the activation of the Heat Ventila-
tion Air Conditioning (HVAC) system. They have been widely employed to estimate

the contribution of the anthropogenic heat in the urban heat island intensity.

3.2 Research objectives

Taken into consideration the recent improvements of the UCPs in the mesoscale atmo-
spheric models and the observed relationship found between the air temperatures and
the building energy requirements by previous studies, the objective of this study is to
propose a new methodology able to quickly assess the building energy requirements
over any part across the Globe and any period, and that is able as well to consider the
dynamic of the atmosphere and in particular the urban heat island feedbacks on the
building energy requirements.

For this, we used the Advenced Research Weather Research and Forecasting model
WRF/ARW that integrates the Building Effect Parameterization of Martilli et al.
[2002] and the Building Energy Model of Salamanca et al. [2010]. The system of
climate models called the WRF/ARW-BEP+BEM allows investigating the dynamic
of the atmosphere by considering the three-dimensional effects of the buildings on the
atmosphere, as well as the building energy consumption feedbacks on the energetics
and dynamics of the atmosphere. In addition the WRF/ARW-BEP+BEM climate
modeling system enables us to consider any possible future depicted by changes in the
surface and building properties.

In the following sections, section 3 describes the methodology used in this study. Sec-
tion 4 presents the study case for which the methodology has been tested. At last,
section 5 discusses in particular the building energy requirements and performance in-

dexes obtained by using this new methodology.
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3.3 The method

The building energy demand is highly sensitive to the weather conditions as discussed
by Thom [1954], Quayle and Diaz [1980], Cartalis et al. [2001], Valor et al. [2001] and
Amato et al. [2005]. Those scholars found a significant non-linear relationship between
the air temperatures and the building energy consumptions over a year. In winter,
the building energy consumptions are showed to decrease with the temperature rise.
In summer, the building energy consumptions are observed to increase with the tem-
perature rise. In between a plateau represents the building energy requirements that
are non-temperature sensitive (e.g. cooking, lightening and so on). Commonly, the
winter and summer branches of the building energy consumptions- air temperatures
relationship are treated separately. This non-linear relationship is then summarized by
a V-shape function for which distinct linear fittings (statistical model) of the summer
and winter branches are performed. The slopes of the linear fits are the cold (or heat)
building sensitivity with the air temperatures, while the interceptions of the linear fits
with the axis of the air temperatures are the cold (or heat) base temperatures. Con-
sidering the cold sensitivity P and the base temperature T} it is possible to write the

daily building energy demand at time ¢, noted EC; (in Wh), like:

e For heating:
EC; = Pmin((T; — Tp); 0) (3.1)

e For cooling:

EC; = Pmax((T; — Tp); 0) (3.2)

In equation 3.1 and 3.2, the base temperature T represents the temperature at
which for a given internal temperature, the building energy budget is in thermal equi-
librium with its surrounding. The base temperature T} is said to be influenced by the
surroundings characteristics, non-temperature weather variables (e.g. humidity and
wind), building design (e.g. insulating properties) and cultural preferences (e.g. com-
fort temperature) according to Valor et al. [2001] and Amato et al. [2005]. Usually,
the base temperature T} is predefined and taken equal to nearly 18.33°C (e.g. 65°F)
for heating and at 21°C for cooling. It should be acknowledged that other studies,
even sociological studies [Crédoc, 2010], suggested higher (or lower) base temperature
in winter (or summer). Valor et al. [2001] reported base temperature equal to 15°C

when considering the space heating of the Spanish building stock while Christenson
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et al. [2006] took the base temperature equal to 8°C, 10°C and 12°C for their Swiss

study case.

In the same equations, the slope of the statistical model P could be physically in-
terpreted as the cold (or heat) building energy sensitivity with the air temperatures
(in Wh/°C). Hence, the cold (or heat) building energy sensitivity P can be influenced
by the surrounding weather conditions such as the intensity of the Urban Heat Island

as well as the building intrinsic properties.

At last, T; (in °C ) in equations 3.1 and 3.2 refers to the daily air (or outdoor)
temperatures. According to Christenson et al. [2006] there are many definitions of
degree-days and daily temperatures. The daily temperature could be the average of
the 24 hourly outdoor temperatures, or the average of the maximum and minimum
temperatures of the day. The latter is often preferred as it is assumed to better cap-
ture the peaks and valleys of the building energy requirements in a day [Valor et al.,
2001].

Starting from the daily energy demand set in 3.1 for heating, the total energy

requirement over a specific period J, )5 could be expressed as an integral:

J
Qs = P./ min|(T; — Tp); 0]dt (3.3)
j=1
And hence,
J
Qs =Py min|(T;, - Ty); 0)dt (3.4)
j=1

Assuming that D is the total degree-day over a period J, the total energy load

becomes:

Qs=PD, (3.5)

If T; keeps below T, it is possible to express 3.4 according to averaging quantities

according to 3.6.

EC; = P(T; — ) (3.6)
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With:
1
T; = - E 1; (3.7)

Following and considering that D can be easily computed, several cases can be

considered:

o [f 7§ is known and P is unknown, only one previous estimate of building energy

load over a time period is needed to compute P by using 3.5.

e If P is known and T} is unknown, one previous estimate of the average building
energy load over a time period and the corresponding average outdoor tempera-
ture are required so that:

7 ECJ10r2
To=1T; — —p (3.8)
e If both Ty and P are unknowns, two previous annual estimates of total building

energy loads and outdoor temperature are needed to compute P and T}, according
to 3.9.

p=Eln=EC,
Ty —Th
With Jy and Jy are two time periods.

(3.9)

As a consequence, it is possible to determine easily any parameters of the statistical

model.

In the present study, the statistical models presented in equations 3.1 and 3.2 are
expected to enable us to quickly estimate the building energy requirement for any
period and region. The WRF/ARW-BEP+BEM climate modeling system is used to
provide long time series of hourly-simulated air temperatures and its building energy

requirements.

The WRF/ARW-BEP+BEM climate modeling system allows considering:
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i) the influence of the non-temperature variables on the building energy requirements
such as the wind speed and air moisture;

i) the changes in the urban climate with changes in the surface and building proper-
ties;

iii) the influence of cross-scaled processes involved in the urban climate and their feed-

backs on the building energy requirements.

The WREF climate modeling system consists in the non-hydrostatic Weather Research
and Forecasting (WRF') model of Skamarock et al. [2005] and the BEP+ BEM urban
canopy parameterization of Martilli et al. [2002] and Salamanca et al. [2010] that have
been implemented since 2002 and 2012 respectively in the WRF mesoscale atmospheric

system.

The WREF mesoscale atmospheric model is a terrain-following mesoscale atmospheric
model that resolved the conservative Navier-Stock equations for the momentum, pres-
sure, energy and mass. Several options for various physical processes are included
in the WRF mesoscale atmospheric model (e.g. turbulence in the planetary boundary
layer, water transfer soil models, and radiative budgets), but the WRF mesoscale atmo-
spheric model has the particularities to account for the presence of the hydrometeors.
Among the available land-surface models, the Noah LSM Chen [2007] is commonly
used to compute the sensible and latent heat fluxes as well as skin temperatures of the
surfaces. The Noah LSM also interfaces the BEP+BEM urban canopy parameteriza-
tion with the mesoscale atmospheric model each time a built-up area is included in
an atmospheric grid. The BEP+BEM urban canopy parameterization represents the

sub-grid energetic and dynamic processes originated by the presence of buildings.

In particular, the Building Effect Parameterization BEP (Figure 3.1 a) computes the
surface turbulent fluxes for momentum, kinetic energy, heat and humidity for refined
vertical canopy grid immersed in the atmospheric grid each time the buildings interact
with the atmosphere. A building is shaped with a roof and a wall, and a building and
its bordering street form an urban canyon. In the BEP building effect parameteriza-
tion, the urban canyons are oriented according to the North and considered as well,
uniform and infinite long. T'wo urban canyon orientations are possible and the urban
canyons are delimited only with square cross-sections. The vertical heterogeneity of
the buildings in a given urban canyon is modeled with a height probability function.
In the BEP building effect parameterization, the dynamical perturbations of the flow

induced by the buildings are taken into account with the use of a distributed drag force
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approach and a modified Bougeault and Lacarrere [1989] scheme where the turbulent
length scales are adapted for accounting for the presence of the buildings. In addition,
distinct energy budgets for plane (e.g. roofs and streets) and vertical (e.g. walls) sur-
faces of the street-canyons are resolved to better model the skin temperature of the
buildings and the urban canopy heat fluxes. At last, the three-dimensional radiative
budget is adapted to account for the multi-reflections of the longwave radiations and

the shading in the urban canopy layer.

The Building Energy Model BEM (Figure 3.1 b) computes the energy budget for each
floor of an occupied standard building and the way the resulting energy is exchanged
with the building surrounds. The model represents internal heat and humidity gains
by:

i) solving a 3-dimensional room radiative budget accounting for windows;

ii) solving a one dimensional conduction equation for each layer of a layered wall sys-
tem, and by considering;

iii) the unintentional natural ventilation;

iv) the wasted heat generated by the occupants and the equipments.

User-defined humidity and temperature comfort ranges drive the model of the Heat
pump and Air Conditioning system. The latter computes the building heating and
cooling energy requirements and the amount of heat and humidity fluxes that have to
be ejected in the atmosphere to maintain the floor in the temperature and humidity

comfort ranges.
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Figure 3.1: Presentation of the dynamic and thermodynamic processes taken into
account by the BEP a) and BEM b) parameterizations.

Thus, like Salamanca et al. [2012], the total building energy loads EC' over the

atmospheric domain could be estimated for a period T according to:

T
EC’:/ (// ec.dx.dy)dt (3.10)
0 domain

Where the grid dimensions are dr and dy and the time step is dt.

Given the building energy requirements and the outdoor temperatures simulated by
WRF/ARW-BEP+BEM climate modeling system, the "building energy requirements-
daily outdoor temperatures” relationship could be drawn to obtain the complying cold
sensitivity P and the base temperature T} of statistical model. The latter can be used
to rapidly estimate the heating and cooling energy performance of any urban region

over any time period.

78



3.4 The study case

The method has been tested over the Strasbourg-Kehl urban region (France-Germany)
for 2010. The building energy requirements for space heating are only considered since
they represent in France more than the half of the residential building energy con-
sumptions. A fortiori, the minister of Ecology reported in 2009 that only 3.6% of the

residential buildings in France are equipped with individual AC for cooling.

3.4.1 The Strasbourg euro-metropolitan area and the ASPA

energy consumption inventory

The Strasbourg great city (48°35’°05”N and 7°4’02"E, elevation: 132-151m) is located
in the flat area of the Rhine Graben in the Alsace Region (France). The climate is
depredated oceanic according to the Koppen classification (type Ctb) with well de-
fined seasons. The presence at West of the Vosges and at East of the Black Forest
mountains shelters the area from mild and wet Westerlies as well as from the arrival of
cold fronts. As a consequence the wind is low to moderate and often directed North-
South. High frequencies of foggy days (56 days/year as much as Brest located close
to the oceanic coasts) and snow (30 days per years in average that is more than some
pre-alps cities) are singularities of the area. In particular, the study focuses on the
305.97 km? of the city council of Strasbourg (CUS). The CUS gathers 28 towns that
are part of the metropolitan area of Strasbourg [CUS, 2005]. Figure 3.2 a) shows the
innermost domain, the Urban Region of Strasbourg-Kehl (URSK) domain used in the
WREF/ARW-BEP+BEM climate modeling system. It is centered on the Strasbourg
city council (CUS). The largest domains are the parent domains. They provide the
meteorological lateral and top conditions to the URSK domain are represented in figure

3.2b).

As an attractive pole, the CUS represent 45% of the active population of the Bas-
Rhin district ,which are mainly provided in the commercial and tertiary sectors (e.g.
retailed trade, operational services, health and financial activities, restoration and hotel

business). The proximity of the German frontiers fosters cross-borders daily commut-
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Figure 3.2: The URSK domain and the coverage of the WRF simulation domains.

ing and is part of the socio-economic regional dynamics. The CUS accounts for about
450,000 inhabitants in which 60% house in the urban main center, Strasbourg.

Likewise all French cities, which count more than 50 000 inhabitants, the CUS inven-
tories its energy consumptions and greenhouse gases emissions in the framework of the
"Plan Energy Climat Territorial”. A reduction of 30% of the local GES emission and
energy consumption is announced. Because the building stock of the CUS is mainly
composed by renters (62%), it makes the objectives challenging [CUS, 2009]. It should
be acknowledged that the classification of the center of Strasbourg in the UNESCO
world heritage list can act as barriers to building renovations and improvements of the

building energy performance of the neighborhood.

The local air quality agency (ASPA) is often mandated by the CUS city council
to provide throughout atmospheric knowledge over the CUS territory. In 2006 and
then in 2010, the ASPA characterized the CUS building energy consumption of the
CUS territory following a bottom-up approach. The ASPA took benefits of the INSEE

dwelling database and the building energy consumption intensities (in J/m?) provided
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for each prototype building of the national building stock by the CEREN. The INSEE
dwelling database characterizes the building stock and include building energy perfor-
mance related variables. The date of the end of the building construction according to
milestone years (e.g. the adoption of thermal regulations), the type of dwellings (e.g.
individual or collective), its category (e.g. main residence), the number and surface
of the rooms, the type of the heating system (e.g. individual or collective) and the
types of fuels (e.g. conventional domestic fuel, coal, natural gas, electricity, urban
heating system, woods and LGP) are as much variables that can be used for describing
the building energy performance. Thus this large dwelling database allows the seg-
mentation of the building stock into coherent building energy performance segments
for which a prototype building is assigned. Knowing the share of each building energy
performance segment in the "1lot” statistical unit and the building energy consumption
intensities of their prototype buildings, it is then possible to calculate the ”ilot” overall
building energy consumption. Figure 3.3 mapped the corresponding building energy
consumption intensities considering in addition the building plan area fraction of the
lot. In total the ASPA found an overall building energy consumption of 15,274,755 GJ

over the CUS administrative area.
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Figure 3.3: Mapping of the intensity of the building energy consumption over Stras-
bourg and the towns of the first crown. The energy consumption has been standardized

by the building plan area density per "ilot”.

Nevertheless, some limitations can be underlined:

e The socio-economical dimension of the energy consumption is neglected by con-

sidering a standard use of the housings included in a same building category.

e The approach miss-evaluates the dynamical changes in 1) the building stock prop-

erties and the residential development, and 2) the variations of the local climate.
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1) The survey of the dwellings that is used to describe the building stock is
up-dated each 4-5 years over the French metropolitan area. With rapid urban
growth, the use of this dwelling database can produce discrepancies in the esti-
mates of the building energy consumptions. Fortunately, the construction activity
remains slow since the 2000’s over the study area. The local development plan
inventoried 8,874 new dwellings between 2003 and 2007 and 50, 681 new dwellings
between 1985 and 2007 for the Strasbourg agglomeration [CUS, 2009].

2) The period of heating is defined by convention from 15 October to 31°* May
according to the petroleum comity neglecting the variations of the climate from
one year to another.

One more, a climate stress factor calculated like the unified Heating Degree Day
is considered. It is computed using a predefined base temperature set at 17°C
and outdoor temperatures simulated by the mesoscale atmospheric model MM5
of Grell et al. [1994] over the AtmoRhena domain. The AtmoRhena domain cov-
ers the upper Rhine valley and includes the Alsace region and a part of Germany
with an atmospheric grid resolution of 3 km. In the AtmoRhena simulations, the
urban areas are represented like in the traditional roughness approach as warmer
and rougher spots (referred as the roughness approach or MOST theory) in the
region. No three-dimensional building effect parameterizations are considered
and thus the urban heat island effect is neglected.

At last, an additional climate correction is applied to interpolate the 2006 building
energy consumption in 2010. Then the ASPA used the ratio of the degree-days
between a given "ilot” and a meteorological station of reference (here located at
Entzheim airport). It is therefore assumed that the ratio does not change over

years.

3.5 Settings of the climate modeling system

3.5.1 Settings of the mesoscale atmospheric model

The URSK domain atmospheric grid consists in 27x33 rectangular C-Arakawa grids of
1 km horizontal resolution and 28 stretched pressure levels according to a 5000 Pas-

cal top pressure in the vertical. Its initial and lateral meteorological conditions are
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provided by the other coarse resolution parent-domains, which atmospheric grid sizes
range from 45 km to 3 km. The 2010 National Centers for Environmental Prediction
meteorological global data reanalysis (NCEP-FNL) provides the meteorological condi-
tions to domain 1 each 6 hours. The ARW core solves each 5 days fully compressible
and non-hydrostatic Euler conservative equations for the wind velocity, the potential
temperature perturbations, the surface pressure perturbation of dry air and the geopo-
tential perturbation considering a third order Runge-Kutta scheme, a spin up time of
5 days, and a time step of 100 seconds for advection. As advised by Martilli et al.
[2002] and Salamanca et al. [2012] the Bougeault and Lacarrre (Boulac option) k-e
turbulence model is adopted. The influence of water vapor on shortwave and longwave
radiation processes is taken into account through the Dudhia [1989] shortwave radiation
scheme and RRTM options respectively. The Thompson et al. [2004] scheme that ex-
plicitly resolves water phase’s transformation is selected for the microphysics. At last,
the NOAH Land Surface Model (LSM) computes the surface fluxes (latent and heat
fluxes) as well as the skin temperature considering a roughness approach for non-urban

areas while the BEP+BEM urban canopy parameterization does so for the urban areas.

Because surface coverage is critical for representing accurate land-surface exchanges
and planetary boundary layer dynamics [Xiu and Pleim, 2001], the regional high res-
olution and multisource land use land cover CIGAL dataset (BdOcs_2008) is used for
defining the 2010 land cover properties over the French part of the URSK domain.
The correspondence between the different land cover classifications is found in figure
3.4 while the 2010 land cover map is presented in figure 3.5. The land cover database
named BdOcs_2008 has a precision of 1:10,000 and shapes an up-to-date spatial land
cover database obtained from multisource spatial informations such as: i) SPOT 5
satellite images taken in October 2007 and February 2008 with a spatial resolution
of 2.5 m and several bands dedicated to vegetation; ii) orthophotographies with spa-
tial resolutions of 50 cm provided by the IGN; i) urban development plans provided
by the CUS and so on. Finally, the MODerate resolution Imaging Spectroradiometer
(MODIS) 2001 land cover dataset fills the no data in the URSK domain (German part).
The MODIS land cover dataset (2001) is indeed more up-to-date than the USGS global
land cover dataset (1997) [Chen, 2007].

The BdOcs_2008 provides, in particular, the dominant land cover types of each at-
mospheric grids and the ratio of the total built-up area included in each atmospheric
urban grid on the atmospheric grid coverage (the urban fraction) over the French part

of the URSK domain. The urban fractions enable us to determine whatever an atmo-
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spheric grid is urban or not by considering an urban fraction threshold. We lowered
the initial urban fraction threshold 0.5 to 0.2 for representing small urban settlements:
the cumulated built up areas in an atmospheric grid should represent more or 20%
of the atmospheric grid coverage. Then, the urban grids are describes by an urban
and non-urban fractions. The remaining non-urban fraction is by default assigned to
croplands and mosaic of natural vegetation types while one of the three available ur-
ban types of the climate modeling system can describe the urban fraction of the urban
grids. The three urban types are high intensity residential buildings, low intensity resi-
dential buildings and commercial and industrial buildings. The latter are characterized

by their functions, building density and vegetation areas.
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Figure 3.4: Table of equivalent land cover types for the three land cover datasets.



The resulting URSK land cover map (CIGAL) is qualitatively realistic as showed
in figures 3.5 and 3.6. In figure 3.5 presents both the MODIS and CIGAL land cover
maps. Figure 3.6 presents the maps of the three urban types in the study area con-
sidering solely the BdOcs_2008. At last table 3.1 provides the number of urban grids
considered by the climate modeling system (n,,,) and building area (Ab) for both
cases. The building areas are compared with the BdOcs_2008 building area obtained
by GIS techniques.

= National border
1 CUSlimits

i B Commercial Kiindustrial estates
“ ] Wl tighintense residential
W Low intense residential
I Built-up sneas with no distinction
between the three classes mentioned above
Other snaturals classes:
B water bodies
| BB Croplands mixed with natural vegetation masalc
) Croplands
] B Grasslands
Il shrublands
I Mixed forest
IR Decideous boradleafs forest
| BB Evergreen needieafs forest

Y-atmopsheric grids
Y-atmopsheric grids

2 13 10 14 18 22 2% 2 6 10 14 18 2 26

Author: Kohler (2015)
X-atmopsheric grids X-atmopsheric grids

Figure 3.5: Comparison of the land cover maps provided by the WRF/ARW mesoscale
atmospheric model using the MODIS (at left) and the CIGAL BdOcs_2008 (at right)
datasets.

BdOces_2008 MODIS land cover | CIGAL land cover
Ay 85,49 187.15 68.64
(in km?) ' (+74%) (-21.86%)
Nurban - 197 167

Table 3.1: Comparison of the built-up areas provided by the local development plan
and the climate modeling system using, first, the MODIS land cover and urban types
associated generic urban fractions, and second, the BdOcs_2008 land cover and corre-
sponding built-up areas. Relative differences are calculated between the BdOcs_2008
land cover and respectively the MODIS land cover and the CIGAL land cover.

In table 3.1, the differences in the building area are the smallest in the CIGAL
land cover datasets (-21.86%). The resolution of the spatial information explain the
accuracy of the total built-up area. Nevertheless, it is showed that the building areas
are under-evaluated. It could be an effect of the 20% rule. The MODIS land-cover
shows the greatest differences with the BdOcs_2008 building area. Even with an urban
fraction threshold set at 0.5, the building area is considerably over-estimated (+74%).
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Figure 3.6: The BdOcs_2008 land cover.

It is due to the use of generic urban fraction for each urban type (here, 0.9) for assess-
ing the building areas of each urban grid. Additionally, the number of urban grids is
reduced in the CIGAL land cover compared to the MODIS land cover. This can be
explained by the misclassifications of some lands in the MODIS land cover and to the
higher accuracy of the CIGAL land cover compared to the MODIS land cover.
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3.5.2 BEP and BEM selected parameters

The BEP + BEM considers that the urban areas are made up by three types of urban
fabrics: the high intensity residential characterized by high population density and
construction surface (class 32), low intensity residential (class 31) where constructed
material is mixed with vegetation, and the commercial and industrial estates (class
33). In this study, transportation infrastructures are considered apart in the MODIS
built-up class (class 13). The non-urban fractions of the urban atmospheric grids are
defined as mosaic vegetation and croplands for reproducing the highly irrigated low
urban vegetation. The American megacity urban parameters proposed by defaults
are adapted for European urban areas. For this, we used several high resolution GIS
spatial databases (e.g. Google earth satellite images, the 2012 BDtopo® of IGN,
the 1999 population census of INSEE), scientific and grey literature and collaborative
websites on building constructions. This permits to reproduce as real as possible the
Strasbourg great city street-canyons’ equivalent geometry (e.g. the canyon directions
dir. counting 0° as the North, the building height H distributions, the building and
street widths along with the North/South and West/East street-canyons respectively
Bz, By, Wz and Wy in meters, and the ceiling height dzcan), as well as radiative and
thermal surface properties and building’s standard occupancy for each type of urban
fabric (Utype).

Table 3.2 details the treatments adopted for each canyon parameters and urban type
(Utype).
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’ Parameters \ Data

Treatments

\ Adopted parameters

between the total
building envelop
and volume. We
used the BDtopo
® (shallow grey)
and assume cubic
buildings.

dzcan - - The vertical resolution of the BEP grid constrains the ceil-
ing height. Thus the vertical resolution is set equal to 3
m.
dir. Google | Analysis of ran- | class 31 (Palais Universitaire neighborhood): 45° N/S and
Earth dom samplings of | 315° W/E ; class 32 (place Kléber neighborhood): 315°
® prototype Utypes | N/S and 45° W/E ; class 33 ("Port du Rhin” neighbor-
hood) : 0° N/S and 90° W/E.
H BDtopo | Building height | _
® distribution  ob- E from 30-40 |
tained by GIS | T from25-30 ! B High dense residential
geoprocessing,. B from 20-25 1=  Low dense residential
from 1520 = Industrial and trading estate
£ from 1015
2 from5-10
3 inf5 _——
0 20 40 60 80 100
Percentage (%)
w BDtopo | Adaptation of
Class 31 Class 32
® building’s  and | ;4 Losw o 00 067%
street’s  widths | b3
(in the table for | 2
each Utype) to | 6% 15
minimize the | | oo II ": ] 0568
relative differ- 4, 16% 102% o
ences (in %) S e .A! T Gweien Voome | Pyrme Tu. velop Valueme

Clais 11
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8D
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w S SN S S—
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-5.98% FIE IETRE
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i AF04% -

Perimeter  Area Envelop  Vodume

Table 3.2: Street-canyon morphological parameters.

The radiative and thermal proprieties of the layered building wall systems are pre-

sented in table 3.3 while figure 3.7 displays the material compositions and thickness

for roofs, walls, floors and undergrounds that have been retained for representing the

thermal behavior of the buildings.

For the BEM model other parameters such as the human metabolic heat rate, the

heat wasted by the equipments, their daily use profile and the performance of the
ventilation and HVAC systems have to be specified. Table 3.5 gives the BEM setting-

up parameters. Unless floor population density and windows fraction, they are set

by consulting scientific, official and building construction dedicated sources. The floor

population density is obtained by setting proportional the 1999 IRIS (census unit) pop-
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Building
material

Heat

diffusivity
(mm?.s71)

Heat
capacity (kJm 3.K~1)

Roofs (Albedo: 0.1, Emissivity: 0.9, Roughness length: 0.01) from Krpo [2009] and

weather.msfc.nasa.gov

OSB 0.18 982.08
Air (1.2 kg/m3) 21.7/ 1.20
Vapor check membrane 7692.30 298.99
Glass wool (18 kg/m?) 2.87 18.53
AGEPAN 1.29 58333.00
Brown tile 0.59 655.00
Walls (Albedo: 0.2, Emissivity: 0.9, Roughness length: -) from Krpo [2009]
Gypsum (BA13) 0.50 831.60
Air (1.2 kg/m3) 21.7) 1.20
Glass wool (18 kg/m?) 2.87 18.53
Standard performed bricks 0.59 655.00
Roughcast in cement 0.48 1642.00
Undergrounds and floors

Concrete 1656.90 2167.20
Glass wool (18 kg/m?) 2.87 18.58
Air (1.2 kg/m3) 21.7/ 1.20

Street (Albedo: 0.05, Emissivity: 0.95, Roughness length: 0.01) from Krpo [2009])

Table 3.3: Radiative, thermal, and aerodynamic properties of buildings.

a) Residential buildings
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Figure 3.7: Composition of the building shell layers.

ulation census with the 1999

by the BDtopo®). A correction in applied on the resulting population to get the 2010
population census. The correction is done by considering a linear growth between 1999
and 2010 according to the 2005-1999 population growth issued from INSEE [2007].
The estimated 2010 population is showed to be slightly over-estimated (41.22%) for
the CUS limits and the Strasbourg center (+0.77%) when assuming a linear growth

built-up area included in each atmospheric grid provided
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between 1999 and 2010 and when comparing with the official population census. Table

3.4 shows the population in 1999 when setting proportional the 1999 IRIS (population
census with the BDtopo®), the estimated population in 2010, the floor area considered
by the BEP model and finally the population floor density considered in the BEM

model.

Urban class Utype 31 Utype 32 Utype 33
Population in 1999 315,873.0 63,533.2 89,556.9
(in inhab.)

Population in 2010 334,608.0 67,0288.1 94,587.0
(in inhab.)

Total floor area 32,787,972.0 9,767,846.0 30,353,366.0
(in m?)

Population floor density 1.02 6.86 0.31

(in inhab/ 100 m?)

Table 3.4: Estimated population, floor area and population floor density for each urban

type.

At last, the windows fraction on each building wall is defined by considering a pro-

totype residential buildings.
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Parameters

Chosen settings

Literature review

15% for residential and

Windows 20% for commercial & in- 1/6'" of the building living space [ITAURIF, 2008] ;
-to-wall dustrial buildings 0.2 [Salamanca et al., 2012]
fraction
1.02 ind. for 100 m?
(Utype 31), 6.86 ind. for
Population 100 m? (Utype 32) and 2 individuals for 100 m? [Salamanca et al., 2012]
density 0.31 ind. for 100 m?
(Utype 33)
Metabolic 80 Watts A man of 75 Kg emits 75W (at rest) and 100-200W
heat rate (extreme activity) [Sailor, 2011]; An adult emits 63W
(asleep) and 90W (in activity) (MEDDTL 2012); An
individual emits 75W (at rest) and175W (at maxi-
mum) [Allen et al., 2011] ; An individual emits 54.7W
[Kikegawa et al., 2003]
Peak heat Pk=36 W/m? Pk=36 W/m? and 20 W/m? for commer-
generated cial/industrial buildings and for residential re-
by equip- spectively [Salamanca et al., 2012] ; Pk=5.58 W/m?
ment for a typical Hausmannian building and an internal
heat generation of 38.61 W/m? and 193.05 W/m?
plan area respectively for residential and offices
[Bueno et al., 2011]; Pk=5.7 W/m? the day and 1.1
W/m? at night [CSTB, 2012]
Ventilation 8 =0.75 B = 0.43 in Paris and 8 = 0.5 in Toulouse[Bueno
rate et al., 2011] ; 8 = 0.75 [Salamanca et al., 2012] ;
B = 0.6 [Kikegawa et al., 2003]
Humidity 0.005 kg/kg [Salamanca et al., 2010]
target
Humidity 0.005 kg/kg [Salamanca et al., 2010]
gap
Temperature (ngrggfgi’ K4/ 05K Tiarg=[19 ; 24°C] for Toulouse [Bueno et al., 2011] ;
target ' Tiarg= [24 ; 26°C] for Madrid in summer [Salamanca
et al., 2012] ; T}4rg=19°C in average [CSTB, 2012];
Tiarg=20°C or more [Crédoc, 2010]
COP heat 0.9 COP heat=0.9 [Bueno et al., 2011] ; COP heat=0.75

[Salamanca et al., 2012]

Table 3.5: Settings of the building energy model parameters
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3.6 The meteorological validations

The national meteorological institute Météo France freely provided the hourly 2 m air
temperatures (in °C), and the 10 m wind speeds (in m.s™!) and directions (in ° from
the North). We used those monitoring time series to validate the meteorological fields
simulated by the climate modeling system. Three stations, which locations are showed
in figure 3.9, are showed to be included in the URSK domain. Note, however, that the
wind field is only monitored at Entzheim and La Wantzenau.For the meteorological

validation of the simulations, we excluded the no data from the analysis.

Author: Kohler (2015)

Figure 3.8: Location of the meteorological stations in the urban grids (in grey) and
their surroundings.

e The Entzheim station managed by Météo France is located at the airport, South-
West at the outskirt of the urban area (150 m, 48°33'N and 7°38’E) in a homo-

geneous flat terrain.

e The Strasbourg-Botanique station is located in the core of the urban area (139
m, 48°35’'N and 7°46’E). Nevertheless, the station behaves as a cool island due

to the presence of water pounds and vegetation in the nearby of the station.

e La Wantzenau station is located North-East from the urban area (135 m, 48°38’N
and 7°50'E) and North from the Robertsau forest (area 493 ha) in a flat terrain
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bordering the Rhine river.

Ohashi et al. [2007] recommended the use of several observational points in a grid
to compute an equivalent spatially averaged near surface temperature. Nevertheless,
due to the availability of the data, the 2 m simulated averaged air temperatures of the
grid that includes the stations are directly compared with the 2 m observed tempera-
tures of the stations assuming that the air is well mixed near the stations. In addition
the high vertical resolution of the atmospheric grids near the ground allows the dif-
ferences between the lowest level of model and the 2 m observed temperatures to be
small according to Martilli [2010]. Table 3.6 gives the temperature monthly biases (in

°C), the monthly RMSE (in °C), and the annual correlation coefficients for each station.

3.6.1 The air temperatures

MBs RMSEs
Period | Entzheim | Botanique | Wantzenau/| Entzheim | Botanique| W antzenau
Year -0.78 1.71 0.01
January -0.45 2.03 0.31 1.78 2.78 1.86
February -0.47 1.79 0.15 1.86 2.60 1.95
M arch -1.17 0.76 -0.69 2.42 2.31 2.30
April -1.61 0.81 -1.02 2.73 2.40 2.45
May -0.91 1.70 -0.19 2.14 2.61 1.85
June -1.25 1.90 -0.44 2.29 2.82 1.89
July -1.03 2.13 -0.18 2.64 3.29 2.44
August -0.91 2.20 0.32 2.28 2.99 2.00
September| -1.98 0.54 -0.77 2.82 2.40 2.07
October -0.28 1.59 0.84 2.33 2.90 2.57
November | -0.22 2.16 0.47 1.54 2.71 1.74
December -0.94 2.85 1.33 2.23 3.53 2.38
R RMSE
Y ear 0.96 096 | 0.96 229 | 280 | 215

Table 3.6: Hourly temperature monthly mean biases (MBs), Hourly temperature
monthly root mean square errors (RMSEs), and the annual correlation coefficients
(R) obtained from the hourly temperatures (R) for each of the three stations.

The linear coefficients of correlation are close to 1 meaning that the climate mod-

eling system reproduces well the variability of the temperatures over the year. Never-
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theless, the RMSEs indicate a dispersion of the simulated temperatures equal to nearly
2°C compared to the instrumental observations for all the meteorological stations. The
RMSEs are the highest at Strasbourg-Botanique, and are lower at Entzheim and La

Wantzenau. No clear seasonality is found in the RMSEs.

Analyzing the MBs, we found the lowest MBs at La Wantzenau and the highest MBs
at Strasbourg-Botanique. As showed in table 6, the MBs are negative at Entzheim,
positive at Strasbourg-Botanique, and positive and negative at la Wantzenau. The air
temperature over-estimations at Strasbourg-Botanique can be due to the cooling effect
of the botanic garden (Fisher 2001). In addition, the MBs follow seasonal patterns.
The MBs are the highest: i) from March to September at Entzheim; ii) in winter and
in plain summer at Strasbourg-Botanique, and iii) positive during the winter and neg-
ative in spring and summer at La Wantzenau.

Figures in the appendix of this chapter plot the annual profiles of maximum and min-
imum temperatures for the three stations. The seasonality of the minimum and maxi-
mum temperatures are well reproduced by the climate modeling system. The climate
modeling system tends to underestimate the minimum and maximum temperatures at
Entzheim and La Wantzenau, but in contrast over-estimates the minimum and maxi-

mum temperatures at Strasbourg-Botanique, the "urban” meteorological station.

Giovannini [2012], Giannaros et al. [2013], Garcia-Diez et al. [2013] reported sys-
tematic over-estimations of the minimum temperatures and under-estimations of the
maximum temperatures. Unless at La Wantzenau, this patterns is not found in the
maximum and minimum temperatures. At Entzheim, the climate modeling system
tends to under-estimate both the daily maximum and minimum temperatures ( re-
spectively -1.47°C and -0.72°C in average over the simulation period). At Strasbourg-
Botanique, the climate modeling system over-estimates both the maximum and min-
imum temperatures (restively +1.94°C and +1.10°C in average over the simulation
period). It seems that the climate modeling system neglects the cooling effect of the

botanic garden at Strasbourg-Botanique [Fischer, 2001].

3.6.2 The wind speeds and directions

We compared the simulated and observed wind fields at Entzheim and at La Wantzenau
using the 10 m wind speeds and the wind directions from the North. Table 3.7 shows

the hourly mean biases (MBs), the Pearson coefficient of correlations (R) and the root
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mean square errors (RMSEs) over the whole year 2010. The wind speeds are well simu-
lated. The MBs reveal that the simulated wind speeds are slightly over-estimated at La
Wantzenau station and quite well appreciated at Entzheim. The linear correlations are
quite good for the two stations (respectively, R=0.67 and R=0.61) . The RMSEs, how-
ever, indicate high variations of the simulated wind speeds compared to the observed
wind speeds. The RMSEs are the highest at La Wantzenau compared to Entzheim
(respectively 4.82 m/s and 2.80 m/s). The greatest RMSEs at La Wantzenau could be
explained by the precision of the wind monitoring sensor that is not as accurate as the

one that is used at Entzheim.

Statitical parameters Entzheim La Wantzenau
MBs 0.16 1.38
R 0.67 0.61
RMSEs 2.80 4.82

Table 3.7: Annual mean biases (MB), root mean square errors (RMSE), and correlation
coefficients (R) of hourly wind speeds for the two stations

To deepen the analysis, we then considered only moderate wind speeds (U> 2.5
m.s1). We found that the RMSEs and the MBS are higher than in table 7. In par-
ticular, the RMSE is the highest at La Wantzenau. The RMSEs are respectively 6.10
m.s~! at La Wantzenau and 3.46 m.s~! at Entzheim. Identically, the MBs are the
highest at La Wantzenau. The MBs are 3.35 m.s~! at La Wantzenau and -0.22 m.s*
at Entzheim.

Considering then light wind speeds, the RMSEs are lower than in table 7. They are
at La Wantzenau and Entzheim respectively 4.10 m.s~! and 2.19 m.s~!. The MBs at
La Wantzenau are also slightly decreasing. The MBs are 1.33 m.s~! at La Wantzenau
and 0.52 m.s~! at Entzheim. Thus, the errors are more important at La Wantzenau

and for moderate wind speeds.

The North/South wind channeling effect of the Rhine Graben reported by Najjar
et al. [2004] is present in the wind field observations, and especially at Entzheim. There,
North and North/East winds and South/South-West winds are prevailing winds (about
18%). Frequent wind speeds are included between 2.4 m.s™! and 3.9 m.s~!. Strongest
wind velocities (>10 m.s™!) are also recorded for North-/East and South/West winds.
At La Wantzenau, calms winds (< 1.4 m.s™!) are more frequent. Wind speeds are
mainly included between 1.9 m.s~! and 2.4 m.s~!. Wind directions are scattered com-

pared to Entzheim but South and South/West prevailing winds could be outlined.

97



Entzheim-Observed windrose Entzheim-Wind direction errors

NORTH NORT

WEST

::1::: SPEED The smallest angle (")
: |
e W 5w
W e
: B 25w
Y B Ow2:s
| R
SOUT™M 0
soum s ; B -2510
B W 45t0-225
= 123 B S0t 45
T
— W %
La Wantzenau- Observed wind rose La Wantzenau- Wind direction errors
NORTH NORTH
2% s
18%
.
WEST : EAE'I: WEST $ ! EAST
WIND SPEED
ey The smallest anghe (%)
| Y |
[ R 4500
B o B 225045
B seees BEow22s
SOUTH | JELEE SOUTH L ]
B e B-225w0
| RLEH 4510225
W o Wl 501045
o - MW -

G BETH

Author: Kohler (2015)

Data collection:

- 2010 Météo France wind speeds and directions
- WRF 2010 meteorological simulations
Software: WRPlot view®Lakes Environmental

Figure 3.9: Frequency of monitored wind directions with respect to the wind speeds
at Entzheim and La Wantzenau (at left) and frequency of simulated wind directions
errors with respect to the angle of the errors. The smallest error angle is considered
(or azimuth). The head of the arrows indicates the direction of the wind vector. The
simulated wind is at the right (or left) of the observed winds when the azimuths are
positives (or negatives).

Strongest winds are less frequent than at Entzheim but are also observed from the
North/East sector. As a conclusion, La Wantzenau station is under the plume of

light South/West winds and seems influenced by local surface conditions. Entzheim,
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is showed to be rather influenced by the synoptic circulation.

When comparing the observed wind directions with the simulated wind directions,
one can state that simulated wind directions are quite in accordance with the observa-
tions. The angle errors are usually included between +45° and -22.5°. The errors are
mainly positive and more frequent in the prevailing wind directions. At Entzheim, the
errors are highly positives. At La Wantzenau, positive errors are identified in prevailing
wind directions while negative errors are observed in the wind direction sectors. As a
conclusion, the climate modeling system tends to systematically deflect the wind at the
right of the observed winds. The errors are more frequent and higher for the prevailing
winds. The errors seem to be less systematic at La Wantzenau compared to Entzheim:
negative errors are more frequent than at Entzheim and are presents for all the wind
directions.

As a conclusion, the absence of a dense observational network over the domain, and in
particular in the urban core, refrains the significancy of the validation of the simulated
meteorological fields. The station located in the urban core behaves like a cool island
and therefore it is difficult to conclude on the accuracy of the simulations of the climate
modeling system. At Entzheim and La Wantzenau, the temperature fields seem to be
well simulated (in particular in wintertime).

The wind fields is quite well reproduced by the climate modeling system as witnessed
the correlation coefficients (R=0.60) and the mean biases. In particular, the climate
modeling system tends to produce more discrepancies for moderate wind speeds.
Moderate wind speeds are not accurately reproduced by the climate modeling system.
The channeling effect of the Rhine graben is, however, well reproduced at the two
stations, and a systematic easterly wind deflection of the simulated winds is observed.
In the stations, La Wantzenau shows higher errors in the wind speeds and variable di-
rection errors. It is possible that the station exhibits local wind patterns. In contrast,
Entzheim shows more frequent high wind speeds. The direction errors are mainly found

for the prevailing wind speeds. Entzheim seems to represent the synoptic conditions.
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3.7 Results and discussion

3.7.1 The simulated building energy requirements over the
CUS area for 2010

The total 2010 heating energy requirements for space heating simulated by the WRF /ARW-
BEP+BEM climate modeling system over the CUS area (ECy0) is 12,055,372.6 GJ.
By considering, then, the simulated outdoor daily temperatures, computed as the 24h
average of the hourly 2-m temperatures, and the building energy consumption taken
as the sum of the simulated hourly building energy requirements for space heating
in a day, we drew the building energy requirement-outdoor temperature function of
the CUS area. Figure 3.10 presents the resulting building energy requirement-outdoor
temperature function. It is showed that the building energy requirement-outdoor tem-
perature function is non-linear. The building energy requirements, first, decrease with
the outdoor temperature rise. The building energy requirements are then close to zero
for outdoor temperatures included between 9°C and 15°C, and equal to zero above
15°C. More, for a given outdoor temperature, the building energy requirements vary
of +/— 10 000 MWh. It can be due to the insulating properties of the buildings and
their thermal inertia according to air temperature variations. By considering, days
for which the building energy consumption is non-null, we then considered the linear
fitting (the statistical model) of the simulated building energy requirements-outdoor
temperatures function, and obtained the statistical model (the straight line in figure

3.10) representative for the study area.
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Relationship between Air tenperature and Space heating energy requirenents
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Figure 3.10: The daily building energy requirements (in MWh) as a function of the
daily outdoor temperatures (in °C) over the CUS area.

The Pearson correlation coefficient of -0.93 indicates a high negative correlation
between the two variables. A Student hypothesis test has been conducted by using
an uncertainty « of 5%. With a calculated ¢ statistics larger than the critical ¢ (e.g.
|-37.86| compared to 1.96) the Student test concludes that the linkage between the two

variables is significant.

We then, reconstructed the building energy requirements by using the cold sensi-
tivity and base temperature of the statistical model and the distribution of the CUS
outdoor temperatures according to equation 3.5. We found an overall 2010 heating
degree-day D105 of -1520.05°C days. By using those degree-days and the slop of the
linear fits, we then obtained an estimated building energy requirements (Q2910) equal
to 12,675,785.7 GJ. The discrepancies between the simulated building energy require-
ments and the estimated building energy requirements by using the statistical model
are then equal to -5.01%. Valor et al. [2001] by using such kind of statistical model
to predict the electricity consumption found an error in the estimates of +/- 4%. The
error in the estimates is then in agreement with their study and acceptable.

Using equation 3.8, we then computed the base temperature from the knowledge of
the average outdoor temperature and building energy requirements over a given pe-

riod, and the cold sensitivity P. Assuming that we didn’t know the number of day
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where EC;>0, we took the average of the 365 daily outdoor temperatures present in
the dataset. We then found a base temperature of 14.44°C and a correspondent error
of +18.04%. The base temperature is then highly sensitive to the size of the daily

outdoor temperature dataset.

3.7.2 Comparison with the ASPA estimates of the building

energy consumption

The ASPA estimated the building energy consumption of the CUS area to be 15,274,755.00
GJ in 2010. The simulated building energy requirement for 2010 by using the climate
modeling system is 12,055,372.6 GJ. The difference in the estimates is then -21.07%.

The discrepancy could arise from:

(1) The non-consideration of building areas that cover less than 20% of the atmo-

spheric grid;
(2) Differences in the base temperatures and the cold sensitivities;
(3) The building energy settings of the climate modeling system;

(4) Differences in the definitions of the daily outdoor temperature.

(1) The non-consideration of built-up areas that represent less than 20% of the atmo-
spheric grid area (< 20% urban grids) leads to neglect the contribution of small
built-up area in the total 2010 building energy requirements. Besides, those small
built-up areas are expected to be high energy intensive: no wind shielding effects
and local warming are expected with low building densities. We considered 5-days
simulations using the WRF/ARW-BEP+BEM climate modeling system and an
energy intensive period (started from 06/01/2010). The land cover provided to
the WREF climate modeling system is presented in figure 11. From the 5-days
simulations we found that the < 20% urban grids contribute to 43,887.6 GJ when
the other urban types represent 846,536.4 GJ by their own. The difference be-
tween the ASPA estimate and our estimate is not due to the non-consideration

of the small built-up areas.
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Figure 3.11: Land cover of the URSK domain with the representation of the small
urban settlements (urban fraction of the atmospheric grid<20%).

(2) The ASPA defines by convention the heating period from October to May and set
the base temperature at 17°C. It results in a degree-day D;; equal to -1701.31°C
days. Our statistical model deduced a base temperature equal to 12.05°C lead-
ing to a difference of -34.07% in the base temperatures. Taken the same heating
period and the base temperature provided by our statistical model (12.05°C) we
found a degree-day D195 equal to -1445.64°C days. The differences with the
ASPA degree-day are then equal to-15.02%.

We computed the equivalent cold sensitivity P of the ASPA study using equa-
tion 3.9. We found a cold sensitivity P that is equal to -2493.94 MWh/°C. The
relative difference between the two cold sensitivities P is nearly -7.11%. The cold
sensitivity is slightly enhanced in the ASPA study.

