
ANNÉE 2015

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

Paulin FOURNIER

préparée à l’unité de recherche IRISA – UMR6074

Institut de Recherche en Informatique et Systèmes Aléatoires ISTIC

Parameterized
verification of
networks of
many identical
processes

Soutenance prévue à Rennes
le 17 décembre 2015

devant le jury composé de :

PAROSH ABDULLA
Professeur Université d’Uppsala / Rapporteur

JÉROME LEROUX
Directeur de recherche CNRS LaBRI / Rapporteur

SADDEK BENSALEM
Professeur Université Joseph Fourier Grenoble /
Examinateur

JOOST-PIETER KATOEN
Professeur RWTH Université de Aachen / Examinateur

SOPHIE PINCHINAT
Professeur Université Rennes 1 / Examinatrice

THIERRY JÉRON
Directeur de recherche INRIA Rennes /
Directeur de thèse

NATHALIE BERTRAND
Chargée de recherche INRIA Rennes / Encadrante

ARNAUD SANGNIER
Maître de conférence Université Paris Diderot / Encadrant

Contents

Table of contents 1

Vérification paramétrée de réseaux composés d’une multitude de processus identiques 5

Introduction 15

Personal publications . 23

I Preliminaries 25

1 Basic definitions . 26
2 Timed automata . 26
3 Markov chains, Markov decision processes and games 28

3.1 Markov chains . 28
3.2 Markov decision processes . 29
3.3 2-player games . 31

4 Infinite transition systems . 32
4.1 Well-structured transition systems 32
4.2 Lossy channel systems . 33
4.3 Vector addition systems with states 34
4.4 two-counter machines . 35

II Parameterized verification 37

1 Many identical processes . 38
2 Ad Hoc networks . 39

IIIClique networks of probabilistic timed protocols 43

1 Introduction . 43
2 Modeling probabilistic networks . 45

2.1 Probabilistic timed protocols . 45
2.2 Static semantics for clique networks of probabilistic timed protocols 47
2.3 Dynamic semantics for clique networks of probabilistic timed protocols 50
2.4 Parameterized probabilistic verification problems 54

3 Parameterized verification of static clique networks of probabilistic timed protocols 55
3.1 Some decidability results using monotonicity 56
3.2 Undecidability results . 57

1

2 Contents

3.3 Undecidability of synchronization 66
4 Parameterized verification of dynamic networks of probabilistic timed protocols 68

4.1 Region abstraction . 69
4.2 Deciding parameterized problems on the region MDP 74

4.2.1 Solving reachabilty . 78
4.2.2 Approximation of minimal probability 83
4.2.3 Synchronization analysis 87
4.2.4 Complexity . 87

5 Conclusion . 90

IV Selective broadcast networks of probabilistic protocols 93

1 Introduction . 93
2 Selective broadcast networks of probabilistic protocols 95

2.1 Probabilistic protocols . 96
2.2 Semantics of selective broadcast networks 97
2.3 Parameterized probabilistic verification problems 100

3 Selective broadcast networks of parity protocols 100
3.1 Parity protocols . 101
3.2 Semantics of selective broadcast game networks of parity protocols 102
3.3 Resolution of the game . 105

3.3.1 Restricting the strategies of player 2 105
3.3.2 Solving the game against state based strategies 109
3.3.3 Existence of an infinite winning path 110
3.3.4 Solving parity networks 114
3.3.5 Restriction to urgent strategies 114

4 Solving probabilities with games . 115
4.1 Decidability using monotonicity 116
4.2 Decidability and complexity of REACH∃

=1(S) 116
4.3 Decidability and complexity of REACH∃

=0(S) 124
4.4 Decidability and complexity of REACH∃

<1(S) 126
5 Conclusion . 129

V Local strategies 133

1 Introduction . 133
2 Networks of reconfigurable broadcast protocols 134

2.1 Syntax and semantics . 134
2.2 Restricting executions to local strategies and clique executions . 136
2.3 Verification problems . 138

