Number statistics in random matrices and applications to quantum systems

par Ricardo Marino

Thèse de doctorat en Physique

Sous la direction de Satya Majumdar et de Pierpaolo Vivo.

Le président du jury était Hendrik-jan Hilhorst.

Le jury était composé de Satya Majumdar, Pierpaolo Vivo, Hendrik-jan Hilhorst, Zdzislaw Burda, Viktor Eisler, Pierre Le Doussal.

Les rapporteurs étaient Zdzislaw Burda, Viktor Eisler.

  • Titre traduit

    Statistique de comptage de valeurs propres de matrices aléatoires et applications en mécanique quantique


  • Résumé

    L'objectif principal de cette thèse est de répondre à la question: étant donné une matrice aléatoire avec spectre réel, combien de valeurs propres tomber entre A et B? Ceci est une question fondamentale dans la théorie des matrices aléatoires et toutes ses applications, autant de problèmes peuvent être traduits en comptant les valeurs propres à l'intérieur des régions du spectre. Nous appliquons la méthode de gaz Coulomb à ce problème général dans le cadre de différents ensembles de matrice aléatoire et l'on obtient de résultats pour intervalles générales [a, b]. Ces résultats sont particulièrement intéressants dans l'étude des variations des systèmes fermioniques unidimensionnelles de particules confinées non-interaction à la température zéro.


  • Résumé

    The main goal of this thesis is to answer the question: given a random matrix with real spectrum, how many eigenvalues fall between a and b? This is a fundamental question in random matrix theory and all of its applications, as many problems can be translated into counting eigenvalues inside regions of the spectrum. We apply the Coulomb gas method to this general problem in the context of different random matrix ensembles and we obtain many results for general intervals [a,b]. These results are particularly interesting in the study of fermionic fluctuations for one-dimensional systems of confined non-interacting particles at zero temperature.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.