The differences in the base temperature explain a large part of the differences
in the building energy requirements. A review of the literature dedicated to
the degree-day method pointed out that the base temperature is correlated with
the building types and characteristics. Amato et al. [2005] mentioned that well-
insulated homes and commercial buildings due to internal heat gains from office
machinery and occupants have relatively low base temperature. In contrast, Gi-
annakopoulos and Psiloglou [2006] reported that well-ventilated homes in USA
need almost no space-heating energy when outdoor temperatures are between
12.8°C and 18.3°C. It is thus possible that the consideration of the internal heat

gains lowers the base temperature.

(3) We investigated the sensitivity of the building energy requirement with the in-
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ternal heat gains and losses. We performed successive 5-days simulations over a
domain of 19x19 atmospheric grids of 45 km width considering the atmospheric
conditions of the Strasbourg urban region, and a single urban grid placed at
the center of the domain. We successively removed the heat generated by the
occupants, the wasted heat due to equipment, considered opaque buildings (no
windows) and cut off the natural ventilation.

The windows fraction influences the radiative budget of the floor by allowing so-
lar radiation penetration in the room and permit longwave radiation losses. The
ventilation rate quantifies the fraction air that is renewed each hour considering
the temperature gradient between the building and its surroundings. The wasted
heat due to the use of equipment is an additional source of heat in the buildings

room as well as the heat emitted by the human being due to the human metabolic

activity.
Contribution in the building energy
requirements

Base case 49,320,518 MWh

Heat generated by the equipment +58.82%

Heat generated by the occupants +1.20%

Air ventilation -8.18%

Windows -8.49%

Table 3.8: Sensitivity of the building energy requirements with the BEM settings.

In table 3.8, it is showed that the heat gains induced by the equipment highly
impact the building energy requirements and contribute for a large part to the in-
ternal heat gains. Windows and the natural ventilation are showed to contribute
to the building energy losses. Thus, the consideration of no-ventilated and opaque
buildings decreases the building energy requirements. The consideration of the
internal heat gains due to the equipment can lower the base temperature and
explain the differences in the estimated building energy requirements found by

the two studies.

To more deeply stress the sensitivity of the building energy requirement with
the equipment settings, we changed successively the intensity of the peak heat
emission due to the use of the equipment and the daily profile of the heat emis-
sions. We firstly considered the peak heat intensity and profile recommended

in the technical report of the French scientific and technical center for buildings
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(4)

used to calculate the standard building energy consumption (Th-C-E method of
the thermal regulation) [CSTB, 2012]. The peak heat intensity is 5.7 W/m?.
The daily profile is set at 100% between 7 a.m. and 11 a.m. and between 6 p.m.
and 11 p.m. The heat generated by the equipment corresponds to one fifth of
the maximum peak heat intensity for the remaining hours. Then we considered
that the equipments are used all the day (daily profile equal to 100% all the day)
and increased the peak heat intensity at 36W/m? like Kikegawa et al. [2003]. We
found that the maximum use of the equipment all the day decreases the building
energy requirement by -18.68%. Further decreases in the building energy require-
ments of -19.82% are reported when increasing the peak heat generated by the
equipment. Hence, the modeling of the internal heat gains due to equipment
(especially the peak heat intensity) is a key point in the building energy model

set-up.

Differences in the definitions of the daily outdoor temperature.

Several definitions of the daily outdoor temperatures exist. The Tminmaz (equa-
tion 3.11) is commonly used to determine the daily temperature. Wallace [2012],
however, demonstrated that the Tminmax method may over-estimate or under-
estimate the true daily average temperature depending on the location and sea-
son. In our study the use of the Tminmax contributes to increase the degree-days
by up to +30.78% compared to the use of the average of the hourly tempera-
tures over the day (average method). Indeed, the Tminmaz method gives lower
daily outdoor temperatures compared to the average method. The mean bias is
-3.68°C when considering the annual scale. It seems that the Tminmax method
overestimates the variations of the temperature during the day and is highly sen-

sitive to the minimum temperatures.

Trae — Tomi
Ti:w (3.11)

We considered the Tminmaz and the base temperature deduced by the linear sta-
tistical model (12.05°C). The degree-day becomes Djs o5 -3159.34°C days. The
degree-days are then over-estimated by up to +118.54%. This suggests that our
Tminmax are cooler than the ASPA Tminmaz and more frequently below the
base temperature threshold.

Thus, either the maximum temperatures are under-estimated or the minimum

temperatures are over-estimated (or both) by the climate modeling system com-
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pared to the ASPA study. A roughness approach is used in the ASPA study for
modeling the urban effects on the atmosphere. This approach is acknowledged to
not fairly reproduce the urban heat island effect by over-estimating the air tem-
peratures (especially during the day) and the nocturnal cooling rate over urban
areas [Miiller, 2007, Kusaka and Kimura, 2004]. It can trigger over-estimations of
the maximum temperatures (warmer) and over-estimations (cooler) of the min-
imum temperatures. Unfortunately, we have not the minimum and maximum

temperatures used in the ASPA study at our disposal to conclude on this point.

To deepen the analysis, we decompose the differences in the building energy re-
quirements considering equation 2.4. We called AFE the difference in the building
energy requirements considering our study and the ASPA study (noted with the
over script A), and as the same respectively, AP the differences in the cold sen-
sitivities P, and AD the differences in the degree-days computing by using the
statistical model and the degree-days provided by the ASPA. The latter can be
decomposed into AD?! the difference in the degree-days caused by the differ-
ent period of heating that are considered (October to May in the ASPA study,
and all the year in our study), caused by the AD70 that is the difference in the
degree-days due to the consideration of deduced base temperature or predefined
base temperature, AD%ws the difference in the degree-day due to the method
used to computate the daily outdoor temperature (average of the hourly tem-
perature, or average of the daily extreme temperatures). At last the AD is the
differences between the degree-days calculated by using the parameters of the
statistical model deduced from the linear fitting, and the degree-days calculated
by using the statistical model, the parameters of adopted in the ASPA study, and
the WRF/ARW-BEP+BEM simulated hourly minimum and maximum temper-
atures according to equation 2.1.

The relative differences in the simulated building energy requirements is then:

AE AP N AD ADA N AD AD™ N AD ADTevs N AP ADA
EA — PA " AD ADA  AD ADA  AD ADA PATADA

+ Ainter
(3.12)

First the interaction terms A;,;., that represent the differences due to the com-

bination of the other terms of the equation 3.12 are positive and are equal to

+7.2%. For simplification we consider that the problem is linear. Nonetheless,

further investigations are required to explain this term.The differences due to the
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differences in the cold sensitivities P and the base temperatures Ty simultane-
ously are small (+1.1%). The differences in the building energy requirements due
to the cold sensitivities represent -7.1%. At last, the differences in the building
energy requirements caused by the degree days represent -15.02%. The discrep-
ancies are mainly caused by the differences in the base temperatures (-9.3%) and
the use of the Tminmazr method (-13.1%). As a conclusion, the method used
to calculate the daily outdoor temperatures account for the largest differences in

the degree-days, and in the building energy requirements.

3.7.3 Assessment of building energy saving strategies

The statistical model enables us to quickly estimate the building energy requirements
over any time period. We therefore choose to take advantage of this method to assess
some well-known energy saving strategies. In addition, the cold sensitivity and the base
temperature can be used as new building energy performance indexes for assessing the
building energy conservation strategies. For this, we first optimized the methodology to
save computational time, and then performed the meteorological and building energy
simulations of each scenario by using the WRF/ARW-BEP+BEM climate modeling

system.

3.7.3.1 Presentation of the scenarios

We considered three types of building energy conservation strategies. The first type
represents the building energy conservation strategies that attempt to lower the air
temperature in the context of global warming. Cool surfaces and shade trees are ac-
knowledged to participate to such types of strategies. In this study we considered the
effect of high reflective roofs on the building energy performance. The roofs represent
more than 25 millions square meters in France, and exposed at the solar radiations,
those dark surfaces become particularly hot (about 65.55°C in summer according to
EPA [2013]). Nevertheless, the adoption of reflective coatings can lower the skin tem-
peratures up to 100°F (10°C), and hence, lower the air temperature. Hence, several
studies like Rosenfeld et al. [1995] found that increasing urban albedos (0.13 to 0.26)
can limit or reverse the urban heat island and that reflective roofs can reduce around

40 to 50% the cooling energy use and the peak cooling demand. The second type of
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building energy conservation strategy reduces the permeability of the building sensitiv-
ity to the exterior thermal environment by improving the building shell properties and
takes benefits of the windows apertures. At last, the third type of energy conservation
strategies acts on the behavior of the building occupants. In particular studies reported
that the turning down of the thermostat is a behavioral strategy often adopted by the
household in a context of increasing price of energy to save money [Desjardin et al.,
2011, Herring and Roy, 2007]. The potential of energy savings are high: it appears
that most of the building rooms are over-heating compared to the recommended 19°C
[Crédoc, 2010).

3.7.3.2 Optimization of the methodology

A simulation over a whole year is expensive in computing time. So we shorten the
period on which the methodology could be based. For this and so as to preserve the
quality of the statistical model we calculated and compared the cold sensitivity P and
the base temperature Tj for each combination of three months possible in a year. We
chose the combination that minimizes the relative differences in P and 7. The three
selected months are February, March and September. The cold sensitivity is -2316.7
MWh/°C and the base temperature is 12.14 °C. The discrepancies in the cold sensitivity
P and base temperature Ty are respectively +0.01% and 40.74%. The simulated build-
ing energy requirement by using the climate modeling system for those three months
(EC5montns) is equal to 3,859,534.1 GJ. The estimated building energy requirement
obtained by using the statistical model Q3montn using the Psponins and the Tp smonths
obtained from the three months is 3,985,090.6 GJ. The discrepancies are then +3.2%
over the three months. Over the year, we obtained a building energy requirement equal
to 12,824,277.6 GJ. The relative error is then +6.18%. It is hereby possible to calculate
the annual building energy requirements computation by using only the three selected

months.

3.7.3.3 Results and discussions

e High reflective roofs
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We designed three scenarios in which we successively increased the roof albedo from
0.1 (Case A0) to 0.3 (Case A1) and finally like in Akbari et al. [1999] to 0.7 (Case
A2). Firstly, we analyzed the influence of the changes in the roof albedos on the
outdoor temperatures. Table 3.9 sums up the statistical distribution of the outdoor
temperatures while figure 3.12 presents the distributions of the outdoor temperatures.
It is showed that in average the outdoor temperatures slightly change when considering
increasing roof albedos. In particular and as showed in table 3.9 the maximum temper-
atures decrease with the rise of the albedo while the minimum temperatures become
colder compared to the case A0.The distribution shows two modes, which characterize
in the one hand the contribution of the cold months (February and March) in the time
serie, and in the other hand the contribution of September (the warmest of the three

months) in the time serie.

Case A0 Case Al Case A2

albedo=0.1 albedo=0.3 albedo=0.7
Tmin -5.73°C -5.74°C -5.76°C
Tmax 17.93°C 17.89°C 17.73°C
Tmean 7.45°C 7.13°C 7.44°C
T median 9.15°C 8.97°C 9.11°C
o 1.91°C 1.79°C 1.87°C
q3 12.59°C 12.52°C 12.57°C

Table 3.9: Statistical description of the distributions of the outdoor temperatures over
the CUS area (computed using the three months: February, March and September)
with changes in the roof albedo. Tmin is the minimum temperature, Tmaz is the
maximum temperature, Tmean is the temperature average, Tmedian is the median
of the temperature dataset and at last ¢; and g3 are the first and third interquartile,
respectively.

Then, we investigated the effect of cool roofs on the daily profiles of the air temperature.
We considered February and September for accounting for wintertime and summertime
seasons, and an urban grid assigned to high intense residential type that is character-

ized by a high building density. Figure 3.13 displays the daily profiles for each scenario.

Few differences are observed in the daily temperature profile in February. The dif-
ferences in the air temperatures are at maximum equal to 0.2°C during the day and
below 0.1°C at night. When comparing the air temperatures of the high-reflective roofs
(scenario A2) and dark roofs (scenario A0), one found cooler temperatures during the

day (after 9 a.m. and until 1 p.m.) and warmer air temperatures at night and in the
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Figure 3.12: Distributions of the urban outdoor temperatures over the CUS area for
the roof albedo scenarios. The solid lines are the probability density functions.
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Figure 3.13: Average profiles of the daily air temperatures for February and September
considering the roof albedo scenarios. Be careful, the two plots have not the same scales
to account for the slight differences in the temperatures between the scenarios found
in February.

morning in the scenario A2. In contrast, high-reflective roofs considerably impact the
air temperatures in September. The dark roof scenario exhibits the warmest air tem-
peratures during the day (between 6 a.m. and 5 p.m.). The air temperatures are then
decreasing with the roof albedo rise. The differences in the air temperatures between
the scenarios AO and A2 are at maximum equal to -1°C (at 2 p.m.) and are increasing
from the morning up to the late afternoon. After 5 p.m. the temperatures of the three

scenarios are nearly equal.

Our results are consistent with Rosenfeld et al. [1995] that found changes in the sim-

ulated hourly temperatures at noon equal to -2°C and at maximum equal to -3°C in
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the early afternoon (3 p.m.) with increasing urban albedos by using the CSCUMM
mesoscale atmospheric model. Thus, high reflective roofs rather impacts summertime
and daytime air temperatures that are characterized by high solar radiation forcings.
As a conclusion high-reflective roof strategies may improve the summer and have mod-
erate effect on the winter thermal comfort as they contribute to warm the air up at

night in winter but also contribute to cool the air during day.

ECsmonths P Ty Q3months Q2010
(in GJ) | (in MWh/°C) | (in °C) (in GJ) (in GJ)
Case A0 3607156.1 -2316.7 12.14 3,985,090.6 12,823,834.8
(+3.2%)

Case Al 3861728.6 -2248.0 12.44 3995561.7 | 12,917,744.8

(+10.23%) (-2.99%) (+2.52%) (+8.40%) | (+0.72%)
Case A2 4045404.8 -2233.6 12.79 4216217.8 | 13,404,022.6

(+11.45%) | (-3.65%) | (+5.29%) (+4.13%) | (+4.42%)

Table 3.10: The building energy requirements and statistical model parameters for each
roof albedo scenario. The building energy requirements outputted from the climate
modeling system are EC3,,0nins. LThe building energy requirements calculated from the
cold sensitivity P and the base temperature Ty using the statistical model are Qs,onths-
The differences with the case A0 are written in (%) while the errors committed in
the building energy requirement by using the statistical model are written in (%).
The building energy requirements and statistical parameters are always computed by
considering the three selected months (February, March and September).

Then, table 3.10 provides the total building energy requirements simulated by using
the climate modeling system and the three months (EC3,,0nms), the statistical model
parameters (the cold sensitivity P and the base temperature T0), and the building
energy requirements estimated by using the statistical model and the three months

(Q3montns) or the entire year (Q2010)-

It is showed that the building energy requirements for space heating increase with
high-reflective roofs by about +10%. Our results are in agreements with Conner [1985]
cited in Taha et al. [1988] that reported energy savings including between -5% and -
25% for well-insulated buildings and from -7% to -16% for no insulated buildings when
lowering the wall and roof albedo from 0.7 to 0.3 of prototype residential buildings in
several US cities. The rise in the building energy requirement is non-linear as pointed
out in figure 14. An albedo threshold is found for albedos that are equal to 0.4 and
0.5.

In parallel, the cold sensitivities and the base temperatures of the scenarios slightly
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vary (less than 5%). The cold sensitivity decreases with the roof albedo rise meaning
that the buildings are less sensitive with the cold temperatures. Like the building en-
ergy requirements, the cold sensitivity P shows a non-linear relationship with the rise
in the roof albedo. In contrast, the scenarios A1 and A2 are characterized by distinct
base temperatures (7p). According to figure 3.14, the base temperatures linearly in-

crease with the roof albedos.

It is well acknowledge that cool roofs can contribute to save energy in summer [Taha,
1997, Salamanca et al., 2011]. In this study and like Kuttler [2012], we found in con-
trast that cool roofs have controversial and moderate effects in winter on the building
energy requirements. Like Conner [1985] (cited in Taha et al. [1988]), we found that
the increase in the roof albedo increases the heating energy requirement by about 10%
other the three simulated months. This is mainly because highly reflective walls do not
help to achieve a solar radiation energy gain for the building, and thus the increase in
the building energy requirements can be attributed to the lowering of the air temper-
ature during daytime when using cool roofs. From the statistical model it is showed
that the base temperature, that represents the temperature at which the buildings is
at thermal equilibrium, is slightly more influenced by higher roof albedos than the
cold sensitivity. This can be due to the decrease in the internal heat gains. It is also
possible that our buildings are well insulated. Akbari et al. [1999] indeed reported that
the effects of cool roofs on the building energy savings are reduced for well-insulated

buildings.

Over the study area, such measures is not really feasible. Historically, the pitched roof
are covered by brown- red tiles made in clays. A large modification of the roof proper-
ties seems unrealistic, and in particular in historical centers for which drastic building
codes are imposed to preserve the regional vernacular architecture. The replacement
of the red-brown tiles by high reflective materials seem more realistic in new construc-
tions located out of the historical centers. However, clay tiles despite their cost are
now preferred to concrete tiles due to their long life cycle even in new constructions.
More, some studies like Akbari et al. [1999] reported that high reflective roofs, and
more high reflective pitched-roofs can dramatically make the car traffic dangerous due

to the reflection of the solar radiations at street levels.
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Figure 3.14: At left, sketch of the relationship between the building energy requirements
and the outdoor temperature. At right, figures plot the relationships between the roof
albedo, and in one hand the building energy requirements, and in other hand the cold
sensitivity and the base temperature, respectively.

e Improvement of the building wall insulating properties

We designed three scenarios and focused on the building walls. The first scenario con-
siders massive walls composed of 20 cm bricks. In the second and third scenarios a
20 cm insulation layer of glass wools is added in the wall envelope that faces either
the room indoor wall (the interior insulation scenario) or the room outdoor wall (the
exterior insulation scenarios), respectively.

Table 3.11 and figure 3.15 provides the statistical descriptions of the distributions of
the outdoor temperatures. No differences are found in the statistical distributions of

the outdoor temperatures. Again the two modes represents the variation of the outdoor
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temperatures due to the use of two contrasted sub-sets in the three months (February

and March in the one hand, and September in the other hand). The building insulating

properties seem to have no direct effects on the outdoor temperatures.

Scenario Scenario Scenario

No insulation Interior insulation | Exterior insulation
Tmin -5.84°C -5.90°C -5.89°C
Tmax 17.79°C 17.49°C 17.57°C
Tmean 7.42°C 7.38°C 7.39°C
Tmedian 9.00°C 9.04°C 9.09°C
1 1.89°C 1.79°C 1.88°C
3 12.49°C 12.47°C 12.66°C

Table 3.11: Statistical description of the distributions of the outdoor temperatures over
the CUS area (computed using the three months: February, March and September)
with changes in the building envelop properties. T'min is the minimum temperature,
Tmax is the maximum temperature, Tmean is the temperature average, Tmedian is
the median of the temperature dataset and at last ¢; and ¢3 are the first and third
interquartile, respectively.
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Figure 3.15: Distributions of the urban outdoor temperatures for the three building
insulation scenarios.

When deepen the analysis and considering average daily profiles of air temperatures
(figure 3.16), we observed little differences in the air temperatures between the scenar-
ios that are even greater in February compared to September. The air temperatures
when wrapping the building interior or exterior walls with insulating materials are al-
ways cooler in February and at night by -0.1°C compared to the no-insulation scenario.
Few differences in the air temperatures are found between the insulation scenarios. The

exterior walls insulation scenario is a bit warmer at noon compared to the interior walls
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insulation scenario both in February and September. Grossiord [2009], indeed, when
simulated the air temperature and the buildings temperatures considering the Finite
Volume Model (FVM) mesoscale model of Clappier et al. [1996] and the BEP+BEM
urban parameterizations observed that the external insulation raises the outdoor tem-

perature during daytime.
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Figure 3.16: Average daily temperature profiles for February and September when
changing the building insulating properties. Be careful the scales are changed to ac-
count for the slight differences in temperatures in February.

In the building energy perspectives, construction system with no insulation layer is
characterized by the highest simulated building energy requirements as showed in ta-
ble 18. Indeed the bricks are characterized by a higher thermal conductivity than
the insulating materials. It enhances the heat exchanges between the buildings enve-
lope and its surroundings, in particular when the wall thickness is reduced to 20 cm.
Then, the simulated building energy requirements considerably decrease when increas-
ing simultaneously the walls thickness and when adding building insulating materials
(nearly -155%). The position of the insulation layer in the layered wall has no effects
on the building energy requirements as showed in table 3.12 and figure 3.17. Aste
et al. [2009] found, however, slight differences in the heating energy requirements when
considering insulation that faces either the outside or inside walls. The annual heating
energy requirements are 421 kWh, 415 kWh respectively. Bojic et al. [2001] found that
indoor and outdoor insulation wall systems have quite equal building energy perfor-
mance. The insulation materials has a heat capacity set at 22.08 kJ/m?/°K and the
heat conductivity is 0.034 W/m/°K. Another study, however, stressed high differences
in the building heating and cooling energy requirements according to the position of

the insulation layer in the construction system. Kossecka and Kosny [2002] pointed out
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that insulation outside the massive wall composed by concrete materials has the best
performance. They set the wall heat capacity at 19.36 kJ/m?/°K and the wall heat
conductivity at 0.036 W/m/°K. The wall thickness is, however, kept constant (25.4
cm). The annual difference in the heating requirement between outdoor and indoor
insulation wall system is about 586 to 1025 kWh. At last, Salamanca et al. [2012]
simulated the impacts of wall insulation on the cooling demand of the Madrid great
area. The addition of an insulation layer of 6 cm reduces the cooling energy load by
-3.59% compared to the simulation in which a massive wall with no insulation layer
is considered. The heat capacity is 0.38 J/m3/°K and the heat conductivity is 0.09
W/m/°K.

Considering the heat capacity and conductivity magnitude (we adopted a heat con-
ductivity of 0.04 W/m/°K and a heat capacity is 16.48 kJ/m?/°K), we concluded that
the considerable energy saving found in this study is induced by the wall thickness.
It is also possible that the wall thickness (40 cm) hides the differences in the building

energy requirements induced by the wall insulation position.

P
EC?)months (Hl TO 5 Q{Smonths QQOIO

(in GJ) MWh/°C) (in °C) (in GJ) (in GJ)
Case 2,577,515.0 -1886.7 10.56 2(’3538’(%1;)8 8,449,517.7
No insulation VI
Case 322,232.1 -347.4 7.66 327,952.5 1,017,849.5
ndoor (-155.55%) | (-147.83%) | (-31.83%) (+1.75%) | (-156.99%)
insulation
Case 316,730.9 -353.3 7.36 319882.6 985,284.6
Outdoor (-156.22%) | (-147.07%) | (-35.71%) (+0.99%) | (-158.22%)
insulation

Table 3.12: The building energy requirements and statistical model parameters for
each building wall insulation scenario. The building energy requirements outputted
from the climate modeling system are EC5,,0nms- The building energy requirements
calculated from the cold sensitivity P and the base temperature Tj using the statistical
model are Q3monins. The differences with the case "no insulation” are written in (%)
while the errors committed in the building energy requirement by using the statistical
model are written in (% ). The building energy requirements and statistical parameters
are always computed by considering the three selected months (February, March and
September).
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Relationship between building energy requirements and outdoor temperature
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Figure 3.17: Relationship between the building energy requirements and the urban
outdoor temperatures with changes in the insulation properties of the building walls.

Like the building energy requirements, the building cold sensitivities are considerably
reduced (by -147%) when wrapping either a home’s exterior or interior walls. The base
temperature change also considerably (-30%). Insulated buildings are therefore less
sensitive to the cold temperatures meantime the building thermal inertia is enhanced

as witnessed by the lower base temperatures.

In conclusion the enhancement of the buildings insulating properties has slight ef-
fects on the air temperatures. The building energy requirements are showed to be
considerably higher for no insulated buildings. This result can be induced by the wall
thickness. It is also showed that the changes in the buildings insulated properties im-
pact both the cold sensitivity and the thermal equilibrium of the buildings. At last,
no differences in the building energy performance are found with the relative location
of the insulating materials layers in the walls.

Although the improvement of the building insulating properties produces considerable
energy savings, the measure is expansive and sometime not technically feasible. Wrap-
ping an interior wall with an insulating layer contributes to reduce the living space,
and contributes to create thermal bridges between the building indoor and outdoor.
As highlighted by Desjardin and Llorente [2009], the investment is often done once at

the arrival of the new households in the dwelling. As a consequence, the measure is
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expected to produce large energy savings in areas where the the residential migrations
is intense. In the urban region of Strasbourg-Kehl, the residential migration is intense
in the old city center for the young population (between 20 and 30 years old). This
category of population are usually students and renters. Thus, the ownerships of the
buildings are divided between several stakeholders and constitute a barrier to the build-
ing refurbuishments. At reverse, the 30 years and family population that have larger
purchasing power migrate at the periphery of the CUS territory and farthest out of
the limit of the metropolitan area in new dwellings [INSEE and ADEUS, 2012]. Thus,
the impact of such measure on the building energy saving is moderate. In contrast,
wrapping the outdoor wall with an insulating layer is often cited as an efficient energy
loss counter-measures as it prevents the formation of thermal bridges. However, like
in the study area, most of the dense city center in Furopean countries are old and
some part classified in the UNESCO world heritage list. Thus, the modifications of
the outdoor walls is often limited and drastic building codes have prohibitive effects.
As a consequence, such measure seems more adapted for new buildings for which the
energy performance is though at the design phases. Since the 2000’s, the Strasbourg
urban center follow a voluntarist construction policies. In 2012 the CUS territory (Eu-
rometropole) represents 40% of the new constructions of the Bas-Rhin district. The
new dwellings are for the largest share located in multi-family housings built in hollow
teeth, and brownfields. Thus, the improvement of the building energy performance
over the CUS territory is particularly driven by those new constructions, for which
the building codes and standards are particularly strict in terms of envelop energy
efficiency. However, INSEE [2013] reported an overall slow down in the construction

intensity.

e Increase in the windows size

We considered three scenarios in which the windows-to-wall fraction is increasing by
+25% (Scenario P2) and +50% (Scenario P3) compared to the scenario A0 (here,
recalled Scenario P1). Firstly, we investigated the changes of the windows-to-wall
fractions on the outdoor temperatures. Table 3.13 and figure 3.18 highlight that the
changes in the windows-to-wall fraction have few impacts on the temperature fields.
Scenarios P2 and P3 that are characterized by increasing windows-to-wall fractions are
quite warmer than the reference scenario P1. Nevertheless, the differences are small.
The distribution of the outdoor temperature again show two modes. Sharper peak

characterized the scenarios P2 and P3.
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Scenario P1 scenario P2 Scenario P3
Tmin -5.84°C -5.90°C -5.89°C
Tmax 17.79°C 17.49°C 17.57°C
Tmean 7.42°C 7.38°C 7.39°C
Tmedian 9.00°C 9.04°C 9.09°C
0 1.89°C 1.79°C 1.88°C
q3 12.49°C 12.47°C 12.66°C

Table 3.13: Statistical description of the distributions of the outdoor temperatures over
the CUS area (computed using the three months: February, March and September)
with changes in the windows-to-wall fractions. Tmin is the minimum temperature,
Tmax is the maximum temperature, Tmean is the temperature average, Tmedian is
the median of the temperature dataset and at last ¢; and ¢3 are the first and third
interquartile, respectively.
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Figure 3.18: Distributions of the urban outdoor temperatures for the three windows-
to-wall fraction scenarios.

To deepen the analysis, we took into account a single urban grid located at the center
of the main urban center. We plotted the average daily profiles of the air temperatures
for each scenario (figure 3.19). The differences in the near surface temperatures are
small between the scenarios. They are even greater in February compared to Septem-
ber. In February, the temperatures of the scenarios P2 and P3 are warmer compared
to scenario P1 through along the day. Nevertheless, the magnitude of the warming is
low (4+0.2°C). No differences are found in the average daily profiles of air temperatures
of the scenarios P2 and P3 except in the evening (from 4 p.m. until midnight). The
scenario P3 is then the warmest, and P1 the coldest. In September, no significant

differences are found between the scenarios.
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Figure 3.19: Average daily temperature profiles for February and September when
changing the windows-to-wall fractions. Be careful the scales are changed to account
for the slight differences in temperatures in February.

Secondly, we calculated the building energy requirements and the parameters of the
statistical model (the cold sensitivity P and base temperature Ty). They are presented
in table 3.14.
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P
EC3months (m T() Q3m0nth5 Q2010
(in GJ) MWh/°C) (in °C) (in GJ) (in GJ)
3,085,090.6
Case P1 3,607,156.1 |  -2316.7 12.14 03.9%) 12,823,834.8
Case P2 3,036,384.1 | -2326.8 12.32 4,092,010.8 | 13,173,869.9
(425%) (+8.72%) | (+0.43%) | (+1.47%) | (+3.87%) | (+2.69%)
Case P3 4,177,445.4 | -2474.7 12.31 4,348,580.0 | 13,993,813.5
(4+50%) (+14.65%) | (+6.59%) | (+1.39%) | (+4.01%) | (+8.72%)

Table 3.14: The building energy requirements and statistical model parameters for
each building windows-to-wall fraction’s scenario. The building energy requirements
outputted from the climate modeling system are EC3,,0nths- The building energy re-
quirements calculated from the cold sensitivity P and the base temperature T}, using
the statistical model are Qsmontns. The differences with the case PO are written in (%)
while the errors committed in the building energy requirement by using the statistical
model are written in (% ). The building energy requirements and statistical parameters
are always computed by considering the three selected months (February, March and
September).

The building energy requirements and the windows-to-wall fractions are positively cor-
related like in Arasteh et al. [2006]. Those scholars estimated that the increase in
the windows-to-wall fractions contributes to increase by +30% of the annual building
heating of several US study cases. They attributed the loss of energy to the heat con-
ductivity of the glazing system. It is possible that the radiative losses of the buildings
contribute to warm the air up. The buildings cold sensitivities (P) are increasing with
the windows-to-wall fractions. The cold sensitivity is the highest in the scenario P3
meanwhile the cold sensitivities of scenarios P1 and P2 are quite equal. In contrast,
the base temperatures (7}) increase slightly between the scenarios, and no differences
are found between the scenarios P2 and P3. The rise in the windows-to-wall fractions
modifies the buildings energy exchanges with its surroundings but does not change the

building thermal equilibrium.
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Figure 3.20: At left, sketch of the relationship between the building energy requirements
and the urban outdoor temperatures with changes in the window-to-wall fractions. At
right, the figures plot the relationships between the building energy requirements EC),
the cold sensitivity P, and the base temperature Tj,.

Figure 3.20 displays the relationships between the windows-to-wall fractions, and 1)
the building energy requirements, 2) the base temperatures, and &) the cold sensitivi-
ties, respectively. Building energy requirements and base temperatures are showed to
have linear relationships with the rise in the windows-to-wall fraction unlike the cold
sensitivities. A threshold effect is found for windows-to-wall fraction rises included
between +20% and +30%.

In conclusion, the change in the windows-to-wall fraction slightly changes the air tem-
perature. It increases the building energy requirements and rather impacts the cold
sensitivity. The latter is showed to have a non-linear relationship with the rise of the
windows-to-wall fractions. Across the study area, the changes in the windows size seem
only possible for new constructions for which the details of the building morphology is

already though at the design phases.

e Management of the thermostat set point temperature
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We simulated three scenarios by using the climate modeling system, in which we suc-
cessively increased the thermostat set point temperature of the room by +1°K. The
three scenarios are referred as scenario T1, T2 and T3, respectively. In the scenario
T1 the thermostat set point temperature is 19.85°C. In the scenario T2 it is equal to
20.85°C. Finally in the scenario T3 it is equal to 21.85°C.

Firstly, we investigated the impacts of the steady changes in the thermostat set point
temperature on the outdoor temperatures. The statistical description of the outdoor
temperature dataset is presented in table 3.15. The scenario T3 is the warmest sce-
nario when taking into account for the maximum, minimum and mean temperatures
given in table 3.15. The warming is, however, limited and equal to +0.43°C for the
mean temperature compared to scenario T'1. With the increasing thermostat set point
temperatures, the minimum temperatures are getting warmer, while the maximum
temperatures are getting warmer, but at a lesser extent between scenario T1 and T2

compared to scenario T'3.

Scenario T1 Scenario T2 Scenario T3
(T1=293°K) (T2=294°K) (T3=295°K)
Tmin -5.73°C -5.72°C -4.12°C
Tmax 17.93°C 17.81°C 18.18°C
Tmean 7.45°C 7.55°C 7.88°C
Tmedian 9.15°C 9.08°C 9.30°C
1 1.91°C 1.92°C 2.15°C
q3 12.59°C 12.90°C 13.12°C

Table 3.15: Statistical description of the distributions of the outdoor temperatures over
the CUS area (computed using the three months: February, March and September)
with changes in the thermostat set point temperature. T'min is the minimum tempera-
ture, Tmaz is the maximum temperature, T'mean is the temperature average, Tmedian
is the median of the temperature dataset and at last ¢; and g3 are the first and third
interquartile, respectively.

Clear differences in the distributions of the outdoor temperatures are evidenced in par-
ticular for the T3 scenario as showed in the probability distributions of the outdoor
temperatures 3.21. The variation of the cold and warm temperatures is the highest in
the scenario T3 compared to scenarios T1 and T2, and the maximum temperature is

the highest in the scenario T3 compared to the other scenarios.
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Figure 3.21: Distributions of the urban outdoor temperatures for the three thermostat
set point temperature scenarios.
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Figure 3.22: Average daily temperature profiles for February and September when
changing the building thermostat set point temperature. Be careful the scales are
changed to account for the slight differences in temperatures in February.

We then plotted the average daily profiles of the air temperature for each scenario con-
sidering a single urban grid located in the dense urban core of the main urban center.
The hourly average profiles of the air temperatures slightly vary between the scenarios
in February and in September.

In February, the air temperatures are always warmer (+0.2°C) in scenarios T2 and T3
compared to scenario T1. The average daily air temperature profiles of scenarios T2
and T3 are, however, quite similar. In September, the scenarios T2 and T3 have similar
averaged daily air temperature profiles: their hourly air temperatures are warmer for
scenarios T2 and T3 at night, and cooler in the morning compared to scenario T1. The
rise of the thermostat set point temperatures can increase the amount of anthropogenic

heat released in the atmosphere, which contributes to warm the air up in particular at
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night when the solar forcing is absent.

Secondly, we simulated the building energy requirements for space heating and calcu-
lated the statistical model from the ”building energy requirements-outdoor tempera-
ture” relationship. The building cold sensitivities P and the base temperatures TO for
each scenario are also given in table . The latter are then used to estimate the build-
ing energy requirements for the three selected months and the annual building energy
requirements for 2010. In addition, table exhibits the changes in the building energy
requirements with the changes in the thermostat set point temperatures. It is showed
that the changes in set point temperature and the building energy requirements are
positively correlated. Nevertheless, the building energy requirements between the T2
and T3 scenarios are quite equals when considering only the three months and quite
higher in scenario T3 when considering the whole year. The increase in the building
energy requirements with respect to the rise of the thermostat set point temperature

is thus, non-linear.

P
EQSmonths (Hl TO Q?months Q2010
(in GJ) MWh/°C) (in °C) (in GJ) (in GJ)
Case T1 | 3,607,156.1 | -2316.7 12.14 3’22’2%6 19.823.834.8
(T1=293°K) 2%
Cose T2 4,334,957.9 | -2352.89 13.01 4,515,435.3 | 14,508,175.3
(T2=204°K) | (T18:32%) | (+1.55%) | (+6.91%) | (+4.07%) | (+12.32%)
Ciase T3 4,341546.9 | -2489.26 13.51 4,528 714.0 | 16,305,759.8
(Ta=205°K) | (T1847%) | (+7.18%) | (+10.68%) | (+4.22%) | (+23.88%)

Table 3.16: The building energy requirements and statistical model parameters for
each building windows-to-wall fraction’s scenario. The building energy requirements
outputted from the climate modeling system are EC3,,0nns- The building energy re-
quirements calculated from the cold sensitivity P and the base temperature T}y using
the statistical model are Q3,,0nins- The differences with the case T1 are written in (%)
while the errors committed in the building energy requirement by using the statistical
model are written in (% ). The building energy requirements and statistical parameters
are always computed by considering the three selected months (February, March and
September).

In addition, one can observe in table 3.16 that the cold sensitivities of the buildings are
increasing by +1.55% and +7.18% respectively for the T2 and T3 scenarios. In paral-

lel, the base temperatures considerably increase (by +10%). The base temperature is
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the highest in the scenario T3. It is the lowest in the scenario T1. The change in the

set point temperature considerably influences the thermal equilibrium of the buildings

as well as the dynamical thermal behavior of the buildings with its surroundings.
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Figure 3.23: At left, sketch of the relationship between the building energy require-
ments and the urban outdoor temperatures with changes in the thermostat set point
temperatures. At right, the figures plot the relationships between the building energy
requirements EC| the cold sensitivity P, and the base temperature Tj.
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Figure 3.23 displays the relationship between the building energy requirements and the
urban outdoor temperatures as well as the relationships between the thermostat set
point temperatures and 1) the building energy requirements, 2) the cold sensitivities,
and 3) the base temperatures.

The relationships between the thermostat set point temperatures and 1) the building
energy requirements and 2) the cold sensitivities respectively, are non-linear. In con-
trast, the base temperatures and the thermostat set point temperatures are linearly

increasing.

As a conclusion, the changes in the thermostat set point temperature have moderate
impacts on the air temperatures. More, it considerably modifies the building cold sen-
sitivity and building thermal equilibrium. The building energy model is then highly
sensitive to the thermostat set point temperatures. Possible improvements in the mod-
eling of the thermal comfort in building energy model have been discussed in Peeters
et al. [2009]. These scholars proposed introducing behavioral variables to define the
thermal comfort range like the predicted mean vote of Fanger that set in relation the
thermal behavior of an environment with the metabolic heat activity and the clothing
insulation. The efficience of such measure is mainly controlled by the building occu-
pants behavior, their social and economical characteristics, and their environmental

concerns awareness.

3.8 Discussions and Conclusion

In the present study, we aim to test the ability of the WRF/ARW-BEP+BEM climate
modeling system to provide urban planners guidelines in terms of building energy re-
quirements. For this, we simulated the 2010 annual building energy requirements and
meteorological fields across the Strasbourg-Kehl urban region by using the WRF /ARW-
BEP+BEM climate modeling system. The BEP urban canopy parameterization en-
ables us to integrate the effects of the buildings on the local climate while the BEM
model computes the building energy requirements for room acclimatization. To con-
sider the feedbacks of the surface on the atmosphere, we set up four two-way nested
domains, which finest atmospheric grid resolution is 1 km. In addition, we took bene-
fits of the high-resolved regional land-use land-cover and dwelling databases to provide
accurate surface physical parameters to the climate modeling system and to design as

much as possible real building properties.
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We then compared the simulated meteorological conditions obtained over the finest
atmospheric grid with meteorological records taken at three stations located in the
URSK domain. Despite the low density of the meteorological stations, the simulated
air temperatures are in relative good agreement with the 2-m observed temperatures:
the correlation between the two temperature datasets is highly positive and the mean
biases are included between 0°C and -1°C. More, the simulated wind field is fairly re-
produced by the climate modeling system. In particular, the regional channeling effect
of the Rhine Graben is well reproduced by the climate modeling system. Neverthe-
less, further validations of the meteorological conditions are required to conclude on
the accuracy of the climate modeling system to reproduce the observed meteorological

conditions.

In an energy outlook, the regional air quality association (ASPA) provided the an-
nual estimated heating energy consumption of the city council of Strasbourg [ASPA,
2012]. The ASPA used a building stock approach considering fixe period of heating
and a climate severity index to introduce the effect of the climate variations in the
building energy consumption. The climate severity index is based on the definition
of the degree-days over the period of interest. The base temperature is the outdoor
temperature at which buildings are in thermal equilibrium and do not need heating
energy. It is predefined and set at 17°C in the ASPA study. The ASPA simulated
the outdoor temperatures using a 5x5 km resolution atmospheric grid over the study
area and a mesoscale climate model that does not include sophisticated urban canopy
parameterizations (AtmoRhena simulations).

The comparison of the simulated building energy requirements with the ASPA es-
timates revealed differences in the estimated annual heating energy equal to about
-23.55%. Since the ASPA used regional delivery energy census to correct their esti-
mates, we admit that their estimates are the closest from the real building energy
requirements of the study area.

Considering the whole physical assumptions and the numerous setting parameters,
the discrepancies between the studies are found acceptable. The system of climate
models gives good estimates of the building energy requirement over the study area.
We, nonetheless, identified two possible sources of discrepancies in the results: the
non-consideration of the urban canopy effects on the air temperatures, and the predef-
inition of the base temperature.

First, the daily temperatures are more frequently cooler than the base temperature in
our study compared to the ASPA study. It suggests that our climate modeling system

simulates either lower maximum temperatures or minimum temperatures compared to
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the AtmoRhena simulations of the ASPA. The roughness approach used in the ASPA
study is, however, acknowledged to overestimate the temperature during the day and
not fairly reproduce the nocturnal cooling rate at night, hence, the urban heat island
effect. Unfortunately the details of the degree-day calculation (the minimum and max-
imum temperatures) used in the ASPA study are not at our disposal to conclude on
this topic. Further comparison analyses are needed.

Second, a large discrepancy is found in the base temperatures chosen in the two studies.
Reviews of the scientific literature over the degree-day method pointed out that this
parameter is sensitive with the building characteristics and internal heat gains. We
then performed several sensitivity tests using the climate modeling system by succes-
sively removing the sources of internal heat gains. It seems that the building energy
requirements are highly sensitive to the modeling of the wasted heat due to the use of
equipment. It could be then assumed that the lower base temperature of our study
compared to the ASPA study can be due to the consideration of the internal heat gains

in the BEM building energy model.

From the simulations provided by the climate modeling system, we drew the outdoor
temperature-building energy requirement relationship found by former studies [Thom,
1954, Valor et al., 2001, Amato et al., 2005]. In particular, we used the simulated air
temperature and building energy requirements. This relationship is then sum up by
applying a linear regression (the statistical model). The statistical model is showed to
provide the fundamental building energy performance parameters: the cold sensitivity
P and the base temperature Ty. The first measures how sensitive are the buildings
energy requirements with the temperature variations (the slope of the linear fit). The
second is the temperature at which the energy gains offset the energy losses (intercep-
tion of the linear fit with the temperature axis). Our method has the advantage to not
define a priori the base temperature that may vary according to location on the Globe,
fuels and building types [Amato et al., 2005].

The statistical model is found to well appreciate the building energy requirements.
The discrepancies in the estimates of the building energy requirement are less than
5%. We, therefore, explored the potentiality of the climate modeling system and sta-
tistical model to assess some building energy conservation strategies. Indeed, compared
to other methods, numerical physically-based methods allow testing possible future by
considering one by one the changes in the one hand in the built-up patterns, and in the

second hand in the surrounds and building radiative, thermal, and aerodynamic prop-
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erties. We optimized the computational time required to draw the statistical model by
testing the sensitivity of the statistical model with the number of simulated months.
We then successively used the systematic combination of three months in a year. It
is therefore showed that the daily simulations of air temperature and building energy
requirements over three months (February, March and September) are enough to com-
pute the parameters of the statistical model and the building energy requirements of

a study area for any period (here, a year).

Among the conservation energy strategies, we simulated the effect of cool roofs, en-
hancing wall insulation properties, increasing windows size, and the effect of increasing
thermostat set point temperatures on the building energy requirements. Urban green-
ery and urban extension were excluded from the analysis. Most of the studies consider
systematic additions of green areas in urban grids that do not allow considering real-
istic planning strategies. Moreover, the tile approach that considers distinct tiles in
each urban grid and distinct land surface models for each tiles prevents the assessment
of urban greenery strategies. Grimmond et al. [2010] and Grimmond et al. [2011] con-
cluded the intercomparison program of the urban energy balance model by stating that
the latent flux is the least well modeled fluxes in climate modeling systems. In the tile
approach, each land surface models indeed calculated the skin temperature and the
surface heat fluxes (latent and sensible heat), but the two surfaces do not interact be-
fore the first vertical level of the atmospheric grid. Hence, it is not possible to account
for the shading of the buildings walls by tree canopies, and cooling effects of vegetative
surfaces that act in a radius of 50 m to 100 m downwind the green areas. The effects
of the urban development and greening strategies will be, however, investigated in the

two next chapters.

For the whole scenarios, the urban outdoor temperatures remain unchanged, unless
each scenario shows local changes in the near-surface temperatures. In contrast, the
building energy requirements change with the considered scenarios. Building energy
savings are reported when adding an insulation layer in the construction system of
massive walls whatever the position of the insulation layer in the walls. In opposition,
other types of scenarios reported building heating energy increase. The increase in the
building energy requirements is the greatest when changing the thermostat set point
temperatures and the lowest when increasing the roof albedo. The cold sensitivity P of
the statistical model is showed to be always more sensitive to changes in the buildings
properties than the base temperature Ty. The cold sensitivity is positively correlated

with the building energy requirements except for the wall insulation and roof albedo
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scenarios, for which the building sensitivity with the air temperature is reduced. The
cold sensitivities P also show non-linear responses to steady changes in the building
properties. We proposed that this threshold effect is due to the building insulating
properties and internal heat gains. In contrast, the base temperature (1) is less sensi-
tive to changes in the buildings properties unlike the changes in the building insulating
properties and thermostat set point temperatures. Those two set of scenarios act on
the internal heat gains. The first influences the heat transmitted and stored in the
building materials. The second influences directly the activation of the heating sys-
tem. Unlike the cold sensitivity, the base temperature shows linear relationship with
steady changes in the building properties.