3 Solving verification problems for local executions 140
3.1 Solving Reach[L] . 140

3.1.1 Representing strategies with trees 141
3.1.2 Reasoning on strategy patterns 143
3.1.3 Minimizing admissible strategy patterns 146

3.2 Solving Synch[L] . 153

Contents 3

3.3 Link between biadmissibility and local executions 154
3.4 Minimizing biadmissible strategy patterns 156

4 Cliques and local strategies . 161
4.1 Undecidability of Reach[LC] and Synch[LC] 161
4.2 Decidability of Reach[LC] for complete protocols 167

5 Conclusion . 173

Conclusion 175

Bibliographie 180

Table des figures 187

4 Contents

Vérification paramétrée de réseaux

composés d’une multitude de

processus identiques

Durant ces dernières années, on a vu une croissance importante des systèmes informa-
tisés dans notre vie de tous les jours, depuis les ordinateurs et les téléphones intelligents
jusqu’aux voitures et avions. En raison de leur utilisation critique, par example dans les
centrales nucléaires ou le contrôle du trafic aérien, il est d’une importance primordiale de
garantir l’absence de défauts dans ces installations. On constate donc un besoin d’outils
qui permettent de vérifier automatiquement la sécurité et la correction de ces systèmes.
Une des approches pour prouver leur correction est la vérification formelle. En parti-
culier, la vérification de modèle, ou model checking, est une technique de vérification
formelle entièrement automatisée. Le model checking consiste à vérifier que le système
répond à ses spécifications en vérifiant que le modèle du système satisfait une formule
représentant la spécification, voir par example [BK08]. Pour cela, le model checking
effectue une exploration exhaustive de tous les comportements possibles du modèle et
vérifie si ces comportements satisfont tous la spécification donnée. Si ça n’est pas le cas,
un contre-exemple (i.e. un comportement qui viole la spécification) est produit à des
fins de débogage. Le prix Turing ACM attribué en 2007 à Clarke, Emerson et Sifakis
pour leurs travaux sur le model checking témoigne de l’importance de ce sujet. De plus
des model checkers comme UPPAAL [LPY97] ou Prism [KNP11] sont largement utilisés
dans le milieu académique comme dans l’industrie.

Initialement, les techniques de vérification de modèle étaient applicables à des sys-
tèmes comportant seulement un nombre restreint d’états. Cependant, de plus en plus
de systèmes sont composés de plusieurs sous-systèmes, ce qui entraine une explosion
combinatoire du nombre d’états, rendant la vérification de modèle inefficace. Ce prob-
lème est connu comme le problème de l’explosion de l’espace d’état. Pour résoudre ce
problème, de nombreuses techniques ont été développées comme la représentation sym-
bolique de données, la réduction par ordre partiel ou les abstractions. Un autre axe de
développement pour la vérification de modèles est d’envisager des systèmes paramétrés
pour lesquels une valeur n’est pas fixée et est considérée comme un paramètre. L’analyse
de systèmes paramétrés équivaut à l’étude de toute une famille de systèmes ou chacun
d’eux est obtenu par instanciation de la valeur du paramètre. Dans cette thèse, nous

5

6

étudions la vérification paramétrée de réseaux aillant pour paramètre leur taille comme
paramètre. Notre objectif est de développer des techniques pour vérifier les réseaux
indépendamment du nombre de composants.

