Analyse génomique en médecine de précision : Optimisations et outils de visualisation

par Frederic Commo

Thèse de doctorat en Recherche clinique, innovation technologique, santé publique

Sous la direction de Fabrice André.


  • Résumé

    Un nouveau paradigme tente de s’imposer en oncologie ; identifier les anomalies moléculaires dans la tumeur d’un patient, et proposer une thérapie ciblée, en relation avec ces altérations moléculaires. Nous discutons ici des altérations moléculaires considérées pour une orientation thérapeutique, ainsi que de leurs méthodes d’identification : parmi les altérations recherchées, les anomalies de nombre de copies tiennent une place importante, et nous nous concentrons plus précisément sur leur identification par hybridation génomique comparative (aCGH). Nous montrons, d’abord à partir de lignées cellulaires caractérisées, que l’analyse du nombre de copies par aCGH n’est pas triviale et qu’en particulier le choix de la centralisation peut être déterminant ; différentes stratégies de centralisation peuvent conduire à des profils génomiques différents, certains aboutissant à des interprétations erronées. Nous montrons ensuite, à partir de cohortes de patients, qu’une conséquence majeure est de retenir ou non certaines altérations actionnables dans la prise de décision thérapeutique. Ce travail nous a conduit à développer un workflow complet dédié à l’analyse aCGH, capable de prendre en charge les sources de données les plus courantes. Ce workflow intègre les solutions discutées, assure une entière traçabilité des analyses, et apporte une aide à l’interprétation des profils grâce à des solutions interactives de visualisation. Ce workflow, dénommé rCH, a été implémenté sous forme d’un package R, et déposé sur le site Bioconductor. Les solutions de visualisation interactives sont disponibles en ligne. Le code de l’application est disponible pour une installation sur un serveur institutionnel.

  • Titre traduit

    Genomic Analysis within Precision Medicine : Optimizations and visualization tools


  • Résumé

    In oncology, a new paradigm tries to impose itself ; analyzing patient’s tumors, and identifying molecular alterations matching with targeted therapies to guide a personalized therapeutic orientation. Here, We discuss the molecular alterations possibly relevant for a therapeutic orientation, as well as the methods used for their identification : among the alterations of interest, copy number variations are widely used, and we more specifically focus on comparative genomic hybridization (aCGH). We show, using well characterized cell lines, that identification of CNV is not trivial. In particular, the choice for centralizing profiles can be critical, and different strategies for adjusting profiles on a theoretical 2n baseline can lead to erroneous interpretations. Next, we show, using tumor samples, that a major consequence is to include, or miss, targetable alterations within the decision procedure. This work lead us to develop a comprehensive workflow, dedicated to aCGH analysis. This workflow supports the major aCGH platforms, ensure a full traceability of the entire process and provides interactive visualization tools to assist the interpretation. This workflow, called rCGH, has been implemented as a R package, and is available on Bioconductor. The interactive visualization tools are available on line, and are ready to be installed on any institutional server.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.