In conclusion the climate modeling system is able to estimate realistic building energy
requirements. It is showed to be more sensitive to internal buildings characteristics
than external buildings properties (e.g. albedo, windows system). The climate model-
ing system therefore insists on two energy conservation strategies: the design of passive
energy buildings with low heat transmittance and high heat admittance, and behavioral
strategies that reduce the thermostat set point temperature. The thermostat set point
temperature is often showed to be in relation with the socio-economic characteristics of
the household. Desjardin et al. [2011] found higher thermostat set point temperature
in aging households (more than 65 yr.) and family. Other studies also found that the
thermostat set point temperatures is well correlated to the price of the fuels and house-
hold income. However, building energy models implemented in mesoscale atmospheric
model such as the BEM model often neglect the socio-economical dimension of the
building energy requirements. Further improvements could be achieved by considering

adaptive thermostat set point temperatures and windows opening algorithms.
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Chapter 4

Impacts of urban development
policies on building energy

requirements-Part I



Abstract

Urban sprawl is recognized as the most land consuming urban form [Haines, 1986]. Tt is
also acknowledged to weaken the biological diversity and enhance the city-scale Urban
Heat Island phenomenon. With climate change, the latter is expected to harsher the
biological thermal stress and modify the building heating or cooling energy use pattern
[Hunt and Watkiss, 2011]. The control of residential developments and the preservation
of green lanes are measures often proposed to counter these negative effects. The aim
of this study is twofold: i) quantify the influence of those land planning policies on
the urban climate and the building energy requirements; i) assess the ability of the
numerical physically-based urban climate modeling systems to provide guidelines for
urban planning. A modified version of the urban growth American cellular automata
SLEUTH* is used to simulate six contrasted archetypal urban development scenarios.
The MorphoLim and Graphab software applications developed at ThéMA laboratory
(Besangon, France) help translating the urban planning policies into SLEUTH* through
the creation of maps of non-developable lands. MorphoLim delineates morphological
built clusters. Graphab determines forested areas essential for ensuring the ecologi-
cal network connectivity. Afterwards, the six simulated built-up patterns provide the
surface boundary conditions of an urban climate modeling system that includes the
WRF American fully compressible and non-hydrostatic mesoscale atmospheric model
of Skamarock et al. [2008], the building effect parameterization BEP of Martilli et al.
[2002], and the box-type building energy model BEM of Salamanca et al. [2010]. The
study is carried on over the Strasbourg-Kehl urban region. The construction of the ur-

ban development scenarios and the resulting built-up maps are presented in this part I.

Keywords: Urban climate modeling-Urban planning-Urban growth scenarios-Building

enerqy
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4.1 Introduction

In France after the World War II the urban growth has been rapid. Since the 80s, it
has been accompanied by the deconcentration of a large share of the urban dwellers
to the nearby less dense suburbs and periurban areas [Bessy-Pietri, 2000]. The spatial
extension of urban agglomerations has increased several times faster than the popula-
tion. Even if this phenomenon is nowadays slowing down, the renewal of traditional
values and activities that are associated with the rural way of life, the desire of nature,
and the household wish for a periurban detached family housing, still contribute to ur-
ban sprawl [Charmes et al., 2009, Desjardin et al., 2011, Bailly and Bourdeau-Lepage,
2011, ADEUS, 2012¢]. As a consequence, new built-up areas represent about 610,000
km? each 7 years according to the 2006-2009 Agreste study [Agreste, 2011]. Besides
the land consumption for housing and due to the built-up areas discontinuities, trans-
portation and services infrastructures are the most land consumers. Such landscape
fragmentation dramatically weaken the ability of the landscape to support ecological

flows and hence, the biological diversity [Forman, 1995].

Altough the biodiversity conservation was initially a supra-national issue and only con-
cerned remarkable flora and fauna, a change in the paradigm is operating [Franchomme
et al., 2013]. Urban sprawl induced intermeshed types of land-uses where human ac-
tivities and natural lands cohabit. In such a hybrid nature, generalist species that
provide ecological services for the humans receive more and more recognitions. They
have a concrete reality as part of the urban dwellers every-day environment [Blanc,
2008]. Moreover, according to Sizling et al. [2009] and Gaston and Fuller [2008], they
are much better correlated with the overall spatial patterns of species richness than
are other species. As a consequence, the role of small reserves in the functional eco-
logical networks is pointed out: scholars assume that they provide a large scale offer
for species migrations and land diversity [Forman, 1995]. Meantime the role of local
authorities, in particular urban local authorities, in the ecological preservation issues
is increasing [Lepart and Marty, 2006]. Bryant [2006] and Berges and Avon [2010]
concluded that urban ecological greenways certainly contribute preventing from land-
scape fragmentation and preserving biodiversity. They are supposed to act as a source
or sink of species and abiotic matters for the ecological background as well as a path
between two disjointed habitats. Selmi et al. [2013] pointed out other ecological ser-
vices provided by the urban green areas in their review of the scientific literature of
the 1990-2011 periods. Mehdi et al. [2012] portrayed the evolution of the green areas
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in the French urban context. For these authors, the Grenelle 2 marks a milestone in
this evolution of the role of green areas in the urban context: green and blue infras-
tructures are considered as a complete urban planning instrument. The biodiversity
preservation concerns in the Agenda 21 and the PADD (spatial planning guidelines for
sustainable development), achieve completing the set of urban planning instruments
at disposal of the local authorities [Bonin, 2006, CERTU, 2010, Godet, 2010]. One of
the main urban sprawl countermeasures is the control of the residential growth. Two
spatial planning policies get the upper hand among all possible policies: urban renewal
and urban densification. Urban renewal consists in a land redevelopment program. It
involves city-initiated re-localization of economic activities and population, as well as
urban fabrics demolition/reconstruction. Since 2000, the French SRU law assists the
urban renewal operations. It abolishes the minimal threshold size of building lots for
sale and encourages the social and urban diversity within renewed urban fabrics. In the
other hand, urban densification policies spur the development of new urban areas at the
vicinity of existing constructions. The postulate is that an increased density may favor
the use of public transport services, soft vehicles, and provide a good access to a larger
offer of urban services and amenities. In such policies, particular attention is paid to
the articulation of the built-up and natural ecosystems to facilitate the flows of per-

sons, soft vehicles and species and provide access to natural amenities [ADEUS, 2012a].

In parallel, the forthcoming fossil fuel depletion and climate change issues have high-
lighted the interactions between the fossil fuel combustion, human activities and the
global climate. The magnitudes of climate change impacts are such that adaptation
policies are required. Local authorities, as they have a thorough knowledge of the land,
are expected to play a key role. Particular focuses are given to the buildings sector
(about 40% of the total final energy consumption mainly used for space conditioning
[ADEME, 2012]) and the urban areas (70% of the total world energy production, more
than 50% of the world population [IEA, 2008]). A fortiori urban areas experience a
particular macro-scale phenomenon known as the urban heat island (UHI). It consists
in the presence of a warm and fully developed turbulent boundary layer downstream
the dense built-up urban core that could be about +10°C warmer than the nearby
vegetative surfaces. Hence, the UHI may modify the building energy consumption pat-
terns both in time and space and harsher the thermal stress induced by heat waves
[Smith and Levermore, 2008]. By sealing through pavements and buildings more and
more natural lands, urban sprawl is expected to enhance such a phenomenon.

Therefore the question is: in which extent the urban sprawl countermeasures (e.g. ur-

ban densification, preservation of the ecological network) can modify the local climate
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and hence, the building energy consumption patterns? Are such policies a way to build

more sustainable cities?

4.2 Research objectives

The first objective is to dynamically assess the retrofits of urban sprawl countermea-
sures on local climate and building energy requirements in the context of urban de-
velopment. During the past decades with climate change, local authorities are more
and more asking for quantitative indicators on building energy efficiency, greenhouse
gas emissions, air quality, and so on. Accordingly, climate modeling systems developed
within the scientific communities are often viewed as appropriate tools to dynamically
address complex urban environmental issues [Chen et al., 2011]. They include a re-
gional atmospheric model that provides the meteorological field over a region of about
ten thousand square kilometers, an urban canopy parameterization that represents the
effects induced by the buildings on the dynamics and thermodynamics of the lower
layers of the atmosphere (the canopy, the atmospheric layer extended from the ground
up to the roof tops). In addition the urban canopy parameterizations are coupled with
simplified building energy model that compute the building energy requirement for
space heating or cooling induced by the activation of the Heat Ventilation Air Condi-
tioning system, and provide the influence of the building energy budget on the regional
atmospheric energy budget. The climate modeling system requires two sorts of data:
the atmospheric conditions at the border of the region, that are often provided by
global climate models, and the specification of the surface thermal and aerodynamic
properties (e.g. roughness, surface skin temperatures, albedo, emissivity, and so on)
inherent to each and land cover type present within the domain. The land cover types
are usually provided by satellite images. Thus the surface properties only vary accord-
ing to the up-to-date of the land cover databases, and is not in concordance with the
dynamic of the land cover changes, and urban growth. The idea is then , like in 4.1 to
couple an urban growth model to the climate modeling system so as to consider the
dynamic of the residential development.

The second objective of this research is then to test the ability of such climate modeling
systems to consider sub-grid scale changes of land-surface properties that are of same
order of magnitude than the scales of planning practices. Indeed, the land cover type
of a grid is usually assigned by determining the dominant land cover type of the lowest
atmospheric grids according to a predefined urban cover threshold. This urban cover

threshold is here set equal to 20%, meaning that a grid is considered as urban if more
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than 20% of its surface is of urban nature.
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Figure 4.1: Scheme of the chain of models used to assess the effect planning policies
on the building heating energy requirements. The inputs of each system of models are
surrounded by a dashed circle, the outputs are written in black italic fonts and can
be spotted by the black arrows. Building, regional and global represent the different
scales involve in the resolution of this complex issue.

We divided the chapter in two parts. The first one is dedicated to the construction of
urban development scenarios that integrate urban sprawl countermeasures The second
is more specifically dedicated to the climate modeling system’s settings and building

energy requirement simulations.

4.3 Method and tools

A numerical approach is adopted in this study. It allows testing dynamically, by taken
into account several scales, the incidences on local climates and building energy re-
quirements of 6 archetypal and contrasted urban development scenarios. For this, a

set of geographical computer-based models was consecutively used.
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4.3.1 Presentation of the archetypal urban development sce-

narios

According to Galster et al. [2001] five types of urban sprawl exist: compact, diffusive,
linear, poly-nucleated sub-units, and stepping path urban sprawl patterns. The current
study focuses on the diffusive (no control of the residential growth) and compact types
of urban sprawl. Two types of compact urban development that represent two current
urban policies are distinguished. First, the urban renewal promotes the densification
of the inner core of the agglomerations (e.g. hollow teeth, vacant lands). Second, the
urban densification favors the developments close to the existing built up areas at the
fringe of the agglomerations or at the vicinity of transportation infrastructures and ser-
vices. The resulting archetypal urban development scenarios then come in two versions.
Each of them corresponds to the preservation or not of the ecological habitat. Table

5.1 summarizes the main characteristics of the six simulated urban planning scenarios.

During the past, land use change models have played an important role for understand-
ing the mechanisms creating land use changes. They are now expected to provide a
broad opportunity to evaluate land use policies and help visualizing alternative futures
[Chaudhuri and Clarke, 2013]. Cellular automata (CA), a type of mechanistic models,
are the most used. As Batty et al. [1999] pointed out, despite their simplicity CA mod-
els achieve to capture the whole uncertainties and complexity of real urban systems.
They contain both the spatial and time dynamics. The global form emerges from local
actions with no hidden hand directing the macrostructure: like urban systems, CA
models are self-organizing systems. Thus, a CA model has been used in this study to
simulate the spatial extension of the built-up surfaces over a domain of interest. The
simulation period covers few decades. The Doukari et al. [2013] modified version of the
American cellular automata SLEUTH* model [Clarke, 2008, Clarke et al., 1993] was
selected for the sake of reinforcing the collaborations between two research teams of
the LIVE laboratory of Strasbourg.

As the six archetypal urban growth scenarios should reflect the actual urban devel-
opment control policies, two geographic software applications have been successively
used to map the non-developable areas. The ThéMA Laboratory of Besancon has de-
veloped these two software applications. First, MorphoLim is a geographical software
dedicated to the identification of the morphological boundary of built clusters [Tan-
nier et al., 2011]. The second software application, Graphab [Foltéte et al., 2012], is a
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Scenarios

No Preservation of the
ecological network

Preservation of the ecolog-
ical network

Spontaneous development

Except non-developable
lands that are included
in the local development
plan, urban sprawl is
totally uncontrolled. New
urban  settlements are
spread over the territory
to the detriments of the
ecological landscape.

(Scl1)

Urban sprawl is totally
uncontrolled. New ur-
ban settlements are spread
over the territory. How-
ever the forested areas
that ensure the ecological
network connectivity are
preserved from the urban-
ization. (Sc2)

Compact development

Except lands that are in-
cluded in the urban plan-
ning instrument, new ur-
ban units fill the hollow
teeth of the morphologi-
cal agglomerations to the
detriments of natural ar-
eas. No refurbishment,
demolition and construc-
tion phases are assumed.
Constructions close to ex-
isting built-up areas and
transportation infrastruc-
tures represent the fact
that the urban growth is
well controlled. (Sc3)

New urban units fill the
hollow teeth of the mor-
phological agglomerations
No refurbishment, demo-
lition and construction
phases are assumed. The
urban growth is well con-
trolled and urban densi-
fication policies are as-
sumed. New urban units
settle down close to the
existing built-up area and
transportation infrastruc-
ture. Forest areas es-
sential to ensure ecolog-
ical flows over the eco-
logical network are pre-
served from the urbaniza-
tion. (Sc4)

Moderately compact de-
velopment

Except  non-developable
lands that are included
in the local development
plan, the urban sprawl is
concentrated close to the
existing built-up areas
and transportation infras-
tructures at the fringe
of the morphological
agglomerations. (Scb)

New constructions are lo-
cated at the fringe of the
morphological agglomera-
tions close to the existing
built-up areas and trans-
portation infrastructures.
Forested areas that are
relevant for the connectiv-
ity of the ecological net-
work are preserved from
the urbanization. (Sc6)

Table 4.1: Description of the six urban planning scenarios
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landscape graph-based software dedicated to landscape networks characterization. It
allows the identification of ecological patches that are relevant for ecological functional

flows and that should be preserved from urbanization.

4.3.2 The SLEUTH?* model

The SLEUTH* version of Doukari et al. [2013] is a modified version of the American
SLEUTH Urban Growth Model [Clarke, 2008, Clarke et al., 1993] , an open source and
collaborative cellular automata model. It has been adapted and used by Aguejdad et al.
[2012] and Masson et al. [2013] for the behalf of the ACCLIMAT project to perform
urban growth pattern simulations over the Toulouse great city. Recently, SLEUTH*
has been install in the LIVE laboratory for developing new expertise in urban modeling
simulations. Unlike the version of Clarke [2008] that has been applied to almost 66 dif-
ferent cities and regions, this version has few validation cases. In the author knowledge
it has only been applied over the Toulouse great city. It aims to simulate the urban
growth according to a fully controlled mode that can be spatially allocated in terms of
quantity and patterns according to predefined contrasted prospective scenarios. Op-
posite to the SLEUTH model that relies on the use of two or more historical urban
maps for calibrating the growth rate and the transition rules [Gazulis and Clarke, 2006,
Dietzel and Clarke, 2007], the SLEUTH* model requires directly as inputs the amount
of constructible lands and the definition of five calibration coefficients (each of them
ranging from 0 to 100) that influence the degree to which each of the four growth rules
influences the simulated urban growth. The four urban growth rules are: the dispersed
urban growth where urban settlements are spontaneous, the new spreading center, the
road-influenced growth, and the edge growth. It thus enables us to design scenarios of
urban development in a fully-control mode. As the Clarke [2008] version, SLEUTH*
requires five maps as inputs. The existing built-up map represents the actual extension
of the urban areas. The exclusion layer inventories lands unlikely to be built up (e.g.
water bodies, protected area, roads and so on). The slope map acts as a supplementary
constraint. The road map, as well, is used to consider transportation integrated ur-
ban planning policies. The hill shade maps is only used for representing the results of
the urban development simulations. Unlike the precedent version, SLEUTH* does not
differentiate the types of roads according to their attractiveness for the urban devel-
opment. Furthermore it considers an additional layer that represents socio-economic
factors’ influences (the housing rent, the land prices, the transportation time-distance

or other socio-economic cost-distances). Like in other CA models, SLEUTH* does not
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allow the simulations of the urban renewals rules.

As in any cellular automata model, the land use is divided into grid cells whose be-
haviors and characteristics are determined by their own state and transition rules that
depend on the state of the neighboring grid cells. Each run, an iterative Monte Carlo
process is firstly applied for selecting a set of cells on which the transition rules are
then applied. No preferential urban growth directions (unlike the SLEUTH-3r version
of Jantz et al. [2004]) are considered. For each scenario, different combinations of
transition rules are applied and defined according to parameters, which values range
between 0% and 100%. Those parameters allow users to set the percentage of land
that will be developed according to each transition rule (i.e. the spontaneous urban

growth, new spreading centers, road-influenced growth, edge growth).

4.3.3 MorphoLim

The identification of the boundary of urban agglomerations is challenging. No general
consensus exists on the definition of cities’ limits. It usually depends whenever geomet-
rical, functional or operational criteria are considered. Geometrical criteria methods
compared to others present the advantage to be transferable from one country to an-
other, as they are not influenced by socio-economic criteria. According to the literature,
the GIS dilution and erosion method seems the most employed [CERTU/URB, 2008,
Loriot, 2007]. It consists in applying successively predefined distances threshold over
2D vector built elements. First the built elements are aggregated together. Then,
a second distance threshold is applied to make the building envelop be closer to the
buildings. The Direction Régionale de I’équipement [DRE, 2008] and the CERTU/URB
[2008] advocated a distance threshold of 50 m /50 m that could be adapted according
to the nature of the buildings (e.g. commercial and industrial: 100m/100m). Other
methods rather utilize the maximum distance between buildings to identify the spa-
tial building continuity. Meanwhile the INSEE imposes a distance threshold set by
definition at 200 meters. However, as Tannier et al. [2011] stressed, such methods are
questionable for European cities that are rather characterized by irregular patterns at
their fringes. Overall they questioned the existence of the same distance threshold for
all the cities. As a consequence the authors proposed the use of fractal geometry to

identify a distance threshold specific to each city.

To identify the distance threshold, an iterative dilation process is applied on the 2D
vector building elements of the BDTOPO ®of IGN. At each dilation step, the size of
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the dilation buffer increases geometrically (e.g. Minkovski dilation). Each built ele-
ment represents first a single cluster that is surrounded by a buffer zone of a certain
diameter. After a while, each cluster is grouped together until only one cluster remains
and gathers the whole building elements of the study area. In the fractal mathematics
the number of built clusters N is linked to the size of the dilation buffer ¢ according to

a power law 4.1.

N = ae” (4.1)

On a log-log plot the relationship defined in 4.1 results in a straight line whose slope
D is the fractal dimension. It translates how invariant across scales are the built-up
patterns. For real patterns, one should identify the point at which the dilatation curve
drifts the most from the straight line to define the distance threshold that allows the
identification of coherent built clusters. For this, the dilatation curve is modeled by a

polynomial fitting.

4.3.4 Graphab

The functional connectivity measures the ability of a landscape structure to facilitate
the species movements across landscape patches or to support other ecological flows
[Taylor et al., 1993]. The common postulates are that flows of organisms between sub-
populations of a metapopulation are proportional to the size of the reserve patches and
to the inverse distance between two patches. Large reserve patches provide space for
numerous individuals and species’ varieties (abundance). Recently, Kindelmann et al.
[2005] demonstrated that the landscape between two reserves also plays a significant
role on the population flows by favoring the species motions or by inhibiting it (e.g.
roads) while Forman [1995] pointed out that intermediate and smaller patches may
optimize the population flows by connecting two disjoint reserves. As a consequence,
the structure of both the habitat matrix and the ecological background are important.
In this context graph theory became establishing as a promising way to analyze land-
scape connectivity [Cantwell and Forman, 1993, Urban et al., 2009b, Minor and Urban,
2007, Bunn et al., 2000, Urban and Keitt, 2001, Urban et al., 2009b] compared to pop-

ulation dynamics models that require mortality, fecundity and other various biological
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parameters for a single focal species. A graph defines a set of nodes connected by
links. In landscape ecology, nodes represent a discrete element of a landscape (a habi-
tat patch) that provides space for a single focal species. Basically, habitat patches are
characterized by the geographical position of their barycenter and their area. Other
ecological information such as the abundance of species, the species capacity of the
reserve could be added to give more ecological richness to the graph. Links repre-
sent functional connections between a pair of habitat patches. They could be directed
(edges) and weighted. Non-directed links mean that the population fluxes are symmet-
ric from a patch i to a patch j. The weight could be the Euclidian distance between
two habitat patches meaning that the ecological background is isotropic, or least cost
path distance when the landscape mosaic is assumed to be more or less permeable to
the species motions. The degree of human disturbance (e.g. noise, road traffic and
s.0.) on the landscape is one such. A sequence of nodes and links defines a path when
nodes are crossed only once. The path length is the sum of the weight of all the links
of the path and the maximum length defines the diameter of the graph. This diameter
can be adapted to the focal species behavior by accounting for a threshold distance

that represents the maximum dispersal distance of a focus species.

Graphab 1.1 software [Foltéete et al., 2012] is a GIS integrated application that helps
analyzing the ecological network and its connectivity using landscape graphs. It com-
putes several connectivity indexes that qualify the degree of relationship between a pair
of nodes. The global Probability of Connectivity Index (PC) is one such (4.2). It has
been first designed by Pascual-Hortal and Saura [2007] and then used in the ecological
network studies of Tannier et al. [2012] and [Saura and Rubio, 2010] for instance. It

quantifies the probability of two randomly located individuals to be connected.

- Z?:l Z?:l aiajpfj

PC i’

The subscripts ¢ and j refer to habitat patches among a total n of patches. The area
of the habitat patches is a while A is the area of the whole studied area. At last, pj; is
the maximum probability of all possible paths between patches ¢ and j. It is 0 for an
isolated patch, 1 for i=j and p;; for other cases. The probability of dispersal for indi-

viduals between to patches 7 and j is inversely proportional to the distance d;; between

patches ¢ and j that can be computed with an exponential function like: p;je=%i.

Where a is an extinction coefficient included between 0 and 1 computed by Graphab
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setting the p;; at a given probability (5%) and considering the least cost distance be-

tween 7 and j. It expresses the intensity of the decrease of the dispersal probabilities.

The process used for identifying the patches or edges that ensure the connectivity of the
network is called prioritization. We only consider patches in this study. To prioritize
habitat patches Pascual-Hortal and Saura [2007] proposed the dPCk index 4.3, which
corresponds to the variation of the PC index when iteratively removing each patch &

from the graph and analyzing its decomposition 4.4.

PC - Pcremove
dPCy, = e " %100 (4.3)

The dPCk could be then decomposed into a dPC flux (term I in 4.4), a dPC intra
(term II in 4.4) and a dPC connector (term III in 4.4) [Saura and Rubio, 2010].

dPCk — dPCfluz k + dPCmtra k + dPOconnector k (44>

Term 1 Term 11 Term 11T

With:

dPCflu%k = Z Z aiajp;‘j (45)

i=1 j=1
For i # 7 and 1=k or j=k
[ ]
dPCintra,k = Z Z CLZ‘CL]‘ (46)
i=1 j=1
[ ]

dpP connector k — Z Z azajpz] (47)

=1 j=1

For i # k and j #k and when k is part of the maximum probability path

The term I in 4.4 and described in 4.5 corresponds to the area-weighted dispersal
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flux from a patch i to all other patches j in the landscape where k£ could be either
the starting or the ending patch of that flux. This fraction measures how well the
path is connected to the others assuming that large patches provide space for a higher
ecological diversity and hence, individuals more often cross them [Saura and Rubio,
2010]. The term II in 4.4 and presented in 4.6 measures the intra-patch connectivity
when i=j=Fk. It is only due to the patch area and no links are considered. Note that
the dPC}, is dPCiptrq when k is an isolated patch. At last the term III in 4.4 and
defined in 4.7 measures the contribution of patch £ to link other habitat patches as a
connecting elements. This fraction depends on the topological situation of the patch &

in the graph and how the patch is located on a "best” path for dispersal.

4.4 The case study

4.4.1 Presentation of the study area

The study area is focused on the French part of the urban region of Strasbourg-Kehl
(URSK). Figure 4.2 shows the study area also called the URSK domain. The URSK
is located in the flat area of the Rhine Graben and is mainly influenced by the urban
pole of Strasbourg (48°35’05” N and 7°45°02”E, elevation: 132-151m).

—  National border
3 CUslimits
| Urbancasses:
| B Commercial & industrial estates
I Highintense residential
B Low intense residential
B Built-up areas with no distinction
between the three classes mentioned above

Y-atmopsheric grids

'% (;her «natural» classes:
- Water bodies
*‘ .“P ™80 croplands mixed with natural vegetation mosaic
' h' | Croplands
' 'l t ‘ I Grasslands
I shrublands
rf) (S I Mixed forest
B Decideous boradleafs forest

- Evergreen needleafs forest

2 6 10 14 18 22 2 Author: Kahler (2015)
X-atmopsheric grids

Figure 4.2: The Strasbourg-Kehl urban region "URSK domain” and its location in
France

The Strasbourg municipality represents about 60% of the population of the Strasbourg
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city council (CUS), an attractive tertiary and industrial urban community. The CUS
gathers 28 municipalities and accounts for 43% of the Bas-Rhin district population and
45% of its active population [CUS, 2005]. Even though the CUS population increases
(+10% between 1990 and 2006 according to " ASPA” [2006]), the migratory balance is
negative. Among migrants, the 18-24 years olds represent a large share of the incoming
fluxes while the 30-40 years old dwellers’ outward migrations grab the deficit in the
migratory balance. Home property is the main motivation for those young families. In
residential locations, towns at the periphery and owning to the Strasbourg SCOT are
the most attractive but the major share of those new migrants continues commuting
every day to the CUS area for working [ADEUS, 2012a] nourishing the urban sprawl.
For practical reasons and even if 85% of the CUS population and in particular the Stras-
bourg population commutes at least once in a year to the nearby Germany [ADEUS,
2011], the German part of the studied area (27,500 ha or about 30% of the URSK
domain) is out of the urban sprawl considerations. Planning policies, administrative
limits and non-spatial variables like behavioral ones indeed differ drastically between

France and Germany.

Over the French part of the URSK, one third of the lands are built up (source: CI-
GAL BdOcs_2008). In built up areas, transportation infrastructures, retail services
and production units account for 71 % of the built-up areas while buildings and urban
green areas account respectively for 22% and 7%. The remaining available lands are
mostly used for speculative and intensive agriculture (e.g. maize, hops, and vineyards).
At last, agricultural and the natural lands represent respectively 47% and 16% of the
URSK area. Approximately 29% (~18,590 ha) of them are protected by the 1992 in-
ternational Ramsar convention on water resource and ecosystem preservation, the 1971
Bern convention on the wild life protection, and the European commission directives
Bird, Habitat and Water (79/409/CEE, 92/43/CEE and 2000/60/CE). Thus, with the
presence of the Rhine River at the East, the cultivation of vast fertile loess soils at the
West of the Strasbourg agglomeration (e.g. Kochersberg) and the protection of vast
areas, the urban development is drastically restrict originating in turn a high human

pressure on the developable natural areas.

The climate of the region is a depredated oceanic one with well-defined seasons ac-
cording to the Koppen classification (type Cfb). The region is also characterized by
particular high frequency of foggy days and snow. Wind velocities are low to mod-
erate (<3m.s™!') and the winds are often channeling by the Rhine Graben oriented
North/South [Fischer, 2001]. The intensive field campaign of Fischer [2005] carried on
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in August 1999 on 26 meteorological stations stressed the presence of a summer urban
heat island effect over the Strasbourg agglomeration particularly intense between 5 pm
and 10 pm. Urban stations were about +7.5°C higher than the rural station of Hegeney
(40 km from Strasbourg) when low North-Eastern wind speeds (>2m.s™!), clear sky

and stable atmosphere conditions were observed.

4.4.2 Settings of the urban growth model SLEUTH*

4.4.2.1 Quantification of the urban growth

The CIGAL cooperation gathers a broad set of public stakeholders that produce and
treat the spatial information over the Alsace region. They produce in particular a very
detailed land use land cover maps named BdOcs for the year 2000 (BdOcs_2000) and
2008 (BdOcs_2008) that can be exploited at scale 1:10,000. The maps are available
for the years 2000 and 2008. The BdOcs_2000 is the result from the IRSS Indian
satellite images interpretations. The resolution is 23 m in the multispectral bands
and 5.8 m in the panchromatic. Due to its low quality, the spatial information has
been corrected with the 1997 orthophotographies database of the IGN which issued
from the LANDSAT ETM+ satellite image (15 m) when no land mutations have been
stated. When land changes are observed only mutations of 2,500 m? are reported
(SIRS 2011). The BdOcs_2008 is more accurate. It combines the 2.5 m resolved SPOT
5 satellite images treatments (taken in October 2007 and February 2008) with the
2007 orthophotographies of IGN (spatial resolution of 50 cm) and local land registries.
Since the BdOcs_2008 is more precise, the BdOcs_2000 has been made coherent with
the BdOcs_2008 so as to build a 2008-2000 lands’ mutations database over the region
Alsace. During the process, the finest levels of information on the land use of the
BdOcs_2008 have been lost. The built land mutation database only inventoried land
changes of more than 2,500 m? according to the CIGAL technical note of 2011. A GIS
extraction of the 2008 and 2000 built up areas per municipalities that are included or
intersect in/by the URSK domain has been done. In total 745.75 ha have been con-
verted into built-up area in 8 years (yr.) leading to a land change rate of 93.22 ha/yr.
For comparison the Toulouse metropolitan built up area gains +1400 ha/yr according
to Aguejdad et al. [2012]. The land conversion is particularly intense at the North-West
of the second crown of the Strasbourg metropolitan area. For instance, Wiwersheim
(+44.59%), Innenheim (434.63%), Oberschaeffolsheim (+18.95%) and Eckbolsheim
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(+15.9%) municipalities are characterized by a rate of change of more than 10%.
This result is in accordance with the DATAR publications (www.datar.gouv.fr) that
report land changes of about 890 ha between 2000 and 2006 using the Corine Land
Cover European database (the database reports built up area of more than 25 ha and
linear elements of more than 100 m width). The results also correspond with the
2002-2007 period average urban growth rate reported by the Strasbourg local planning
agency that is 120 ha/yr. for the SCOTERS area [ADEUS, 2012a]. Considering this,
1864 ha are expected to be built by 2030.

4.4.2.2 Input maps of the SLEUTH* model

Basically the SLEUTH* model requires 6 input maps: the existing built pattern, the
non-developable land, the transportation networks, the hill shade, the slope in percent-
age and the socio-economic cost map. The socio-economic factors are not considered
in this study while the hill shade map is used for representing the SLEUTH* outputs.
The BdOcs_2008 is used to map the existing built pattern and the transportation in-
frastructure. All built-up lands in the BdOcs_2008 land cover are included in the map
of the existing built-pattern except motorways and railroads that are included in the
transportation map, and urban green areas and brownfields that are part of the non-
developable land maps. The 2.5 m resolved regional digital terrain provides the slope
in percentage of the studied area. To such extent, the little fraction of no data present
in the South East part of the studied area was corrected iteratively by taking the 8
neighboring pixels average elevation. To preserve a high level of spatial details the
whole maps were rasterizing at a resolution of 20 m and then converted into .gif files.
For the six scenarios, existing built pattern and transportation infrastructures are non-
developable. The German part of the domain that represents almost 27,500 ha (.30%
of the URSK domain) is not considered in this study. The 2012 local development
plan of the CUS region determines other non-developable areas over the CUS terri-
tory. It includes agricultural and natural areas defined as A, Nc¢, N, NB, ND, NDL
and NDir in the local development plan terminology. The natural and artificial hy-
drological networks are also out of the developable lands as well as the natural area
that are preserved by biodiversity protection national and European legal instruments
(RAMSAR convention, Birds and Habitat Directives, ZNIEF ”Zone naturelle d’intérét
écologique, faunistique et floristique” and so on). The resulting map corresponds to

the non-developable maps for scenarios 1 that is the less restrictive one. For the others
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scenarios the Graphab and MorphoLim computing programs were successively used to
translate the landscape planning rules in order to introduce additional non-developable

areas.

e Graphab

Forested zones are relevant and suitable ecological habitat for several mammal
species. In this study they are of particular interest for local and European stake-

holders as part of the old Rhine river floods rainforests.

The selected target species is the Red Squirrel (Sciurus vulgaris), a common
and abundant rodent species in Eurasia who homes in mature coniferous and
deciduous forests. The red squirrels have the following characteristics: (1) they
preferentially use forested landscape elements; (2) they have difficulties moving
in nonforest landscapes; and (3) they are threatened by the extension of built
areas [Tannier et al., 2012]. Although the European Hamster (Cricetus cricetus)
is highly considered in the planning and ecological policies in the study area, sev-
eral arguments incite to consider here a more common species. First, the more
a generalist species is affected by landscape changes, the more the ecosystem is
revealed to be endangered. Second, the more a species population is below a
threshold size the more the species could be affected by other extinction factors
(gene diversity losses, illness propagation). In the case of the European Hamster,
the threshold size of the species estimated at 1,500 individuals is overpassed.
The authorities and the associations estimate a population size of 161 to 174 in-
dividuals in 2007 (Le Monde 10/12/2012) and 319 individuals in 2013 (L’Alsace
07/12/2013) that are mainly located in enclaves. Third, the lowest is the maximal
dispersal distance and the more the habitat species are separated, the more the
species is affected by landscape changes resulting from landscape fragmentation.
Red Squirrel is characterized by short displacements that are often dedicated
for feeding while displacements in unfavorable habitats are scarce. Hence the
largest is the home range (i.e. the area traversed by individuals in its normal
activities for food gathering, mating and earing for young) the more the proba-
bility of a subpopulation to become extinct decreases. From survey Verboom and
Van Apeldoorn [1990] found a home range size of 0.5 ha while others reported
sizes included between 1.52 and 13.4 ha. The daily maximal dispersal distance
is set at 61 m in winter and 107 m in summer by Verboom and Van Apeldoorn

[1990] while it is set at 1.5 km in open space by Hall et al. [2001] using a loci
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gene analysis.

The maps of red squirrel habitat and the ecological background issue from the
BdOcs_2008. They are entered into the software application Graphab in the form
of a raster land cover map of 10 m resolution. The species habitat patches are
built using an 8-nearest neighbor interpolation while the Thiessen-Voronoi poly-
gons method is used for drawing the links between two disjointed patches using
the barycenter of each of the habitat patches and selecting the least path cost dis-
tance. The costs are attributed to each land covers in the ecological background
according to the permeability of the ecological background to support the move-
ments of red squirrels. Contrasted costs are adopted: 1 for the species home and
other tree surfaces favorable to movements (tree rows), 10 for habitat patches
favorable to movement, and 100 for unfavorable landscape patches characterized
by a high level of anthropogenic perturbations. The land cover classification ac-
cording to the human perturbation cost is found in the cost table presented in

the appendices of this chapter.

The maximum dispersal distance allows truncating the planar graph of the red
squirrel. As Urban et al. [2009a] found, the number of isolated components of a
graph is particularly sensitive to the dispersal distance threshold: a low maximum
dispersal distance disconnects the elements of the graphs and a high maximum
dispersal distance tends to join together pairs of disjoint and far patches. As
evidenced in Figure 4.3, the graph exhibits four components with the use of a
1.5 km maximum dispersal distance: two isolated habitat patches, one simple
graph (I) and a bigger one (II). For computing the dPCfy, and dPCoonnector ks
the probability p;; is set to 0.05 meaning that the probability to cross distances
larger than 1.5 km is small. With such parameters, the Graphab computing pro-
gram identifies a set of nodes particularly relevant for preserving the north-south
components of the subset II of the graph in regard to the dPCeonnectorr and a
single node that ensures the connectivity between the south-east and south-west
part of the subset IT (in black on the Red Squirrel graph 4.3).

The log-log plots (figure 4.4) permits selecting relevant nodes for preserving the
ecological network connectivity considering the first visual major break in the
slopes of the ranked dPC'. Ten forest patches are selected with regard to dPClyya i
characterized by a minimum home range size of 239.52 ha and twelve forest

patches with regard to dPCeopnector- The latter are characterized by threshold
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— Graphli

Author: Kohler (2013)

Figure 4.3: The Red Squirrel graph over the URSK domain. The circles represent the
habitat patches and are set proportional to the forest areas and lines are the least path
distances between two disjointed patches

sizes of 20.88 ha for the biggest one and 0.58 ha for the smallest one. The corre-
sponding forested patches are mapped in figure 4.5.
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Figure 4.4: The log-log plots of the ranked dPC metrics. In figure a) figures the
dPCfys i, and in figure b) are the dPCeopnector k- Breaks in the slope are identified and
are highlighted by the pink arrows.

The results highlight some well-known forested zones that are considered in the
local development map (PLU) and already protected. The massive forests of
La Robertsau, Neuhof, Illkirch-Graffenstaden, the Plobsheim water plan and the
Rohrschollen Island are identified by the dPCyy; 5. Others wooded areas are
mentioned as ecological major axis like the Erstein wood and the Briiche de
I’Andlau. We can notice that the small size hardwood forests identified by the
dPConnector,; for connecting the north and south part of the graph-component II
are located on the future ” Grand Contournement Ouest” (GCO) highway axis as
showed in the schemes of the study area issued from the local development plan

and found in the appendices of this chapter.

e MorphoLim
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Figure 4.5: Relevant forested habitats for preserving the ecological network connectiv-
ity.

The MorphoLim software was applied to delineate the urban boundary of all
built clusters including the morphological agglomeration over the URSK domain.
Used data is the vector 2012 IGN BDTOPO®)database that provides the 2D

built elements over the metropolitan area of Strasbourg. By construction, all
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built elements larger than 1 m? are mapped in the database and qualified by at-
tribute information (nature of the built element, elevation and so on). The BIC
(Baysesian indicator criterion) indicates that the number of built clusters-buffer

dilation size curve (dilation curve) is well estimated by a 6 order polynomial.

2 345 10 20 30 100 200 1000
Distance

|~ Empirical —Fit * MaxCurv  Curvature|

Figure 4.6: The first plot shows the log-log plot of the number of clusters with respect
to the size of the dilation buffer. The observed dilation curve is colored in red while
the fitting curve is in blue. If the built pattern would be fractal, the dilatation curve
would be a straight line. The second graph evidences the relation between the size of
the buffers and the curvature of the dilation curve at each point.

Figure 4.6 displays the empirical and the estimated dilation curves, and the as-
sociated curvature function given by MorphoLim. The curvature plot presents
three maximum curvature values for buffer diameters taken at 4 m, 70 m and
266.10 m. Since the 4 m-buffer diameter is as large as the building dimension it is
neglected. As a result we retain the buffer size with the highest curvature value
that is 266.10 m leading to a distance threshold of 133.05 m.The delineations of
the built clusters over the URSK domain are presented in figure 4.7.

In total we retained the 44 biggest built clusters to constraint the urban de-
velopment within and close to the urban agglomerations in the compact and
moderately compact development scenarios. With the compact development sce-

nario the urban development is possible only within each of the 44 built clusters.
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With the moderately compact scenario the urban development is not possible
within each built cluster but is possible in their vicinity. The width of which is
set proportional to the size of each built cluster. The size of each vicinity buffers
are approximated by the 2012-2030 differences in the built clusters radius assum-
ing that the relative size of each morphological agglomeration in the total set of

morphological agglomerations is steady during the investigation period.
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Figure 4.7: Built clusters identified over the French part of the URSK domain.
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4.4.2.3 Urban growth parameters

The combination of each urban growth types is controlled according to parameters that
range from 0 to 100 and by setting road attractiveness and slope constraint. The slope
on the URSK domain varies from 0% and 99.6%. Only slopes higher than 90% are con-
sider to be critical for urban development. Slopes in-between 2% and 18% characterize
more than the half of the domain area. It results that the major part of the domain is
considered to be flat and that slope exerts few constraints on the urban growth. Roads
and other transportation infrastructures influence the choice of residential locations. It
could act as a barrier or attract urban settlements along the transportation lanes. The
influence of the transport infrastructures has been set according to the literature and
urban planning documents. ADEUS [2012b] reported that although the motorization
rate tends to decrease in the Bas-Rhin district and 71% of the interviewed households
claimed prefer living at 500 m from local services, the residential location choice is still
related for 36% of them to the accessibility to public transportation services, motor-
ways and parking lots. Hence the automobile even though in depreciation, continues
to have a significant role in the population movements especially when the work and
population basins are disconnecting [ADEUS, 2012d]. In 1975, 84% of the working
people that work in the CUS lived there. To date, it represents 72%. Thus the dis-

tance threshold that is attributed to the road attractiveness is 100 m.

Prior 1990, a depreciation of the new constructions within the main urban poles of the
urban region of Strasbourg is observed [ADEUS, 2012d]. However since 2010, it seems
that the urban region of Strasbourg supports a new dwelling construction dynamics.
Between 2002 and 2007, half of the 7,163 dwellings built in the SCOTERS regions are
located within the Strasbourg agglomeration, and villages represent only 20% of the
new constructions. In parallel a polarization of the activity centers is observed. It
represents 28% of the SCOTERS urban expansion [ADEUS, 2012a,d]. To such extent
ADEUS-AURM and DRE [2007] reported a pace of surface growth for activity centers
that is 2.5 fold faster than the one of the whole morphological agglomeration.

The largest urban extensions are in villages and small local centers in which urban re-
newal or brownfield developments are the main figures of the SCOTERS region urban
development. In the future, urban planning instruments mention the reinforcement
of the metropolitan position of the Strasbourg agglomeration. Development of mixed
activity areas close to the main axes of transit, enhancement of the level of the local
services and major facilities, preservation of lands for future social collective housing

constructions are some of the announced measures. Out of the metropolitan area, local
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urban poles that have a good accessibility to the metropolis by public transport and
that have a high level of services and infrastructures are privileged for new construc-
tions. For all of those urban poles, urban renewal (in the agglomeration of Strasbourg
and in its vicinity) and the urban densification at the urban fringe are urban growth
rules. For the other communities, the control of residential development consists in
reducing the size of the building lots.

In matters of agricultural and natural lands preservations, particular attention is paid
to the ecological network. Natural buffer zones between two urban settlements should
be preserved and some protected areas are identified (e.g. Natura 2000, hillsides and

the humid areas). At last the local periurban agriculture should be maintained.

In the SLEUTH* system four main growth rules are defined. There are: i) the
spontaneous growth (the space is isotropic); i) the new spreading centers; i) the
edge growth, iv) the road-influenced growth. Urban development in scenarios 1 and 2
rather corresponds to spontaneous built-up development out of the existing built-up
areas. Thus, scenario 1 and 2 are qualified with 100% spontaneous growth. In contrast

scenarios 3 to 6 are characterized by 50% road-influenced growth and 50% edge growth.

4.4.3 Conclusion

Six urban development scenarios that integrate urban development and ecological net-
work preservation policies have been designed (three urban types scenarios and two-
subsets that account for ecological preservation policies). For each of the six scenarios
corresponds a SLEUTH* simulations setup which is given in table 4.2 and a non-
developable map that is presented in figure 4.8. The spontaneous urban development
scenarios (1 and 2) correspond to the quasi-absence of urban development policies.
Solely areas that are already preserved by the local development plan are excluded
from the urban development and the spontaneous growth contribution is set at 100%.
The compact urban development scenarios (3 and 4) and moderately compact urban
development scenarios (5 and 6) tied better with the future urban plan of the region
and promote urban density. For such scenarios, the growth rules do not change ac-
cording the urban type scenarios. Half of the developable areas in 2030 should follow
road-influenced growth rule. The other half follows the edge growth rule. Thus, only
the non-developable maps ensure the distinction between the scenarios. For compact
scenarios the urban development is restricted in the built clusters. For the moderately

compact scenarios the urban development is restricted at their vicinity.
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We used the MorphoLim computing program to identify coherent built clusters. We
consider the 44th biggest built-up clusters over the URSK domain and buffer zonings
around each of them to constrain the compact and moderately compact development
scenarios. Then the Graphab computing program enables us considering the impact
of the red squirrel ecological network preservation policies on the urban development
for each urban development types (scenarios 2, 4 and 6). As stressed by the devel-
opable areas of each scenario there are slight differences when preserving or not the red
squirrel habitat network connectivity for scenarios 3 to 6. This result could be partly
explained by the integration of most of the major forest areas in non-developable and
protected area in both the local development plan and European Natura 2000 network.
Unlike scenarios 3 to 6, scenarios 1 and 2 show that the developable area is reduced by
-19.19% when considering ecological network preservation rules. For scenarios 5 and 6
slight differences could be notice in the South part of the non-developable maps.

Finally, since the developable area is always greater than the amount land that is ex-
pected to be built for each scenario, it results that the maps of developable areas do
not restrict the urban development. Only the CA growth rules reduce more or less the

possibility to develop new residential areas.
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Scenarios parameters

2010-2030
expected urban
development

1864 ha

Slope

90 %

Socio-economic
maps

No

Scenarios

Developable
areas

Ecological
Preservation

Growth rules

Scenario 1

34,126.68 ha

No

Diffusive growth:
100%
Road-influenced
growth (100 meters):
0%

Edge growth: 0%

Scenario 2

27,577.32 ha

Yes

Diffusive growth:
100%
Road-influenced
growth (100 meters):
0%

Edge growth: 0%

Scenario 3

2,474.80 ha

Diffusive growth: 0%
Road-influenced
growth (100 meters):
50%

Edge growth: 50%

Scenario 4

2.707.32 ha

Yes

Diffusive growth: 0%
Road-influenced
growth (100 meters):
50%

Edge growth: 50%

Scenario 5

2,918.84 ha

Diffusive growth: 0%
Road-influenced
growth (100 meters):
50%

Edge growth: 50%

Scenario 6

2.7/8.00 ha

Yes

Diffusive growth: 0%
Road-influenced
growth (100 meters):
50%

Edge growth: 50%

Table 4.2: Settings of SLEUTH* for each development scenario.
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4.5 Results and discussions

4.5.1 Maps of simulated urban development

We obtained three series of six scenarios. Maps are presented in figures 4.9. Figure 4.10
shows the corresponding local urban development patterns. The resulting 2010-2030
built up areas extension correspond to the urban development area (1864 ha between
2010 and 2030) define in the inputs of the SLEUTH* simulations for almost all the
scenarios except for scenarios 3 and 4 where only about 63% of the urban develop-
ment area is achieved due to the growth rules constraints. A brief analysis of the land
cover change reports that more than 20 ha croplands, meadows and deciduous forests
permute into built-up area by 2030. For scenario 1 to 2 and 5 to 6, croplands are
the most depredated landscape following by the meadows and the deciduous forests.
The compact urban development scenarios exhibit a different pattern of land cover
change. Although annual croplands, meadows represent the main land cover changes,
the changes of deciduous forests into built-up area are as intense as the changes of the
familial cultivated lands, horticultural and greenhouse areas, brownfields and embank-
ments into built-up area. Hence, nearly 86 ha/59 ha of familial cultivated lands, 30 ha
/29 ha of horticultural and greenhouse areas, 43 ha /27 ha of brownfield as well as 34

ha /26 ha of embankments turn off into built-up areas respectively for scenarios 3 and 4.
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Six morphological indexes allow us to characterize the built pattern resulting from
each scenario: the 2010-2030 urban development area Ab in hectar, the number of
built clusters (Nby), the area of the biggest cluster or morphological agglomeration
(Apra) in m?, the distance threshold (d) in m, and the fractal dimension of the built
surface (D) over the urban region. For this we used the same fractal box counting
dimension calculation process as used by Tannier and Thomas [2013]. It enables us to
easily distinguish built-up patterns characterized by a high diversity in the size of the
built clusters (D close to 1.5) and the distance separating each of them from uniform
built-up patterns (D close to 2). The primate index (F;) is also given as well as the
rank-size distribution of built clusters (Figures 4.11 and 4.12). The primate index cor-
responds to the ratio of the area of the largest built cluster (MA) on the second largest

built cluster.