Systèmes paramétrés Grâce aux progrès matériels et logiciels, les systèmes dis-
tribués sont dorénavant parmi les principaux paradigmes lors de l’élaboration de grands
systèmes. Fournir des méthodes pour analyser et vérifier les systèmes distribués est une
tâche complexe et ce pour plusieurs raisons. Premièrement, il existe différentes familles
de systèmes distribués en fonction des moyens de communication (mémoire partagée ou
passage de messages), de la puissance de calcul des entités concernées, de la connaissance
du système attribuée aux entités (pleine connaissance, ou connaissance locale de leur
voisins, ou aucune connaissance) et du type de topologie de communication (anneau,
arbre, graphe quelconque, etc). Deuxièmement, la plupart des protocoles développés
pour les systèmes distribués sont censés fonctionner pour un nombre illimité de par-
ticipants ; par conséquent, afin de vérifier que le système se comporte correctement, il
faut développer des méthodes qui permettent de faire face à un tel paramètre. En ef-
fet, la certification d’un composant indépendamment de l’ensemble du réseau, ou même
d’un nombre fini de participants dans un réseau n’est pas suffisante, d’où l’analyse des
systèmes paramétrés.

Dans leur article fondateur sur les modèles distribués avec de nombreuses entités
identiques [GS92], German et Sistla représentent le comportement d’un réseau de ma-
chines à états finis qui interagissent par des rendez-vous. Des variantes ont ensuite
été proposées pour gérer les différents moyens de communication, comme la diffu-
sion de messages [EFM99], le passage de jetons [CTTV04, AJKR14] ou la mémoire
partagée [EGM13]. Dans son article de synthèse sur les modèles paramétrés [Esp14],
Esparza montre que des modifications mineures, telles que la présence ou l’absence d’un
contrôleur dans le système, peuvent modifier radicalement la complexité des problèmes
de vérification.

Parmi les différents modèles paramétriques de réseaux, les protocoles de diffusion
(broadcast protocols), étudiés à l’origine par Esparza et al. [EFM99], ont plus tard
été analysés sous un nouveau point de vue, conduisant à de nouvelles perspectives
sur les problèmes de vérification. Plus précisément, un modèle de bas niveau pour
représenter les principales caractéristiques des réseaux ad-hoc a été proposé [DSZ10]. Il
caractérise les aspects suivants de ces systèmes : le réseau est équipé d’une topologie
de communication et les nœuds dans le réseau peuvent communiquer avec leurs voisins
à l’aide de messages diffusés. En outre, le nombre de participants est non borné. Dans
ce modèle, chaque entité se comporte de manière similaire, en suivant un protocole qui
est représenté par un automate fini comprenant trois types d’actions: (1) diffusion d’un
message, (2) réception d’un message et (3) action interne. De plus, la topologie de
communication ne change pas et aucune entité n’est supprimée ou ajoutée au cours de
l’exécution.

Le problème de l’accessibilité paramétrée consiste à déterminer s’il existe un nom-
bre initial d’entités et une topologie de communication de telle sorte qu’il est possible
d’atteindre une configuration où au moins un processus est dans un état spécifique.

7

Le problème de l’accessibilité permet ainsi de détecter une erreur dans la conception
du protocole en exhibant la possibilité d’atteindre un état d’erreur. La principale dif-
ficulté pour résoudre un tel problème réside dans le fait que le nombre de processus
ainsi que la topologie de communication initiale sont des paramètres. Il faut donc prou-
ver que quelle que soit la valeur de ces paramètres, l’état d’erreur n’est pas accessible.
Dans [DSZ10], il est prouvé que le problème de l’accessibilité paramétrée est indécidable
pour les protocoles de diffusion. Cela vaut également pour le problème de synchronisa-
tion paramétrée, qui demande si tous les processus peuvent converger vers un ensemble
d’états spécifiques. Pour les deux problèmes, la décidabilité peut cependant être re-
gagnée, en tenant compte de topologies de communication qui peuvent changer à tout
moment de manière non-déterministe [DSTZ12]. Une autre option pour regagner la
décidabilité du problème de l’accessibilité est de restreindre les topologies de communi-
cation à des graphes complets (appelés cliques) [DSZ11a], ou à des graphes orientés de
profondeur bornée [AAR13] .

Cette thèse s’inscrit dans ce cadre. Nous étudions des problèmes de vérification
paramétrée afin de vérifier un réseau indépendamment du nombre de composants, sans
énumérer toutes les tailles possibles du réseau.

