Approximations elliptiques d'énergies singulières sous contrainte de divergence

par Antonin Monteil

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Radu Ignat.

Soutenue le 07-12-2015

à l'Université Paris-Saclay (ComUE) , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....) , en partenariat avec Université Paris-Sud (1970-2019) (établissement opérateur d'inscription) et de Laboratoire de mathématiques d'Orsay (1998-....) (laboratoire) .

Le président du jury était Etienne Sandier.

Le jury était composé de Radu Ignat, Etienne Sandier, Fabrice Bethuel, Robert L. Jerrard, Filippo Santambrogio, Petru Mironescu, Edouard Oudet.

Les rapporteurs étaient Fabrice Bethuel, Robert L. Jerrard.


  • Résumé

    Cette thèse est consacrée à l’étude de certains problèmes variationnels de type transition de phase vectorielle ou "phase-field" qui font intervenir une contrainte de divergence. Ces modèles sont généralement basés sur une énergie dépendant d’un paramètre qui peut représenter une grandeur physique négligeable ou qui est liée à une méthode d’approximation numérique par exemple. Une question centrale concerne alors le comportement asymptotique de ces énergies et des minimiseurs globaux ou locaux lorsque ce paramètre tend vers 0. Cette thèse présente différentes stratégies prenant en compte la contrainte de divergence. Elles seront illustrées à travers l’étude de deux modèles. Le premier est une approximation du modèle Eulérien pour le transport branché par un modèle de type phase-field avec divergence prescrite. Nous montrons comment une estimation uniforme de l’énergie, en fonction de la contrainte sur la divergence, permet d’établir un résultat de Gamma-convergence. Le second modèle, en lien avec la théorie du micromagnétisme, concerne des énergies de type Aviles-Giga dans un cadre vectoriel avec contrainte de divergence. Nous illustrerons dans quelle mesure la méthode d’entropie permet de caractériser les minimiseurs globaux. Dans certaines situations nous montrerons une conjecture de type De Giorgi concernant la symétrie 1D des minimiseurs globaux de l’énergie sous une contrainte au bord.

  • Titre traduit

    Elliptic approximations of singular energies under divergence constraint


  • Résumé

    This thesis is devoted to the study of phase-field type variational models with divergence constraint. These models typically involve an energy depending on a parameter which represents a negligible physical quantity or is linked to some numerical approximation method for instance. A central question concerns the asymptotic behavior of these energies and of their global or local minimizers when this parameter goes to 0. We present different strategies which allow to take the divergence constraint into account. They will be illustrated in two models. The first one is a phase-field type approximation, involving a divergence constraint, of the Eulerian model for branched transportation. We illustrate how uniform estimates on the energy, depending on the constraint on the divergence, allow to establish a Gamma-convergence result. The second model, related to micromagnetics, concerns Aviles-Giga type energies for divergence-free vector fields. We use the entropy method in order to characterize global minimizers. In some situations, we will prove a De Giorgi type conjecture concerning the one-dimensional symmetry of global minimizers under boundary conditions.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.