Ab(in ha) Nbb AMA d D Pz
Scenario 1 1,864.00 127,791 74,390 No 1.6266 1.93
Scenario 2 1,864.00 126,172 74,390 No 1.6261 1.93
Scenario 3 1,185.24 367 145,200,000 118.34 1.5771 19.84
Scenario 4 1,182.48 367 144,400,000 119.16 1.5771 20.16
Scenario 5 1,864.00 148 260,500,000 188.24 1.6000 20.27
Scenario 6 1,864.00 155 254,700,000 186.94 1.5990 19.86

Table 4.3: Morphological characteristics for the six scenarios and the initial case (2008).
Note that D, the box-counting fractal dimension is calculated with significance level
controlled by an R? (>0.99) and a p-value << 0.01.

The initial case is characterized by an intermediate number of built-clusters compared
to the compact and moderately compact development scenarios. It outlines a polariza-
tion of the past development in the main agglomerations of the URSK domain. The
primate index is the biggest of the whole set of scenarios indicating a hierarchical urban
framework that could also be observed in figure 4.11. A sharp slope is observed between
the area of the two first built-up clusters following by a plateau and a moderate slope
in the rank-size distribution. The distance threshold is lower than for the compact de-
velopment scenarios but higher than for the moderately compact development scenario
meaning that the urban development is concentrated in the main agglomerations but
not as much as in the compact development scenario. At last, the fractal dimension

indicates a high diversity in size of built clusters as showed by the rank-size distribution.
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It appears in this study that each morphological index gives complementary and no
redundant information on the simulated built up patterns. The fractal dimension how-
ever close to 1.6 for the whole scenarios is a less discriminating index compared to the
rank-size distributions. It indicates built-up patterns that are connected according to
the scales (no isolated aggregate) and characterized by a high diversity in the size of
the built clusters and distance thresholds. A higher fractal dimension as observed in
scenarios 1 and 2 and at lesser extent in scenarios 5 and 6 stresses a tendency for such

scenario to create more uniform built up patterns compared to scenarios 3 and 4.

Hence, the analysis on the morphological indexes presented in table 4.3 clearly evi-
dences differences in the three types of built-up patterns meaning that the resulting
2030 land covers are as much contrasted as the urban development policies. The intro-
duction of forest preservation rules does not modify the simulated built-up patterns.
The spontaneous urban development (scenario 1 and 2) is characterized by: i) a very
large number of built clusters; 7i) the smallest morphological agglomeration area; i) a
loss of primacy of the largest built clusters with nevertheless a dominant morphological
agglomeration as indicating by the primate index that is 13 time lower than the one
of the initial case. No distance threshold between built clusters could be identified.
The presence of thousands of built clusters reveal a scattered built-up pattern. The
moderately compact scenarios (5 and 6) exhibit: i) the lowest number of built clusters;
i1) the biggest morphological agglomeration area; 7i) and a fractal dimension slightly
lower than for the other scenarios. Scenarios 5 and 6 generate concentrated built-up
patterns characterized by a more hierarchical polycentric built pattern as revealed by
the weak rank-size distribution’s slope. At last the compact development scenarios (3
and 4) show the smallest distance threshold, the smallest fractal dimension (close to
1.5) meaning that the built-up pattern is characterized by high diversity in the sizes
of built clusters. The rank-size distribution shows several plateaus where built-clusters
have the same built area. Because the number of built clusters is higher and the area
of the morphological agglomeration is smaller than in the moderate development sce-
narios (5 and 6), it seems that the simulated compact planning policy generates more

fragmented built patterns than the moderately compact planning policy.
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4.5.2 Integration of the 20x20 m resolved simulated urban

development in the 1x1 km resolved atmospheric grid

Land cover types are static data assigned for each atmospheric grid of the mesoscale
climate model. It permits specifying the physical radiative (e.g. albedo), thermal (e.g.
skin temperature) and aerodynamic (e.g. roughness) surface properties in each atmo-
spheric grid that are then used for computing the surface forcings (momentum, heat
and moisture fluxes at the surface-atmosphere interface) used as boundary conditions

of the partial differential governing equations at the surface interface.

In the WRF-ARW model dominant land cover types are used. It requires the def-
inition of an urban fraction threshold corresponding to the fraction of built-up area
included in each atmospheric grid. This urban fraction threshold initially set at 50%
was lowered to 20% meaning that more than 20% of the land covers that are included
in a given atmospheric grid should be of urban nature (20% rule). The remaining
part is considered as non-urban and a uniform natural land cover type is attributed
for each remaining non-urban fractions of the considered urban grids over the whole
domain. This process is referred as the atmospheric grid’s urban classification. It is
usually automatically fulfilled in the geoprocessing step of an atmospheric simulation
during which initial and boundary conditions are assigned for each atmospheric grid
of a simulation domain using various institutional datasets (MODIS and USGS land
cover and topography datasets). In this study the land cover types and urban fractions
were provided by the resolution BdOcs_2008 land cover datasets. We aggregate in each
atmospheric grid of 1km width the area of each type of urban land uses for determining
the proportion of urban land uses present within each 1km grid (urban-fraction). Then

the 20% rule is applied to classify the atmospheric grids into urban or non-urban grids.

To study what is really "seen” by the WRF-ARW mesoscale atmospheric model, we
have compared the distribution of the urban land uses in each atmospheric grid before
and after the application of the 20% rule. Several descriptors have been computed to
analyze the effect of this rule (dominant land cover approach) on the modeled land
covers. They are presented in table 4.4. The median (¢) indicates the center of the
urban fraction distributions. The interquartile range shows the variance of the distri-
butions. The kurtosis measures the "peakedness” of the probability distribution of a
set of data compared to a normal distribution (average=0, and standard deviation=1)

and the skewness indicates the asymmetry of the probability distribution compared
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to the median. A negative skewness indicates a distribution that is decentered at the
right of the median, while a positive skewness indicates a decentered distribution at
the left of the median.

Statistical Spontaneous Compact Moderately
parameters development development compact
development

Before Before Before
the the the
20% rule 20% rule 20% rule

Median

Interquartile

Kurtosis

Skewness

Table 4.4: Statistical distribution of the amount of urban fraction in each atmospheric
grid.

From table 4.4, one notice that the median is the same for the whole scenarios but it
is four times higher after the atmospheric grids classification indicating a re-centering
of the urban fraction distribution. The interquartile ranges slightly vary between the
scenarios before and after the atmospheric grids classification. The deviations are
larger after the atmospheric grids classification in compact and moderately compact
scenarios and conversely slightly smaller in the spontaneous scenario. The negative
kurtosis become larger pointing out a larger spreading of the urban-classified fractions
compared to the normal distribution after the atmospheric grids classification. This
feature is particularly obvious in the spontaneous development scenario in which the
positive kurtosis becomes negative after the classification of the atmospheric grids in-
dicating a spreading of the urban-classified fractions. At last, the skewness is showed
to dramatically vary for the spontaneous development scenario after the atmospheric
grids classification.

Thus, larger modifications of the urban fraction distribution function are reported in
the case of the spontaneous development scenario using the dominant land cover as-

signment approach.

Then we compute the total built-up area and the corresponding number of urban
grids (table 4.5) considered in the urban climate modeling system using the 20% rule.
It can be showed that the urban climate modeling system considers a larger total

built-up area compared to the spontaneous urban development scenarios although the
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SLEUTH* simulated built-up area was the lowest (only 63% of built up developed

area) in such scenario.

Urban development Number ofurban grid Corresponding

scenarios urban grids’
built-up areas
(in Km?)

Scenario 1 188 87.24

Scenario 2 188 87.06

Scenario 3 184 89.83

Scenario 4 185 90.18

Scenario 5 210 98.00

Scenario 6 209 97.68

Table 4.5: Urban grid counts and corresponding built-up areas taken into account in
WRF/ARW.

Thus as showed in table 4.4 and 4.5 the dominant land cover methods is inappropriate
for studying scattered built-up patterns. As a consequence, scenario 1 and 2 will not

be considered in the WRF/ARW scenarios comparison analysis.

4.6 Conclusion

Like previous study we attempt to explore the effect of two planning rules (control of
urban development and preservation of ecological habitats) on the 2030 urban morphol-
ogy and urban climate [Tokairin et al., 2010, Aguejdad et al., 2012, Masson et al., 2013,
Stone et al., 2010]. The latter is set in relation with the space heating building energy
requirements. The intermediate time lapse (20 years) is in accordance with the time
horizon of planning strategies. The planning rules and mechanisms behind the urban
development are explicitly taken into account through the design of non-developable
lands’ maps that are integrated in the SLEUTH* urban growth cellular automata
model. For this we use the MorphoLim and Graphab geographical computing pro-
gram. MorphoLim permits distinguishing three contrasted urban type scenarios: the
compact, moderately compact and spontaneous urban development scenarios. Each

of them corresponds to different planning policies and residential development con-
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trol intensities. The first corresponds to the densification of the existing built pattern
within each existing built cluster. The second scenario corresponds to the reinforce-
ment of the main urban centers by concentrating the development at the periphery
of the middle-sized built clusters. The third type of scenario considers no control of

urban development except the zoning set in local development plans (PLU).

It has been showed with the morphological indexes that the compact scenarios do not
produce necessarily connected built-up patterns. More built-up clusters, smaller mor-
phological agglomeration are reported in the compact development scenarios despite
the shortness of the threshold distance compared to the moderate compact development
scenarios. Moreover compact development scenarios do not permit to construct all the
expected urban development area meaning that the compactness of the urban form
may be too constraining in a context of high urban development intensity in particular
in the Strasbourg-Kehl region where a large part of the vacant lots in the existing built
clusters are zoned as non-developable lands in the local development plan. However
it is without counting on the urban renewal policies, an option that is not available
in SLEUTH* that only considers the non-urban to urban land changes and does not
distinguish residential built-up clusters from the commercial and industrial ones. Ac-
tually few CA model are able to consider urban renewal and efforts have to be pursuit
in this way. In the author knowledge only the inspired Dynamic Urban Evolution-
ary Modeling approach used for instance in the Batty et al. [1999] cellular automata
accounts for life-cycle mechanisms and activities for residential, manufacturing and in-
dustry, services and commercial-retail-shopping and so on. Like it was expected, the
analysis of the resulting SLEUTH* 2030 built-up patterns using morphological indexes
confirms that the following method achieve reproducing three contrasted urban types
scenarios that are characterized by different rank-size built-up clusters distributions,
fractal dimensions and morphological agglomeration distance thresholds. Nevertheless,
the SLEUTH* urban development simulations could be improved by distinguishing dif-
ferent types of roads according to their attractiveness for the residential development.
Residential development is more intense far away from main roads than secondary
roads. The CA model could also be improved by considering changes in other types of
land uses (parking lots and commercial malls) and other transportation modes such as
rail or other public transportation services (bus, tramway) as recommended in urban

densification strategies.

Then, for each scenario we distinguished two sub-scenarios that consider or not the

preservation of the forest ecological network using the graph-based Graphab computing
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program. This approach permits considering more realistically the ecological network
planning policies than other approaches that are currently proposed in ”green and eco-
logical friendly” scenarios. Masson et al. [2013] for instance considered a green belt
strategy to refrain the urban development and added to each new dwelling a steady
garden fraction that is thus unable to slow down the urban sprawl. Several studies
like Mehdi et al. [2012] however outlined that green belt strategies in the ecological
preservation policies make no more agreement. As the determination of the regional
ecological network of the Strasbourg urban region was not the main scope of this study;,
we produced only one focus species graph. The red squirrel species was selected. Its
population abundance and relatively low maximal dispersal distance motivated the se-
lection of this mammal common species. Indeed as Urban et al. (2009) demonstrated,
the maximal dispersal distance threshold has non-negligible impacts in the resulting
graph diameter and therefore a low maximal dispersal distance permits highlighting the
role of small reserves in the regional ecological network. One limit of this approach is
that it suffers from the subjective and generalization attribution of human disturbance
costs for each land cover type of the ecological background that in turn influence the
least cost path and the graph diameter. The costs are given to a type of land and do
not account for local specificities such as the human frequentation or the noise level.
After the morphological analysis of the outputted SLEUTH* macro-scale built-up pat-
terns, it appears that the ecological network preservation policies have few impacts on
the future 2030 built-up patterns.

As the six 2030 built up maps are then provided to the WRF-BEP+BEM climate
modeling system for specifying lower boundary conditions such as the gridded urban
fraction, the gridded dominant land-cover, skin temperatures, roughness length and so
on, a sensitivity analysis on the atmospheric grid resolution was performed. It results
that the integration of the 20x20m resolved built up pattern in the 1x1km atmospheric
horizontal grid resolution raises some difficulties. In particular the dominant land
cover methods that is usually used in mesoscale atmospheric model obviously fails to
reproduce scattered built-up patterns. As a consequence, only two of the six urban
development scenarios were finally integrated in the urban modeling system to answer

to the initial research objectives.
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Figure 4.8: Non-developable lands for the six scenarios (SLEUTH* Inputs)
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Figure 4.9: The initial case maps and the three urban development types maps.
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Figure 4.10: The local built up patterns generated by simulation-focus on a 3532.10 ha
zone north from the Strasbourg agglomeration. The arrows in scenarios 5 and 6 focus
on the differences in the developed areas between the two scenarios.
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Land  cover | Descriptions BdOcs-2008 classes Costs
classes
1 Habitat patches 311,312,313,315 1
needleaves, broadleaves,
mixed and hardwood
flood forests
2 Built up area 11,121,122,123,131,132,133,1351, | 100
1361,1372,1310,13112,13111,
1312,1313
3 Artificial ~ green  ar- | 151,152,139,13113,134 10
eas with no man-
management (brown-
field, railroads, and so
on)
4 Open green areas 1412 10
5) Green areas dedicated to | 142,1411 10
leisure
6 Green areas considered | 143,125,124 100
as equipment (cemetery,
sport infrastructure)
7 Artificial water bodies 412,414 100
8 Natural water bodies 411,413 10
9 Intensive crop lands 21, 221, 222, 226 100
10 Orchards 223 10
11 Meadows 224 10
12 Agricultural green (edge) | 324, 314, 225 1
13 Marshland 322 10
14 Moor 323 10
15 Barren soil exploited by | 1352, 1362, 1371, 138 100

humans

Table 6: Human land use’s perturbation costs
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Figure 13: Protected areas to preserve (after the urban planning agency ADEUS and
extracted from the Document d’Orientation Général, 5/11/2013). The square indicates
the URSK domain.
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Figure 14: Humid areas and ecological corridors to preserve and enhance (after the ur-
ban planning agency ADEUS and extracted from the Document d’Orientation Général,
5/11/2013). The square indicates the URSK domain.
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Chapter 5

Impacts of urban development
policies on building energy

requirements-Part 11



Abstract

Urban sprawl is recognized to be the most land consuming urban form. It is also ac-
knowledged to weaken the biological diversity and enhance the city-scale Urban Heat
Island (UHI) phenomenon. The latter plays a significant role in the urban dwellers
thermal stress and modifies the space heating/cooling building energy needs. The con-
trol of residential developments and the preservation of green lanes are measures often
proposed to counter negative effects of urban sprawl. But what are their feedbacks
on the UHI intensity and building energy needs? The aim of this study is twofold:
i) quantify the influence of the residential development policies on urban climate and
building energy requirements; i) assess the ability of the numerical physically-based
climate modeling systems that simulate the building energy needs like the WRF /ARW-
BEP+BEM system Salamanca et al. [2010] to provide urban planning guidelines. In
part I (chapter 4), the SLEUTH* model, a modified version of the American SLEUTH
urban growth and land use change model of Clarke [2008], has been used to simulate
six contrasted and archetypal built-up developments over the Strasbourg-Kehl urban
region (three built-up types and two ecological preservation subset scenarios). It has
been showed that ecological preservation policies do not produce large differences in
the simulated built-up patterns and that scattered built up patterns are incorrectly
consider in the WRF/ARW+BEP+BEM system. Finally only two simulated built pat-
terns (compact and moderately compact) have been selected for applications with the
WRF/ARW-BEP+BEM system. The simulated built patterns provide information on
the atmospheric grids surface static physical parameters (albedo, heat capacity, rough-
ness) used to compute the surface forcings in each lowest atmospheric grid. Results
show that the WRF/ARW-BEP+BEM system well captures differences in energy re-
quirements according to different built-up patterns. However the differences are rather
due to an increase in the volume of the building to be heated than to a modification
of the temperature field. Those results scale back the role of WRF/ARW-BEP+BEM
systems in assessing building energy requirements changes regarding changes in built-

up patterns over the study area.

Keywords: wurban climate modeling, urban planning, urban growth scenarios, building

enerqy
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5.1 Introduction

In France after the World War II and since the 80’s the urban growth has been ac-
companied by the migration of a large share of the urban dwellers to the less dense
periurban areas [Bessy-Pietri, 2000]. It results in the sealing of vast lands for build-
ing and transportation infrastructures at the origin of the landscape fragmentation.
It also triggers changes in the local climate. Landscape fragmentation dramatically
weakens the ability of the landscape to support ecological flows [Forman, 1995]. The
enhancement of the city-scale urban heat island intensity (UHI), caused by the differ-
ential in warming of the impervious built-up area and the rural surrounds, affects both
the human heat stress and the building heating and cooling loads. Taha [1997] found
that urban areas due to urbanization and urban heat island effect are characterized by
more cooling degree-days (i.e. the cumulative temperature differences between the air
temperature and a base temperature set in relation with the thermal comfort in the
building) and fewer heating degree-days with respect to rural surrounds.

The recent urban planning strategies to cope with the negative effects of the urban
sprawl promote compact cities in which the development of built-up areas is limited
at the vicinity of existing built-up areas, in brownfields, vacant lots or as part of ur-
ban renewals strategies. By enhancing the UHI intensity, compact urban forms are
expected to save building energy and thus, enhance the building energy performance
[Haines, 1986]. Nevertheless the issue is still under debate. Green lane preservations
are also part of urban sprawl counter-measures. Green areas by shadowing the surface
and through evapotranspiration fluxes contribute to less warm the air compared to
impervious areas.

Some studies investigated the linkage between local climate, urban form and building
energy loads for cooling and heating. Urban heat island is rather complex and depen-
dent on local spatial configurations. However the following common assumptions are

commonly admitted:

i) Sprawl built-up areas have less concentrated sources of heat (buildings) and are
characterized by higher tree canopy covers that lessen the temperature in summer
and weaken the wind in winter, hence reducing the building cooling and heat-
ing loads [Heisler et al., 1986, Stone et al., 2010]. Family detached houses are
also characterized by higher unoccupied and floor areas per inhabitant and hence

they family detached houses are characterized by a greater building volume to
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be heated per inhabitant.

i1) In contrast because of an enhanced UHI intensity, compact urban forms are ex-
pected to increase the building cooling loads but, with respect to the population
density and occupied areas, compact forms appear to be more energy efficient
than less concentrated forms. Recent studies have showed, however, that the
population density per floor square meters has decreased in the past decades
with the decreasing of the size of the household (ageing people, students, single

parent families).

This suggests that the choice of residential and building stocks properties as the build-
ings material insulating properties, the household structures and the building dimen-
sions are a key issue in enhancing the building energy efficiency in urban area more
than the UHI intensity [Owens, 1992, Haines, 1986, TAURIF, 2008]. Three approaches
are usually adopted for studying the relationship between urban forms and building
energy loads. The climate approach investigates the indirect effects of the urban form
on the building energy loads by considering the influence of the meteorological condi-
tions on the building energy loads. The building stock approach focuses on the direct
effects of the building characteristics (e.g. insulating, age of the building structure and
so on) on the building energy loads. At last, since the last decades a third approach
emerges. It relies on the use of climate modeling systems that consider simultaneously
the complexity of the urban climate and important features of the buildings in the
building energy performance (e.g. insulating properties, anthropogenic internal heat

gains).

e The climate approach

Several studies have stressed the linkage between local temperatures and resi-
dential energy consumptions. The relationship is showed to be non-linear. First
the relationship is characterized by a decrease in the space heating energy load
with temperature rise due to building space-heating requirements. Second, a
plateau where the building loads are no more sensitive to climate conditions is
observed. Finally, an increase in the building energy loads with temperature
rise is observed due to the use of the air conditioning for cooling purpose. The
degree-day method takes advantage of this significant linkage and proposes to

estimate the building energy loads over a period through the air temperature
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distributions. Due to the plateau it is possible to distinguish the winter and the
summer branches of the temperature-building energy requirements relationship
and linearly fit each of them. The resulting slopes of the two linear fits are the
buildings cold and heat sensitivities. They represent how much the buildings are
sensitive to local temperatures. The interception of the linear fits with the air
temperature axis defines the base temperature. The base temperature represents
the thermal equilibrium of the buildings with their surroundings thermal zones.
It is assumed to be representative of the building energy efficiency and is often
taken at 65°F (18°C).

The degree-days represent the cumulative differences over a given period of the
air temperatures and the predefined base temperature when the air temperatures
are cooler (or warmer) than the space heating (or cooling) base temperature. The
air temperatures distribution over a period gives the correspondent building en-
ergy consumption knowing the cold or heat sensitivity of the area. Thom [1954],
Amato et al. [2005], Valor et al. [2001] developed such methods and found an
air temperature-energy use functions sensitivity varying with respect to the type
of fuels (electricity shows increasing sensitivity with the air temperatures) and

urban types (residential, commercial).

The building stock approach

This approach investigates the relationship between the building stock charac-
teristics and the building energy consumption but miss-considers the influence
of the local climate [ANAH, 2008, ASPA, 2012]. The knowledge of the energy
use intensity (e.g. energy losses, energy consumption, theoretical energy loads)
of a standardize building of a given building stock segment and the proportion
of the latter in the whole building stock gives the overall building energy con-
sumption over a study area. The segments of the building stock are depicted
according to energy related variables such as the floor areas, the types of fuel,
the size of households, the type of buildings and so on. It requires the collection
of large dwellings databases and regular up-date so as to consider the effect of
additional dwellings in the building stocks of the considered study area. The
energy consumption intensity can also be determined empirically through intru-
sive energy consumption sub-metering, analyze of thermal radiant emissions on
thermal images or through the constitution of building prototype in numerical

physically-based building energy models.
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e The climate modeling system approach

Recently the integration of a large panel of climate models in a unique cli-
mate modeling system allows researchers to dynamically resolve climate processes
from synoptic up to building scales. Those climate-modeling systems explicitly
consider the climate feedbacks on building space heating and/or cooling energy
requirements. The climate modeling system usually includes: i) a regional at-
mospheric model that provides the meteorological fields over a region of about
thousand square kilometers discretized into atmospheric grids of 5-1km horizon-
tal resolution; i) an urban canopy parameterization that represents the surface
dynamics and thermodynamics effects induced by the streets and the buildings
on the lowest atmospheric layer; and i) a simple building energy use model
that computes the building energy requirements for space heating or/and cooling
considering the building occupancy and the Heat Ventilation Air Conditioning
(HVAC) system activity. Climate modeling systems, thus, are envisaged tools for
integrating climate knowledge and building energy efficiency guidelines in future
urban planning policies given their ability to test several probable future [Chen
et al., 2011].

Ohashi et al. [2007], Kikegawa et al. [2003], Kondo et al. [2005], Bueno et al.
[2011] and Salamanca et al. [2010, 2012] carried on simulations over megacities
using climate modeling systems. They found that the wasted anthropogenic heat
by the HVAC systems could warm the air up by +1°C to +2°C, hence, enhanc-
ing the UHI phenomenon. Meanwhile Salamanca et al. [2010], Salamanca et al.
[2012] and Martilli [2012] investigated the impacts of some of the energy savings
and urban heat island mitigation strategies (light roof, improved insulating prop-
erties). Masson et al. (2013) focused on the impacts of urban planning strategies
on the air temperature and building energy requirements over the Toulouse ur-
ban region by 2100. In this last study, scholars considered abrupt changes in
the urban development and planning strategies, changes in the building stock
energy efficiency properties and increase in the urban green areas. Masson et al.
[2013] tested green belt strategies as urban sprawl counter-measures. However,
greenbelt makes no more consensus in the scientific and urban planners communi-
ties. They added systematically garden fraction to each new developed built-up
area to test the effects of urban green areas on urban climate with respect to
urban areas cooling strategies. This further contributes to the spatial extension

of the urban areas, which seems in discordance with the current urban density
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promotions. Masson et al. [2013] also proposed changes in the building insulat-
ing properties and types in accordance with the population and dwelling density
thresholds computed through the NEDUM?2 dynamic economic land use trans-
portation interaction model [Viguié and Hallegatte, 2011, Gusdorf et al., 2008]
and the GENIUS model [Bonhomme, 2013]. NEDUM2 simulates residential pri-
vate housing developments accounting for the trade-off of the accommodation of-
fer and demand market, future transportation policies and demographic growth.
It provides the population and housing densities to the GENIUS model for a
250x250 m resolution grid. The GENIUS model characterizes the building mor-
phology and insulating performance of the new constructions according to seven
pre-defined construction types (e.g. commercial buildings, old center, detached
houses and so on) using spatial contiguity rules as well as housing and population
densities thresholds. The changes in the building types and energy performance
even if operating in one century (the time horizon is 2100) seem unrealistic con-
sidering the hysteresis of the building stock. Indeed today 55% of the French
dwellings have been built before 1975 [ADEME, 2012]. In addition Bailly and
Bourdeau-Lepage [2011] estimated that 70% of the buildings that will exist in
2050 are already built. Finally the study of Masson et al. [2013] does not allow
investigating if either the local climate or the building stock characteristics influ-

ence the building energy performance as several parameters vary simultaneously.

5.2 Research objectives

The aim of the study is to assess the impact of urban planning policies on urban heat

island and building energy requirements. Particular efforts have been done for inte-

grating realistic urban planning policies in the urban development scenarios simulations

and only land-use changes are considered (no changes in the building energy efficiency

properties are modeled). This permits investigating the climate indirect and building

stock direct impacts on building energy loads.
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5.3 Method and tools

In this study we investigate the effect of six archetypal and contrasted urban develop-
ment scenarios on building energy requirements and urban heat island intensity. We
simulated the urban development by using successively the SLEUTH* [Doukari et al.,
2013] cellular automata model, the MorphoLim [Tannier et al., 2011] and Graphab
[Foltéte et al., 2012] computing programs. We analyze the building energy require-
ments of two urban development scenarios using the WRF/ARW-BEP+BEM modeling
system. The method has been applied on the Strasbourg-Kehl urban region (URSK)
North-East France. Since space heating counts for 50% of the residential housings en-
ergy requirements according to a preliminary work of ASPA on the Climate Energy plan
of the CUS territory we only consider the winter branch of the air temperature-building
energy function. A short memory of the urban development scenarios characteristics
and previous results is given below but for more information on the case study and

urban development scenarios, please refer to part I (see chapter 4).

5.3.1 Urban development scenarios: results of part I

Among the five types of urban development identified by Galster et al. [2001], the
current study focuses in particular on the diffusive and compact urban development
types. The first refers to the absence of control of the residential growth. The second
type of urban development corresponds to the densification of the inner core of the ag-
glomerations (e.g. hollow teeth, vacant lands). The third type of urban development
favors the developments at the vicinity of existing built-up areas and transportation
infrastructures. Each of those three types of urban development is considered in this
study. They further come in two versions. Each of them corresponds to the preserva-
tion or not of the ecological habitat. The six simulated urban development scenarios

are presented in table 1.

We used the modified version SLEUTH™* [Doukari et al., 2013] of the american SLEUTH
urban growth model [Clarke, 2008, Chaudhuri and Clarke, 2013] to simulate the urban
development for each scenarios over the Strasbourg-Kehl urban region (France). The
urban development policies were integrating in the SLEUTH* cellular automata model

through the definition of non-developable land maps using the MorphoLim [Tannier
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Scenarios

No Preservation of the eco-
logical network

Preservation of the ecologi-
cal network

Spontaneous development

Except non-developable
lands that included
in the local development
plan, urban sprawl is totally
uncontrolled. New urban
settlements are  spread
over the territory to the
detriments of the ecological
landscape. (Scl)

are

Urban sprawl is totally un-
controlled. New urban set-
tlements are spread over
the territory. However the
forested areas that ensure
the ecological network con-
nectivity are preserved from
the urbanization. (Sc2)

Compact development

Except lands that are in-
cluded in the urban plan-
ning instrument, new urban
units fill the hollow teeth of
the morphological agglom-
erations to the detriments
of natural areas. No re-
furbishment, demolition and
construction phases are as-
sumed. Constructions close
to existing built-up areas
and transportation infras-
tructures represent the fact
that the urban growth is
well controlled. (Sc3)

New urban units fill the hol-
low teeth of the morpholog-
ical agglomerations No re-
furbishment, demolition and
construction phases are as-
sumed. The urban growth
is well controlled and ur-
ban densification policies
are assumed. New urban
units settle down close to
the existing built-up area
and transportation infras-
tructure. Forest areas es-
sential to ensure ecological
flows over the ecological net-
work are preserved from the
urbanization. (Sc4)

Moderately compact devel-
opment

Except non-developable
lands that are included in
the local development plan,
the urban sprawl is concen-
trated close to the existing
built-up areas and trans-

portation infrastructures
at the fringe of the mor-
phological agglomerations.
(Scb)

New  constructions  are
located at the fringe of the
morphological  agglomera-
tions close to the existing
built-up areas and trans-
portation  infrastructures.
Forested areas that are
relevant for the connectivity
of the ecological network
are preserved from the
urbanization. (Sc6)

Table 5.1: Description of the six urban planning scenarios
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et al., 2011}, and Graphab [Foltéte et al., 2012] computing programs. Morpholim
identifies coherent built-up areas using the fractal theory and permits to constrain the
urban development either within the main built-up areas (compact scenarios) or in
the periphery of the main built-up areas (moderately compact scenarios). Graphab is
a software dedicated to graph-based landscape modeling. It is used to identify non-
built patches that are essential for ensuring the ecological network connectivity for a
target species. The target species selected here is the red squirrel (Sciurus vulgaris),
particularly sensitive to landscape fragmentation due to its short dispersal distance.
The setup of the SLEUTH* model and the simulated built-up patterns for each de-
velopment scenarios are presented in part I (see chapter 4). The description of the
simulated built-up patterns by morphological indexes revealed slight differences in the
built-up patterns between scenarios that preserve the ecological network connectivity
and scenarios that do not. Furthermore it has been showed that the integration of
the simulated built-up areas in the 1x1 km climate modeling systems grids prevents
the consideration of dispersed built up patterns due to the climate modeling system
limitations. Thus among the six scenarios, we only retain the compact and moderately

compact scenarios for further investigations with the climate modeling system.

5.3.2 Description of the WRF/ARW-BEP+BEM climate mod-

eling system

We use the WRF/ARW-BEP+BEM urban climate modeling system [Skamarock et al.,
2008], which consists in:

i) The WRE/ARW mesoscale regional atmospheric model

The WRF mesoscale model is a fully compressible terrain following non-hydrostatic
regional atmospheric model that provides the meteorological fields over a region
of thousand kilometers. The model offers various physical options for radiation
and soil energetics processes and takes into account the presence of hydrometeors
(e.g. cumulus, precipitation and graupels) and their interactions with the short-
wave and long-wave radiations. Due to its coarse spatial resolution, the model
does not represent explicitly the effects of the surface. Sub-grid atmospheric dy-
namical and energetic processes induced by the surface are parameterized through

a roughness approach in which a roughness length is attributed for representing
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the average gridded effects of the obstacles on the airflow. The surface model
that computes specifically the surface sensible and latent heat fluxes as well as
the skin temperature is the Noah LSM of Chen [2007].

i1) The BEP urban canopy parameterization

For urban areas, where most of the adopted physical assumptions (flat uniform
terrain, constancy of turbulent flux with height) fail [Rothach, 1999, Kusaka et al.,
2001, Miiller, 2007] other urban canopy parameterizations have been introduce
in the climate modeling system.

For specifically taking into account the urban canopy vertical structure in the sur-
face fluxes calculation, several urban parameterizations of higher sophistications
have been introduced in the WRF/ARW atmospheric model. They reproduce the
3-dimensional radiative, thermal and aerodynamic effects induced by buildings
facets (e.g. walls, street, roof) on the atmosphere, like the shadowing effects,
the walls radiation trapping, the wind sheltering effects as well as the turbulent
kinetic energy production induced by the presence of obstacles in the airstream
path.

The Building Effect parameterization (BEP) of Martilli et al. [2002] is one such.
Urban areas are made up of three urban types (the high intensity residential, the
low intensity residential, and the commercial, industrial and transportation). In
each grid cell, infinite long canyons (i.e. the spatial unit composed of a build-
ing and its adjacent street) are uniformly distributed. Two equiprobable canyon
orientations are considered with square cross-sections. The canyon geometry
consists in a building and street width, and a building height probability func-
tion for representing the building heterogeneity. Distinct energy and radiative
budgets resolutions for plane (e.g. roofs and streets) and vertical (e.g. walls)
facets of the canyon achieve reproducing the radiation shadowing and trapping
effects while a distributed drag force approach derived from vegetation schemes is
used for computing the airflow momentum losses induced by the buildings walls.
Those momentum, energy and humidity surface fluxes are computed each time
the buildings interact with the airflow for each layer of a refined 1-dimensional
canopy grid that is immersed in the mesoscale atmospheric. The surface fluxes
are later weighted according to the canyon facets areas and interpolated in the
mesoscale 3-dimensional atmospheric grid. At last, a modified Bougeault and

Lacarrere [1989] turbulent scheme that solves the turbulent kinetic prognostic
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iii)

equation is adopted to take into account the dynamical perturbations of the at-

mospheric flow induced by the buildings.

The BEM building energy use model

Since few decades, urban canopy parameterizations have been coupled to sim-
plify building energy models. Since 2002, the Building Energy Model (BEM) of
Salamanca et al. [2010] is coupled with the BEP model. In BEM, the building
shell is described according to four oriented walls characterized by finite dimen-
sions, layered buildings materials and uniformly distributed windows’ wall frac-
tion. Each building is divided into floors or rooms according to the canopy grid
resolution. Each floor in BEM corresponds to a box in which a simplified heat
budget is calculated considering an occupied standard building. The heat budget
takes into account: i) the room indoor radiative budget accounting for the win-
dows fraction; i) the heat conduction through layered buildings materials, i)
the unintentional natural ventilation; and 4v) the heat generated by occupants
and wasted by equipments. The regulation of the air temperature and humidity
is modeled through a heat pump system driven by the imposed thermal and hu-
midity comfort ranges, the thermal and humidity loads, and the efficiency of the
HVAC system. The coupling with the BEP model is done through the balance
of the indoor and outdoor energy budgets, and the resolution of 1D heat conduc-
tion equation through the layered buildings materials. Finally, BEM reproduces
accurately the surrounding building thermal ambient conditions. It considers the
building wasted heat due to human activities ejected in the street. Moreover it
provides to BEP accurate building facets skin temperatures.

Salamanca et al. [2011] and Kikegawa et al. [2003] used such improvements for

assessing building energy conservation strategies.

5.4 Settings of the climate modeling system

A previous study on the space heating building energy requirement over the URSK do-

main has been performed and validated over the 2010 year (see chapter 3). This is the

initial case. The same climate modeling system configuration is adopted to simulate

the building energy requirements for the two urban development scenarios. Only the

built-up pattern changes for considering the influence of the compact and moderately
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compact urban development policies on the building energy requirement and urban

heat island intensity.

5.4.1 The WRF atmospheric model grid and physical config-

urations

Four nested meteorological domains (figure 5.1) centered on the administrative limits
of the Strasbourg city council (CUS) (figure 5.2) are drawn. The innermost domain is
the URSK domain.

& & 8 =&
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Authors: MK and V. D. 2015
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al8e14-12-10 -8 8 -4 -2 O 2 4 6 B 10 12 14 18 18 20 22

Figure 5.1: Coverage of the WRF nested climate simulation domains (from larger to
finer): the West part of Europe (domain 1), over France (domain 2), Upper-Rhine
Region (domain 3), and the Strasbourg-Kehl urban region (URSK domain).
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Figure 5.2: The URSK domain.

The URSK domain atmospheric grid consists in 27x33 rectangular C-Arakawa grids of
1 km horizontal resolution and 28 stretched pressure levels according to a 5000 Pas-
cal top pressure in the vertical. Its initial and lateral meteorological conditions are
provided by the other coarse resolution parent-domains, which atmospheric grid sizes
range from 45 km to 3 km. The FNL- National Centers for Environmental Prediction
meteorological global data reanalysis provides the meteorological conditions to domain
1 each 6 hours. The ARW core solves fully compressible and non-hydrostatic Euler
conservative equations for the wind velocity, the potential temperature perturbations,
the surface pressure perturbation of dry air and the geopotential perturbation con-
sidering a third order Runge-Kutta scheme. As advised by Martilli et al. [2002] and
Salamanca et al. [2012] the Bougeault and Lacarrre (Boulac option) k-e turbulence
model is adopted. The influence of water vapor on shortwave and longwave radiation
processes is taken into account through the Dudhia [1989] shortwave radiation scheme
and RRTM options respectively.

The Thompson et al. [2004] scheme that explicitly resolves water phase’s transforma-
tion is selected for the microphysics. At last, the NOAH Land Surface Model (LSM)
computes the surface fluxes (latent and heat fluxes) as well as the skin temperature
considering a roughness approach for non-urban areas while the BEP+BEM urban

canopy parameterization does so for the urban areas.

Because surface coverage is critical for representing accurate land-surface exchanges
and planetary boundary layer dynamics [Xiu and Pleim, 2001], the regional high res-
olution and multisource land use land cover CIGAL (BdOcs_2008) dataset is used for
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defining the 2010 land cover over the French part of the URSK domain. The corre-
spondence between the different land cover classifications is found in figure 5.3 while
the 2010 land cover maps is presented in figure 5.2. The MODerate resolution Imaging
Spectroradiometer (MODIS) 2001 land cover dataset fills the no data in the URSK

domain (German part).

For the scenarios, the WRF/ARW 2030 land cover maps are issued from the combina-
tion of the BdOcs_2008 land cover dataset and the SLEUTH* simulated 2030 built-up
areas maps. A random algorithm permits to assign, for each 20x20 m developed built-
up cell, an urban type with respect to the proportion of each urban type in the initial
case’s overall urban areas. It is assumed that developed built-up areas could either be
low intense residential or commercial and industrial. The areas of each of the urban
types including in each atmospheric grid are then aggregated, which allows a dominant
land cover type to be assigned to each grid according to an urban fraction threshold set
at 20%. When urban areas count for more than 20% of the atmospheric grid coverage,
the atmospheric grid is urban and the BEP+BEM models are activated. The remain-
ing part is necessary of croplands or mosaic vegetation type as proposed by the climate
modeling system. The resulting compact and moderately compact WREF/ARW land

cover maps are given in figure 5.4.
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Figure 5.3: Correspondence between the land cover types classifications.

197



Land covers Urban Fractions

b}
‘
R4
@ :
(_) =
o
—
£
X-atmopshiers grids X-atmopsheric grids
Differences in the urban fraction
Compact scenario-Initial case
E P
4
H b
- g 15
U L
] pua
£
L ‘
3
2 6 10 14 18 n 26
X-atmopsheric grids
Moderately compact scenario-Initial case
b3
G i
g ;
e I £
Q 3
Q =
o)
o 5
=
2 6 0 14 18 12 6
X-atmopsheric grids

Author: Kohler (2015)

Figure 5.4: The WRF/ARW land cover maps for the compact (scenario 3) and mod-
erately compact (scenario 5) scenarios.

5.4.2 BEP and BEM selected parameters

The BEP + BEM urban canopy model distinguishes three types of urban fabrics: the
high intensity residential characterized by high population density and construction

surface (class 32), low intensity residential (class 31) where constructed material is
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mixed with vegetation, and the commercial and industrial estates (class 33). In this
study, transportation infrastructures are considered apart in the MODIS built-up class
(class 13). The non-urban fractions of the urban atmospheric grids are defined as
mosaic vegetation and croplands for reproducing the highly irrigated low urban vege-
tation. In this study, the American megacity urban parameters proposed by defaults
are adapted to better correspond to European cases. For this we use several high res-
olution GIS spatial databases (e.g. Google earth satellite images, the 2012 BDtopo®)
of IGN, the 1999 population census of INSEE), scientific and grey literature and col-
laborative websites [Sellé, 2011]. This permits to reproduce as real as possible the
Strasbourg great city street-canyons’ equivalent geometry (the canyon directions dir.
counting 0° as the North, the building height H distribution, the building and street’s
widths W along with the North/South canyon and West/East canyons respectively
Bx, By, Wx and Wy in meters, and the ceiling height dzcan), as well as radiative and
thermal surface properties and building’s standard occupancy for each type of urban
fabric (Utype).

The layered radiative and thermal proprieties of materials for each canyon facets are
presented in table 5.3 while figure 5.5 displays the material compositions and thickness
for roofs, walls, floors and undergrounds that have been retained for representing the

thermal behavior of the buildings.

a) Residential bulldings b) Commercial and industrial buldlings
Roof: 0.16 m Walls: 0.38 m Walls: 0.19m
= e £
— E B s
- £ ik
Glass wools 18kg/m3(0.112m)  |nt. E E £ g Ext. Int. 3 H = Ext.
Water check membrane (0.0002 m) A a 8
e L 181
Floor: 0.6m §
Glass wools 18 kg/m3 (0.2 m) Roof: 0.‘Iﬁmm
Underground: 0.965m Glass wools tBkg}TnBIO.ﬂS-lm:l
Glass wools 18 kg/m3 (0.1m) Gypsum :itu (0.013m)
T nt
- Author: Kohler (2015)

Figure 5.5: Composition of the building shell layers.

For the BEM model other parameters such as the human metabolic heat rate, the heat

wasted by the equipments, their daily use profile and the performance of the ventilation
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’ Parameters \ Data

Treatments

Adopted parameters

dzcan - - The vertical resolution of the BEP grid constrains the ceil-
ing height. Thus the vertical resolution is set equal to 3
m.
dir. Google | Analysis of ran- | class 31 (Palais Universitaire neighborhood): 45° N/S and
Earth dom samplings of | 315° W/E ; class 32 (place Kléber neighborhood): 315°
® prototype Utypes | N/S and 45° W/E ; class 33 ("Port du Rhin” neighbor-
hood) : 0° N/S and 90° W/E.
H BDtopo | Building height
® distribution ob- E from 30-40 |
tained by GIS | T S from 25-30 ! H High dense residential
geoprocessing. mfrl}m 20-25 - * Low dense residential
mfrom1 5.20 f"" Industrial and trading estate
=l='fzorn 10-15 -
S from5-10  I——
a inf5 _—-——
0 20 40 60 80 100
Percentage (%)
w BDtopo | Adaptation of
Class 31 Class 32
® building’s  and | ;4 Losw o 00 067%
street’s  widths | b3
to minimize the | 0
relative differ- | 469% "
ences (in %) L Ao
w0 -4, 58% .29.04%
between the total i ien PN 1oz e .
bulldlng envelop miter  hiva invvlwp Valome Permeted  Ara Erwelop  Volume
and volume. We “",‘;’ — _
used the BDtopo | siic o oo bl Biiad fli
® (shallow grey) | ™ a1 |220(10(2 |18
and assume cubic | * e ETRETEEN R
buildings. - o | |
20 . 33 | 30|70|25 |50
oL _1rom pupm

Perimeter  Area Envelop  Vodume

Table 5.2: Canyon morphological parameters.

and HVAC systems have to be specified. Table 5.4 gives the BEM setting-up parame-

ters. Unless floor population density and windows fraction, they are set by consulting

scientific, official and building construction dedicated sources.

The floor population

density is obtained by setting proportional the 1999 IRIS (census unit) population

census data corrected by a 2010-1999 population growth issued from the literature [IN-
SEE, 2007] with the BDtopo®) built-up area included in each atmospheric grid. The

windows fraction on each building wall is defined by considering typical prototype of

residential buildings.

200




Building Heat Heat

material diffusivity capacity (kJm 3.K~1)
(mm?.s71)

Roofs (Albedo: 0.1, Emissivity: 0.9, Roughness length: 0.01) from Krpo [2009] and

weather.msfc.nasa.gov

OSB 0.13 982.08
Air (1.2 kg/m3) 21.7/ 1.20
Vapor check membrane 7692.30 298.99
Glass wool (18 kg/m?) 2.87 18.53
AGEPAN 1.29 58335.00
Brown tile 0.59 655.00
Walls (Albedo: 0.2, Emissivity: 0.9, Roughness length: -) from Krpo [2009]
Gypsum (BA13) 0.30 831.60
Air (1.2 kg/m?) 21.7/ 1.20
Glass wool (18 kg/m?) 2.87 18.53
Standard performed bricks 0.59 655.00
Roughcast in cement 0.48 1642.00
Undergrounds and floors

Concrete 1636.90 2167.20
Glass wool (18 kg/m?) 2.87 18.58
Air (1.2 kg/m3) 21.7/ 1.20

Street (Albedo: 0.05, Emissivity: 0.95, Roughness length: 0.01) from Krpo [2009])

Table 5.3: Radiative, thermal, and aerodynamic properties of buildings.

5.5 Validation of the meteorological fields and space

heating energy requirements

The mean biases MBs, the root mean square errors RMSEs and the Pearson corre-
lation coefficient R are computed for the 2-m air temperatures and the wind speeds
using the Météo France hourly meteorological datasets of three experimental stations.
Wind roses are analyzed for comparing the observed and simulated wind directions. It
should be retained that wind speeds and directions are only available at Entzheim and
La Wantzenau stations.