Aspects quantitatifs En plus de la concurrence, l’analyse quantitative des systèmes
est vraiment importante. En effet, il n’est pas suffisant de dire qu’une propriété est sat-
isfaite ou non, mais dans quelle mesure. Dans ce but, des modèles probabilistes ont été
étudiés. Ils permettent de modéliser des comportements inconnus tels que l’interaction
de l’environnement avec le système qui est modélisé par des actions stochastiques. Avec
des modèles probabilistes, il est possible d’exprimer à quel point une propriété est
satisfaite. Les modèles probabilistes sont également pertinents pour les algorithmes dis-
tribués. En effet, les algorithmes randomisés sont largement utilisés car ils permettent
de rompre la symétrie des composants. Par exemple, Lehmann et Rabin ont proposé une
solution randomisée au problème bien connu du dîner des philosophes [RL94]. Un autre
exemple est celui des algorithmes de CSMA, utilisés pour la résolution de la contention
dans les réseaux informatiques (voir par exemple la norme ZigBee [Spe]).

Pour les systèmes à états finis avec du non-déterminisme et des probabilités (comme
les processus de décision markoviens à états finis), la plupart des problèmes de véri-
fication sont décidables [BK08]. Cependant, quand le nombre d’états est infini, ces
problèmes sont beaucoup plus difficiles à aborder. Un cadre général pour les systèmes
de transitions infinis purement probabilistes a été proposé dans [AHM07]. Cepen-
dant, il semble difficile d’adapter un tel cadre dans le cas combinant des choix prob-
abilistes et non déterministes. En effet, l’introduction des probabilités peut même
conduire à l’indécidabilité de problèmes qui sont décidables dans le cas non prob-
abiliste. Par exemple, pour les extensions de systèmes à pile avec des choix non-
déterministes et probabilistes, la vérification est indécidable [EY05, BKS05]. D’autre
part, l’introduction de transitions probabilistes dans les systèmes infinis ne conduit
pas toujours à l’indécidabilité, mais des méthodes de vérification dédiées doivent être
développées, comme c’est le cas par exemple pour les systèmes à canaux avec pertes

8

probabilistes [BBS07].

Un aspect supplémentaire à prendre en compte est le comportement de systèmes
temporisés. Les systèmes informatisés sont utilisés pour des applications critiques qui
nécessitent des contraintes de temps. Une réponse est non seulement exigée, mais
celle-ci doit en plus être donnée dans un certain délai. Les automates temporisés,
introduits dans [AD90, AD94], sont des automates à états finis équipés avec des horloges.
Ces automates temporisés ont été largement étudiés et la plupart des problèmes de
vérification est connue pour être décidable. Toutefois, la vérification devient plus difficile
pour les systèmes avec un nombre infini d’états. En effet, la vérification paramétrée de
réseaux composés d’un nombre non borné de processus équipés avec des horloges a
été étudiée [AJ03, ADM04, ADR+11] et les problèmes de vérification paramétrée sont
indécidables lorsque les processus ont plus d’une horloge.

Jusqu’à présent, à notre connaissance, la vérification automatique des protocoles
probabilistes temporisés n’a été effectuée que pour un nombre de nœuds fixé et restreint,
voir par exemple [Fru06]. En effet, l’approche classique est de construire le réseau
en effectuant le produit des protocoles participants, puis d’exécuter un vérificateur de
modèle sur ce réseau. Cependant, cette méthode se heurte au problème de l’explosion
de l’espace d’état en raison du produit de plusieurs composants. En comparaison, dans
cette thèse, nous développons de nouvelles techniques qui permettent de vérifier les
réseaux probabilistes indépendamment de leur taille.