The absence of a dense meteorological observation network over the URSK domain, in
particular in the dense urban core, does not allow a correct validation of the simulated
meteorological field. Indeed, the single station located in the urban core (Strasbourg-
Botanique) is surrounded by large vegetation and thus may behave as a cool island
[Fischer, 2001, Ringenbach, 2009].
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Parameters

Chosen settings

Literature review

15% for residential and
Windows 20% for commercial & in- 1/6'" of the building living space [ITAURIF, 2008] ;
-to-wall dustrial buildings 0.2 [Salamanca et al., 2012]
fraction
1.02 ind. for 100 m?
(Utype 31), 6.86 ind. for
Population 100 m? (Utype 32) and 2 individuals for 100 m? [Salamanca et al., 2012]
density 0.31 ind. for 100 m?
(Utype 33)
Metabolic 80 Watts A man of 75 Kg emits 75W (at rest) and 100-200W
heat rate (extreme activity) [Sailor, 2011]; An adult emits 63W
(asleep) and 90W (in activity) (MEDDTL 2012); An
individual emits 75W (at rest) and175W (at maxi-
mum) [Allen et al., 2011] ; An individual emits 54.7W
[Kikegawa et al., 2003]
Peak heat Pk=36 W/m? Pk=36 W/m? and 20 W/m? for commer-
generated cial/industrial buildings and for residential re-
by equip- spectively.  [Salamanca et al., 2012] ; Pk=5.58
ment W/m? for a typical Hausmannian building and an
internal heat generation of 38.61 W/m? and 193.05
W/m? plan area respectively for residential and
offices [Bueno et al., 2011]; Pk=5.7 W/m? the day
and 1.1 W/m? at night [CSTB, 2012]
Ventilation B =0.75 B = 0.43 in Paris and 8 = 0.5 in Toulouse[Bueno
rate et al., 2011] ; 8 = 0.75 [Salamanca et al., 2012] ;
B = 0.6 [Kikegawa et al., 2003]
Humidity 0.005 kg/kg [Salamanca et al., 2010]
target
Humidity 0.005 kg/kg [Salamanca et al., 2010]
gap
Temperature ﬁangs;Qg)g K4/ 05K Tiarg=[19 ; 24°C] for Toulouse [Bueno et al., 2011] ;
target ' Tiarg= [24 ; 26°C] for Madrid in summer [Salamanca
et al., 2012] ; T}4rg=19°C in average [CSTB, 2012];
Tiarg=20°C or more [Crédoc, 2010]
COP heat 0.9 COP heat=0.9 [Bueno et al., 2011] ; COP heat=0.75

[Salamanca et al., 2012]

Table 5.4: Settings of the building energy model parameters

Despite this, the climate modeling system qualitatively reproduces well the meteoro-

logical field over the study case. The R coefficients show a good adequacy between the

simulated and observed temperatures (R=0.96) for each meteorological station. Nev-

ertheless, the MBs reveal different patterns for each station. Moreover biases change

according to the season. At Entzheim the MBs show that the average, maximum and

minimum temperatures are systematically underestimated by about -1°C during the
leaf-on period and -0.20°C during the leaf-off period. The slight MBs in winter help

to conclude that the temperature biases have little incidence on the heating building

energy loads. At Strasbourg-Botanique, the model systematically over-estimates the
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Figure 5.6: Location of the meteorological stations over the URSK domain.

air temperatures by about +2°C. It could be a result of the cool island effect recorded
in the observations as reported in Fischer [2001]. At last at La Wantzenau station,
the MBs are low showing a good agreement with the observations. Hence, the climate
modeling system fairly reproduces the synoptic meteorological stations but no conclu-
sion could be addressed on the urban air temperature and adequacy of the setup of the
BEP+BEM models.

The wind field is accurately reproduced by the climate modeling system. The R co-
efficient is significant for each of the two available stations: R is equal to 0.60. The
RMSE and the MBs highlight that the wind speed is more accurately reproduced at
Entzheim, the synoptic station of Météo France for the region, than at La Wantzenau.
According to the wind roses, the Entzheim station represents well the synoptic condi-
tions with a channeling North/North-East and South/South-West wind effect caused
by the Rhine graben. Systematic easterly wind deflections in the Entzheim simulated
winds are found. More frequent high winds are reported at Entzheim compared to La
Wantzenau where calm winds and low winds are more frequent. The location of the
station close to the forests may indeed shelter the station from synoptic circulations.
The higher RMSE and MBs at La Wantzenau indicate that the climate modeling sys-
tem does not achieve to reproduce calm winds. Wind directions are as scattered as

errors. Easterly wind deflections as well as westerly wind deflections are observed.
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In conclusion, the meteorological field is quietly reproduced by the climate modeling
system. However the scarcity of instrumental observation sites prevents the general-

ization of the latter findings.

For validating the building energy requirements for space heating, we used the energy
census data provided by the regional air quality association ASPA [ASPA, 2012]. They
followed a building stock approach using the INSEE dwellings database over the CUS
area. In the dwellings database, each building type is depicted according to the age
of the structure, the number of rooms, the size of households, the building type (res-
idential or commercial) and so on. Then the CEREN gives the energy consumption
intensity for space-heating for each of the prototype buildings. The energy datasets
are provided by public or private electricity, oil and gas delivery companies, thermal
images, surveys and building energy simulations. ASPA computed the heating build-
ing energy requirements for the CUS area in 2010. We found a 2010 building energy
requirement of 11,802,994.6 Giga Joule (GJ). The relative difference between our case
study and the ASPA study is about -25.64%. This difference is found acceptable with
regards to all the physical simplifications and building parameters that are included in

the climate modeling system.

5.6 Results and Discussions

For each scenario of urban development, we made a simulation with the WRF/ARW-
BEP+BEM climate modeling system over a time period that covers three non-consecutive
months. We took into account the 2030 WRF/ARW land cover maps and the 2010
meteorological conditions. The year 2010 represents at the global scale the warmest
global land and ocean surface temperatures above the 20th century according to the
National Oceanic and Atmospheric Administration (NOAA) with +0.62°C compared
to the 20" century average that is 13.9°C. In France and according to Météo France,
the 2010 winter ranks among the coldest of the century period (it was as cold as 1996)
but, however, it does not represent unusual winter conditions. The meteorological
conditions of 2010 are also characterized by a warm summer: it is the 10" warmest
summer since 1950. As a conclusion, the meteorological conditions observed in 2010
display the influence of the climate change in the global surface temperatures. This
year presents also the advantage to show that despite the global warming, the vari-

ability of the climate system continues to produce cold winters. More, according to
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the meteorological simulations performed to regionalize the climate change across the
French territory, the climate change will induce in average slight changes in the annual
temperatures. By 2050, the warming is included for the region between +1.26°C to
+1.44°C (www.drias-climat.fr ). The selected months for the simulations are February,
March and September. They have been showed in chapter 3 to give good estimates
of the building cold sensitivity and base temperature of the statistical model for the
studied area.

The sealing of natural surfaces through pavements, parking lots, and buildings triggers
changes in the near surface temperature fields and urban heat island intensity [Oke,
1987].

Usually, the difference of the air temperatures between two stations or two atmo-
spheric grids is used to assess the urban heat island intensity. One is chosen being
representative of the countryside thermal environment, and the other is considered be-
ing representative of the urban thermal environment. We use the temperature averages
of all the urban area considering that the average temperatures are representative of
the urban thermal environment. We also use the temperature averages of all the rural
considering that the average temperatures are representative of the rural thermal envi-
ronment. We argue that average temperatures over a domain are more representative
of the local climate than the consideration of two temperatures datasets. On this basis
we defined the average UHI intensity (AUHI) as the difference over the three months
of the daily urban and rural simulated temperatures. The urban (or rural) tempera-
tures are taken as the daily average temperature of all the urban (or rural) atmospheric
grids. We calculated the nocturnal (AU H I night) and daily (AU HI_day) urban heat
island. The nocturnal temperatures are the average of the hourly temperature over the
6 p.m to 8 a.m. period of all the urban (or rural) grids of the domain. The daytime
temperatures are the average of the hourly temperature over the 8 a.m. to 6 p.m period

of all the urban (or rural) grids of the domain.

Scenarios AUHI AUHI night AUHI day

Feb. March Sep. Feb. March Sep.

Initial Case 0.62°C 0.57°C 0.83°C 1.15°C| 0.32°C 0.24°C 0.37°C
Compact scenario 0.59°C 0.55°C 0.79°C 1.09°C| 0.30°C 0.22°C 0.33°C
Moderately compact scenario | 0.56°C 0.52°C 0.77°C 1.05°C| 0.29°C 0.22°C 0.33°C

Table 5.5: Urban heat island intensity for each simulated built-up pattern (February

is Feb. and September is Sep.)
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Table 5.5 shows that the average and nocturnal urban heat island intensities are weak.
The UHI is frequently less than 1C. Cantat [2004] used a network of meteorological
stations and observed an UHI of nearly +3°C and +1°C over the Paris agglomeration
at night taking the minimum temperature and during the day taken the maximum
temperatures, respectively. Ketterer and Matzarakis [2014a] reported from the 2000-
2011 meteorological survey of Stuttgart (Germany) using four urban stations and a
single reference station, an average annual UHI intensity equal to 0.3°C in the suburbs
of Stuttgart that could rise up to +2°C in the city center. Szymanowski and Kryza
[2012] by analyzing urban and rural temperatures measured respectively at urban and
rural stations found that the UHI phenomenon rises the temperature of the city center
of Wroclaw (Poland, 293 km2 and 640,000 inhabitants) by +1°C. Mayer in 1987 found
an UHI intensity of +1.9°C in Munich (Germany) that could reach up to +8.2°C [Ket-
terer and Matzarakis, 2014a]. Finally, Hamdi and Schayes [2008] reported measured
UHI intensity of +5°C at night and of +2°C at noon in Basel (Switzerland).

Over the Strasbourg agglomeration, the RECLUS field campaign permits outlining
a nocturnal UHI of +6°C for the August 1** and 2"¢ 2002 and considering 10 p.m.
to 6 a.m hourly temperature average [Kastendeuch et al., 2000]). This scholar simu-
lated the temperature field of the Strasbourg urban area using the Meso-NH mesoscale
model of Mto-France and TEB urban canopy parameterization [Masson, 2000]. He
found a nocturnal UHI of +4°C that is approximately null during the day considering
two atmospheric grids, the first taken in the city center (Place Kléber) and the second
at the airport (Entzheim). Taken the same method, we found over the three months
a simulated UHI intensity of +1.97°C at night for the initial case. The averaging pro-
cedure smoothes the local differences in air temperatures and could explain the weak

intensity of the UHI calculated in our study.

Second, the urban heat island intensity is higher at night compared to the day. The
UHI is indeed usually more intense few hours after sunset when the differential in cool-
ing between urban impervious surfaces and the rural surrounds is the highest and when
the air mixing is reduced. Meanwhile it is negative or quasi null in the morning due
to the higher contribution of the heat storage term in the urban surface energy budget
[Oke, 1987]. Because the simulated UHI is higher at night compared to daytime, one
can conclude that the climate modeling system achieves reproducing the UHI diurnal

pattern.

Third, the monthly UHI intensity at night is the highest in September and the lowest
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in February. This seasonal behavior of the nocturnal UHI is also well acknowledged
in the researcher communities. Cantat [2004] highlighted that 34% of the highest UHI
phenomenon occurs in summer while it concerns only 6% of the case in winter. Ket-
terer and Matzarakis [2014a] mentioned that monthly UHI intensities are higher in
summer or spring and lower in winter. Physically, the solar forcings on the surface is
more intense in September than in February or March. As showed in table 5.6, the
average, minimum and maximum air temperatures are the warmest in September and
the lowest in February. Moreover, the shadowing effects are reduced in summer when
the solar elevation in the sky is high. In urban areas, the presence of tall obstacles may
favor shadowing effects with low sun elevations. Hence urban surface absorbs more en-
ergy in summer than in winter. Other studies also pointed out the higher frequency of
clear-sky and calm wind meteorological conditions in summer that favor the occurrence
of the urban heat island phenomenon. In our study the frequency of simulated high
winds (above 5 m.s_q) at the three stations, which may hide the local effects of the
surfaces in the temperature fields, are scarce over the simulated period. In parallel, the
evapotranspiration fluxes are higher during the summertime leaf-on period, which con-
tributes to lower the rural surface temperature [Schatz and Kucharik, 2014]. Besides
as showed in table 5.7, the diurnal thermal gradient increases during the year in both
rural and urban areas. They are the lowest in February and the highest in September.
The low differential in solar energy absorption and the absence of evaporative cooling
could also explain that the UHI intensities at night and during the day are equal in
February.

In contrast, the daytime monthly UHI is more intense in September and February. No
explanation are given but the highest Bowen ratio in March compared to February
and September, that measures the contribution of the sensible heat flux compared to
the latent heat (humidity) flux in the surface energy budget, could give insight on the
phenomenon. Note that the Bowen ratio is computed using average rural latent and
heat fluxes over the three months at 2 p.m and that the Bowen ratio is above 1 all over

the period meaning that the simulated latent heat fluxes are very low.

At last, table 5.5 shows that the differences in the UHI intensity between the scenarios
are weak. Moreover the differences fail in the ranges of the climate modeling system
erTor.

Seaman et al. [1989] reported a surface temperature rise of +0.2°C with the tripling

of the Saint Louis urban area, a shift of UHI center 6 km downwind, and a reduction
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In °C Initial Case Compact scenario Moderately
compact scenario

Feb. March Sep. Feb. March Sep. Feb. March Sep.

Average urban | 2.87 5.62 13.48 | 2.76 5.90 13.39 | 2.77 5.91 13.43
temperature

Average rural | 2.43 5.06 12.69 | 2.34 5.36 12.59 | 2.37 5.38 12.65

temperature

Min. urban | 0.75 2.83 9.70 0.67 3.09 9.67 0.68 3.11 9.66
temperature

Min. rural | 0.28 2.12 8.69 0.21 2.40 8.73 0.24 2.42 8.82
temperature

Max. urban | 4.94 8.73 17.24 | 4.79 8.98 17.17 | 4.81 8.97 17.23
temperature

Max. rural | 4.48 8.60 17.09 | 4.35 8.85 17.03 | 4.38 8.85 17.10
temperature

Table 5.6: Urban and rural air temperature for each simulated built-up pattern: daily
average, minimum (Min.) and maximum (Max.) for each month (February or Feb.,
March and September or Sep.).

Months Thermal amplitude Thermal amplitude
in urban areas i rural areas

February 4.12°C 4.14°C

March 5.89°C 6.45°C

September 7.50°C 8.30°C

Table 5.7: Thermal amplitude in urban and rural areas.

of the wind convergence at the surface. Atkinson [2003] reported an increase in the
temperature by +0.2°C when the urban area radius of an ideal city located at 50° N
goes up from 6 km to 20 km. Tokairin et al. [2010] found a temperature increase equal
to about +0.6°C and 40.9°C in average due to the extension of the Jakarta urban
area between the 1970s and the 2000s. The largest difference in temperature is equal
to +3.5°C and occurs in the South and West parts of the old city. Aguejdad et al.
[2012] found differences in the UHI intensity of +22% and -24% at midnight and 6 a.m
between compact and sprawled urban development scenarios over the Toulouse great
city. They took an annual built-up area increase of 1300 ha/yr that is about 1.5 times
higher than the annual built-up area increase adopted in our study. They also used a
grid size of 250 m and forced the climate model by using ideal meteorological conditions
(an idealized anticyclonic summer situation). The urban temperatures are taken as the
horizontal average of the atmospheric grids contained in a line of 5 km length centered

at the city core (considered in the middle of the domain). The rural conditions are
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taken as the horizontal average of the atmospheric grids contained in a line of 5 km
width and located 17 km upwind of the city center. Therefore the influence of the
surface on the local climate and the UHI intensity are enhanced in their simulations

compared to our results.

In our study it also appears that the correlations between the air temperature and
the urban fraction are not significant (R=0.52 and R=0.49 for the compact and mod-
erately compact scenarios, respectively). It means that the local effects of built-up area
on the climate do not contribute to explain a large share of the temperature field. The

temperatures seem to be well influenced by the synoptic conditions.

In order to deepen the analysis we analyzed the statistical distributions of the daily
urban temperatures to point out some changes in the temperature fields between the
scenarios. Table 5.8 sums up the different analyzed parameters while figure 5.7 depicts
the frequency distributions of urban daily temperatures for each scenario.

We can observe that the daily urban temperatures are not affected by the urban de-
velopment and that the slight differences observed in the statistical parameters fail in
the error range of the modeling system. For comparison Aguejdad et al. [2012] found
differences in the maximum and minimum temperatures between their urban develop-

ment scenarios equal to about 1°C.

Scenarios Initial case Compact Moderately compact
Mean 7.45°C 7.44°C 7.46°C

Median 9.09°C 9.08°C 9.04°C

Minimum -5.77°C -5.76°C -5.78°C

Maximum 17.79°C 17.92°C 17.73°C

Standard deviation 6.39°C 6.40°C 6.41°C

Skewness -0.29°C -0.30°C -0.30°C

Kurtosis -1.16 -1.15 -1.15

Table 5.8: Characteristics of the statistical distributions of urban average daily tem-
peratures.

Figure 5.8 displays the 3 months-averaged temperatures for the initial case and the dif-

ferences in the 3 months-averaged temperatures considering successively 1) the initial

case and the compact development scenario, and 2) the initial case and the moderately
4

compact development scenario. The warmer surfaces in figure 5.8 are water tables.

One can notice a concentric temperature gradient over the main urban centers. The
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Figure 5.7: Frequency distributions of urban daily temperatures.

temperatures over the morphological agglomeration decrease from a linear temperature
gradient of about -0.4°C from the warmest urban grids up to the periphery of the urban
agglomerations. The highest differences between the scenarios and the initial case are
in-between +0.7°C and +0.9°C for the compact development scenario and +1°C and
+0.7°C for the moderately compact scenario. In case of compact urban development,
punctual locations of warming can be identified. They correspond to the grids for
which the urban fraction difference is greater than 20% with respect to the initial case.
In case of moderately compact development scenario, punctual locations and extended
areas of warming are identified. They also correspond to the grids for which the urban
fraction difference is greater than 20% with respect to the initial case and grids where

the urban development concerns several contiguous grids.
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Figure 5.8: Maps of average daily air temperatures and urban fractions in the ini-
tial case, and average daily temperature differences between the initial case and the
compact and moderately compact development scenarios, respectively (outputs from
WRF/ARW modeling system).

As a conclusion the temperature fields seem unaffected by the urban development in av-
erage. When introducing a change of the built pattern, the average daily temperatures
locally change. The warming is slightly more pronounced in the moderately compact
scenario than in the compact development scenario in particular in areas where the

urban development concerns several contiguous grids.
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The climate modeling system by providing the building energy requirements and out-
door temperatures permits to build the ”building energy requirements-daily outdoor
temperatures” relationships found by previous study. A linear fitting allows taking
out the cold sensitivity P which quantifies how sensitive are the building energy re-
quirements with temperature rise. It also provides the base temperature Tj, which is
the temperature at which there are no more building energy requirements for space
heating. The first corresponds to the slope of the winter branch of the building energy
requirements-air temperatures function. The second corresponds to the interception of
the linear fits with the daily outdoor temperature. Such relationship (linear model) is
sketched in figure 5.9.

Building energy requirement-Outdoor temperature relationship

76000 T
Initial case +
Conmpact scenario
Hoderatly compact scenario
60000 - initial case fit ——

conpact fit ——
noderately conpact fit

Building energy requirement (MWh)

] : : 44 ': -
-5 ] 5 10 15 20
Outdoor temperature (degC)

Figure 5.9: Building energy requirement as a function of the daily outdoor temperature
for each scenario.

Table 5.9 provides the linear fittings parameters P and Tj for each urban develop-
ment scenario. The cumulated space heating building energy requirements outputted
from the climate modeling system is EC5,,0nns, and the corresponding building energy
requirement estimations using the linear model parameters is Qsmontns. Finally, we
calculated the 2010 entire year building energy requirements. For this we used the cold
sensitivity P and base temperature Ty estimated with the linear model for each scenario
for the three considered months. We also use the daily air temperatures simulated in

the initial case for the whole year. It is referred as (Q9010.
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Scenarios EC3month | Q3month P To Q2010

(in GJ) (in GJ) (in MWh.C) | (in°C) || (in GJ)
Initial case 4,285,202.0| 444,3216.9 || -2668.78 12.20 14,796,360.9
(EC2010:14,021,807.9 (+3.62%} (+5.37%)
Compact scenario 4,977,520.7| 5,162,179.4|| -2922.6 12.26 16,325,437.6

(+14.94%) | (+3.70%) || (+9.07%) (+0.40%) || (4+9.82%)
Moderately compact | 5,424,813.1| 5,627,278.5| -3179.2 12.30 17,847,143.5
scenario (+23.47%) | (+3.73%) || (+17.45%) (+0.81%) || (+18.69%)

Table 5.9: Building energy requirements and linear model parameters for each scenario.
Relative differences between Qsmonths and EC3,0nms are in (italic) and differences
between the scenarios and the initial case in (regular).

Results displayed in table 5.9 show that the use of the linear model approximates well
the space heating building energy loads. The errors in the building energy requirements
estimations due to the use of the linear model are equal to about 3% with respect to
the building energy requirements directly outputted from the WRF/ARW-BEP+BEM
climate modeling system. Considering the whole year, the relative differences between
the linear model estimations and the WRF/ARW climate modeling system outputs
are equal to about 5%. Therefore the three months simulations are judged enough for
computing the cold sensitivity and the base temperature of the study area and giving

good estimations of the building energy load over the whole year.

When comparing the cold sensitivity and the base temperature for each scenario, it is
observed that the cold sensitivity shows more significant differences between the de-
velopment scenarios than the base temperature. The cold sensitivity and the building
energy requirements are the highest in the moderately compact development scenario,
the lowest in the initial case. The compact development scenario associated cold sen-
sitivity and building energy requirements are higher than in the initial case, but lower

than the moderately compact development scenario.

However the consideration of simple building energy requirements leads to miss-interpretations:
the 2010-2030 urban development area provided by the SLEUTH* simulations is the
highest in the moderately compact development scenario (1,864 ha) compared to the
compact development scenario (1,185.24 ha). The 20% rules, which defines the amount

of built-up areas that should be included in an atmospheric grid to consider it as an
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urban grid, leads to neglect about 14% of the built-up area built by 2030 in the com-
pact urban development scenario and about 13.6% of the built-up area built by 2030 in
the moderately compact development scenario. Hence, it is more the SLEUTH* sim-
ulations that explain the differences in the building volume to be heated between the
two scenarios. Because the difference in the volume of building to be heated prevents
the comparison of the two scenarios, we consider the building energy requirements in-

tensity that is the building energy requirement per floor square meter.

Table 5.10 gives the overall floor area for each scenario over the URSK domain. The
highest floor area is observed in the moderately compact urban development and the
lowest in the initial case. The floor area of the compact urban development scenario
is higher than for the initial case, but lower than for the moderately compact develop-

ment scenario.

Scenarios

Floor areas

Initial case

58,419,796 m>

Compact

63,145,968 m?

Moderately compact

68,172,584 m?

Table 5.10: Simulated floor areas for each scenario.

Considering floor areas of table 5.10, a second linear model has been built by considering
the heating energy intensity (figure 5.10). The cold sensitivity and the base temper-

ature obtained through ”the heating energy intensity-outdoor temperature” function

are recalled P* and T (table 5.11 ).

Scenarios pP* Ty
(in MWh.°C~t.m=2) (in °C)
Initial Case -4.57.107° 12.21
Compact scenario -4.62.107° 12.26
(+1.08%) (+0.32%)
Moderately compact scenario | -4.66.107° 12.30
(+1.95%) (40.40%)

Table 5.11: Cold sensitivities and base temperatures obtained by using heating energy
intensity (in MWh.°C~1.m~2).

Table 5.11 evidences that the differences between the parameters of the linear fittings
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are clearly lower.

Building energy requirement intensity-Outdoor temperature relationship
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Figure 5.10: Building energy requirement intensity as a function of the daily outdoor
temperature for each scenarios.

Thus the differences in the building energy requirements are mainly due to the differ-
ences in the building heated volume of each scenario. The locations of the new urban

developments seem to have no influence on the building energy requirements.

For investigating the spatial pattern of the ”building energy requirements-outdoor tem-
perature” function, we computed for each urban grid the cold sensitivity P and base

temperature Ty. The maps are presented in figures 5.11 and 5.12.

We observe in figures 5.11 and 5.12 that the cold sensitivity is higher in the center
of the main agglomeration (that is also characterized by higher building density), and
lower in its periphery (that is also characterized by lower building density) for the two
scenarios. Those results are surprising. Yet many studies associate low density and
sprawling patterns with increasing building energy requirements.

Few differences are observed in the base temperature (less than 1°C). The base tem-
perature is in average equal to about 12°C but higher base temperatures that can reach
13°C are observed in few urban grids. This not surprising as the base temperature is

often associated with the building energy performance and internal heat gains. The
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Figure 5.11: Compact development scenario: maps of the linear fitting parameters
(cold sensitivity P and base temperature textit7y), daily averaged urban temperature
for the three selected months, and urban fractions

latter slightly vary over the URSK domain: we considered only three urban types in
which the building characteristics for high and low intense residential are quite equal.
At last, the daily average temperatures are the lowest in the dense urban core. This
could be due to building shadowing effects that are enhanced in February and March.
Then the daily average temperatures are the highest in the grids that are assigned
to commercial and industrial types. In winter it is often showed that anthropogenic
wasted heat contributes more than solar radiations to the warming of the air temper-
ature [Sailor, 2011]. The wasted heat due to equipment in commercial and industrial
grid is indeed the highest compared to the other urban types: the floor area of each
building storey is 2100 m? for commercial and industrial buildings, 750 m? for high

intense residential buildings, and 200 m? for low intense residential buildings.

216



(MWhC) .
g 100
7
" o
n
13 g5 "9
A5
Az 2 »
18 i
a 4 -
B 15
s 50
27 !
= 2 ©
-3
1 g 3
35
£l >
| A D R L G PR [T L T [ | o
3 s 10 14 18 2 2% 2 L] o h L a »
X-atmopsheric grids Xalmopshertc geids
Moderately Compact scenario-T, 0 - Moderately compact scenario-T, ., .
N " mw= = - - = 128 - - [] -.
s =
] - [ ] 128 | ] B .
25 - . ’
g » -i. 124 ’g“ - = - &0
- F 122 T F
E!S [ B - = éls T
- - - i
H & - B, ns 5 B - : —
-—
Fq e i - s > m ™ - -
s :_“ Ha 54 .q w
12 - -
¥ F &% ¥F01 F U & % 4 ¢ A 1 | o [ | e | e i R [ e
2 [ 1o 4 L1} n 6 2 6 0 14 . n 26
23
X-atmopsheric grids X-atmopsheric grds

Author: Kohler (2015)

Figure 5.12: Moderately compact development scenario: maps of the linear fitting
parameters (cold sensitivity P and base temperature Tp), daily averaged urban tem-
perature for the three selected months, and urban fractions

When comparing the cold sensitivities and the urban fraction in the one hand, and the
base temperature and the urban fraction in the other hand, it seems that the cold sen-
sitivities are well correlated with the urban fraction neither do the base temperatures.
The correlations between the urban fraction and the cold sensitivity are R=-0.90 for
the two scenarios. The highest is the urban fraction the lowest is the cold sensitiv-
ity. The urban fraction is an estimate of the number of buildings included in each
urban grid. The high correlations seem indicating building density effects on the space
heating building energy requirements. When accounting for the vertical dimension of
the buildings and considering the correlation between the total floor areas and the
cold sensitivities, the correlations decrease (R=-0.76 and R=-0.77 for the compact and
moderately compact scenarios, respectively). This decrease could be partly explained
by changes in the ratio of the building envelop on the building volume (i.e. building
surface on volume ratio). The building surface on volume ratio quantifies the amount
of energy losses through the buildings facets on the energy required to heat the building
volume. The floor area seems to increase the variability of the cold sensitivity com-

pared to the number of buildings.
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The correlations between the base temperature and the urban fraction are 0.42 and
0.32 for the compact and moderately compact urban development scenarios, respec-
tively. The base temperature is not significantly correlated with the urban fraction.
The number of buildings has few impacts on the building thermal equilibrium. In
contrast, the correlations between the base temperature and the air temperature are
equal to 0.79 and 0.71 for the compact and moderately compact development scenar-
ios. Indeed the air temperatures influence the thermal equilibrium of the buildings,
and especially the heat gains and losses through heat conduction in the building walls

and natural ventilation.

Finally, we consider the building energy requirement intensity to make abstraction
of the differences in the building volume to be heated between the scenarios. We
computed the cold sensitivity P* and base temperature Tff in each atmospheric grid.

Figures 5.13 and 5.14 display the linear fitting parameters for each atmospheric grid.
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Figure 5.13: Linear fitting parameters considering the building energy requirements
intensity for the compact development scenario. (Be careful the scale has been changed
due to lower P* compared to P)

Comparing figures 5.11 and 5.13 on the one hand, and figures 5.12 and 5.14 on the
other hand, we observe that the cold sensitivities are mainly influenced by the building
floor area unlike the base temperatures. A concentric gradient is observed in the cold
sensitivity maps: the lowest cold sensitivities are found in the high dense urban core
and the highest are observed in the periphery of the main urban agglomeration. This
means that the buildings energy requirements in the dense urban core are less influ-
enced by the cold temperatures compared to buildings that are located in its periphery.
Figures 5.15 and 5.16 display in particular the building energy intensity requirements

in function of the outdoor temperatures considering in the one hand the atmospheric
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Figure 5.14: Linear fitting parameters considering the building energy requirements
intensity for the moderately compact development scenario. (Be careful the scale has
been changed due to lower P* compared to P)

grids that are characterized by low cold sensitivities (class 1) and in the other hand the
atmospheric grids that are characterized by high cold sensitivities (class 2) identified in
figures 5.13 and 5.14. Clear differences in the building energy intensity requirements -
outdoor temperatures functions, especially in the cold sensitivity are evidenced. Higher
building density may reduce the losses of energy. The envelop on volume ratio is the
highest for tall buildings reducing the energy exchanges of the buildings with their
surrounds. In addition, the thermal radiations emitted by the surface are intercept

and absorbed by adjacent building walls especially in narrow streets.

The base temperatures are the lowest in the dense urban core. They increase slightly
by about 0.5 C in the vicinity of the urban core, and then decrease in the farthest
periphery of the urban core. Nevertheless few differences are observed in the spatial
pattern of the base temperatures when considering either the building energy require-

ment or the building energy intensity requirement.
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Figure 5.15: Relationship between the building energy requirement intensities and
the outdoor temperatures for the two classes identified in figure 5.13 for the compact
scenario. Class 1 (or 2) gathers the atmospheric grids that are characterized by low
(or high) cold sensitivities.
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Figure 5.16: Relationship between the building energy requirement intensities and the
outdoor temperatures for the two classes identified in figure 5.14 for the moderately
compact scenario. Class 1 (or 2) gathers the atmospheric grids that are characterized
by low (or high) cold sensitivities.
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5.7 Conclusion

Like previous study we explored the effect of two planning rules (control of urban de-
velopment and preservation of ecological habitat) on the urban climate (e.g. [Tokairin
et al., 2010, Aguejdad et al., 2012, Masson et al., 2013, Stone and Rodgers, 2001, Stone
et al., 2010, 2013] in association with the space heating building energy requirements.
For this we use the WRF/ARW-BEP+BEM climate modeling system. The planning
rules and mechanisms behind the urban development are explicitly taken into account
through the design of non-developable land maps that are integrated in the SLEUTH*
urban growth cellular automata. We investigate three contrasted and archetypal built-
up types scenarios (the compact, moderately compact and spontaneous urban devel-
opments). Then the scenarios come in two versions in which the red squirrel forest
habitat connectivity is preserved or not. Graphab [Foltéte et al., 2012] is a landscape
graph-based software that enables us to identify essential forest patches for ensuring
the red squirrel ecological network connectivity while the MorphoLim [Tannier et al.,
2011] computing program permits constraining the urban development either in the
main built-up clusters or in their fringes. The resulting built up patterns appear to
be not so different between scenarios that protect or not the red squirrel habitat. The
scattered built-up patterns could not be evaluated by the climate modeling system: a
grid is assigned to urban when more than 20% of its area is built-up. The built-up
area is then under-estimated for scattered built-up patterns.

Therefore we only consider the compact and moderately compact built up patterns to
assess the changes in the building energy requirements for heating and in the meteoro-
logical fields with the urban developments with the WRF/ARW-BEP+BEM climate
modeling system. The built-up patterns serve to provide the 1km? atmospheric grids
land cover types and afferent physical static properties of the surfaces (e.g. roughness
length, heat capacity, leaf area index, building heights, urban canyon dimensions and

so on).

We firstly test the effect of the two urban development scenarios on the urban heat
island intensity considering daily average, nocturnal and daytime urban and rural tem-
peratures. Daytime temperature is taken as the average of the hourly temperatures
included between 8 a.m. and 6 p.m. and conversely for the nocturnal temperature.
The rural (or urban) conditions are taken as the average of all the non-urban (or urban)
grids of the URSK domain. The urban heat island intensity appears to be weak. The

averaging procedure is recognized to smooth the local differences in temperature, but
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is more representative of the local climate. The UHI seasonal and daily patterns are
well reproduced by the climate modeling system. The UHI intensity peaks in summer
(September) and at night. The contrasts in temperature are indeed lower in wintertime
when no evaporative cooling, shadowing effects and low solar radiation absorption are
observed. Between the urban development scenarios slight differences are observed in
the UHI intensity. Moreover the statistical distribution of the daily temperatures for
the scenarios confirmed that the two scenarios have no effects on the urban tempera-
tures. Significant warming locations are only observed in atmospheric grids for which
the urban grid fraction has increased by more than 20% compared to the initial case.
Besides this, the urban fraction is not significantly correlated with the average tem-
peratures of the three months meaning that the temperature is more influenced by the

synoptic conditions than by the shape of the built pattern.

Then we analyze the building energy requirements provided by the climate modeling
system. Differences in the building energy requirement equal to +14% and +23% are
reported for the compact and moderately compact development scenarios with respect
to the initial case. The discrepancy in the building energy requirements estimates is
less than 5% when considering the statistical model of the winter branch of the ”Build-
ing energy requirement-daily outdoor temperature” relationship. The resulting cold
sensitivities (the slope of the statistical model) quantify how much energy is required
with temperature rise. They vary according to the scenarios. The base temperature
is the temperature at which the building energy requirements. They are not sensitive
to climate conditions (the interception of the statistical model with the temperature
axis).

The moderately compact development scenario seems to have the highest building en-
ergy requirements and cold sensitivity. However the built patterns simulated by the
SLEUTH* model are characterized by differences in the building volume to be heated.
We therefore considered building energy requirement intensities. Then, the new cold
sensitivities and base temperatures are quite similar between the two scenarios. Thus
the changes in the building energy requirements between the scenarios come from the
difference in the building volume to be heated. Two groups of urban grids emerge
when mapping the new cold sensitivity. The first is characterized by relatively low cold
sensitivity and are observed in the dense core of the main urban center. The second,
located farthest from the dense urban core, is characterized by relatively high cold
sensitivity. It corresponds to grids in which the building density is the lowest. The
building density and building height may lower the cold sensitivity of the buildings.
Physically the ratio of the building envelop on the building volume is higher in high
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dense building area. Therefore the surface exchanges between the heated buildings and
the colder outdoor are reduced. In addition the building density attenuates the surface
longwave radiations losses towards the atmosphere meanwhile high building density
favors the disconnection of the urban canopy flow with the above laying flow [Baik
et al., 2003].

In opposite, no significant correlations are found between the base temperatures and
the urban fraction. It seems that the base temperatures are more impacted by the
building energy performance characteristics such as the performance of the insulation
and internal heat gains. The base temperatures show lower values in the dense urban
core, higher values in the first crown of the main agglomeration and finally decreas-
ing values at the periphery of the main agglomeration. This pattern seems to be well
correlated with the air temperature and internal heat gains through ventilation and

conduction.

In conclusion, it seems that the urban climate modeling system is able to detect changes
in the building energy requirements due to changes in the built-up area. It seems, how-
ever, unable to consider differences in the space heating requirements with respect to
various built-up patterns. Two axes emerged from our study. The first plaids in favor
reproducing more realistic building volume and details. This could be achieved by tak-
ing benefits of the highest resolution of the micro-scale and CFD models. The second
scales back the role of the climate modeling system approach in assessing the building
energy requirement. Indeed it appears that the sealing of the surface produces slight
effects on the meteorological fields, in particular the temperature fields. Nevertheless,
those results have to be confirmed by other study cases.

It is possible that the urbanization intensity in the URSK domain is too weak to impact
the local climate. Other urban development simulations in fast developing countries
and urban areas have to be performed and their incidence on the urban climate and
energy requirement tested.

Second it seems that the chosen period of simulation is inadequate to observe local
climate effects. The urban heat island intensity is indeed more intense at night, and in
summer. The analyzes of the winter branch of the ”energy-temperature” function and
space heating energy, are realistic configurations for the study case, but is maybe not
the best period to assess the ability of the climate modeling system to assess building
energy requirements. It is possible that the climate modeling system approach is more
adapted in summer and less in winter when the solar radiation forcings are weak and
anticyclone conditions scarce. Again, further investigations are required.

Third, it is possible that the changes in the temperatures with respect to the scenario
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are influenced by the atmospheric grid resolution. The 1 km grid resolution is indeed
a compromise done between the computational time and the representation in details
of the physical processes. Classical atmospheric grids range between 1 km and 5 km
for considering anisotropic atmospheric grids and obstacle spatial average effects on
the fluid flow. The grid resolution goes also hand in hand with the time steps used
for simulating the various physical processes. A time scale characterizes each physical
process. Small physical time scales require the use of small time steps. Hence for 1km
atmospheric grids resolution, the usual time step adopted for solving the advection is
about 100 second, for the acoustic waves 1 second and for the gravity wave 30 seconds.
Hence the finest would be the atmospheric grid resolution the smallest should be the
time step and the highest will be the computational time requirement.

To date, increasing the grid resolution raises, however, difficulties:

i) in representing the heterogeneity of the surface. Voogt and Oke [1998]|reported
that the urban surface anisotropy stays relatively constant as scales increase up
to approximately 12 m up to 1000 m. Below this limit, the advection and fetch
effects have to be considered. In this way, the tile approach that neglects the
spatial topological information is no more adapted when using finer grids resolu-

tion. Advection and fetch effects have then to be considered.

i1) in representing more realistic urban components such as the trees and buildings.
To date buildings are often viewed as uniform arrays of cubes leading to build
idealized or correspondent building volume, but not real cities. In parallel the
integration of the vegetation effects in the urban canopy models is at its begin-
ning. Radiative, thermal, aerodynamic and humidity effects in such models are
often taken into account for low vegetation while several studies pointed out the
role of mature trees on building energy requirements according to the building

exposition to solar radiations [Nowak, 2006].

Hence, the use of the climate modeling system to provide urban planning guidelines in
the energy conservation outlook is not to date recommended. Careful attentions have
to be paid on the interpretation of the results, and one should refrain, to date, from
giving building energy performance policy advice to policy makers. Further researches
on this field are required to adapt those climate modeling systems for operational urban
planning and study the relationship between urban form, building energy and urban

climate.
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Chapter 6

Development of a 1D-canopy model
under neutral atmospheric

conditions



Abstract

The development of an interface canopy model (CIM) are presented in this chapter.
This collaborative work carried in the EPAC team (LIVE, Strasbourg) were performed
in the scope to more accurately reproduce the vertical structure of the meteorological
quantities in the canopy layer, which profiles could be used as boundary conditions
both in urban surface parameterizations immersed in atmospheric mesoscale models
and in more resolved microscale meteorological models (domain of about 100 meters,
horizontal grid size of 1-2m). The CIM canopy models relies on the previous work of
Ikeda and Kusaka [2010] that stressed on the importance of multilayer canopy walls’
thermal budgets resolutions and Miiller [2007] that pointed out the sensitivity of the ur-
ban canopy parameterizations with the vertical resolution of the mesoscale atmospheric
grids. In CIM canopy model, the 1-dimensional vertical transport equation for momen-
tum is solved under neutral conditions using an adaptation of the parameterizations of
the surface fluxes proposed by Martilli et al. [2002], a k-¢ turbulence closure that uses
an extension of the Santiago and Martilli [2010] mixing length formulation, and volume
porosities like in Kondo et al. [2005] to account for the presence of buildings or other
built elements in the largest canopy grids. In contrast to previous study, the obstacles
have non-uniform z- and y- dimensions along with the z-dimension. Sensitive tests
show that the CIM profiles show good agreements with the Monin-Obukhov theory for
plane surface. More, the sensitive tests stress that the drag forces parameterizations
and mixing length formulations are prevailing parameters that significantly influence
the vertical wind speed profiles. The porosities in contrast show less influence on the
vertical wind speed profiles when adopting uniform obstacles but considerably change
the wind speed vertical profile when adopting non-uniform vertical volume porosities
distributions, and produce considerable changes in the vertical turbulent kinetic energy
profile. Nevertheless, those findings have to be confirmed by further experimentations,
and the thermodynamics should be introduced in the transport equations to perform
real atmospheric conditions studies. To such extent, Mauree [2014] in his PhD work
already introduced the effect of the thermodynamic on the wind speed and turbulent
kinetic energy vertical profiles. Those advance therefore permit research studies on
the influence of the thermodynamics effects in the canopy layer as previous studies
suggested major contributions of momentum drag forces compared to buoyancy forces

in urban canopy layer allowing the simplification of the canopy layer models.

Keywords: Atmospheric boundary layer Canopy model Surface-layer theory Turbulent

kinetic energy Turbulence parametrization Urban meteorology Urban parametrization
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6.1 Introduction

Since the past decades, detailed urban canopy parameterizations (UCPs) that compute
quasi-explicitly the three dimensional radiative and turbulent energy and momentum
exchanges of the built elements of the urban canyon (i.e. walls, roofs and streets) with
the atmosphere have been developed for mesoscale atmospheric modeling applications
(see Chapter 2). The UCPs re-compute on their own urban canopy vertical grid the
surface fluxes by introducing an extra-term in the Navier-Stokes conservative equations
to accurately reproduce the vertical structure of the urban boundary layer. The struc-
ture of the urban boundary layer is particularly determinant in air quality and building
energy issues, and a fortiori when the building energy use models are sensitive to the
air ventilation and infiltration like in Bueno et al. [2011], and when building complex
produces complex wind flows in the urban canopy layer. The obstacles indeed, modify
the surface fluxes in the urban boundary layer and the urban canopy layer itself, but
also influence the boundary layer above the urban canopy layer (the roughness sub-
layer) impacting weather mesoscale processes. The canopy meteorological quantities
(i.e. canopy air temperature T.,,, wind speed U, and relative humidity g..,) that
are used in the UCPs to re-compute the surface fluxes are either directly interpolated
from the mesoscale vertical atmospheric grids at each calculation iteration [Martilli
et al., 2002] or computed by using appropriate mean canopy meteorological quantities
like in [Masson, 2000]. In the most sophisticated UCPs that reproduce the three di-
mensional effect of the obstacles on the energetics and dynamics of the airflow, one
can referred to the single and multilayer urban canopy parameterizations depending
whenever one or several levels describe the urban canopy layer. Both types of UCPs
are acknowledged to show better accuracy with the observations compared to the clas-
sical roughness approach. Nevertheless, Tkeda and Kusaka [2010] by comparing the
simulated aire temperatures provided by the single and multilayer urban effect param-
eterizations with observations recently demonstrated that the resolution of the wall
heat budget for each level of a refined multilayer canopy grid produces better agree-
ments with the 1-m temperature observations compared to the resolution of a single
wall heat budget on a single canopy grid level. More, the quality of the simulations
is showed to vary with the seasons (higher RMSE in winter) and the sky view factors
(i.e. the hemispheric fraction of visible sky from ground) when using a single layer

urban canopy parameterization.
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Figure 6.1: Simulated temperature (°C) showing the importance of the vertical resolu-
tion of the first mesoscale level and the improvement of the surface effect representations
by using an urban canopy model (Adapted from Miiller [2007]).

In parallel, Miiller [2007] demonstrated that the multilayer UCPs are particular sensi-
tive to the vertical resolution of the first level of the mesoscale atmospheric grid when
testing the BEP urban canopy parameterization of Martilli et al. [2002] with decreasing
resolution of the first vertical mescal atmospheric grid (taken respectively at 60 m and
20 m).

In particular, this study pointed out that the structure of the boundary layer varies
with the vertical resolution of the mesoscale atmospheric grid (figure 6.1). The surface
fluxes induced by the built-up surfaces are particularly underestimated when adopt-
ing a low vertical resolution (60 m) at the first level of the atmospheric grid. More,
the nocturnal instable layer that is often found over the urban areas is not repro-
duced by the mesoscale atmospheric model. He then increased the vertical resolution
of the first level of the mesoscale atmospheric grid (20 m). The nocturnal instable
boundary layer and the surface fluxes are then fairly well reproduced. His results,
therefore, plaid in favor of using more resolved mesoscale atmospheric grids at the
vicinity of the surface to capture the specific energetics and dynamics of the urban
boundary layer. Nevertheless, the use of refined vertical atmospheric grids resolution
triggers increasing computational time demand. As a consequence, the same scholar
proposed to implement a one-dimensional canopy model at the interface of the Swiss

TVM mesoscale atmospheric model and the BEP urban canopy parameterization. The
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mesoscale atmospheric model forces the top of the canopy grid at each iteration of the
physical calculations. The canopy model computes the canopy wind, temperature and
turbulent kinetic energy profiles using one-dimensional vertical transport equations.
Those vertical profiles are then used in the BEP urban canopy parameterization to
re-compute the surface fluxes that are transferred to the mesoscale atmospheric model.
As presented in figure 6.1, the implementation of the canopy model allows a better

representation of the surface effects even with low atmospheric grids vertical resolution.

6.2 Research objectives

Taken into account those advances, we propose to develop a canopy interface model
(CIM). It is expected to: i) improve the representation of the boundary layer verti-
cal structures in the mesoscale atmospheric models without increasing the computing
demand; i) improve the simulations of the microscale climate models like the build-
ing energy use models by considering the dynamic and energetic of the whole urban
boundary layer, and more especially those of the urban canopy layer; iii) permits to
interface any atmospheric mesoscale models and surface fluxes calculations to enlarge
the number of available urban climate modeling systems that are designed for address-
ing urban environmental issues. The surface fluxes could issue from microscale models
or any urban surface parameterizations that can include sophisticated building energy
models or represent the microclimate induced by the presence of trees in the dense
urban canopy such as their cooling effects.

We pay a particular attention to represent the aerodynamic effects of any elements of
the urban canyon that can be a building or a tree. For this, we define at each level of
the vertical canopy grid of the CIM canopy model dimensionless surface and volume
porosities to describe the morphology of the obstacles immersed in the vertical canopy
grid of the CIM canopy model. The developments of the CIM canopy model have
been initiated in the FVM non-hydrostatic mesoscale atmospheric model of Clappier
et al. [1996] and are presented in Kohler et al. [2012]. Latter, Mauree et al. [2014a]
proposed further developments and validation against CFD modeling simulations. The
CIM canopy model is now implemented in the well-known collaborative WRF-ARW
mesoscale model of Skamarock et al. [2008] version 3.5. This chapter is dedicated to the
presentation of the preliminary developments and the earliest results found in Kohler
et al. [2012].
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6.3 Description of the Canopy Interface model: CIM

6.3.1 Physical formulations

6.3.1.1 The vertical transport equation for momentum

At the scale of the street-canyons, the prevailing factors at the origin of the urban heat
island phenomenon are the solar radiations and the prevailing winds [Bozonnet et al.,
2007]. Therefore, the CIM canopy model is firstly developed to solve the 1D transport
equation for momentum (ref. 6.1). In the canopy layer, the time variations of the wind
speed (term I 6.1) are only due to changes in the surface forcings (term III in equa-
tion 6.1) and changes in the atmospheric turbulent fluxes (term II in equation 6.1 (see
chapter 2). The surface forcings are induced by the surface roughness that originates
pressure drag forces, and in turn losses of momentum at the fluid-surface interface.
The atmospheric turbulent fluxes are induced by the exchanges of momentum between
two flows with one flowing over each other at their interface, that are characterized by

contrasted wind speeds.

oU; o —

=)+ S (6.1)
M - M Term II1

Term I Term 11

6.3.1.2 The turbulent closure

We adopted the K-theory to model the atmospheric turbulent fluxes. The K-theory
approximates the atmospheric turbulent fluxes by analogy with a molecular diffusion.
The turbulent fluxes are then written according to a local wind speed gradient time
an unknown coefficient of diffusion: the turbulent viscosity coefficient ;. Since the
turbulent viscosity coefficient measures the ability of mixing of a flow, it is common
to parameterize the turbulent viscosity coefficient like the product of a velocity L.7*
time a length L.

The velocity and the length are set in relation with the features of the turbulent flow.
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The length is usually set equal to the size of the biggest eddy contained in the flow,
while the velocity represents the local shear stress induced by the momentum exchanges
between the two overlaying flows. Hence, according to the Prandtl parameterization
the length L is the mixing length [Prandtl, 1925]. Tt defines by analogy to the mean free
path ways of a molecule the distance that can cross an air parcel before be mixed with
its surrounding. Over plane areas the mixing length is usually equal to the elevation
L = z or L = kz with k the van kdrmdan universal constant, assuming that the eddies
increase linearly with the height.
In the presence of obstacles, the size of the eddies is, however, limited due to the flow
obturations induced by the obstacles. To such extent, Santiago and Martilli [2010]
demonstrated that the mixing length is close to a constant in the urban canopy layer,
which mainly depends on the building density. Thus, we chose as a first approximation
that L=W, with W, the street length in the x-direction in the urban canopy layer (for
z < H).
In contrast to the Monin-Obukhov theory, the velocity that represent the friction ve-
locity is parameterized by the local wind speed gradients. Thus, the turbulent viscosity
coefficient is written according to the Prandtl theory like:

ou

o= BLA() (6.2)

The van kdrman universal constant £ is set equal to 0.41 according to Hogstrom [1996],
0.35 according to Businger et al. [1971] or sometimes taken at 0.40 [Andreas et al., 2006].
Here we set k to be equal to 0.4 like in Martilli et al. [2002].

6.3.1.3 The resolved equation

Considering equation 2.16, the second term of equation 6.1 can be rewrite using the
formulation of the K-theory. Thus, the vertical transport equation for momentum can

be then written according to:

ou, o, ol .
_E(Mtéz)+\fb

ot
N~ ~——
Term 1 Term 11 Term IIT

(6.3)

Term I represents the variation of the wind speed according to the time, term Il rep-
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resent the atmospheric turbulent fluxes. The atmospheric turbulent fluxes are set null
at ground and are proportional to the turbulent viscosity coefficient ut described in the
previous section. At last term III are the momentum losses induced by the presence

of the ground, and the walls of the surface elements such as building or trees.

6.3.2 Grid and obstacle representations

The grid of the canopy model consists in a column composed by several vertical levels,
which vertical resolution (Az) and horizontal resolutions (Ax or Ay) are set constant
throughout the z-direction. Each level of the column is described according to the
center I of the grid volume and its faces (or interfaces) i. The obstacles that can be
buildings or trees, are considered to be immersed in the column and occupy a fraction
of the grid volume and facets at each level of the column. The obstacles are considered
to be parallelograms that fill the entire vertical dimension of the canopy grid cell as

showed in figure 6.2.

Figure 6.2: Representation of the obstacle’s geometry. Bx and By are the obstacle’s
width while the street widths in x and y directions are respectively Wx and Wy. Az
is the vertical grid resolution.

Like Kondo et al. [2005], we consider the effect of the presence of buildings in larger
volume of air through dimensionless porosities. They are used to attenuate the atmo-
spheric exchanges in the urban canopy layer due to the presence of obstacles, and to
weight as well the pressure drag forces acting on the facets of the obstacles. In this
study, we consider tow kind of porosities: the volume and surface porosities. Each of
them varies between 0 and 1. The volume porosity ¢; defines the fraction of air in-
cluded in each canopy grid. The surface porosity ¢; represents the unoccupied fraction

of the canopy girds faces .
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Unlike Kondo et al. [2005], the volume and the surface porosities vary at each level of
the vertical canopy grid considering that the size of the obstacles varies in height but

also in width and length according to the height like in figure 6.3.
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Figure 6.3: ¢ refers to the volume porosity. Small ¢ is for surface porosity (free surface)
at interface i while the accent is for the obstacle z surfaces (bold line).

The volume porosity in the canopy gird cell [ is:

ér=1—¢; (6.4)

In which the occupied volume fraction of the canopy grid is defined by using the obstacle

densities in x-direction and y-directions, like:

5[ _ Ba:,]By,I
(Bm,l + Wx,])(By,I + Wy,[)

(6.5)

This formulation enables us to consider the effect of various patterns of obstacle densi-
ties on the airflow. Indeed Baik and Kim [2003] found that the obstacle density triggers
three types of flow regimes that are characterized by how much the turbulent eddies at
the leeward side of the buildings interpenetrate the windward turbulent eddies of the

next obstacle. Figure 6.4 depicts the three flow regimes. It is showed that the wake
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zone (bounded by the dash line) of the buildings are disconnected in (a), interpenetrate

in (b) and quasi inexistent in (c).

(a)
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Figure 6.4: Sketch of the three flow regimes that can occur in the urban street canyons:
(a) isolated roughness flow, (b) wake interference flow, and (c¢) skimming flow (from

Oke 1938).

The isolated building flow regime is the regime in which the turbulent eddies are the
less perturbed by the presence of other obstacles. The skimming flow is the flow regime
in which the obstacle density is so much high that the airflow inside and outside the

confined area of the street vary independently.

In our study, the obstacles density is defined by the number of obstacles n that are
included in the canopy grid so that:
dx.dy

n = 6.6
(Bx,l + Wx,[)(By,I + Wy,I) ( )

Hence the highest is the obstacle density the least are the free volume in the canopy
grid cell.
Finally, the surface porosities are the free fractions of any canopy grid interfaces i. The

surface porosities are set equal to:

w; = min(®r — ;) (6.7)
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At the bottom of the canopy grid, a particular boundary condition is fixed:

p1=1—y (6.8)

6.3.3 Discretized equations

We use a finite volume method when discretizing the momentum transport equation
so as to consider the presence of obstacles in larger air volume. The discretization of
the transport equation for momentum gives for a any canopy grid I:

Uittt — Ut 1

1
Al = o,V (fixr — fi) + qus (6.9)

Where At is the time step, t the time of a simulation. The total volume of the canopy
grid cell is V7 and the volume porosity is noted ®;. The source term is f? and f; is

the atmospheric turbulent fluxes that exchange quantities at the canopy grid interfaces.

The atmospheric turbulent fluxes f; are computed according to:

B Ur—Ur
fz - (Pz,ut,z( AZ ) (610)

With f; is the atmopsheric turbulent fluxes at the interface i, y; the free horizontal
surface of the interface i, pyt,7) the turbulent viscosity coefficient, and Az the vertical

resolution of the canopy grid.

6.3.4 Source terms

The source terms represents the momentum sinks induced by the resistance of the

obstacles to the motion. We choose to distinguish the momentum sinks induced by
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horizontal from the momentum sinks induced by the vertical building facets like in
Martilli et al. [2002]. In the absence of alternative theory, the horizontal surface fluxes

are computed according to the Monin Obukhov Similarity Theory given:

FH _ |U}ZOT|]€2

L (22

20

(6.11)

Where |U;| is the norme of the horizontal wind speed and U; is the U or V component
of the wind speed. The roughness length is zy and k& the Von Karmén constant (set
equal to 0.41).

On the vertical obstacle walls, the drag forces are induced by the differential in the
pressure distributions over the leeward and windward obstacle facets. Their are formu-
lated by using the drag force approach proposed by Raupach [1992] and are distributed
through along the obstacle height considering that the vertical facets at the leeward

side of the obstacles are orthogonal to the fluid motion. It leads to:

F}fm = —Cd|U Uy (6.12)

The drag coefficient Cd that assesses the resistance of an object immersed in a fluid

environment is taken equal to 0.4 like in Martilli et al. [2002].

In addition, frictions forces that act on the obstacle walls placed parallel to the fluid

flow are modeled by using the Monin-Obukhov Similarity Theory like in equation 6.11.

1 N —
FIS:hor = —<901zF;H + @?'Fl‘{orth + 2'90111‘FI‘,/h07° (613>
A%

According to the tile approach, horizontal and vertical surface fluxes for momentum
are averaged in the canopy grid cell according to their respective covering areas. The

ratios of the obstacle surface on the air volume (refer figure 6.2) are called the specific
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surface. They are described as follows for vertical surfaces perpendicular to the x- and

y- axis (see ):

‘/I N (Bm,I + Wm,])(By,I + Wy,])

? B
o vt (6.14)

H B
& 2.l (6.15)
‘/I (Bx,l + WI,I)<By,I + Wy,[)
And, for plane surfaces like the roofs or the streets:
pi _ o=
= =———— 6.16
7 x (6.16)

6.4 Preliminary results and discussion

To understand the importance of each of the processes involved in the canopy wind
profile, preliminary tests were conducted for a column height of 50 m and 5 m vertical
canopy grid resolution. A building elevation of 25 m and a building and street widths
of 10 m along the x and the y directions respectively, are assumed. A wind speed of 3

m.s~ ! is forced at the top of the column at each calculation iterations.

The simulation settings are:

Case 1. The mixing length is equal to the height (L=z) and frictions are only computed
at ground.

Case 2. Same as case 1 but a volume and surface porosities are taken into account
within the column.

Case 3. Same as case 2, but roof surfaces effects are added.

Case 4. Same as case 3 with additional drag forces due to walls.

Case 5. Same as previous case 4. Inside the canopy, the mixing length is limited by
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Figure 6.5: Vertical U wind profile for the cases 1 to 5 described below.

the street width.

With respect to the Prandtl theory, case 1 reproduces well the logarithmic profile found
other flat surfaces. Starting from this base case, porosities are showed to produce slight
effects on the vertical wind profile (case 2). This result can be partly explained by the
non-consideration of the effects of the obstacle density in the mixing length formula-
tion. More, the effects of the porosities have not been harshly tested by considering
obstacle dimensions that do not vary with height. Further experimentations are then

required to conclude on the effects of the porosities on the vertical wind profile.

In case 3, the momentum sinks induced by the roofs do not produce visible changes in
the vertical wind profile. In contrast, the pressure forces acting on the building walls
considerably reduce the wind speed in and out of the urban canopy layer (with eleva-
tion z < 25 m and elevation z > 25 m, respectively). The wind speed at the surface
is reduced by about 1.5 m.s~!, but remains unchanged at the top of the column due
to the column forcings. In addition, the vertical wind profile is found to be no more
logarithmic. The strength of the drag coefficient can explain the sensitivity of the ver-
tical wind profile with the drag forces. The drag coefficient Cd is indeed 10 fold higher

than the equivalent drag coefficient considered for horizontal surfaces when using the
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Monin-Obukhov Similarity Theory.

Finally when limiting the mixing length according to the street width in the urban
canopy layer significant modifications of the vertical wind profile are noticed. The
logarithmic profile is displaced above the rooftop and the velocities are reduced below
the building height. It depicts the well-known wind speed vertical profiles found by
other studies and sketch in figure ??7. The mixing length is therefore a key point in the

canopy wind profile modeling.

A
Height
F
Inertial
sublayer
u
Surface
T
RSL
Y . 2
0 Mean horizontal velocity, u

Figure 6.6: Generalized mean (spatial and temporal) wind velocity profile in a densely
developed urban areas. The obstacle mean height is zy, the roughness sublayer height
is z,., the roughness length is 2y and the zero plane displacement length is z;. The
solid lines indicates the vertical mean wind profile while the dashed line indicates the
extrapolated wind profil from the inertial sublayer. (from in World Metorological Or-
ganization [2006])
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6.5 Conclusion

In this study, the early developments and results of the CIM canopy model have been

presented. The developments of the CIM canopy model rely on two main objectives:

e the consideration of any obstacle perturbations on the airflow. The obstacles

could be either trees or buildings;

e the interfacing of the CIM canopy model with any surface parameterizations.

The first objective is achieved by introducing surface and volume porosities in the
transport equation for momentum in the terms that account for surface and atmo-
spheric fluxes to consider the presence of obstacles in larger volume of air.

Up to now the surface and volume porosities are built by considering parallelograms,
which lengths and widths can vary with height and various obstacle density distribu-
tions. The effects of the porosities on the vertical wind profile are slight, but 1) more
complex building form have to be tested before concluding, and 2) case 5 suggests that
the mixing length formulation is a prevailing factor in the vertical wind profile. By
now the obstacle density is not taken into account in its formulation however Santiago
and Martilli [2010] demonstrated that this parameters is crucial when modeling the air

flow in the urban canopy layer.

The second objective is achieved by designing the frame of the CIM canopy model as
flexible as possible to allow the consideration of any surface fluxes that are provided
by other existant urban canopy parameterizations whatever their sophistications or
philosophies. Hence, particular attentions have been paid in well separated the surface
flux calculations that could come from any surface parameterizations from the diffusion
and porosities calculations that are intrinsic to the CIM canopy model. More, the ques-
tion of the parsimony of the inputed obstacle geometry datasets has been raised. The
CIM canopy model is then able to compute the surface and volume porosities knowing
two obstacle lengths and the obstacle height. This work was done by considering first
the FVM non-hydrostatic mesoscale model of Clappier et al. [1996] that includes the
BEP+BEM surface flux parameterizations of Martilli et al. [2002] and Krpo [2009] and

neutral atmospheric conditions.
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Taken into account those advances, Mauree et al. [2014a] developed the CIM canopy
model for any atmospheric stability conditions and implemented some of the latter
recommandations. Mauree et al. [2014a] (See in appendix of this chapter) adopted the
formulation of Santiago and Martilli [2010] for the mixing length in which the effects of
the building density on the mixing length is considered and developed the CIM canopy
model so as to take into account non-uniform obstacle heights (through building height
probability functions like in Martilli et al. [2002]).

First, a k-e turbulence closure is adopted for parameterizing the turbulent viscosity
coefficient. It accounts for the production of turbulence by shearing stress, but also by
buoyancy forces. The k-¢ turbulence closure has been first used under neutral condi-
tions to test its ability to reproduce the vertical wind profile before being adapted to
consider any atmospheric stability conditions. The k-e¢ turbulence closure is showed to
accurately reproduce the shearing stress induced by the buildings, and in particular the
momentum sink observed at the rooftop under neutral conditions. More, it is showed
to be able to further consider any atmospheric stability conditions through the buoyant
terms that are implemented in the turbulent kinetic energy transport equation.
Second, the mixing length is adapted from Santiago and Martilli [2010]. The volume
porosities are introduced in the mixing length parameterization so as to take into ac-
count the modification of the eddy size with the building density.

Then, the wind and turbulent kinetic energy vertical profiles simulated by the CIM
canopy model has been compared with the Santiago and Martilli [2010]’s CED experi-
mentations. The CIM canopy model is found to produce vertical wind and turbulent
kinetic energy profiles that fit well with the CFD simulations.

In Mauree et al. [2014a], it is also showed that with uniform buildings size: i) the mod-
ified mixing length reduces the wind velocity but not as much as the vertical surface
fluxes which effect is maximum at the top of the urban canopy; i) the porosities have
slight influence on the wind profile and turbulent kinetic energy.

With non-uniform building height, it is pointed out that adapted mixing length i)
slightly modify the wind velocity profile; but i) produce considerable effects on the
turbulent kinetic energy profile. This latter finding has to be confirmed by further

experimentations.

For building energy assessments’ perspectives, the CIM canopy model has been im-
plemented in the American WRF-ARW version 5.3.1 mesoscale atmospheric model of
Skamarock et al. [2008] by Mauree et al. [2014b]. The CIM canopy model is directly
coupled with the BEP parameterization of Martilli et al. [2002] for providing for each

time step the canopy wind speed and temperature profiles to the BEP parameteriza-
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tion.

The simulations performed by using a vertical resolution of 5 m in both the mesoscale
atmospheric and CIM canopy models do not impact the temperature vertical profile,
but however, triggers wind speed reductions in the canopy layer. To such extent, several
studies pointed out the role of local wind on urban ventilation and local temperatures
[Bozonnet et al., 2007, Kuttler et al., 1998a]. A reduction of the wind speed in the
urban canopy layer may harsher the thermal comfort in summer increasing in turn the
cooling energy loads in buildings. More, the reduction of the wind speed in the urban
canopy may lower the air ventilation and infiltration: the building energy models such
as Energy Plus are showed to be particularly sensitive to the air ventilation and infil-
tration as stressed by Bueno et al. [2011].

Hence the coupling of the CIM canopy model with any building energy models such
as EnergyPlus may produce under-estimations of the building energy requirements in

winter and over-estimations of the building energy requirements in summer.

The study of Yang et al. [2012] provide insight on the results that can provide the
coupling of the CIM canopy model with the EnergyPlus and ENVI-met models. Those
scholars coupled the ENVI-met micro-scale model of Bruse and Fleer [1998] that in-
cludes the microclimate effects of trees and detailed complex of buildings with the
building energy EnergyPlus model. For this, they adapted in particular the walls con-
vective heat transfer coefficients (CHTC) of the EnergyPlus model by calculating the
CHTC as a linear function of the wind speed provided by the ENVI-met model. Their
experimentations result in greater CHTCs, increasing heating loads by 1.8% in winter
and decreasing cooling loads by 0.8% in summer. It is thus expected that the coupling
of the CIM canopy model with the EnergyPlus model will reduce the wall CHTCs. It
will in turn reduce the heating energy loads in winter and increase the cooling energy
loads in summer. In such context, new developments and studies are welcome to con-

firm those hypothesis and improve further works.

At last, the coupling of the CIM canopy model with the WRF mesoscale atmospheric
model was expected to save computational time. Like in Miiller [2007] the coupling
of the CIM canopy model with mesoscale atmospheric model is expected to produce
fairly wind and temperature canopy profiles even with the use of coarse atmospheric
grid resolutions. To test this assumptions, Mauree [2014] performed a study case in
which the canopy grid resolution is taken at 5 m and the atmospheric grid resolution
at 94 m. This scholar found a temperature under-estimations by up to 1°C compared

to the case in which the atmospheric grid resolution is set equal to 5 m. Thus, another
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expectation of the coupling of CIM with the WRF model is that the building energy
requirements will be under (or over)-estimated in summer (or winter) even with the
use of CIM canopy model when using coarse atmospheric grid resolutions. By now
it seems that the use of the CIM canopy model in a climate modeling system cannot
achieve saving computational time and if used with coarse atmospheric grids, the CIM

canopy model is showed to produce high deviation of the vertical temperature profile.
As a conclusion, the CIM canopy model is by now developed. Nevertheless, further

experimentations are required to test its reliability before permitting to give answers

to building energy or air quality issues.
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Abstract A new 1D canopy interface model (CIM) is developed to evaluate the influence of ob-
stacles on the atmosphere in the boundary layer. The objective is to analyze the influence of urban
parametrizations on spatially averaged variables (wind speed, turbulent kinetic energy, tempera-
ture and humidity) and to guarantee the coherence with past propositions. The development of the
CIM is presented through the main governing equations and the modifications brought to these
equations. Compared to previous studies, obstacle characteristics are computed using surface and
volume porosities in each cell of the model domain. These porosities are used to weight several
terms in the Navier-Stokes equations and have been introduced to prepare a coupling of the model
with microscale model that could provide a better description of different kind of obstacles. A
1.5-order turbulence closure, using the turbulent kinetic energy, is used in the model. In order to
ensure the coherence with Prandtl theory over plane surfaces, a modification of the usual constant
values is proposed. In addition, the mixing length is modified to take into account the densityand
height of obstacles in the canopy layer.

Results are compared with analytical solutions obtained in neutral atmospheric conditions over
plane surfaces (no buildings), and also with data collected from a computational fluid dynamics
(CFD) experiment with buildings. The comparison of results from the CIM with the analytical
solutions, when no obstacles are present, establishes that the CIM is able to reproduce surface-
layer processes. We demonstrate that over such a surface, a constant turbulent kinetic energy
profile is obtained. The comparison of the CIM results with the CFD also show good agreements
in the presence of obstacles. It is shown that the CIM is able to reproduce an inertial sub-layer
as described by the Prandlt or constant-flux layer theory above a displacement height over a
homogeneous canopy. Sensitivity analyses are performed in order to analyze the effect of obstacles
on wind and turbulent kinetic energy profiles. The results indicate that fluxes from vertical surfaces
and the mixing length have the most important effect.
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1 Introduction

The study of the effects of urban areas on the boundary-layer structure and on wind fields were first
motivated by the will to understand the dynamics of the planetary boundary layer with respect
to pollutant dispersion (Delage and Taylor 1970; Bornstein 1975). The enhancement of computer
performance in the last decades has also allowed more precise mesoscale models to be developed
with several new propositions to parametrize surface fluxes and their diffusion (Masson 2000;
Kusaka et al 2001; Martilli et al 2002). However in view of the current state of the art models and
growth of computer performance, it is still not possible to use very high resolutions (e.g., 1 m)
that would allow a better integration of obstacles (such as buildings or trees) in mesoscale models
(Martilli 2007) while at the same time simulating large enough domains so as to capture large scale
interactions.

Indeed the complexity and high heterogeneity of urban surfaces (buildings, roads, green spaces)
make it very difficult to simulate the urban boundary layer. The surfaces and obstacles present
in such areas modify the fluxes as well as the profiles of various meteorological variables inside
the canopy itself (Oke 1987; Foken 2008). They also influence the boundary layer above the urban
canopy impacting mesoscale weather processes (Craig Jr 2002). Since the turbulent fluxes of mo-
mentum, for example, is not constant with height anymore but instead decreases to zero up to the
zero-displacement height, the use of traditional theories (such as the similarity theory), to simulate
the boundary layer in an urban context, is not expected to work (Rotach 1993; Roth 2000).

Masson (2000) developed a single layer canopy model where an urban canopy parametrization
is used to calculate the effects of urban areas on various meteorological variables. The first level
of the meteorological model is displaced above the urban areas and a mean value of the variables
in the canopy is used to calculate the source and sink terms due to urban areas. Martilli et al
(2002) proposed another parametrization scheme in which they developed a multi-layer scheme that
was fully integrated in a mesoscale model. Using the same methodology, Muller (2007) designed
experiments to show that a canopy module can be used to enhance the computational time while
decreasing the vertical resolution in the mesoscale model. Figure 1 shows that the use of a canopy
module with a low resolution (60 m) in the mesoscale model, aLMo (Doms and Schéttler 2002),
gives the same trend as using a very high resolution (20 m) in this model (Muller 2007). The use
of a canopy model is hence expected to reduce computational time while allowing at the same time
a more precise integration of obstacles and calculation of the fluxes generated by the presence of
these obstacles. However in this work, the canopy model developed by Muller (2007) was not totally
independent of the mesoscale model and hence cannot be easily introduced into another model.

In order to overcome these shortcomings, a new canopy interface model (CIM) is designed and
presented here. The objective is to develop a 1D model that could be used independently of a
mesoscale model, by prescribing boundary conditions, but could also be coupled with a mesoscale
model.

The multi-layer scheme developed by Martilli et al (2002), is modified to include a diffusion
process based on a 1.5-order turbulence closure using the turbulent kinetic energy (e) in order to
calculate a more precise vertical profile for the variables. A diagnostic mixing length is also used in
the model based on the formulation proposed by Santiago and Martilli (2010). To be able to take
into account any obstacle, an interface has been developed to represent the obstacle’s effects in
terms of porosities inside the Navier-Stokes equations. A coupling with a mesoscale model could be
done to improve the urban boundary-layer description. It will also give the possibility to a user to
couple a mesoscale model with a microscale model that could provide a more detailed representation
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Fig. 1 Use of a canopy module allows low vertical resolution (results from Muller, C., 2007) Bold black line (-)
high resolution (20 m) in mesoscale model; dotted line (- -) canopy model in mesoscale with low resolution (60
m); pale black line (-) mesoscale model with low resolution (60 m)

of the geometry of the surface obstacles (real building or urban vegetation shapes) or even compute
surface fluxes.

When developing the model, various parametrizations schemes were tested in order to control
their relative coherence. For that purpose, the model is first tested offline mode in neutral atmo-
spheric conditions over a plane surface and results are compared to classical theories such as Prandtl
surface-layer theory. Obstacles are then integrated in CIM and the results are compared with data
issued from a computational fluid dynamics (CFD) experiment (Santiago et al 2007; Martilli and
Santiago 2007).

In Section 2, the main assumptions and theories proposed to describe the surface layer are
given. In Section 3, a complete description of the CIM and the set of equations on which the
model is based are presented. Section 5 shows the comparison of the CIM, without obstacles and
in neutral conditions, with an analytical solution obtained using Prandtl surface-layer theory. The
profiles from the CIM, in the presence of obstacles, are then compared with results from a CFD
experiment. A sensitivity analysis is also conducted to determine which terms have the most impact
on the meteorological profiles. The results, their limits as well as the different perspectives for the
CIM are finally discussed in Section 6.

2 The Surface Layer

A number of processes have been parametrized in the past to describe the flow in the surface
layer. Important characteristics of the surface layer were first described by Prandtl (1925) and were
afterwards recognized as the Prandtl or constant flux layer theories. Consequently, several studies
were conducted to improve the mathematical representation of the different processes taking place
in this surface layer and under different atmospheric stability conditions (Monin and Obukhov
1954; Foken 2006; Zilitinkevich and Esau 2007).

The surface-layer theory is commonly described using a series of theory and assumptions:
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1. Homogeneity assumption

When considering large enough horizontal distances (i.e. large grid cell in the studied domain),
it is assumed that the horizontal properties of a flow are homogeneous and hence that the
vertical fluxes are relatively important compared to the horizontal fluxes.

Following this assumption, the averaged characteristics of the flow are considered to be a func-
tion of the z(vertical)-coordinate only.

. The K-Theory

The vertical kinematic turbulent fluxes can then be approximated to:

ou
u'w' = —Mtg (1)

where ' and w’ are the fluctuations of the horizontal and vertical wind velocity components re-
spectively, the over bar represents the ensemble average of these quantities, U is the horizontally
averaged wind velocity (m s™') and s is the eddy diffusion coefficient (m? s™!).

. Boundary-layer theory

The boundary-layer theory states that in the surface layer, above a plane surface, the vertical
fluxes can be assumed constant (variation of less than 10% and while neglecting the effect of
the Coriolis force). This surface layer is called the Prandtl or constant-flux layer. This gives rise
to the boundary-layer assumption where

| W' | = u? = constant (2)

where u4 is the friction velocity.

. First-order turbulence closure in neutral conditions

To compute the turbulent diffusion coefficient, an analogy with the molecular diffusion process
is made. The diffusion coefficient can be described as the product of a velocity scale, V', times
a length scale, [, similar to when describing the molecular diffusion and is given by Eq. 3:

e =V'L (3)

Over a plane surface, the length [ is the mixing length. It is usually assumed to be equal to the
height z or kz. This is the most common parametrization used in the mesoscale meteorological
models. This parametrization was developed first by Prandtl (1925) and it has been the object
of several studies (Therry and Lacarrére 1983; Watanabe and Kondo 1990; Coceal and Belcher
2004). k is the von Kdrmén constant, equal to 0.41 according to Hogstrom (1996). Recent studies
showed however that k is closer to 0.39 and suggest that this value can change with stability
(Zhang et al 2008). If we follow the analogy with the molecular diffusion, we will consider that
the mixing length is equal to z, as it could represent the maximum distance that an air parcel
will travel before it touches the surface; it could also, in this way, represent the maximum size
of the turbulent eddies. The velocity scale can be replaced by the friction velocity us and a
constant k, yielding the following equation:

pt = kusz. (4)

These theories and assumptions all build together to produce the so-called Prandtl surface-
layer theory. In these conditions, the wind profile can then be calculated using Eqgs. 1, 2 and

4:
8U o U

o I 5

0z kz (5)
Integrating between zo (which is also commonly known as the roughness height and represents
the height of obstacles that can be placed randomly on the ground and around which the mean
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horizontal velocity is equal to zero) and a height, z, the following logarithmic profile is obtained:
Ux z
=—In(—).
U(2) k . (20 ) (6)

When the roughness elements are closely packed together, such as in a city or in a forest, the
top of the elements act as a displaced surface (Stull 1988). The wind speed can then be assumed
to be equal to zero at that displaced height. Equation 6 can be written as follows to take this

into account: p
U zZ —
U = m (1) (7)

where d is the displacement height (m) and U is defined as being equal to zero when z is d + 2¢.

3 Canopy Interface Model

The canopy interface model (CIM) is developed with the objective of testing the coherence between
parametrizations proposed to represent the effects of built surfaces on the atmosphere, and to
prepare a 1D-column model that could be used in an offline or online mode in a mesoscale model.
One of the goals of CIM, is to prepare the coupling of meteorological mesoscale models with
microscale models in such a way that the user of the microscale model may provide more accurate
information concerning the geometry of the obstacle (such as volume or surface porosities) and
if necessary also exchange surface fluxes. The coupling of the models is not presented here. The
present article gives a description of the development of CIM and the methodology used to test the
coherence with past propositions.

The CIM is first compared to Prandtl theory, which has been validated with measurements
in numerous previous studies (Blackadar 1962; Foken 2006). It can be used to produce analytical
solutions of the equations presented in Section 2 when no obstacles are present. To take into account
complex surface areas, CIM was also developed following previous proposed urban parametrizations
and studies. Indeed, the presence of urban surfaces inside the canopy has a significant influence on
the air-flow due to:

1. Radiation trapping and heat conduction by building
2. Drag force induced by vertical and horizontal surfaces
3. New ways of transformation of mean kinetic energy into e.

Each of these effects are taken into account when applying CIM in real conditions and in a
mesoscale meteorological model (Mauree 2014, chap. 5) as they impact the different meteorological
variables (wind speed, e, temperature or humidity). However, in the present study, we will not
describe the effect of buildings on the radiation and heat exchanges in order to focus the discussion
on the analysis of mechanical effects only. For this purpose, we will only consider the atmosphere
under neutral stability. Other developments and analyses in stratified conditions can be found in
Mauree (2014, chap. 4).

3.1 Governing equation: momentum equation

The transport of a quantity can be written in a conservative form (Clappier et al 1996). The
resulting equation calculates the mean momentum in the following way:

-9 Ly _
p Ox; 890]2. 0w

ou; au; 1P  o%u; Oluu))
C A+ Ujn— = —diag + feeijsUj — f

ot Yiag, +fu (8)
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where U; or U; are the time-averaged wind speed (m s_l) with three components depending on 1,
j and k which are indices for each direction, z; or x; are the distance in each direction (m), ¢ is the
time (s), &;3 is the Kronecker delta (a scalar quantity), ¢ is the acceleration due to gravity(m s—2),
fe is the Coriolis parameter (s™1), €ij3 is a unit tensor (also a scalar quantity), p is the density (kg
m~3), P is the time-averaged pressure component (kg m~' s™2), v is the kinematic viscosity (m?

s~ 1) and u;u;. are the ensemble average turbulent component of the wind (m s~ ).

The first term on the left hand side represents the time-evolution of the mean momentum. The
second term corresponds to the advection of the mean momentum by the mean wind. The terms
on the right hand side represents respectively the effect of gravity, the influence of the Earth’s
rotation (Coriolis force), the mean pressure-gradient forces, the influence of the viscous stress on
mean motions, the influence of Reynolds stresses on the mean motions due to the air parcel’s
friction, and the specific sources of momentum f; due to the friction of air with surfaces (bare
soil, vegetation, buildings...). Additional information about these specific sources can be found in
Martilli et al (2002) and Krpo (2009).

CIM is a 1D-column model. It was developed taking into account that:

1. when working at the neighborhood scale, it is possible to assume horizontal homogeneity, that
is, it is assumed that the % and 0% terms are equal to zero

2. the subsidence can also be considered to be small (with the vertical wind component being of
the order of mm s™! as compared to the horizontal wind components which are of the order of
m s~ 1) (Stull 1988)

3. the Coriolis effect is negligible

4. viscous stress is very small as compared to the other terms in Eq. 8

5. the Reynolds stress can be approximated, under certain conditions, to a be proportional to the
wind gradient (see Section 2)

6. advection processes as well as the mean pressure gradient are also neglected.

Using such approximations, Eq. 8 finally gives:

ou; o an> s
() + 12 ©)

ot 0z

where p; is the turbulent diffusion coefficient and U; is the horizontal wind component in the z— or
y—directions. In CIM the turbulent diffusion coefficient is computed using a 1.5-order turbulence
closure as described in Section 3.2.

3.2 1.5-order turbulence closure

When obstacles are present, it is no longer possible to make the same assumption on the mixing
length which was made in the first-order turbulence closure (Coceal and Belcher 2004; Santiago and
Martilli 2010). Furthermore us cannot be considered constant anymore in the presence of obstacles
(Hogstrom 1996; Roth 2000; Foken 2008). In such cases, Eq. 4 is thus not applicable and it was
proposed to use a different calculation for the diffusion coefficient.

Besides the one derived from the K-Theory (Eq. 1), the turbulent diffusion coefficient can be
computed using a 1.5-order turbulence closure using the e as given in the following equation:

pt = Ci/el (10)

where [ is the parametrized mixing length (as will be explained in Section 3.6.5). C} is a constant
with a value of 0.4 being used by different authors (Therry and Lacarrére 1983; Bougeault and
Lacarrere 1989; Abart 1999). To further guarantee the coherence of the formulations that have
been proposed, a different methodology to compute this value will be presented in Section 3.4 on
the basis of statements discussed in Section 3.3.
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3.3 Coherence between formulations of the turbulent diffusion coefficient

Equation 4 may be applied only over a plane surface in neutral conditions where no obstacles are
present. However, Eq. 10 may be applied on any kind of surfaces and stability conditions. When
developing the CIM, we made sure that these two formulations are coherent over plane surfaces
and neutral conditions. In such cases, if the two different propositions for the turbulent coefficients
are equal, then it can be shown that a constant turbulent kinetic energy profile will be obtained :

kux 2
e:(ck) . (11)

This coherence statement will be used to simplify the e governing equations which will be
presented in Section 3.4.

3.4 Governing equation: turbulent kinetic energy equation

Assuming horizontal homogeneity, a prognostic equation, equivalent to the momentum, can be used
to compute the e :

ot 9z \""oz
where A\: can be assumed to be equal to ug (Muller 2007).

Equation 12 gives the time-evolution of the e in neutral conditions and the buoyancy term is
hence neglected here. The terms on right hand side represent respectively the diffusion term, the
mechanical production term, the dissipation term and the fluxes due to the presence of obstacles.

The production term represents the wind shear caused by wind gradient and friction over
surfaces and is given by the following equation:

de 2( ae)+P—€+f§ (12)

——oU
P= vl 13
u'w' - (13)
where v/w’ is the momentum flux. Note here that a negative sign is present so that the production
term actually contributes positively to the generation of turbulence since u/w’ is a negative term.
Based on the surface-layer theory, u/w’ can be replaced using Eq. 1. This then yields a production
term equal to:

U \?
P = — ] . 14
f ( 0z ) (14)
The dissipation term represents the breaking down of the larger turbulent eddies into smaller
ones and can be expressed as:

(15)

where [ is still the parametrized mixing length representing the maximum size of the turbulent
eddies and C} a constant. One can note that the dissipation term is not written as usual: in other
studies a specific dissipation length is defined (Chen and Kim 1987) with various formulations
(Louis et al 1983; Delage 1974). This dissipation length is sometimes assumed to be different from
the mixing length scales (Christen et al 2009; Santiago and Martilli 2010). It is argued in this article
that the geometry of the canyon is the most important parameter and there should be no reason to
use a different mixing length in the dissipation term. However, it is important to use a constant to
scale the dissipation compared to the production. It should be recalled here that the mixing length
is defined here as the maximum distance that could be reached by an air parcel (analogy with the
molecular diffusion) and it hence is weighted in the dissipation term using only a constant. Thus
the Cf value is chosen to be different from the traditional Ck.
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Replacing Eqgs. 14 and 15 in Eq. 12 yields:

de D [ Be AUNZ es
5= o (mgs) +me (5,) e+ s (16)

Using Eq. 10 to replace the diffusion coefficient in Eq. 16, the following equation is obtained:

de D ([ de oUN? et
a—&(ﬂta) + Cr Vel (E) _CET + fe. (17)
Re-arranging Eq. 17:
0 0 0 *
O = 2 (e 20) +- 02 Y (estar — ) + 12 (18)

With this new formulation (Eq. 18) it is easier to compute the e by discretizing it with an
implicit and explicit term (explanation on discretization with implicit and explicit schemes could
be found in Ascher et al (1997)). estqr represents the value of the e that is obtained over a plane
surface under neutral and stationary conditions (i.e. when the local production of e is equal to the
dissipation). It is written as follows:

C U\ 2
Estat = CT;ZQ (a) . (19)

From this, the value of C} can be calculated. As mentioned in Section 3.3 both formulations
of the turbulent diffusion coefficient (Egs. 4 and 10) have to be equal. If it is assumed here again
that the mixing length, [, is equal to the height and that the wind gradient is proportional to the
friction velocity (as in Eq. 5), then it can be calculated that:

a

4
cr = (20)

Thus, if we consider that the most important result is that the production term should be
scaled compared to the dissipation term (or the countrary), it can be seen here that if a value of 1
is chosen for CZ, C}, is equal to k3 (0.30 as compared to a usual value of 0.4 as given by Bougeault
and Lacarrere (1989) and Martilli et al (2002)).

If CIM is coupled with a mesoscale model, the top boundary conditions, for the different vari-
ables, are expected to come from the mesoscale model. In an offline mode, the values for the
boundary conditions are prescribed and fixed. To sum up this section, it has been shown that
CIM solves 1D transport equations. In order to bring coherence between past propositions, a new
formulation for the computation of the e was derived.

3.5 Discretization

CIM uses a Finite Volume Method to find a solution, over a 1D-column, for the partial differential
equation given in Eq. 21.

ou 0 ou s

o _ o 9Y 21

ot 0z (Mt 82)+fu (21)
where the term f; is the source term representing the fluxes that will impact the flow. The dis-
cretization of the equations is only done here for the component of the momentum equation in
the z—direction but the same methodology is applied for the component of the momentum in the
y—direction as well as for the discretization of the e equation.
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/—dV /% (u ZU)dV—i-Fu (22)

where F, is the integral over a volume of f;; (for additional information refer to (Martilli et al 2002)).

Using the Gauss-divergence theorem to change the volume integrals of the diffusion term into
surface integrals:
oUu
—dV (u = ) dS + Fy. (23)

Discretizing Eq. 23 to determine the solution:

S Ur_1-U S Ur—-U
U;Jrl :U}+Atv§uti ! 1AZ ! + At ;;1 Htitq Az [+

+ AtFy (24)

where S and V are the surface and volume characteristics of the grid cells respectively, Az is the
vertical grid cell height and i and I are indices representing the cell face or centre respectively.
These surfaces and volumes could be replaced by surface and volume porosities. These values can
be obtained from a different model where the porosities are represented more precisely and would
represent any obstacles (such as buildings or trees) present in the canopy.

3.6 Obstacle integration

CIM calculates the fluxes generated by horizontal and vertical surfaces, based on the formulation
proposed by Martilli et al (2002) but reformulated here using porosities. The objective is to be able
in the future to include any kind of obstacle present in the canopy.

3.6.1 Geometrical obstacles characteristics

Previous studies (Masson 2000; Martilli et al 2002) only described obstacles as an array of regular
cubes. The novelty of our approach is that obstacles sizes are specified here at each level inside the
urban canopy module for the z- and y-directions. Volume and surface porosities are computed from
these dimensions and are then used in the calculation of the fluxes and the diffusion coefficient.

Obstacles 3D-geometry are described according to Krpo et al (2010); Kohler et al (2012) and
are shown in Fig. 2. The obstacles (buildings and street canyons) are repeated to fill the space
inside a grid cell. Surface and volume porosities are then defined as in Fig. 2 where I represents
variables assigned to the cell centre and 7 to the cell face.

The geometrical characteristics of the obstacles are calculated as follows and their values vary
from 0 to 1.

— The free volume porosity is given by:
o(I) =1-o(I) (25)
where the occupied volume ¢ is given by:

Ba (1) By(I)
(Bz(I) + W (1)) (By(I) + Wy(I))

o(1) = (26)

— Based on volume porosity, the free surface porosity can be calculated as follows:

(i) = min($(I), (I — 1)). (27)
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Fig. 2 On the left: 3D-view of obstacles with the occupied and free volume (B, and B, are the building length
and W, and W, are the street width in the z- and y-directions respectively. dx and dy are the horizontal grid
resolution while dz is the vertical resolution); on the right : side view of a section of the 1D-column showing the
interpretation of the occupied surface and porosities in CIM

— The obstacles horizontal (¢p,) and vertical (¢uert, and Gyert, ) surfaces (as shown on Fig. 2) are
computed as follows:

onli) = 6l0) — 9(1 - 1) =
. B By(I) Bz (1) L
Prerte D) = 5,0+ Wy (1) (Ba(l) + Wa (D) (Ba(D)) )
A B By (I) Bz(I) 1
Pvert, (I) = (By(I) + Wy (1)) (Bo(I) + Wa (1)) (By(I))’ o

3.6.2 Modification of the governing equations

The surface and volume porosities, as calculated with Eqs. 25 and 27 respectively, can be used to
replace the S and V terms from Eq. 24.

90(7‘) 'UI—I _UI +At¢(z+1) U]—UI+1

YN Y e vt (31)

Uittt = U + At
¢
where F, in Eq. 31 represents the additional forces that will impact the momentum.

As stated before, the presence of obstacles inside the canopy alters the flow pattern, the surface
fluxes and the generation of turbulence. The influence of obstacles has been parametrized and
used in previous models (Masson 2000; Martilli et al 2002). The parametrization of these fluxes is
adapted from Martilli et al (2002). The geometrical variables given in Section 3.6.1 will influence
the diffusion terms as shown in Eq. 31 and the calculations of the different term as shown in
Sections 3.6.3 and 3.6.4.

8.6.3 Modification of the momentum flux terms

Horizontal surfaces in the canopy (roofs, streets...) induce a frictional force on the movement of air
masses and lead to a loss of momentum. Above such surface, the surface-layer theory can be used
to express the fluxes that are induced (Louis 1979; Martilli et al 2002). (Note that for simplicity,
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we omit cell indices from the porosity and surface terms.)

2
k

Nz/2
In ( B )
where k is the von Kdrman constant, zo is the roughness length (0.05 m), UR°" is the horizontal

wind component at the I level, Uy is the wind component for both the z— and y—directions at the
I level and ¢y, is the total horizontal surface of the obstacles at each level.

‘ U}LOT‘ | U Ph (32)

H
Fup =-» oAz

Vertical surfaces of the obstacles create a pressure gradient that is parametrized as a drag-force
(Raupach 1992; Otte et al 2004; Martilli 2007; Hamdi and Masson 2008; Aumond et al 2013) in the
momentum conservation equation. This drag-force can be calculated for both directions as follows:

Fu"" = —pCq | UF™" | U125 (33)
where Cy is the drag coefficient as parametrized by Santiago and Martilli (2010), @yert is the vertical
surface of the obstacles in each direction at each level and U°" is the wind speed orthogonal to the
street direction and is calculated as:

Uert = cos(drst) x Uy — sin(drst) x Uy (34)

where drst is the angle for the canyon direction and U, and Uy are the wind speed in both directions.

3.6.4 Modification of the turbulent kinetic energy

Compared to previous formulations, in this paper it is proposed to weight the e production due
to fluid-fluid interactions or air-surfaces frictions using respectively the surface porosities and the
surface of each interfaces.

To calculate the production of e, due to the friction of the air on the horizontal surfaces of
obstacles, it is possible to use the estqt value given by Eq. 19 which has been obtained over a plane
horizontal surface. Using Eq. 5 from the surface-layer theory, 0U/dz can be replaced to obtain the
following equation:

C Ux 2

It can clearly be seen, that when no obstacles are present and under stationary conditions, this
value is constant with height as it is proportional to u2.

To take into account these additional sources in the e equation in each grid cell, ey, f, is weighted
by the obstacles horizontal surfaces, as this term is due to the production of e from the movement
of fluids layers on horizontal surfaces, while egtq: is weighted by the ‘free surface’ porosity as this
is due to fluid-fluid interactions.

 Ck (ux\? &y

ewrr = (%) 5 (36)
_ Cip ()0

Catar = GA1 (az) E. (37)

Since both terms (from Egs. 36 and 37) have been weighted proportional to the surface from
which they have been generated they can simply be summed.
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When vertical surfaces are present, there is additional transformation of Mean Kinetic Energy
into e. The production of e by vertical surfaces is parametrized using Eq. 38:

Fe't];ert _ pCd | U})rt |3 ‘pv{;rt ) (38)

3.6.5 Proposition to evaluate the mizing length in the presence of obstacles

Over a plane surface, the mixing length is usually evaluated using a linear function increasing with
height. In the presence of obstacles this formulation is however not appropriat as the geometry of
the obstacles will limit the maximum distance that an air parcel can travel.