Détermination de la frontière entre décidabilité et indécidabilité En plus de
l’utilisation pratique de ce travail qui permet de modéliser les systèmes distribués com-
binant temps et probabilités ainsi que le nombre non borné de participants, ce travail est
vraiment intéressant d’un point de vue théorique. En effet, les systèmes paramétrés sont
puissants et cela conduit à l’indécidabilité de problèmes de vérification. De nombreuses
restrictions ont été étudiées pour être en mesure d’effectuer la vérification de modèle
sur des modèles paramétrés. Cette thèse étudie donc la frontière entre décidabilité et
indécidabilité des problèmes de vérification pour les problèmes paramétrés probabilistes.
En outre, même lorsque les problèmes sont décidables, ils sont souvent d’une grande
complexité et ne passent donc pas à l’échelle. Nous étudions donc les restrictions sur la
topologie de communication afin d’obtenir des solutions passant à l’échelle.

Organisation et contributions de la thèse

Chapitre I Le premier chapitre est consacré à la mise en place des modèles de base
utilisés dans cette thèse. En particulier, nous introduisons les automates temporisés, les
chaînes de Markov et les processus de décision markoviens ainsi que certains systèmes
de transition à nombre d’états infini. Pour chacun de ces modèles, nous présentons
certains résultats ainsi que des techniques intéressantes pour cette thèse.

9

Chapitre II Ce chapitre est consacré aux travaux existants sur la vérification para-
métrée. Cette vue d’ensemble de l’état de l’art présente des modèles existants utilisés
dans la littérature pour la modélisation de systèmes construits sur un grand nombre
de composants. En particulier, l’attention est portée sur les réseaux de protocoles de
diffusion qui sont la base sur laquelle ce travail est construit. En effet, les nouveaux
modèles que nous introduisons dans cette thèse sont tous des variantes de protocoles de
diffusion.

Nous arrivons ensuite aux chapitres dédiés aux contributions techniques de cette
thèse.

Chapitre III La première contribution présentée est l’introduction d’un nouveau
modèle, à savoir les réseaux de protocoles temporisés probabilistes, qui combinent trois
aspects : le nombre inconnu de participants, les probabilités, et le temps. Dans ce
modèle, un nombre non borné de processus est arrangé dans un réseau. Chacun de ses
composants exécutent le même protocole décrit par un automate probabiliste fini qui
combine actions non-déterministes, actions probabilistes ainsi que des contraintes tem-
porelles. De plus, les composants sont autorisés à communiquer les uns avec les autres
par l’intermédiaire de diffusion de messages. Bien que ce modèle soit très intéressant
du fait qu’il soit infini (nombre non borné de composants) et qu’il combine probabilités,
non-déterminisme et contraintes temporelles, il apparaît que les problèmes basiques de
vérification tels que le problème d’accessibilité paramétrée sont indécidables.

Seuls quelques modèles infinis combinent probabilités et non-déterminisme, dont
les systèmes de canaux (channel systems). Dans ce modèle, une machine à états finis
peut écrire et lire les messages dans un canal FIFO non borné. Il a été prouvé que les
problèmes de vérification sont indécidables pour les systèmes de canaux [BZ83]. Cepen-
dant, en autorisant la présence de défauts dans le système, via la perte de messages, les
problèmes de vérification deviennent décidables [AJ93]. En particulier, les systèmes de
canaux à pertes probabilistes, où à chaque étape chaque message a indépendamment
une probabilité de se perdre, les problèmes de vérification sont décidables. Inspirés par
ces travaux, afin de représenter la notion de mobilité dans le réseau, nous introduisons
les réseaux dynamiques de protocoles probabilistes temporisés, où les processus peuvent
disparaître et être créés selon des lois de probabilité fixes.