A mixing length proposed by Santiago and Martilli (2010)
Santiago and Martilli (2010) proposed a new formulation that modifies the calculation of the mixing
length taking into account the height of the building and the porosity. Inside the canopy, they argued
that the mixing length is close to a constant which corresponds to results from Raupach et al (1996)
but are however in contradiction with other results from Coceal and Belcher (2004). Santiago and
Martilli (2010) proposed to calculate a displacement height (see Eq. 7) using the following equation:

=h(l—¢)" (39)

where h is the obstacle’s height, ¢ is the volume porosity and « is a constant equal to 0.13.
The mixing length is then computed as follows:

1(i) = maz(h —d, z(i) — d) (40)

The mixing length is thus constrained inside the canopy by a constant value, while increasing lin-
early with height above the canopy.

Extension of the Santiago and Martilli (2010) mixing length taking into account the
vertical distribution of porosity It is proposed in the present study to extend the proposition of
Santiago and Martilli (2010) so as to account for a variation in the vertical distribution of porosity.
The methodology is based on following steps:

1. the buildings are classified according to their height, i.e each class includes buildings with same
height;

2. the ratio of each class in a grid cell is computed;

3. a mixing length for each building class is computed as if this one occupies the whole grid box,
and

4. a mean mixing length is calculated based on the ratios of each building class in the grid box.

Figure 3 gives an example, where three classes of buildings are considered with seven buildings
are present in the grid box.

Considering N classes of buildings with a height (denoted H(n), n = 1, N) that follows the
vertical grid (i.e. the top of each grid cell), the ratio of each class can be written using the occupied
built volume in the grid as follows:

I + 1)51n (41)

¢(1

where 07, is the Kronecker delta and is equal to 1 when I is equal to n. Note that here we assume
that the first level is the most occupied level.
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Height, z (m)

Height, z (m)

37 217 217

Fig. 3 Example of vertical distribution of buildings (top) and their classification in term of height (bottom).
N=3 in this case.

360 A weighted mixing length can then be obtained with Equation 42:

N
1(6) =Y P(n)L(i,n) (42)

n=1

361 with:
L(i,n) = maz(H(n) — D(n),z(i) — D(n)) (43)

2 and where the displacement height for each building class is:
D(n) = H(n)(1 - ¢(n))* (44)

53 with « still equal to 0.13 like in Santiago and Martilli (2010).

6« 4 Experiments with CIM

s In order to validate the assumptions made and strategies used to ensure the coherence with past
6 propositions during the development of the CIM, the results are first compared to Prandtl theory
7 over a plane surface and with a CFD simulation in presence of obstacles. Besides these tests, a
38 sensitivity analysis using the separation methodology as proposed by Stein and Alpert (1993) is
30 conducted.

370 Cubic obstacles of 25 m are integrated in CIM. Each of these simulations are performed in a
sn unique 1D-column with a grid interval of 5 m and with a vertical height of 50 m that corresponds
sz to twice the height of the obstacles that would be included in the domain. This is based on the fact
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that the bottom of the inertial sub-layer can be considered to be twice that of the surface layer
(Roth 2000).

When developing these tests, the meteorological boundary conditions for CIM are fixed at the
top of the domain (50 m) with a wind speed of 9.68 m s™! and a potential temperature of 293
K. The surface temperature inside the model is kept at 293 K such that a neutral atmospheric
condition prevails. We do not fix any boundary condition for the e as CIM calculates the e on its
own using the wind speed from the last grid cell.

4.1 Comparison of CIM with an analytical solution over a plane surface

CIM is first tested in the absence of obstacles under neutral conditions and its results are compared
to the analytical solutions from Prandtl Theory. Using Eq. 6, a logarithmic profile of the horizontal
wind can be computed and the same is expected from CIM. As for the e, from Eq. 11, a profile
with a constant value should be obtained.

4.2 Comparison of CIM with a CFD model over an array of buildings

Known theories such as the surface-layer theory or the Monin-Obhukov Similarity Theory cannot
be applied when there are obstacles (Hogstrom 1996; Roth 2000), especially in urban areas. Even
if there are a few experimental measurements in urban areas (Mestayer et al 2005; Rotach et al
2005; Lemonsu et al 2006; Christen et al 2009), it was difficult to use them to test CIM in neutral
conditions and in a controlled environment.

In view of these constraints, it was chosen to compare results from CIM with a CFD experiment
in the neutral case. The results used here to evaluate the capabilities of CIM, are from a CFD
experiment performed by Santiago et al (2007); Martilli and Santiago (2007); Santiago and Martilli
(2010).

Cubic obstacles with a height of 25 m are integrated in CIM. The width of the obstacles also
correspond to the street (canyon) width such that the volume porosity, ¢, is equal to 0.75, which is
the value that was used in the CFD experiment from Santiago et al (2007); Martilli and Santiago
(2007). As opposed to CIM, the CFD experiment used a higher (2.5) order turbulent closure to
calculate the diffusion coefficient.

Boundary conditions for the wind speed and the temperature similar to before are also used here.
A pressure gradient has been imposed in the CFD experiment to create an entrainment movement
in the canopy, which is not present in CIM as we expect the fluxes coming from the surfaces to be
sufficient to cause these movements. However, for comparison purposes with the CFD, a pressure
gradient is added as an explicit term in the momentum equation.

In this configuration, the parametrization for the mixing length presented in Section 3.6.5 is
used as it has been previously argued that this can have a major influence on the diffusion process
(Coceal and Belcher 2004; Santiago and Martilli 2010).

4.3 Sensitivity tests to evaluate the impact of obstacles

The objective of this series of tests is to analyze how the presence of cubic obstacles inside the canopy
model impacts the wind and e profiles. For that purpose, the factor seperation methodology as
proposed by Stein and Alpert (1993) is used. Thus, the mechanical effect of the obstacles is studied
as a function of several contributions:
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Porosity

Homogeneous canopy —+—
Vert. distr. porosity - ST 1

50

Height (m)

0 0.1 0.2 0.3 0.4 0.5

Fig. 4 Vertical distribution of occupied volume in the case of a homogeneous canopy and with a vertical distri-
bution of the obstacles. Altitude is in metres.

— One simulation is done using a porosity terms in Eq. 31 equal to 1. The contribution of porosity
terms is then calculated as the difference with the basecase and is noted Upor-

— One simulation is done with removing the surface horizontal effects. The contribution of hori-
zontal surfaces (denoted Upy) is the difference with the base case.

— A simulation is done with vertical fluxes equaled to zero. The contribution of the vertical flux
from the vertical surfaces (denoted Upy/) is calculated as the difference with the basecase.

— A simulation is done with a mixing length proportional to height. The difference with the base
case is equal to the contribution the mixing length (denoted ;).

— The contribution of the interactions of each of these processes is noted Usni.

A quantitative analysis of these effects can then be made using Eq. 45 (we take for example
here the case of the wind speed):

Uobs = Unoobs + UPOT + UFH + UFV + Ul + Uint (45)

where U,ps and U,,,0ps are the wind speed calculated in the presence of the obstacles and over a
plane surface respectively. U;,; can be computed as being the remaining contribution since all the
other terms of the equation are known elements.

4.4 Vertical distribution of porosity

In order to analyze more in detail the effect of a vertical porosity (see Section 3.6.5), we compare
simulations between two test cases: one with a regular array of cubes of 25 m high (¢ = 0.75) and
the other one having a vertical distribution of obstacles as shown in Fig. 3 but with an average
volume porosity over the whole column similar to that of the regular array (see Fig. 4). One can note
however that the vertical forces are not conserved between the two tests. The difference between
the two tests includes both a contribution of a change in the vertical mixing length and the vertical
fluxes.
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without obstacle without obstacle
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Fig. 5 Comparison of (a) the wind (in m s™!) and (b) e (in m? s~2) profiles computed using the analytical

solution from the Prandtl surface-layer theory, CIM using formulation described in Section 3.4 and CIM using
usual constants. Altitude is in metres.

5 Results in neutral atmospheric conditions

All following results were obtained in neutral atmospheric conditions. For this reason, it is chosen,
in this particular context, not to show the potential temperature profiles (no interest in these
conditions), but to present only the wind and e profiles.

5.1 Without obstacles

The first two set of calculations were performed considering a surface without any obstacles. Figure 5
shows the profiles obtained from these calculations: one set of profile is based on the Prandtl surface-
layer theory, giving an analytical solution for the wind profile (Eq. 6) and a constant value for the
e (Eq. 11); the other one is issued from a simulation with CIM.

A logarithmic wind profile and a constant e profile is obtained above the plane surface in
both cases. It must be highlighted here that the wind and e profiles, that are obtained with the
formulations we adopted in CIM, correspond exactly to what is expected from the theory.

5.2 With obstacles

In this section, CIM is compared with the results from a CFD experiment in presence of cubic
obstacles (still in neutral conditions). CIM is then used to understand the impact of the porosity
terms in the equations, the impact of the mechanical influence due the obstacles on the atmosphere
through the friction of the air on horizontal (ground and building roofs) surfaces, the impact of the
drag force due to the vertical surfaces and of the mixing length and the interactions of all processes
using the separation methodology proposed by Stein and Alpert (1993).

5.2.1 Comparison with CFD: importance of a specific urban mizing length

Figure 6 shows the comparison between the CFD experiment (denoted “CFD”) and CIM’s sim-
ulation (denoted “CIM - modified 17) for the wind and e profiles. Note that the CFD height was
normalized and hence had to be multiplied by the height of our obstacles for a more appropriate
comparison.
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Fig. 6 Comparison of (a) the wind (in m s~1) and (b) e (in m? s~2) profiles obtained with obstacles from the

CFD experiment and from CIM. Altitude is in metres.

It can be noted from Fig. 6 that the profiles calculated by CIM give a similar trends as compared
to the profiles from the CFD. The differences in the wind profile between the CFD and CIM are
less than 5%.

The decrease in e with altitude above the buildings top, that can be observed in both simulations,
is due to the pressure gradient that was present in the CFD experiment. The presence of this
pressure gradient hence modifies the expected constant e value which was expected above a plane
surface or above the top of obstacles.

One can note however the differences in the e profile and more especially in the height at which
the maximum e occurs. Santiago and Martilli (2010) also showed that they could not reproduce the
height at which the maximum e occured. If the usual constants, as used by Santiago and Martilli
(2010), were used in CIM to calculate the profiles (results not shown here), the differences between
the CFD profiles and CIM profiles were more important. In order to explain and further understand
these differences, a series of sensivity studies were developed (see Section 5.2.2).

5.2.2 Sensitivity tests to evaluate the impact of obstacles

Sensitivity tests are carried out to evaluate the contribution of several processes that determine the
profile of the meteorological variables. Thus, four different scenarios were performed as explained
in Section 4.3. The results are summarized in Figure 7.

Figure 7 shows that the vertical fluxes are the most important factors impacting the wind
profile. They highly impact the wind speed and have a maximum effect at the top of the canopy.
The new formulation of the mixing length also acts to reduce the wind speed but with less effects.
Less influence is noted from porosity terms and even less from horizontal terms. When all these
terms are considered together, these processes are mutually counterbalanced and hence reduce
less wind speed than taken separately. One can note that the formulation of the mixing length in
CIM tends to drastically reduce the e above the surface compared to the classical one based on a
linear function of height but this effect is counterbalanced in the budgets since the mixing length
is appearing in multiple equations (turbulent diffusion coeflicients, dissipation and production of
turbulent kinetic energy, etc). The differences observed when comparing the CIM with the CFD
could also be due to porosity terms in the urban canopy and to mixing length formulation above
(both of them having negative effects with could explain the CIM underestimating the e).
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Fig. 7 Contributions of porosity terms (bullets), horizontal fluxes (crosses), vertical fluxes (stars), mixing length
new formulation (empty squares) and their interactions (full squares) on wind (a) the wind (in m s~!) and (b) e
(in m2 s~2) profiles. Altitude is in metres.
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Fig. 8 Comparison of (a) the wind (in m s~1) and (b) e (in m? s~2) profiles computed with a vertical distribution
of porosities (Vert. Distr) and with a regular array of cubes (No. vert. distr.). Altitude is in metres.

5.2.8 Extension of the mizing length to take into account the vertical distribution of porosity

This section is dedicated to analyse the effect of a non-homogenous vertical distribution of the
porosity. Figure 8 shows the comparison between the wind and e vertical profiles obtained with a
homogeneous and and a non-homogeneous vertical distribution of the porosity, keeping constant
the average porosity for the whole column (see Figure 3). Note that the vertical fluxes are thus
conserved in these two cases.

Figure 8 shows that the wind speed is slightly modified while e increases. It should be highlighted
here that there is a strong increase in the e profile particularly near the top of the obstacles (40%).

6 Discussions and Conclusion

A canopy interface model was developed with a specific attention on the need to put previous
theories in coherence and to prepare a 1D-column model that can be used as a coupling tool
between mesoscale and microscale model. A new methodology was proposed for the calculation of
the turbulent kinetic energy. It has been argued that in the canopy the most important parameter
is the mixing length and that there is no need to use a different mixing length for the dissipation
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term. It has been shown that there is a strong coherence between the formulation that has been
adopted and what can be expected from the theory over a plane surface and in neutral conditions.
Additionally, we proposed an original methodology for the numerical resolution of e in the CIM
where a stationary value of e can be used to account for the presence of horizontal interfaces.

CIM was first run in neutral conditions over a plane surface and results were compared to
the analytical solutions obtained using Prandtl surface-layer theory. The results were in very good
agreement with what was expected. It was shown that over a plane surface a constant profile, cor-
responding to the stationary value of the e, is obtained. This shows that the mechanical production
of turbulence and the diffusion processes are well represented in CIM. This also demonstrates that
the hypothesis regarding the constants formulated in Section 3.4 are valid.

Results from CIM in a neutral case were then compared to results from a CFD experiment.
The horizontal wind speed profile was in very good agreement with the experiment. Although
the general trend for the turbulent kinetic energy corresponds to what is obtained from the CFD
(increase in the canopy to a maximum at the top of the obstacle and a decreasing trend above),
there are still discrepancies in the profile however. The e is under-estimated at the bottom of the
domain (and more particularly near the ground) as well as above the obstacles. One of the reasons
for this difference can also be due to wake production of e, for which no parametrization is included
in CIM (Christen et al 2009). Further experiments are needed to understand the origin of these
differences and how they can be addressed in models.

Sensitivity tests were built with CIM in order to analyze the effects of each of the factors
influencing the meteorological variables on the wind and e profiles. It was seen that the mixing
length as well as the various surface fluxes highly influence the determination of the wind and e
profiles. More particularly, these separate tests have shown that the main momentum sinks inside
the canyon are from the vertical surfaces. This can be explained from the formulation used to
represent the horizontal and vertical forces respectively. This is in agreement with previous studies
(Raupach 1992; Martilli et al 2002; Martilli and Santiago 2007; Hamdi and Masson 2008; Aumond
et al 2013) stressing on the importance of the drag parametrization in urban canopy models but
we presented here a quantitative evaluation of the impact of this drag force. This highlights the
fact that future research need to concentrate on improving the parametrization of the impact of
vertical surfaces.

Additionally, we also showed with these contributions, that the mixing length is also an impor-
tant parameter. A new formulation for the mixing length was derived in order to account for the
vertical distribution of obstacles. This new methodology was tested and the influence of this dis-
tributed mixing length was analysed on the calculation of the meteorological variables. Although
we do not have any experimental measurement to confirm our findings, we showed that it was
possible to extend the Santiago and Martilli (2010) mixing length to a more general formulation.

The use of CIM to calculate high-resolution profile inside a canopy, using mesoscale data as
boundary condition, has been shown to be possible. This study was meant to demonstrate the
capacity of CIM to compute and give appropriate result over a plane surface as well as when obsta-
cles are present in neutral conditions. As Rotach (1995) stated, generally the roughness sub-layer
is in near-neutral condition, we feel confident that CIM can be used very effectively to act as an
interface between mesoscale and microscale model based on the results from this study. However,
further improvements are needed to implement buoyancy effects in a modified version of CIM that
would take into account different atmospheric stratification.
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Chapter 7

Conclusion and perspectives



7.1 The background of the study

The climate change and the depletion of most of the affordable tanks of conventional
fossil fuels in the next century challenge the contemporaneous societies in designing
post-carbon society, and in achieving the energy transition towards low carbon ener-
gies. In France, buildings are a key point of the energy policies. They represent about
40% of the French final energy consumption in which residential buildings consume
more than the two third (dedicated in particular for the space heating). In addition,
buildings produce approximately 24% of the French greenhouse gases emissions.

In contrast, because the building design and defaults in the building construction can
influence the building energy consumption for decades and since 56% of the French
dwellings are built before 1975, the date of the adoption of the first thermal regulation,
the buildings represent as well a high potential of energy savings and reductions of
greenhouse gas emissions by improving solely the energy performance of the buildings.
Since 2009 (law Grenelle 1) local authorities play a reinforced role in the energy policies
designed to cope with the climate change impacts. For this, they require additional
quantitative indices that could be integrated in most of the planning instruments, to
assess the building energy performance, and assess the impacts of their planning and

energy policies on the building energy patterns.

More, since the 1980’s the rapid urbanization and the democratization of the auto-
mobile have trigger the spatial expansion of the urban areas out of their fringe in the
farthest and farthest countryside. The sealing of vast arable lands, in particular for
transportation infrastructures represents the equivalent of one district each 7 years and
results in the fragmentation of the landscape, the alteration of the surface properties,
and in turn the alteration of the local climate. The limitation of the residential urban
development is by now managed by promoting urban densities, constructions in brown-
fields and hollow teeth, and urban greening policies that are also demonstrated to favor
building energy savings for space heating by strengthening the urban heat island inten-
sity [Owens, 1992]. The urban densities are also expected to lower the building energy
use per capita and square meters by promoting multi-family housings. All those find-
ings award an increasing role on local development policies in energy savings strategies.
Nevertheless, in which extent the urban planning policies can influence the building
energy requirements and the local climate? Which are the linkages between the urban

form, the building energy requirement and the urban climate?
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In the available methods that can be either surveys of the energy consumption of stan-
dard households, the analysis of the radiant energy emitted by the building envelops,
or the analysis of the dwellings database, the dynamic of the meteorological conditions
are often miss-evaluated. Those studies, indeed, consider standard climate to allow the
comparison of the building energy demand patterns from one year to another, or use
the unified degree-day method to characterize the thermal environment of the build-
ings. However, the air temperatures used to build the degree-days are often inherited
from the fix meteorological observational network that monitor the synoptic weather
conditions and circulations. Several studies, however, demonstrated that the negligence
of the local warming or urban heat island, induced by the impervious built-up areas
leads to over-estimate by up to +30% the building energy demand in urban areas.
Indeed, the urban areas that experience slow nocturnal cooling rate can be warmer by
up to +8°C compared to the moist surrounds at night under favorable conditions (i.e.

anticyclone conditions, light wind).

In parallel and in the past decades, numerical mesoscale atmospheric models receive
particular recognition in addressing urban environmental issues. The atmospheric
mesoscale models that are initially used to provide throughout knowledge on the dy-
namic of the urban boundary layer, and the cross-scaled physical processes involved
in the urban heat island effect, are since the 2000’s enriched by sophisticated urban
canopy parameterizations (UCPs) that model the 3-dimensional effects of simplified
cubic building shape and uniform building complex on the energetic and dynamics of
the airflow.

The UCPs reproduce the i) attenuation of the solar absorption in the urban canopy
due to shading of the building facets; i) the heat storage in the urban materials and
their thermal inertia; i) the multiple reflections of the longwave radiations emitted
by the surfaces due to the presence of myriad of built-up facets in the urban canopy
(e.g. street, walls, roofs); and at last iv) the alteration of the wind flow (i.e. wind
speed reduction and turbulent exchanges) induced by the presence of obstacles. With
increasing concerns on building energy issues, researchers developed in addition sim-
plified building energy models that could be connected to the UCPs to assess the
contribution of the anthropogenic heat emissions on the urban climate and the build-
ing energy requirements, considering in particular the effect of the urban heat island
on the building energy requirements.

In particular, the building energy model computes the building skin temperatures and
the indoor energy budget of a standard building that is represented like a box by ac-

counting for i) the presence of windows; ii) the heat conduction through a layered wall
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system; iii) the production of anthropogenic heat due to the use of the equipments and
generated by human metabolism; iv) the unintentional natural ventilation; and v) the
use of active air conditioning and heat pumps systems. The building energy models
are then enabling to compute the building energy requirements for space heating or
cooling for a determined thermal and humidity comfort range.

The all set of computing programs form as a whole, a climate modeling system that
provide new opportunities to urban stakeholders to transfer the climate and energy

knowledge in the urban planning and the energy policies at regional or local scale.

7.2 Objectives and adopted methodology

Taken in advantage those advances, this study questions the usefulness of such cli-
mate modeling system in helping urban planners to implement in the one hand energy
saving strategies, and in the other hand, climate change mitigations and adaptation
strategies (e.g. urban greenery, high-reflective surface, improvement of building energy
performance through insulations, and so on). In particular, the capacities of such cli-
mate modeling systems to take into account the dynamic of the atmosphere, the urban
heat island, and the dynamic of the urban development are addressed. The numerical
approach is of particular interest since it permits to consider each of the physical pro-
cesses involved in the urban climate separately. It also enables to consider all possible
futures: urban development strategies, changes in the building stock properties.The
second objective of this study is more thematic and questions the relationship that
exist between the urban form, the building energy and the urban climate to stress on

the importance of the urban planning in the building energy saving strategies.

To address those issues, we used in particular the proven American research WRF/ARW-

BEP+BEM climate modeling system. The methodology consists in:

(1) Test the capacity of the climate modeling system to estimate the building energy

requirements of a given area and period

We firstly carried out building energy and meteorological simulations across the Strasbourg-
Kehl Urban Region (URSK), France and tested the sensitivity of the climate modeling
system to the building parameters.The meteorological and the building energy sim-

ulations lasting from January 1% 2010 up to the December 315 2010 (the reference
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case). We designed four encapsulated domains centered on the Strasbourg agglomera-
tion that are two-way nested to dynamically consider the influence of the urban areas
on the atmosphere. The resolutions of the domains range from 45 km/ 9 km/ 3 km
up to 1 km for the innermost domain (the URSK domain). We took advantage of
the availability of the high-resolution regional land-use land-cover database provided
by the regional cooperation CIGAL and the up-to-date building database provided by
the INSEE institute. The latter covers the metropolitan area of Strasbourg. Both
databases are used to accurately define the static physical conditions of the surface
necessary to represent the various thermal environments across the URSK domains,

and in particular the urban features.

(2) Test the capability of the WRF/ARW-BEP+BEM climate modeling system to ac-

count for the effect of realistic urban development strategies

We secondly explored the capability of the WRF/ARW-BEP+BEM climate modeling
system to account for the effect of two realistic urban development strategies designed
to cope with the negative impacts of the urban sprawl on the building energy re-
quirements, and the urban climate. The urban development strategies consist in the
conservation of the protected ecological habitats and the control of the urban develop-
ment.

For this, we designed three contrasted urban development scenarios (i.e. spontaneous
development, compact development and moderately compact development scenarios)
that come into two scenario sub-sets that take into account or not the protection of the
regional ecological network. We explicitly took into account the mechanisms behind
the urban development by using the SLEUTH* cellular automata model of Doukari
et al. [2013] for simulating the urban development at the time horizon of 2030. The
urban planning policies are implemented in the SLEUTH* cellular automata model
through developable land maps that constraint the urban development. The devel-
opable land maps of each scenario are built by using the Graphab and MorphoLim
computing programs [Foltéte et al., 2012, Tannier et al., 2011].

MorphoLim permits distinguishing the three contrasted urban types scenarios by delin-
eating the built-up clusters across the urban region. The compact scenario corresponds
to the densification of the existing built pattern in the core of the existing clusters.
The moderately compact scenario corresponds to the reinforcement of the main urban
centers by concentrating the development at their fringes. The spontaneous urban
development scenario corresponds to the absence of control of the urban development

except the one that is defined in the zoning of the local development plan.
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The Graphab computing program is used to identify the ecological habitats that should
be protected to ensure the ecological flow of a target species across the Strasbourg-Kehl
urban region, here the red squirrel. We secondly used the simulated built-up maps of
the scenarios for determining the static physical data of the WRF/ARW climate mod-
eling system, and simulated the building energy requirements for each scenario.

At last the simulated built-up maps are used in the climate modeling system to provide
the surface physical properties by 2030 of the new URSK domains and simulate the

building energy requirements of each development scenarios.

(8) Develop a canopy interface model CIM to improve the representation of the surface
in the climate modeling systems and account for the microclimate effects of the vegeta-

tion

One of the more important tasks of the land-use planning is to protect the natu-
ral resources. Since 2009 and the Grenelle 1 de I'environnement, the restoration and
preservation of the green and blue ecological networks have been incorporated in the
local development. They aim to facilitate the ecological flow across urbanized regions.
In particular, trees (row of trees, urban forests) and green areas in general receive par-
ticular attention with the climate change and the harshening of the summer thermal
conditions. In the ecological services provided by the vegetation, the provision of clean
and fresh air (up to -2°C compared to the built-up surrounds) 100 m to 500m downwind
to the green area is regularly mentioned to improve the urban environmental quality
[Givoni, 1991, Nowak, 2006, Tyrvéainen, 2001, Wilmers, 1991]. The cooling effects are
mainly due to the evapotranspiration cooling and the reduction of the surface temper-
ature of the sealed surfaces through the shade provided by the tree crown. Thus, the
spatial topological information plays a key role in assessing the benefits of the trees
on the building energy requirements. Several studies revealed that planting tree at
the south and west sides of the buildings can save cooling energy (about 40%-30%)
and heating energy (about 10%-20%) by providing shade for roofs and walls and by
protecting, as well, the buildings from the prevailing wind [Heisler et al., 1986, Akbari
and Taha, 1992, Simpson and McPherson, 1998, Sailor, 1998|.

Nevertheless, in the urban canopy parameterizations, the vegetation present in an ur-
ban grid is often treated apart from the built-up areas through the tile approach. An
urban grid is then composed by an urban and a non-urban fractions whatever the
location of the two in the grid. The energy budget of each surfaces are computed sepa-
rately assuming that the urban and non-urban surfaces do not interact before the first

level of the atmospheric grid. There, the surface fluxes, the radiant energy, and the
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skin temperatures of each surface are averaged with respect to their respective cover-
age in the mesoscale atmospheric grid. Although the tile approach is showed to yield
reasonable results for the latent heat fluxes [Grimmond et al., 2011], the local wind
shielding, shading and evapotranspiration cooling effects of the trees on the building
thermal environment are miss-considered in mesoscale atmospheric models. This fea-
ture dramatically limits the usefulness of the climate modeling systems in assessing the

ecological benefits of the vegetation in energy saving strategies.

To cope with this limits, we developed a canopy interface model (CIM) to improve the
representation of the surface in the climate modeling systems by allowing the inter-
facing of the mesoscale atmospheric models with any existing sophisticated building
energy model like EnergyPlus building of Birdsall et al. [1990] that considers the ther-
modynamic behavior of complex building geometries and wall systems through the
use of Computer Assisted Designer interfaces that are often used by architects and
engineers, or microclimate models that account for the spatial topology of the built-up
elements and that explicitly consider the presence of tall vegetation in the urban fabrics
like in the ENVI-met microscale model of Bruse and Fleer [1998].

The philosophy is that existing sophisticated microscale climate models that account
for the thermodynamic effects of the vegetation and the topology of the various built
and vegetation elements contained in the urban canopy layer, existing CFD models
that resolve the whole scale of the turbulence spectrum contained in an airflow flow-
ing across one or two complex building geometry, and existing sophisticated building
energy models that account for the adaptive thermal comfort behavior of the building
occupants and accurate indoor energy budget (urban dwellers in developed countries
are showed to spend more than 70%-90% of their time indoors [Schweizer et al., 2007])
can better simulate the building energy requirements for space cooling and heating

accounting than the usual urban canopy parameterizations.

The CIM canopy interface model resolves the vertical transport equation for momen-
tum. It accounts for the airflow obstructions induced by complex obstacle morphology
in larger atmospheric grids by considering surface and volume porosities.

Like in the urban canopy model of Kondo et al. [2005], the effect of the obstacles on
the thermodynamic of the fluid are introduced in the transport equations trough the
use of additional terms (i.e.the source terms). The surface and volume porosities are
then introduced in the parameterization of the turbulent atmospheric fluxes and in the

equations of the surface drag and friction forces.
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By now, the CIM model considers parallelogram obstacles that can vary in size accord-
ing to their width and length through along the obstacle height.

A sensitivity analysis, in which each terms of the vertical transportation equations
for momentum are successively added, permited to highlight the contributions of each

terms of the equation in the vertical wind speed profile.

7.3 The main results provided by this study

(1) Test the capacity of the climate modeling system to estimate the building energy

requirements of a given area and period

We firstly highlighted that the WRF/ARW-BEP+BEM climate modeling system pro-
vides accurate meteorological conditions with regard to the 2 m near-surface tempera-
tures and the 10 m wind fields recorded by the national meteorological institute Météo
France at three meteorological stations included in the URSK domain. Nevertheless,
the absence of a dense meteorological network in urban areas limits the significance of

the validation of the simulated meteorological fields.

We secondly demonstrated that the WRF/ARW-BEP+BEM climate modeling system
achieves to fairly estimate the building energy requirements over the study area. We
focused on the building energy requirements for space heating of the administrative
limit of the city council of Strasbourg (CUS) for which a previous analysis provided
by the regional air quality association (ASPA) on the building energy consumption
have been performed. The discrepancies between the annual estimations of the build-
ing energy consumptions provided by the regional air quality association (ASPA) and
the WRF/ARW-BEP+BEM climate modeling system are equal to -23.55%. It sounds
reasonable considering the approximations assumed by the climate modeling system
and the large number of parameters and user inputs that have to be defined in the

settings.

Thirdly, we showed that the climate modeling system is able to reproduce the non-
linear building energy requirements-outdoor temperatures relationships observed and
documented by Thom [1954], Valor et al. [2001] and Amato et al. [2005]. Those schol-
ars, indeed, plotted the building energy consumptions provided by energy delivery

census in function of the outdoor temperatures monitored at several meteorological
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stations. They observed the non-linear building energy requirements-outdoor temper-
atures relationships and noticed that the relationship depict a winter branch and a
summer branch linear trends. They, therefore, proposed to treat separately the winter
branch and summer branch of the building energy requirements-outdoor temperatures
relationships, and modeled the relationships by a statistical model consisting in the
linearly fittings of the winter branch and summer branch separately. Doing so, they
built a statistical model in which the slope of the linear fittings represents the sen-
sitivity of the building energy requirements with the air temperatures, and in which
the interception of the linear fittings with the air temperature axis provides the base
temperatures, or the temperature at which the building energy requirements are no

more climate sensitive.

Considering the simulations of the building energy requirements in the one hand and
simulations of the outdoor air temperatures in the other hand provided by the climate
modeling system, we also observed the non-linear building energy requirements-outdoor
temperatures relationships and its linear decreasing trend with increasing simulated
outdoor temperatures for wintertime. We therefore proposed to linearly fit the build-
ing energy requirements and outdoor temperature relationship to built the statistical
model found by those previous studies, and quickly estimate for any periods the build-
ing energy requirements of a given area. Like in a degree day method, the simulated air
temperatures and the base temperature of the statistical model can serve computing
the degree-days of a given study area, meanwhile the sensitivity of the building energy
requirements with the air temperature permits to find a correspondence between the
degree-days and the building energy requirements for the space heating or cooling.
The discrepancies between the simulated and the estimated building energy require-
ments by using the WRF/ARW-BEP+BEM climate modeling system and the statis-
tical model, respectively, are few (less than -5%).

More, the consideration of three appropriate months of the 2010 year (i.e.February,
March and September) is demonstrated to be enough to estimate correctly the cold
sensitivity and the base temperature found over the study area for the 2010 period,
enabling to save computational time for the meteorological simulations.

Compared to the traditional degree-day method, the simulated statistical model en-
ables to consider base temperatures and heating periods that are not defined a priori
by convention but that are physically determined according to the building properties
define in the user-settings and the meteorological conditions. More, it permits to con-

sider the effect of the urban heat island on the building energy requirements.
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At last, due to the physical significances of the base temperature and the sensitivity of
the building energy requirements with the air temperature, those two statistical param-
eters can serve for defining new building energy performance indexes able to quickly
assess energy saving strategies.

We tested their sensitivity by designing energy saving scenarios that consider succes-
sively i) the large adoption of reflective cool roofs; i) the changes in the insulating
properties; i) the changes in the windows size, and iv) behavioral strategies that
imply the management of the thermostat set point temperature. We intentionally ne-
glected the urban greenery strategies. The local cooling effects induced by the trees
due to shading, evaporation and transpiration are not yet accurately represented in
the urban canopy parameterization implemented in the WRF/ARW-BEP+BEM cli-
mate modeling system. Doing this, we observed that the BEM model, included in the
WRF/ARW-BEP+BEM climate modeling system is particularly sensitive to the build-
ing internal heat gains and thermal inertia. In particular, the changes in the insulation
properties and the thermostat set point temperatures originate intense changes in both
the simulated building energy requirements and base temperatures.

More, the sensitivity analysis of the building energy model with the settings param-
eters showed that the wasted heat generated by the equipments particularly modifies
the building energy requirements. A fortiori the discrepancies of -23.55% in the esti-
mations of the building energy requirements between this study and the ASPA study

is revealed to be mainly due to differences in the base temperatures.

(2) Test the capability of the WRF/ARW-BEP+BEM climate modeling system to ac-

count for the effect of realistic urban development strategies

We observed that the simulations of the urban development result in three contrasted
2030 built-up patterns but that noticed that the ecological network policies have few
impacts on the 2030 built-up patterns. This result is inherent to the study case, in
which most of the ecological habitats identified by the Graphab computing programs
are already in the protection zoning of the local development plan.

By performing a sensitive analysis of the land cover datasets with the dominant land
cover approach adopted in the WRF/ARW-BEP+BEM climate modeling system. The
dominant land cover approach consists in assigning an atmospheric grid to urban if the
cumulative area of the built-up areas that are included in the atmospheric grid repre-
sents more than 20% of the atmospheric grid area. Doing so, we demonstrated that
the use of the dominant land cover approach in the WRF/ARW-BEP+BEM climate

modeling system fails to consider scattered built-up patterns when considering 1x1 km
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mesoscale atmospheric grids.

We therefore simulated the effect of the compact and moderately compact built-up

patterns on the urban climate and building energy requirements and compared the

simulation outputs with the 2010 reference case.

We found that:

i)

the simulated temperatures of the two scenarios are more sensitive to the large-
scale weather system than the local climate and built-up fractions. Local warming
of the air temperatures of about +0.7°C up to +1°C are only observed in atmo-
spheric grids in which the land cover changes dramatically from natural to sealed
surfaces. This result differs from the one of Lee et al. [2009], which reported
significant increases in the air temperatures with increasing built-up fractions in

particular for wintertime.

the WRF/ARW-BEP+BEM climate modeling system is showed to fairly repro-
duce the seasonal and diurnal dynamic of the urban heat island revealing en-
hancing urban heat island in summer with increasing solar radiation forcings,
and at night. Nevertheless, the average urban heat island intensities are weak
(0.6°C in average). We considered the urban thermal conditions as the average
temperature of all the urban grids and the rural thermal conditions as the av-
erage temperature of all the rural grids. Nevertheless, it seems that the urban
heat island intensity suffers from a lack of standard. Oke [1987] and Stewart and
Oke [2006] defined the urban heat island intensity as a temperature difference
between the air within the urban canopy layer and the air in a rural reference
area taken outside the urban settlement. Sailor [1998] defined the urban heat
island intensity as the temperature difference between adjacent urban and rural
regions. Cantat [2004] used a network of urban and rural meteorological stations
that are considered to represent average urban and rural conditions respectively,
to define the urban heat island intensity. Aguejdad et al. [2012] took the urban
conditions as the horizontal temperature average of the atmospheric grids con-
tained in a line of 5 km length centered at the city core and the rural conditions
as the horizontal temperature average of the atmospheric grids contained in a line
of 5 km width located 17 km upwind of the city center. By using the definition
of Oke [1987] and considering the temperature of the atmospheric grid located at
the Kléber square as the urban condition and the temperature of the atmospheric

grid located at Entzheim airport as the rural conditions, we found an urban heat
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island intensity of +1.97°C. It is therefore showed that the intensity of the urban
heat island varies with respect to the definition of the urban and rural conditions:
in the one hand the averaging procedure smooth the local variability of the urban
heat island and in the other hand, the use of two single urban and rural stations
questions the representativeness of the chosen stations in regard to the myriad of

thermal environments present in the urban areas.

iii) no significant differences in the urban heat island intensity are showed between
the scenarios. It seems that the urban development intensity and the location
of the urban development have few impacts on the urban heat island intensi-
ties. This finding is confirmed by Atkinson [2003], which reported an increase
in the temperature of solely +0.1°C when tripling the radius of the urban areas,
Tokairin et al. [2010] that found a temperature increase of +0.6°C and +0.9°C
in average when considering the extension of the Jakarta urban area between
the 1970’s and the 2000’s. This result, are also in agreements with the finding
of Sajjad [2013] that found an annual variation of the minimum and maximum
urban temperatures with respect to increasing city radius scenario from 8 km,
12 km, 16 km and 20 km and in particular at night for a theoretical round city
located at Faisalabad of 0.1314°C and 0.1090°C.

Like Hamdi and Schayes [2008] we concluded that the urban heat island intensity
revealed small sensitivity to city size. Other urban parameters seem to be more
significant in explaining the urban heat island intensity like the building density

and design, or the anthropogenic heat produced by the human activities.

Finally, when exploring the building energy requirements of each built-up area devel-
opment scenarios and built for each of them the statistical model, we found that at
first glance the building energy requirements and the sensitivity of the buildings with
the outdoor temperatures are the highest in the moderately compact scenarios and the
lowest in the compact scenarios. Nevertheless, the compact and moderately compact
simulated built-up patterns differ insofar as the compact urban development scenario is
characterized by a smaller total built-up areas than the moderately compact scenario.
By considering then, building energy intensities (i.e. the building energy requirement
per floor area), we highlighted that the differences in the building energy requirements
and the cold sensitivities between the development scenarios are mainly due to the
differences in the building volume to be heated of each scenario. In the statistical pa-
rameters of the statistical model, the base temperature is showed to be less sensitive to

the building volume. Spatially, the buildings are less sensitive to the cold temperatures
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in the high dense urban core compared to the periphery of the main urban agglomer-
ation in the compact and moderately compact scenarios demonstrating a dependence
of the building thermal behavior of the envelop with the building design and density.
The building design influence the amount of exposed facets of the building and the
envelop on volume ratio. The building density influences the trapping of the thermal

radiation in the street. Those findings have to be confirmed by other studies.

(8) Develop a canopy interface model CIM to improve the representation of the surface
in the climate modeling systems and account for the microclimate effects of the vegeta-

tion

The preliminary results first indicate that the CIM model is able to reproduce the
quasi-logarithmic vertical wind profile observed over plane areas. It is also able to re-
produce the nearly logarithmic wind speed vertical profile found above the rooftop and
the constant wind speed vertical profile observed in the urban canopy layer induced
by the obstacle density. The sensitivity analysis, however, indicates that the wind
speed vertical profile is not significantly impacted by the introduction of the surface
and volume porosities in the atmospheric momentum turbulent fluxes. In contrast,
the vertical wind speed profile is showed to be sensitive to the parameterization of the
drag forces acting on the obstacle walls, and the parameterization of the mixing length
parameterization included in the turbulent viscosity coefficient in the urban canopy
layer.

Taken into consideration this advances, Mauree and Clappier [2014] continued to de-
velop the CIM interface model for any atmospheric stability conditions. He imple-
mented a k-e¢ turbulent closure to parameterize the turbulent surface fluxes, and there-
fore introduced a prognostic turbulent kinetic energy equation. He then found that the
porosities have non-negligible effects on the vertical turbulent kinetic energy profile.
In addition, he pointed out that the introduction of the porosities terms in the mixing
length parameterization have significant incidence on the vertical wind profile of the
urban canopy layer. This result is encouraging and further tests are then required to
assess the effect of even more complex obstacle shape on the air thermodynamics.

At last, based on the work of Miiller [2007] that found a sensitivity of the simulated
vertical profile of the air temperature and wind speed with the vertical resolution of
the vertical atmospheric grids, Mauree [2014] introduced the CIM interface model in
the WRF/ARW-BEP+BEM climate modeling system. He showed that the coupling of
the CIM interface model with the WRF/ARW-BEP+BEM climate modeling system

slightly reduces the wind speeds in the canopy layer. It has, however, no incidence on

278



the vertical profile of the air temperatures.

7.4 Are the existing WRF/ARW climate model-
ing system suitable to provide urban planning

guidelines?

The results of this study indicate that the climate-modeling systems like the WRF / ARW-
BEP+BEM climate model system can achieve providing accurate estimates of the
building energy requirements at macro-scale level and urban planning level (scale:
1:5,000 to 1:1,50 000) but not at the building lots or neighborhood. Their simulation
outputs allow the construction of the well-documented building energy requirements-
outdoor temperatures relationship that is suitable for a given area and that can serve
for determining building energy performance indices. Despite this, some arguments
limit their usefulness in urban climate operational studies.

First, the use of the climate modeling systems requires the basis knowledge in comput-
ing languages. It limits their direct applications by local practitioners that are regular
costumer in GIS technics [Schwarz et al., 2012].

Second, few field campaigns in urban areas permit to validate the meteorological sim-
ulations provided by the climate modeling systems and improve their performance, in
particular for wintertime. In Germany since the 1980’s the penetration of the climate
knowledge in the urban development strategies in regard to air quality and thermal
comfort issues fosters the development of massive climate monitoring campaigns in
most of the biggest and middle-sized urban areas of the country. Bochum, Essen,
Stuttgart, Koln, and Muenchen are some of the study areas [Ren et al., 2011]. In the
author knowledge, the meteorological field campaigns in urban areas are fewer in France
and not as systematic. The energy and local climate preoccupations in France have
recently penetrated the planning policies and instruments, and thus the permanent
monitoring field campaign are scarce in urban areas. The fix meteorological network
aims to measuring the synoptic circulation systems, and to such extent, the microcli-
mates of the buildings and trees and the wasted heat due to human activities that are
of interest in building energy or thermal comfort studies, are judged undesirables [?].
The inhomogeneity of the urban areas harsher the adoption of standard technic and in-
crease the number of monitoring sites to depict the whole urban thermal environments

of a given urban area. Nevertheless, several standardized methods have been developed
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in the past to rationalize the number of stations and despite everything characterize
the different thermal environments of the urban areas [Ellefsen, 1990/1, Stewart and
Oke, 2006, Gill et al., 2008]. The standardization of the monitoring techniques seems
promising in helping developing in the future vast urban meteorological network that
can be used to validate the meteorological simulations provided by the atmospheric
modeling systems.

Then, there is a clear trade-off between the level of information required in the climate
modeling systems and the ease of use of the climate modeling systems. As climate
modeling systems become more sophisticated, the amount of user inputs and the num-
ber of parameters that describe the average surface and building properties increase.
Nevertheless, there are numerous sources of uncertainties in these parameters, and only
few of them are revealed to be prevailing parameters in building energy simulations.
In the parameters and user input, some can be directly obtained by treating aerial
photography, airborne lidar or satellite images like the type of land cover, the height
of the buildings, their orientations as well as the albedo of the urban materials. Others
are more difficult to obtain and required time consuming treatments. For instance, the
average building and street widths should be adapted to consider equivalent building
walls surface and building volume that correspond to the complex building geometry.
To such extent, Rasheed [2009] demonstrated that the form and length of the urban
canyons have direct implications on the force drags acting on the urban canyon facets
(e.g. street, wall and roof) and the distribution of the absorbed radiant energy. In this
study, we also showed that the building envelop on volume can highly influence the
building energy requirements and the thermodynamic behavior of the buildings with its
surroundings. The peak heat emitted by the equipments that is defined for each urban
type constitutes another user-input that contains numerous source of incertitude. It is,
however, showed to be one of the prevailing parameters of the building energy model
implemented in the WRF/ARW-BEP+BEM climate modeling system.

Other arguments are thematically relevant.

The horizontal resolution of the mesoscale atmospheric models used in climate modeling
systems is taken large enough to consider isotropic surfaces and allow the simplification
of the physical equations close to the surface. This implies the consideration of average
physical properties, which significance can be questioned in regard to the transfer of
climate knowledge in the urban planning. More, the planning strategies designed to
cope with the rise of the local temperature (e.g. planting tree programs) and showed
to reduce the building energy consumption are taken at the neighborhood and build-

ing lots level, for which the spatial topological informations and advection process are
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crucial in determining the building surrounds and neighborhood climate conditions.

At last, adaptation strategies are tied for existing situations [ONERC, 2003]. In the
context of urban planning, one of the common postulates is that sprawled urban forms
are the form the most land use consuming, the form the most energy use intensive
mainly because sprawled built-up patterns are characterized by higher building energy
use per capita compared to compact built-up patterns [Haines, 1986, Owens, 1992,
Stone and Rodgers, 2001, INSEE, 2010], the form that enhance the most the green-
house gases emissions due to the fossil fuel dependency of the journey-to-work car
commuting, and the form of urban development that the most dramatically threaten
the ecological diversity. It is, however and since the 1980’s, the form of urban de-
velopment that the urban stakeholders and local practitioners have to face every day.
Nevertheless, in this study it has been showed that urban climate modeling systems
like the WRF/ARW-BEP+BEM system cannot reproduce sprawled built-up patterns
because the urban settlements are two small compared to the horizontal grid resolution
of the mesoscale atmospheric model. So, how proposing high climatic future built-up
patterns when local practitioners have not to date the capability to simulate appro-
priately the effect of the present sprawled built-up patterns on the urban climate and

building energy requirements?

7.5 Which linkage between the urban form, the
building energy requirements, and the urban

climate?

The thematic objective of this study is the investigation of the interactions between
urban form, urban climate, and energy taken under the focus of the building energy.

Usually, the conceptual framework sketched in figure 7.1 is accepted.

The urban form is showed to influence the building energy consumption through three

pathways.

1) The first pathway is inherent to the energy transmission and distribution losses.
The repartitions of the population and the activities in the one hand and the localiza-
tion of the energy production units in the other hand at national and regional levels

influence the energy losses due to the transmission of the electricity from the source of
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Figure 7.1: Casual paths often adopted between residential building energy consump-
tion and urban form (From Ewing and Rong [2008])

the energy production to the source of energy consumption. The larger is the distance
between these two sources, the more the amount of energy losses increases. More, the
urban form is also expected to modify the type of fuel used in the cooling and heating
systems. Compact urban forms are for instance expected to provide large opportunities

to develop urban heating systems.

2) The second pathway is indirect and involves the housing stocks. Bigger houses
require more energy than smaller houses because there are more surfaces to heat or
cool than in smaller houses. Detached building houses require more energy since there
is more exposed surface than in attached houses. The urban form influences the prin-
ciple mode of transportation, employment and population distributions, but also the
predominant housing structures. Haines [1986] associated the multinucleated built-up
patterns with detached housings and multiple car ownerships. She associated the com-
pact built-up patterns with multifamily housings and public services of transportations.
Indeed the cost of the lands in high dense urban areas foresters the land developers
to build compact form of buildings like multifamily and attached housings. Gusdorf
et al. [2008] for instance used this postulate to constraint the urban development in

the socio-economic urban expansion NEDUM model.

3) The third pathway, at last, is indirect and involves the urban climate and urban heat
island effect. By changing the radiative, thermal and aerodynamic properties, sealed
surfaces (e.g. pavements, parking lots, and buildings) contribute to warm the air up.

Maximum differences between urban and rural temperatures are about 5-6°K to 6-8°K
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in large cities on calm and clear night, and +1°C to +3°C at the annual scale according
to Ketterer and Matzarakis [2014a]. In particular, Lee et al. [2009] highlighted that
the warming of the air temperature is highly correlated to the fraction of built-up ar-
eas, and Ohashi et al. [2007] reported that the rise of +1°C of the daily maximum air
temperature in Tokyo induces the rise of the electricity demand by +1.6 GW. Other
studies of the late 1980’s and 1990’s pointed out that the building density promoted
by the compact urban form can significantly reduce the energy consumption in winter
by increasing the UHI intensity. Nevertheless, with the climate change most of the
nowadays study investigate the effect of the UHI on the summer thermal comfort. To
such extent, compact cities have been showed to accentuate the thermal discomfort in
urban areas, especially in summer and at night by altering the capacity of rest of the
urban dwellers [Matzarakis and Mayer, 1997]. This significant relationship between
the urban air temperatures and the building energy requirements have put forward the

urban planning in designing post carbon society and sustainable urban form.

In this study, the sealing of the surface originates few local warming in case of dra-
matically changes in the surface properties, but does not strengthen the urban heat
island intensity whatever the considered built-up patterns. The changes in the building
energy requirements between the simulated built-up patterns is showed to be only due
to the amount of buildings and the volume of building to be heated. This result is
surprising and limits the usefulness of climate modeling systems in such kind of ex-
periences. Nevertheless, the horizontal resolution of the atmospheric grids can be too
coarse compared to the changes in the land cover to "see” the climate feedback of the
changes in the physical surface properties on the urban climate, and the air temper-
atures. This effect can also be due to the prevailing synoptic weather circulation in
winter that can hide the local climate effects of the surface. More, the UHI intensity
in winter is showed to be weak compared to summer as the solar radiations are low,
the soil water capacity alters by the presence of solid precipitations, and the vegetation
evapotranspiration function alter by the leaf-off period. Further experimentations have

to be carried out to conclude on these points.

In this study, it is also showed that more than the urban form, the urban design and
building form play prevailing roles in the building energy requirements. The building
dynamical thermal behavior in case of cold temperatures is sensitive to the amount
of exposed building facets to the airflow and building density. The basics geometry
of the building and the building density then regulate the energy losses through the
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building envelop and the multiple absorption of the thermal radiations emitted by the
street-canyon surfaces at the building level. To such extent, the proportions of streets
and the building heights that are controlled by the urban planning, influences the
building density and its radiative effects [Strgmann-Andersen and Sattrup, 2011]. Tt
also influences the cold drainage in the core of the urban areas in case of flat terrain.
In contrast, the architect and the developers are sought to regulate the building form,
the thermal capacities of the building walls through the chosen materials and types
of insulations, the amount of green area. Compared to urban planners, it seems that
the land developers and the architects have direct and prevailing roles in the building
energy requirements and that macroscale urban form have few impacts on the building
energy requirements. Oke [1987], however, found a significant relationship between the
populations considering as a proxy-index of the macroscale urban form with the inten-
sity of the urban heat island. It can be here advocated that the population census can
be more a proxy of the building density than a proxy of the size of the urban areas. We
then recommend scaling down the scale of investigation at the neighborhood level by
coupling mesoscale atmospheric models with resolved microscale climate models and
building energy use models to analyze efficient building shapes and better represent

the climate of the building neighborhood.

7.6 Perspectives

Simplifications of the climate modeling system have to be achieved for reducing the
amount of parameters and user-inputs in the settings of the climate modeling systems,
and permit the coupling of the mesoscale atmospheric model and CIM canopy inter-
face model with any sophisticated building energy model, CFD models or microscale
climate models. To such extent, further experimentations and sensitive analysis of the
CIM interface model have to be performed before coupling it with microscale climate
models to scale down the assessment of the building energy requirements at the build-
ing lots or neighborhood level.

Sensitivity and uncertainties analysis of the various parameters of the climate modeling
system can help reducing the amount of user-setting parameters and save computing
resource[Eisenhower et al., 2012].

Those efforts are of particular interest since most of the future investigations in applied
urban climatology will belong to developing countries for which the geospatial surveys

of the territories are recent [Matzarakis et al., 1998, Arnfield, 2003]. The parsimony of
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the required informations in climate modeling systems becomes also even more crucial
with the pursuit of the refinement of the grid cell resolutions in the recent applied
urban climatology studies (e.g. 150 m, 250 m).

In the one hand, the smallest characteristic time scale of the panel of simulated physical
processes governs the horizontal atmospheric grid resolution as well as the time steps
adopted for the resolution of the physical processes. In the other hand, the anisotropy
of the surface according to the chosen horizontal resolution influences the level of de-
tails of the surface that should be taken into account. The finest is the resolution, the
more the surface are inhomogeneous, and the more the surface should be described
in details. Describing the land cover by using the European Corine Land Cover for a
resolution of 150 m is not the same as a resolution of 1 km. Thus, sensitivity analysis
of the simulations provided by the climate modeling system with various horizontal
atmospheric grid resolutions and surface static data when one is imposed fixed can

help researchers to choose the optimal spatial resolutions.

In parallel, long-lasting field campaigns have to be encouraged in urban areas.In the
field campaigns performed in France in the past decades, one inventories the ES-
COMPTE field campaign in Marseille performed in summer 2001, the CAPITOUL field
campaign in Toulouse that lasts one year between 2004 and 2005, and the RECLUS
field campaign that hold in Strasbourg in summer 2002. As it can be showed the field
campaigns last at best one year, but usually they focused on intensive summertime
observational periods (IOP). The summer field campaigns permit to well appreciate
the enhancing thermal stress induced by the urban heat island and the evaporative
cooling induced by the trees and lawns. The urban heat island is indeed enhanced in
summer with high solar forcings and enhanced evaporative cooling. Nevertheless, the
absence of monitoring campaign in winter limits the investigation of the interactions
between the urban climate and the building energy requirements in mid-latitude urban
areas for which the space heating is the main end-uses in buildings. The validation of
simulations provided by the climate modeling systems in winter season is particularly
interesting as the hydrometeors (clouds and fogs) are particularly frequent at this pe-
riod and because they are among the physical processes that are taken into account in

the climate modeling systems maybe ones of the most challenging.

At last, the behavior of the urban dwellers has to be considered in the building energy

study. Several building energy studies stressed the prevailing role of a-spatial variables
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inherent to the lifestyle of the building occupants in the building energy requirements.
Desjardin and Llorente [2009] for instance, stressed that the lifetime preferences can
trigger differences in the energy consumption by factor 1-2 when analyzing the building
energy consumption of two identical residential housings, which home equivalent socio-
economic category of households. Other studies reported that the windows aperture
can enlarged the thermal comfort sensation by +2°K to +4°K, depending whenever
the arrival of fresh air is constant or temporary but frequent.

The rebound effect is a phenomenon of increasing building energy requirements with
lower energy cost. This elasticity of the energy cost can be due to the improvement
of the building thermal performance, the fluctuation of the cost of the fuel or to the
changing in the household incomes. Whatever its cause, the elasticity of the energy
consumption with respect to the cost of the energy provides much greater opportuni-
ties for households to tolerate lower temperature and making more effort to eliminate
waste of energy [Owens, 1992, Crédoc, 2010].

To such extent, this study showed that the increase in the thermostat set point tem-
peratures from 293°K to 294°K triggers changes in the building energy requirements
equal to about +18%. More, Desjardin et al. [2011] carried out a sociological study on
the energy behavior of interviewed French households. They noticed that the efforts
to eliminate waste of energy are mainly done once, at the arrival of the households
in their new houses, and rather implies the improvement of the energy efficiency of
the wall insulations and windows systems. The household residential mobility that
cause the urban areas to expand horizontally or vertically is then a key factor control-

ling the thermal efficiency of the buildings, and hence the building energy requirements.

At the scale of a day, the different thermal ambiance that have been crossed by the
building occupants can play a significant role in the sensation of thermal comfort, and
influence the thermostat set point temperatures. Studies like Ketterer and Matzarakis
[2014Db] focused on the characterization of the exposition of the human body to the
thermal stress of various built-up thermal environments induced by the urban heat
island intensity by using meteorological observations. Miiller et al. [2014] investigated
the changes in the PET indices considering the different land cover zones of Ober-
hausen, and changes in the vegetation type and covers using the ENVI-met microscale
climate model. The postulate is that the sensation of comfort is mainly driven by
the physiological regulation of the human body by thermo-regulatory mechanisms and
circulation systems. As a consequence, this type of studies considers the energy budget
of humans and its interactions with the surrounding thermal environments at a given

time. Ketterer and Matzarakis [2014b] for instance used the Physiological Equiva-
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lent Temperature (PET) of Hoppe [1999]. It defines the equivalent air temperature
at which, in standardized indoor settings (no winds, no solar radiations), and for a
standardized person, the heat budget of the human body is balanced with the same
core and skin temperatures as under the complex outdoor conditions to be assessed. It
requires the definition of four environmental variables (i.e. the indoor temperature, the
mean radiant temperature, the relative wind speed and the humidity) and two personal
variables that are often difficult to obtain in practice: the activity level and the value
of the clothing worn. Ranges of optimal thermal conditions are then defined to char-
acterize the physiological stress on human being induced by the urban climate. Even
more complex thermal comfort models like the one implemented in the building energy
model EnergyPlus, account for the thermal history of the human beings through the
use of a weighted air temperature that consists in the average of the air temperatures
of the different thermal ambiances that have past cross by a group of individuals few
hours before.

Because the location of the population and employments resources influences the daily
commuting of the urban dwellers and the different thermal environments that are
crossed in a day by individuals the transportation network and the net density (i.e.
the density of the employments and population on a spatial unit) that are two dis-
criminating factors of the urban form, play prevailing role in the thermal comfort of
the urban dwellers. More the type of the building is showed to play a significant psy-
chological influence on the thermal comfort of the urban dwellers. To such extent,
Frontczak and Wargocki [2011] reported that people felt warmer at home and colder in
their office, and that people in air-conditioned building are more sensitive to deviations
in the thermal comfort. Thus, the consideration of sophisticated land use transport
integrated (LUTI) models that simulate the residential and transport mobilities of the
urban dwellers in the one hand, and the urban development in the other hand can help:
ridentifying the different thermal ambiances that are crossed by a group of individu-
als, izhelp modeling the residential mobility and urban development. It therefore can
provide the rate of renovation of the building insulations, the building properties and
types, and give insight on the size of the newly constructed neighborhood’s streets. The
climate modeling systems can in parallel provide the different thermal ambiance that
are cross by the individuals when coupling a mesoscale atmospheric model with the
CIM canopy model, and a microscale climate model like EnviMet. From the system of
urban climate models, it is then possible to calculate the PET indices of the different
thermal ambiance crossed by the individuals or group of individuals. More, the cli-
mate modeling system can also provide the building energy requirements by coupling

in addition to such climate modeling system, sophisticated building energy model like
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EnergyPlus. Doing so, it seems therefore possible to investigate the link between the
PET indices of a specific built-up areas characterized in terms of household category

and building fabrics with the building energy demands.

In conclusion, the thermal comfort that is defined as the state of mind where a person
expresses satisfaction with the thermal environment [ASHRAE, 2004] appears to be a
central concept in the building energy studies. This concept directly links the lifestyle
and activities of the individuals with their surrounding thermal environments and the
heating or cooling building energy requirements. This concept also provides a new
opportunities to study the interactions between the urban form, the building energy
requirements and the urban climate: the various activities of the urban dwellers are
mainly driven by spatial factors that influence the displacement of the urban dwellers

like the distance of the home-to-work commuting, the mix of activities.
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Résumé

A T’heure actuelle, la lutte contre le changement climatique et ses impacts se décline au
niveau local. Depuis 2009, les plans climat énergie territoriaux sont obligatoires pour les
agglomérations de plus de 50,000 habitants. Ils engagent les collectivités territoriales a
quantifier les émissions de gaz a effet de serre et les dépenses énergétiques des principaux
secteurs économiques hébergés sur leur territoire. Parmi ces secteurs, le batiment et no-
tamment les batiments résidentiels, représentent plus de 40% des dépenses énergétiques
francaises et constituent du fait de leur durée de vie et de I'ancienneté du parc immo-
bilier francais un fort potentiel de réduction des dépenses énergétiques.

En parallele, depuis une dizaine d’année maintenant, la communauté des climato-
logues urbains développe des systemes de modeles climatiques capables de simuler en
moyenne l'effet des batiments sur la thermodynamique de 'atmosphere et les dépenses

énergétiques des batiments.

Cette présente étude vise a évaluer les potentiels d’application a ’échelle d'un territoire
de ces systemes de modeles climatiques dans I'élaboration des inventaires énergétiques
et dans le transfert des connaissances climatiques et énergétiques dans les principaux
documents d’urbanisme. En outre, cette étude questionne le lien entre la forme ur-

baine, les dépenses énergétiques et le climat urbain.

Dans cette étude, nous avons successivement appliqué le systeme de modeles clima-
tiques WRF/ARW-BEP+BEM de Skamarock et al. [2008] au territoire de la commu-
nauté urbaine de Strasbourg (France) en 2010 et a la région urbaine de Strasbourg-Kehl
en 2030 en considérrant alors, des scénrios de développement résidentiel archétypaux.
Ce faisant nous avons évalué la capacité des systemes de modeles climatiques a estimer
les dépenses énergétiques d’'un territoire sur une période donnée et a prendre en compte
la dynamique du dévelopment urbain. Enfin, afin d’améliorer la représentation de la
surface, et notamment de la végétation, dans les systemes de modeles climatiques nous
avons développé un modele de canopée urbaine, CIM, résolvant les profils verticaux
de vents, de température et d’humidité et pouvant étre couplé avec n’importe quels
modeles de surface (paramétrisation urbaine, modeles climatiques microéchelles plus

résolus).

Mot-clés: paramétrisation urbaine-modéle atmosphérique mésoéchelle- performance énergétique

des batiments -aire urbaine



8.2 Introduction

Actuellement, le Groupement Intergouvernemental des Experts sur le Climat (GIEC)
estime que la consommation croissante des hydrocarbures fossiles contribuerait a aug-
menter les températures de surface de +2°C a +6°C d’ici la fin de ce siecle. Les
impacts de tels réchauffements seront tout particulierement sensibles en milieu urbain
qui concentre la population et o, a cette chaleur additionnelle, s’ajoute un effet de
réchauffement de 1’air local appelé ilot de chaleur urbain. Ce dernier est principale-
ment imputable a I'imperméabilisation des sols et a la présence d’obstacles tels que
les batiments qui modifient les échanges dynamiques et énergétiques entre la surface et
I’atmosphere. Aussi, on estime que le réchauffement climatique influencera les dépenses
énergétiques dans les batiments en réduisant notamment les besoins en chauffage mais
concourra a l'utilisation croissante d’électricité en été dans les systemes d’air condi-

tionné.

Afin de lutter contre les impacts du changement climatiques, les Etats et plus parti-
culierement 1’Union Européenne se sont dotés d’objectifs en matiere de réduction de
Gaz a effet de serre (GES). Au niveau national, il s’agit de réduire par 4 les émissions
de GES en référence aux émissions 1990 d’ici 2050 (loi POPE de 2005). Le secteur du
batiment est 1'une des principales cibles des stratégies d’atténuation et d’adaptation au
changement climatique. Il représente 43% (24% des émissions de GES) des dépenses
énergétiques finales, principalement a des fins de confort thermique.

Par ailleurs, il incombe aux collectivités territoriales aux travers des Plans Climat
Energie Territorial (Grenelle 1 et 2 de 'environnement) de constituer des inventaires
chiffrés de leurs dépenses énergétiques et émissions de GES. Ces inventaires doivent
renforcer la connaissance des collectivités locales sur leurs dépenses énergétiques a
I’échelle de leur territoire et constituer un point d’appui a 1’élaboration de stratégies

locales luttant contre les effets du changement climatique.

Les inventaires de dépenses énergétiques des batiments a 1’échelle de la ville sont sou-
vent construits a partir de campagnes thermographiques aériennes des toitures [APUR,
2011] ou d’analyses statistiques multi-variées. Ces derniéres s’appuient sur la connais-
sance de la consommation énergétique de batiments prototypes et des caractéristiques

du parc immobilier d’un territoire. Peu de méthodes utilisées pour réaliser de tels inven-
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taires considerent linfluence du climat local sur les dépenses/demandes énergétiques
des batiments. Parmi les outils numériques, qui permettent de tester a priori différents
scénarios d’atténuation et d’adaptation (albédo, ombrage) au réchauffement climatique
et qui considerent 'influence du climat, figurent les modeles physiques micro-échelles
(résolution du metre) d’énergie du batiment. Ils calculent les demandes énergétiques
d’un batiment prototype dont la géométrie et les propriétés radiatives et thermiques
sont tres proches de la réalité. Ils considerent les échanges thermiques et dynamiques
a l'intérieur d’un batiment soumis a des variations météorologiques et a l'influence de
son environnement proche (ez. effet ombrage) ainsi que la dynamique d’activation des
systemes climatisés tels que les systemes d’air conditionné ou les pompes a chaleur.
Toutefois, les conditions météorologiques en entrée de ces modeles sont des données
climatiques standards établies a 1'aide de moyennes statistiques (30 ans) effectuées sur
des observations météorologiques mesurées bien souvent a ’extérieur de I’aire urbaine.

De ce fait, I'influence du climat sur les demandes énergétiques est surévaluée.

Des lors, il apparait que les outils actuels dont disposent les collectivités territoriales en
matiere d’évaluation des dépenses énergétiques des batiments sur leur territoire ne sont
pas optimisés a une vision prospective des différents effets des stratégies territoriales

mises en place pour lutter contre les impacts du changement climatique.

Par ailleurs, la dynamique du développement résidentiel est souvent peu prise en
compte dans les études d’inventaires. Or de précédentes études ont mis en avant le
role croissant des choix de formes urbaines dans la construction de villes post-carbones
et durables. Les formes compactes qui sont notamment mises en avant par les études
d’énergétique du transport, induisent des densités urbaines en termes de batiments et
de population plus fortes que les formes induites par I’étalement urbain. L’intensité des
dépenses énergétiques par personne ou par metre carré bati est ainsi réduite en com-
paraison de celle observée dans les formes étalées des périphéries des villes. De surcroit,
les fortes densités urbaines de par la prépondérance des surfaces imperméables artifi-
cielles et de la concentration des émissions de chaleur anthropiques concourreraient a
intensifier les effets locaux d’ilot de chaleur, réduisant de ce fait les dépenses énergétique
en chauffage. Néanmoins, ces formes compactes sont aussi réputées pour accroitre a
un seuil donné les effets de congestion du trafic routier, la pollution atmosphérique et
les effets de dilatation des espaces de vie de la population urbaine vers les espaces verts

des périphéries de ces meémes villes. L’engouement pour les espaces verts et la maison
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individuelle familiale des citadins tend en effet a s’accroitre avec I’augmentation de la
densité du bati, contribuant a renforcer I’étalement urbain.

Des politiques de limitations de I’étalement urbain et des trajets automobiles fortement
dépendant des ressources d’hydrocarbures fossiles sont ainsi mises en oeuvre pour con-
trecarrer les effets négatifs de I’étalement urbain (augmentation des consommations
et de l'intensité énergétiques dans le transport et les batiments respectivement, frag-
mentation du paysage et mise en péril de la diversité écologique). Toutefois, peu
d’études d’impact de ces stratégies d’aménagement sur le climat urbain et les dépenses
énergétiques sont réellement menées : la question de la densité urbaine en termes de

bénéfices énergétiques dans les batiments et écologiques reste posée.

8.3 Objectif

L’objectif de cette étude est de proposer une nouvelle méthodologie d’évaluation des
dépenses/demandes énergétiques des batiments a 1’échelle d’une aire urbaine et de
tester différentes stratégies d’atténuation et d’adaptation au changement climatique.
Cette méthodologie devra prendre en compte la complexité d’échelle du climat urbain
notamment de I'llot de chaleur urbain, ainsi que la dynamique de croissance des aires
urbaines qui, en modifiant les propriétés de surfaces, alterent également les conditions
météorologiques locales. Ce faisant, l'interaction entre la forme urbaine, les dépenses

énergétiques des batiments et le climat urbain sera questionnée.

8.4 La méthodologie

Depuis quelques décennies, les modeles régionaux du climat qui calculent 1’évolution
des conditions météorologiques moyennes sur des volumes élémentaires d’air de 'ordre
du 1 km?3, ont connu des améliorations considérables en matiere de représentations
des surfaces urbaines (paramétrisation urbaine). Ces paramétrisations reproduisent en
moyenne |’effet de plusieurs obstacles sur I’écoulement du vent, les échanges énergétiques
et radiatifs. Les paramétrisations urbaines les plus accomplies considerent les effets

tridimensionnels des obstacles dans la canopée urbaine, couche d’air incluse dans la rue,
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a l'instar du modele TEB de Masson [2000] et BEP de Martilli et al. [2002]. Les obsta-
cles d’un tissu urbain donné y sont traditionnellement modélisés comme une succession
uniforme de cubes séparés par des rues (les canyon-rues) pour lesquels des flux de sur-
faces de mouvement, d’énergie, et d’humidité distinctifs sont calculés pour chacune des
surface du canyon-rue (ez. rue, toit, mur). Ces flux de surface sont ensuite moyennés
en fonction de leur surface dans la maille et de la représentativité du tissu urbain et
des types de surface dans cette maille. Les flux de surfaces sont alors introduits dans
le modele atmosphérique comme un terme additionnel des équations atmosphérique de
conservation de Navier-Stokes. Par ailleurs, et cela depuis les années 2000, de nom-
breux modeles énergétiques de batiments ont été implémentés dans les paramétrisations
de canopée urbaine tel que le modele BEM [Salamanca et al., 2010] qui a été couplé
a la paramétrisation de canopée urbaine BEP et intégré dans le modele méso-échelle
non-hydrostatique WRF (Weather Research Forecasting model). Le modele BEM cal-
cule en particulier un bilan énergétique a l'intérieur du batiment en considérant les
apports de chaleur passifs (solaires, anthropiques) et un modele de pompe a chaleur
qui estime la demande énergétique de chauffage/climatisation par rapport a un seuil
fixé de confort en température et en humidité . Le tout forme alors un systeme de
modeles météorologiques capable de prendre en considérations les interactions entre le
climat urbain et les dépenses énergétiques dans les batiments ainsi que la complexité

d’échelle inhérente au climat urbain.

Mon travail a consisté en plusieurs étapes :

(1) Tester la capacité d’un systéme de modeéles météorologiques a construire

un cadastre des demandes énergétiques sur un territoire donné .

Dans un premier temps, la capacité du systeme de modeles météorologiques WRF /ARW-
BEP+BEM a fournir un cadastre des demandes énergétiques sur un territoire donné
a été testée. WREF a ainsi été appliqué sur le territoire de la Communauté Urbaine de
Strasbourg (CUS) pour 'année 2010. Quatre domaines emboités ont été construits.
Le plus résolu se focalise sur la région urbaine de Strasbourg-Kehl. Ils se caractérise
par une résolution horizontale de 1 km. Les conditions météorologiques de ce dernier
domaine sont héritées (forgage climatique) des domaines-parents, moins résolus (45 km,
9 km, 3 km respectivement) tandis que le forgage météorologique du premier domaine
s’appuie sur les ré analyses météorologiques des sorties du modele climatique global
AVN. Les données de surface et notamment la description de I'occupation du sol, la

morphologie et I'orientation des canyons-rues sont issues de traitements géo-spatial de
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bases de données locales fournies a hautes résolutions (BDOcs 2008 de la coopération
CIGAL, BDtopo®) de I'IGN). Les résultats de cette simulation permettent d’obtenir un
cas de référence qui a été confronté aux observations météorologiques et énergétiques
fournies par Météo France et 1’Association pour la surveillance et I’étude de la pol-
lution atmosphérique en Alsace (ASPA), respectivement, a des fins de validation et

comparaison.

(2) Proposer une méthode rapide de calcul des demandes énergétiques

prenant en compte la complexité du climat urbain.

S’appuyant sur la relation significative observée entre les températures de 'air et les
dépenses énergétiques lors de précédentes études et sa simplification selon un modele
linéaire statistique [Thom, 1954, Amato et al., 2005], une nouvelle méthode d’estimation
des demandes énergétique dans le batiment a été développée. Elle s’appuie sur 'utilisation
des températures de l'air et des demandes énergétiques simulées par le systeme de
modeles météorologiques WRF/ARW-BEP+BEM et la traditionnelle méthode des
dégré-jours. Cette derniere repose sur la correspondance entre les besoin énergétiques
des batiments pour le chauffage ou la climatisation et la distribution des gradients
de températures dans un laps de temps donné entre la température de 'air extérieur
et une température de référence, la température de base (7j) qui caractérise quant
a elle, I’équilibre thermique du batiment avec son environnement. La relation entre
la température et les besoins énergétiques s’appuie sur la définition de la sensibilité
climatique des batiments (P) qui mesure la propension des batiments a demander de
I’énergie pour chaque degré Celsius supplémentaire. La méthode numérique compara-
tivement a la méthode traditionnelle qui repose sur des observations de la température
de l'air et des dépenses énergétiques présente l'avantage :

i) de considérer la complexité du climat urbain, 7i) de pouvoir étre établie relativement
rapidement sur n’importe quel territoire et laps de temps, et i) de ne pas définir a
priori les parametres du modele linéaire statistique comme la température de base ou
la sensibilité climatique des batiments.

Cette méthode a été développée sur le territoire administratif de la communauté ur-
baine de Strasbourg (CUS) a partir des résultats de 'étape (1). Elle a ensuite été
optimisée a I’aide de test de sensibilité afin de réduire la durée des simulations et les be-
soins en ressources numériques. Enfin la relation linéaire statistique a permis de tester
différentes stratégies de réduction des besoins énergétiques souvent mises en exergue

dans la littérature tels que 'augmentation de la réflectivité des toits ou ’abaissement
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de la température de confort dans les batiments.

(3) Tester I’influence de politiques de développement urbain durable sur les

demandes énergétiques.

Dans un second temps, la capacité du systéme de modeles météorologiques WRF /ARW-
BEP+BEM a prendre en compte les changements d’occupation du sol qui résultent
des politiques de lutte contre I’étalement urbain a été éprouvée (ex. conservation de la
trame verte, promotion de la densité urbaine et du renouvellement urbain). Une ver-
sion modifiée du modele américain d’automate cellulaire SLEUTH* de Doukari et al.
[2013], a été utilisé a cette fin. Elle a permis de simuler le dénveloppement résentiel
de scénrios de dénveloppements urbains archétypaux. Comme tout modele d’automate
cellulaire, les changements d’occupation du sol d'une cellule interviennent a partir
de la connaissance de ’environnement voisin de la cellule. Un algorithme de Monte
Carlo et trois regles simples (développement concentrique (edge growth), linéaire (road
influenced growth) et spontané (spontaneous growth) permettent de contraindre le
développement urbain. Afin d’imposer des contraintes plus réaliste au modele, le PLU
de la communauté urbaine de Strasbourg ainsi que les modeles MorphoLim et Graphab
ont été utilisés [Tannier et al., 2011, Foltéte et al., 2012]. A T’aide de la théorie des frac-
tales, MorphoLim délimite des agrégats batis cohérents tandis que le second identifie
les habitats a protéger impérativement pour le maintien de la connectivité écologique
du paysage. Pour I’heure, Graphab a la capacité de considérer une seule espece-cible.
L’écureuil roux, espece commune des aires boisées a été choisie. Sa forte répartition sur
le territoire et sa faible distance de dispersion en font une espece particulierement sen-
sible a la fragmentation du paysage écologique. L’ensemble de cette chaine de modeles
a ainsi été appliqué a la partie francaise de 'aire urbaine de Strasbourg-Kehl en con-
sidérant une résolution de la cellule de 20 m et une échelle temporelle de 20 ans corre-
spondant a I’horizon temporelle des principales décisions territoriales. Les changements
d’occupation du sol ont ensuite été agrégés a la résolution du modele météorologique (1
km) afin d’y renseigner les propriétés physiques (ex.radiatives, aérodynamiques, ther-

miques, etc.) des nouvelles cartes d’occupation du sol.

(4) Proposer une amélioration de la représentation des obstacles urbains

dans les paramétrisations urbaines et notamment de la végétation.
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Afin de mieux représenter I'influence de la surface dans les modeles climatiques régionaux,
le développement d’un modele colonne de canopée urbaine (Canopy Interface Model
ou CIM) a été initié. Il a pour objectif d’améliorer le calcul des flux de surface
dans les modeles météorologiques méso-échelles. Son développement s’appuie sur les
travaux de Miiller [2007] qui a constaté la sensibilité du modele de surface BEP a
la résolution verticale des modeles climatiques régionaux. En effet la résolution ver-
ticale d’'un modele méso-échelle ne peut gueére descendre au niveau du metre (limite
numérique et physique) tandis que la diminution de la résolution du modele BEP fait
perdre tout intérét a l'utilisation de la paramétrisation dans les modeles climatiques
régionaux. L’idée est alors d’effectuer un calcul plus résolu du profil de vitesse de
vent, de température et d’humidité sur une grille verticale immergée dans la couche
atmosphérique de canopée urbaine par un modele de canopée urbaine a proprement
dit, placé a I'interface du modele de surface et du modele météorologique mésoéchelle.
Les profils simulés a I'aide du modele CIM sont alors fournis en entrée des modeles
de surface BEP+BEM ou de tous autres modeles micro-échelles plus résolus calculant
les flux de surface et prenant en compte la topologie des éléments urbains a I’échelle
du quartier. Les flux de surface sont ensuite directement interpolés sur la grille méso-
échelle comme précédemment.

Le modele de canopée résout pour I'heure I’équation de transport vertical de quantité
de mouvement en présence d’obstacles et en conditions atmosphériques neutres. Les
effets induits par la thermique sur I’écoulement du vent ne sont ainsi pas pris en compte
dans un premier temps. L’équation de transport vertical de la quantité de mouvement
est discrétisée a 'aide de la méthode des volumes finis afin de bien considérer 'effet
de la présence d’une série d’obstacles dans une maille plus large. Des porosités de
volume et de surface (i.e. volumes et surfaces libres des mailles) ont été introduites
dans I’équation de transport dans le terme représentant les forces de trainées et de fric-
tions, induites par la résistance des obstacles a 1’écoulement de 'air, et dans les termes
représentant la diffusion turbulente. Ces porosités dépendent de la densité des obsta-
cles dans la maille et sont pour ’heure calculées en considérant des parallélépipedes
de longueur et largeur uniformes dans une maille mais pouvant varier d’une maille a
I’autre sur toute la hauteur des obstacles.

Les flux turbulents entre les couches d’air sont paramétrés en analogie a la diffusion
moléculaire a 'aide de la K-théorie ou ils sont fonction d’un coefficient d’échanges tur-
bulents (coefficient de viscosité turbulente). Ce dernier a la dimension du produit d’'une

vitesse par une longueur. La vitesse est généralement associée au cisaillement de deux
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couches d’air s’écoulant a des vitesses différentes et considérée comme étant la vitesse
de friction u,. La longueur est prise en fonction de la taille maximale des tourbillons
présente dans I’écoulement turbulent. Plusieurs paramétrisations de ce coefficient ont

été testées au cours de cette étude.

8.5 Les résultats

Dans un premier temps, les comparaisons des simulations fournies par le systeme de
modeles climatiques WRF/ARW-BEP+BEM avec les données d’observation de surface
issues de 3 stations météorologiques (les seules disponibles) exploitées par Météo France
montrent des biais de températures moyennes de I'ordre de +1°C a +2°C avec la station
dite "urbaine”. Cette station est toutefois localisée dans le jardin botanique. Aussi sa
représentativité est mise en doute. La station représentative de la circulation atmo-
sphérique synoptique localisée a I'aéroport d’Entzheim (Sud-Ouest de I'agglomération
de Strasbourg) présente une sous-estimation des températures de I'ordre de -1°C qui
tend a diminuer en période hivernale. La station "non-urbaine” de La Wantzenau
(au Nord Est de I'agglomération de Strasbourg) en revanche montre des écarts de
températures plus faibles et variables tout au long de I’année pouvant étre positifs ou
négatifs. Toutefois, le systeme de modeles climatiques WRF/ARW-BEP+BEM simule
correctement les températures de l'air puisque le coefficient de corrélation entre les
températures simulées et observées est de 0,90.

Pour le vent, le systeme de modeles climatiques WRF/ARW-BEP+BEM semble peiner
areproduire les vents forts (> 2.5m.s~!) qui sont pourtant fréquents sur la zone d’étude,
et qui apparaissent notamment dans les directions principales des vents (Nord/Nord
Est et Sud/Sud Ouest). Toutefois le coefficient de corrélation entre les vitesses de vent
simulées et observées est relativement significatif (R=0.60) et permet de conclure que
les champs de vent sont globalement bien pris en compte par le systeme de modeles
climatiques WRF/ARW-BEP+BEM. A fortiori, les directions sont globalement bien
reproduites.

Enfin, les comparaisons des demandes énergétiques simulées par le modele sur le terri-
toire de la communauté urbaine de Strasbourg avec les estimations de consommations
d’énergie fournies par I’ASPA pour ce méme territoire montrent une différence relative
de -23,55%. Au vu du nombre de parametres d’entrée et des approximations réalisées
dans le systeme de modeles climatiques, cette différence est jugée acceptable. Plusieurs

facteurs peuvent expliquer cette différence (ex. considération du climat local dans la
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présente méthode, estimation des consommations et non des demandes énergétiques
dans la méthode de ’ASPA, caractéristiques des batiments) mais il semblerait que
la principale source des différences observées entre les deux études, proviennent des
caractéristiques des batiments et notamment de la prise en compte des apports de
chaleur interne dans les batiments tels que la chaleur dégagée par 1'utilisation des
équipements électriques. En effet une étude de sensibilité a montré que ce parametre
influence fortement les estimations des besoins énergétiques : la prise en compte de
la chaleur dégagée par les équipements électriques permet de réduire les demandes
énergétiques d'un facteur 1,85. Toutefois tres peu de données sont disponibles sur
Iincertitude d'un tel parametre. Ces résultats encourageants demandent cependant
une validation supplémentaire de la méthodologie sur d’autres agglomérations et en-
couragent également des travaux d’amélioration de la prise en compte des comporte-

ments énergétiques des ménages présents dans les batiments.

Le modele linéaire statistique a ensuite été établi sur le territoire de la CUS en con-
sidérant les températures de l'air et les besoins en chauffage simulés par le systeme de
modeles climatiques WRF/ARW-BEP+BEM. Il a permis de déterminer la température
de base Tj et la sensibilité climatiques P représentatives du parc immobilier de la CUS.
Cette relation linéaire statistique permet de connaitre a partir de la distribution des
températures de 'air d’'une période donnée et des deux parametres P et Tp, les be-
soins en chauffage en commentant des erreurs d’estimations de 1'ordre de -5%. Afin de
gagner du temps de calcul, cette relation linéaire statistique a ensuite été optimisée.
Il apparait que 3 mois suffisent pour déterminer les parametres du modele linéaire
statistique. En utilisant ces nouveaux parametres et la distribution des températures
annuelles, les estimations de la consommation énergétiques sont entachées d’une erreur
d’environ 2% comparé au cas de référence. Enfin, a partir de cette derniere relation
linéaire, plusieurs stratégies de réduction des besoins énergétiques dans le batiment
ont été testées (ex. isolation des batiments, utilisation de matériaux réfléchissant sur
les toits, augmentation de la température de confort, de la fraction de fenétre sur les
murs). Il apparait que le systeme de modeles météorologiques est plus sensible aux
variations des parametres internes des batiments (température de confort, isolation)

qu’aux changements intervenant sur I'environnement immédiat du batiment (albédo).

Dans un second temps, les travaux menés sur les scénarios d’aménagement urbain a

I'aide du modele SLEUTH* ont questionné la capacité des modeles météorologiques
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a constituer des outils d’aide a la décision a I’échelle des aménageurs. Le systeme de
modele météorologique montre en effet peu de sensibilité aux changements d’occupation
du sol et, notamment, n’arrive pas a reproduire les occupations du sol résultant de

I’étalement urbain. Plusieurs explications peuvent étre avancées :

e La faible extension spatiale de 'agglomération : entre 2000 et 2008 un taux
d’artificialisation de 93,22 ha/an a été calculé a partir de I’étude diachronique de

la base de données d’occupation du sol CIGAL.

e L’inadéquation de la résolution du modele météorologique (1 km) comparée aux
changements d’occupation du sol (20 m). Cette hypothese conduit a modifier le
systeme de modeles météorologiques afin que celui-ci puisse étre utilisé a de plus

grandes résolutions spatiales.

Enfin, les simulations météorologiques et énergétiques des différentes occupations du
sol montrent peu de différence entre les différentes formes urbaines. I1 apparait que
le volume de chauffe et le rapport enveloppe sur volume des batiments aient des roles
prépondérants dans le calcul de la sensibilité au froid des batiments sur 1’aire d’étude.
Les batiments situés au centre-ville dense sont ainsi moins sensibles aux variations cli-
matiques que les batiments situés en périphérie. Il semblerait de ce fait que la densité
du bati et la forme des batiments soient des criteres prépondérants expliquant les be-
soins énergétiques dans notre cas d’étude. S’il est vrai qu’une forme urbaine compacte
peut induire des formes de batiments plus compactes, il apparait que les différentes
stratégies d’aménagement du territoire contribuant a ces formes urbaines aient moins
de poids que les actions menées a 1’échelle du quartier par les développeurs ou les ar-

chitectes.

Les travaux précédents ayant démontré la nécessité d’adopter une résolution spatiale
plus fine, un nouveau modele de canopée (CIM) a été développé dans le but de perme-
ttre un calcul plus résolu des flux de surface pris en compte dans les modeles régionaux
climatiques. Il doit permettre 'interfacage de modeles méso-échelles avec des modeles
climatiques micro-échelles (échelle du quartier) qui représentent de maniere plus précise
la surface, notamment les batiments et la végétation, et qui considerent les effets de
topologie des divers éléments urbains sur le microclimat. Certains d’entre-eux, a I'instar
d’EnviMet [Bruse and Fleer, 1998] inclus notamment la végétation arborée dans la
maille urbaine sous la forme d’un modele colonne.

Mon travail a consisté a mettre en place ce nouveau modele de canopée (CIM) et en
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particulier d’y décrire les obstacles (batiment ou végétation) en termes de porosités.
Des tests de sensibilité montrent que 'influence de la porosité sur les profils verticaux
de vent est moindre comparé aux effets des forces de trainées opposées a I’écoulement
du vent par les parois verticales des batiments. Toutefois, la réduction de la taille
des tourbillons dans la canopée urbaine modifie considérablement le profil de vitesse
et des travaux futurs devront intégrer les porosités de surface et de volume dans sa
paramétrisation. Ce travail a été repris par Mauree [2014]. Tl a continué le développement
des paramétrisations turbulentes, a validé le modele CIM en utilisant les sorties de
simulations de 1’écoulement de I'air de modele plus résolus, tel que les CFD et a in-
troduit CIM dans le systéme de modeles climatiques WRF/ARW-BEP+BEM [Mauree
and Clappier, 2014, Mauree et al., 2014b]. Ce faisant, il a démontré que le profil
vertical d’énergie cinétique turbulente est significativement influencé par la présence
des porosités tout comme le profil de vent des lors que les termes de porosités sont
intégrés dans la paramétrisation de la taille des tourbillons dans la canopée urbaine. 11
a également démontré que I'introduction du modele CIM dans le systeme de modeles
climatiques WRF/ARW-BEP+BEM concourrait a réduire la vitesse du vent dans la

canopée urbaine.

8.6 Conclusion

L’étude présente a permis de mettre en place un systeme de modeles climatiques
sur le territoire de la communauté urbaine de Strasbourg afin d’évaluer ses besoins
énergétiques en chauffage. Sila méthodologie adoptée parait encourageante lorsque ’'on
compare les demandes énergétiques avec les estimations de consommations énergétiques
issues d’autres méthodes de type inventaire, elle a permis de questionner son effi-
cience dans un contexte de développement urbain modéré et hétérogene. En effet,
I’hétérogénéité de la surface urbaine y est encore reproduite de maniere trop simplifiée
. les différentes occupations du sol sont traitées par des modeles de surface distinc-
tifs qui ne communiquent pas tandis que la faible résolution du modele. De ce fait,
la méthode ne permet pas encore de répondre aux questionnements que se posent les
collectivités territoriales : quelle est I'influence d’'un point d’eau/végétation d’une su-
perficie de quelques metres carrés sur le confort thermique des piétons 7 Quelles en
sont la/les configurations optimales dans une perspective de conservation de I’énergie 7
Si le modele de canopée CIM répond pour partie aux enjeux d’échelles, son utilisation

idéale avec d’autres modeles de surface plus résolus demande encore des simplifications
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de la physique reproduite dans les systemes de modeles climatiques afin de pallier la
contrainte numérique du temps de calcul et les incertitudes liées a certains parametres.
En effet, le simplification géométriques des obstacles sous forme de cubes induit des
approximations des surfaces des enveloppes des batiments et du volume de chauffe qui
sont pourtant déterminants dans l'estimation des besoins énergétiques. Par ailleurs,
cette simplification comme ’a démontré Rasheed [2009] influence également I'intensité
des forces de trainées agissant sur les parois des obstacles et de ’absorption des rayon-

nements solaires et thermiques.

D’un point de vue thématique, la forme urbaine semble dans le cas d’étude présent
avoir peu d’impact sur la relation existant entre les températures de l'air et les be-
soins en chauffage. Ce résultat devra étre confirmé sur d’autres cas d’études. Enfin,
de nombreuses études tendent a mettre en avant le role prépondérant des styles de
vie des occupants des batiments dans les besoins énergétiques. Les besoins en énergie
semblent tres liés a 1’élasticité des prix, aux performances énergétiques des batiments
(isolation) et au controle actif de la température de consigne des thermostats des ap-
pareils de chauffage et moyens de ventilations (fenétre). Une hausse des prix entraine
bien souvent une baisse de la température de consigne des thermostats des appareils
de chauffage. Par ailleurs des enqueétes sociologiques ont également démontrées que les
rénovations thermiques de l'enveloppe du batiment sont souvent corrélées a la phase
d’installation des ménages dans un nouveau logement. Aussi, il semblerait que la
mobilité résidentielle joue un role non négligeable dans les besoins énergétiques des
batiments. Cette mobilité est controlée pour partie par les politiques d’aménagements
du territoire (loi de l'offre et de la demande). Enfin, il apparait que le controle de la
température de consigne des thermostats des appareils de chauffage est inhérent a la
sensation de confort thermique des habitants. Cette sensation de confort thermique
est physiologique, psychologique, et dépend aussi des différentes ambiances thermiques
traversées par les individus au cours d’une journée. Aussi, il est possible autour de la
notion centrale de confort thermique d’investiguer sous un nouvel aspect les interac-
tions existantes entre la forme urbaine, les dépenses énergétiques dans les batiments et

le climat urbain.
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Résumé

Les batiments représentent 40 pourcents de la consommation finale d'énergie. Ils sont ainsi le fer de lance des
politiques de réduction des dépenses énergétiques. Récemment, des systémes de modeles climatiques qui
incluent un modele atmosphérique régional et des paramétrisations urbaines sophistiquées ont été¢ développés.
Ils considerent la complexité de I’ilot de chaleur urbain et ses interactions avec les besoins énergétiques des
batiments. Dans quelle mesure ces systémes constituent-ils des outils d’aide a la décision pour les autorités
locales ? Cette étude menée sur le territoire de I'Eurodistrict (Strasbourg-Kehl) en 2010, puis en 2030, a 1’aide
du systeme de modeles de climat WRF/ARW-BEP+BEM a démontré que si le systéme de modeles estimait de
manicre fiable les besoins en chauffage des batiments, ces derniers étaient davantage sensibles aux
caractéristiques intrinséques des batiments qu’aux formes urbaines et a I’ilot de chaleur urbain induit par ces

formes.

Energie des batiments - Climat urbain - Ilot de chaleur urbain - Modéle atmosphérique meso-échelle -
Paramétrisation urbaine — Aménagement du territoire

Résumé en anglais

Buildings represent 40 percent of the end-use energy. Thus, they constitute a key point of the energy saving
policies. Recently, climate modeling systems that include a mesoscale atmospheric model and sophisticated
urban parameterizations have been developed to account for the complexity of the urban heat island and its
interactions with the building energy loads. This study aims to assess the capability of such climate modeling
systems to provide climate and energy guidelines to urban planners.

For this, we used the research WRF/ARW-BEP+BEM climate modeling system and performed sensitivity tests
considering the territory of the Eurodistrict (Strasbourg-Kehl) in 2010, and then in 2030. The results reveal that
the climate modeling system achieves estimating the building energy needs over the study area, but also
indicate that the building energy needs are more sensitive to the building intrinsic properties and occupant

behavior than to the urban forms and their induced urban heat island.

Building energy — Urban climate — Urban heat island - Mesoscale atmospheric model — Urban parameterization
— Urban planning