Étant donné un réseau (statique ou dynamique) de protocoles probabilistes tempo-
risés, nous considérons les problèmes de vérification paramétrés tels que les suivants.
Pour un état du modèle des processus, existe-t-il une taille de réseaux pour laquelle,
presque sûrement, une configuration contenant un processus dans cet état particulier
peut être atteinte, quelle que soit la politique d’ordonnancement ? De manière équiva-
lente, le problème est de savoir si, indépendamment du nombre de processus, la proba-
bilité minimum pour atteindre une configuration cible est 1. Une autre question est de
savoir si l’on peut atteindre presque surement l’ensemble de configurations où tous les
processus sont réunis dans un certain ensemble d’états? Au-delà de ces problèmes parti-
culiers, nous considérons toutes les variantes où les probabilités minimum ou maximum
sont comparées à des seuils entre 0 et 1.

Même si le problème de l’accessibilité paramétrée est connu pour être décidable pour

10

les réseaux statiques non-probabilistes [DSZ11a], dans les réseaux statiques probabilistes
la plupart des problèmes de vérification paramétrés sont indécidables. Ceci est démontré
par des réductions du problème de l’arrêt pour les machines à deux compteurs [Min67].
Certains cas restants sont montrés décidables, soit par réduction au cas non-probabiliste,
soit grâce à un résultat de monotonie, permettant de considérer uniquement des réseaux
composés d’un seul processus.

Pour les réseaux dynamiques de protocoles probabilistes temporisés, nous montrons
que l’on peut abstraire la valeur des horloges en régions, ce qui est une adaptation
de l’abstraction des régions connue pour les automates temporisés, mais avec un nom-
bre non borné d’horloges. En outre, nous montrons l’existence d’un ordre partiel bien
fondé sur ces régions. Nous montrons ensuite que le réseau abstrait grâce aux régions
a un attracteur fini. Ainsi, nous pouvons adapter la technique développée pour les sys-
tèmes de canaux avec pertes probabilistes afin de résoudre les problèmes d’accessibilité
qualitatifs. Ces résultats ont été publiés dans [BF13].

Dans cette thèse, nous étudions également des problèmes quantitatifs paramétrés.
Au lieu de comparer la valeur de la probabilité uniquement à des seuils qualitatifs (0 ou
1), nous comparons à toutes les valeurs comprises entre 0 et 1. Bien que les problèmes
quantitatifs paramétrés soient encore ouverts, nous obtenons un résultat significatif
montrant la décidabilité de l’approximation de la probabilité minimale d’atteindre un
état, pour une taille initiale fixée du réseau. On remarquera que, même si la taille initiale
est fixée, il peut y avoir un nombre non borné de participants dans le réseau, en raison
des créations probabilistes de processus. Ce résultat est intéressant car il est inspiré
par le schéma d’approximation dans les systèmes de canaux avec pertes entièrement
probabilistes, cependant une telle approximation manquait pour les systèmes infinis
combinant non-déterminisme et probabilités.

Chapitre IV Dans ce chapitre, nous présentons un nouveau modèle nommé réseaux
à diffusion sélective de protocoles probabilistes. Ce modèle étend le modèle des réseaux
de diffusion reconfigurables étudiés dans [DSTZ12] en autorisant des actions internes
probabilistes, qui permettent à un processus de changer son état interne selon une
distribution probabiliste. La principale différence avec les réseaux en clique étudiés
dans le chapitre III est que les messages ne parviennent plus à tous les processus, mais
seulement à un sous-ensemble choisi de manière non-déterministe.

Dans ce chapitre, nous étudions les versions probabilistes du problème de l’acces-
sibilité d’un état qui demande s’il existe une stratégie de résolution du non-déterminisme
qui permette d’atteindre une configuration dans laquelle au moins un processus est dans
un état spécifique. Nous nous concentrons sur les variantes qualitatives de ce problème
en comparant les probabilités seulement à 0 et 1. Ce problème est pertinent de par le
fait qu’il permet de vérifier si le protocole est bien conçu, par exemple en vérifiant si un
état d’erreur peut être atteint avec une probabilité positive. En plus de l’existence d’une
stratégie, nous étudions aussi si toutes les stratégies atteignent le seuil de probabilité.
Cela permet de vérifier, par exemple, que quels que soient les choix non déterministes,
le protocole évite presque sûrement un état d’erreur.

Dans le chapitre précédent (chapitre III), nous avons vu que les réseaux en clique de

11

protocoles probabilistes temporisés sont un modèle très puissant conduisant à l’indéci-
dabilité des problèmes qualitatifs d’accessibilité paramétrée. Toutefois, en prenant in-
spiration des modèles d’états infinis combinant non-déterminisme et probabilités, nous
regagnons la décidabilité en considérant des disparitions et créations probabilistes de
processus. Cependant, la décidabilité se fait au prix d’une grande complexité. Afin
d’obtenir de meilleures bornes de complexité, ce chapitre est consacré à l’étude des
réseaux à diffusion sélective. En effet, la complexité du problème de l’accessibilité est
beaucoup plus faible (PTIME) dans les réseaux reconfigurables à diffusion. En outre,
au lieu d’appliquer un ordre partiel bien fondé qui a une grande complexité, dans ce
chapitre, nous adaptons une réduction connue (voir par exemple [CdAFL09]) pour la
vérification des modèles probabilistes finis, qui consiste à traduire un processus de déci-
sion markovien (MDP) dans un jeu à 2 joueurs, pour lequel l’existence d’une stratégie
gagnante est équivalente aux questions d’accessibilité dans le MDP. Cependant, en rai-
son du nombre inconnu de participants, nous avons un modèle infini, donc nous ne
pouvons pas appliquer directement cette solution.

Afin de résoudre ce problème, nous introduisons des jeux de parité distribués, qui sont
des réseaux composés d’un nombre inconnu de processus qui suivent tous le même proto-
cole fini de parité. La nouveauté est qu’il y a maintenant deux joueurs et un objectif de
parité. Puisque le deuxième joueur est introduit afin de simuler des choix probabilistes,
il est moins puissant que le joueur 1. En effet, dans les jeux distribués le premier joueur
est celui qui décide quel processus joue, l’ensemble de processus qui reçoivent les mes-
sages et l’action à jouer lorsque le processus sélectionné est dans un état appartenant
au joueur 1. Le deuxième joueur, lui, ne peut choisir l’action à jouer que lorsque le
premier joueur a choisi un processus dans un état appartenant au joueur 2. Dans ce
cadre, nous montrons que l’on peut décider, dans co-NP si le joueur 1 a une stratégie
qui répond à un objectif de parité pour tous les choix effectués par le joueur 2. En outre,
nous fournissons une traduction, au niveau du protocole, des problèmes d’accessibilité
qualitatifs paramétrés dans les réseaux à diffusion sélective de protocoles probabilistes
vers le problème de jeu paramétré dans les jeux de parité distribués.

En plus de leur utilité pour résoudre les problèmes probabilistes qualitatifs, nous
pensons que les jeux de parité distribués sont un outil intéressant en eux même. En
effet, ce modèle de jeu distribué, ainsi que les techniques utilisées pour résoudre le jeu,
sont vraiment intéressants et pourraient être utiles dans des contextes différents pour la
vérification de réseaux composés d’une multitude de processus identiques. Les résultats
présentés dans ce chapitre ont été publiés dans [BFS14].

Chapitre V Le dernier chapitre de cette thèse est basé sur la remarque suivante :
les solutions proposées reposent toutes sur des stratégies centralisées qui choisissent
les actions des processus avec une pleine connaissance du réseau. En raison du non-
déterminisme dans la description du protocole, il peut arriver que deux processus se
comportent différemment, même s’ils ont la même information sur ce qui est arrivé
jusqu’à présent. Afin d’interdire de tels comportements non réellement distribués, dans
le chapitre V, nous forçons les processus à prendre les mêmes décisions dans le cas où
ils ont tiré la même séquence de transitions jusqu’ici.

12

Nous définissons le passé d’un processus comme la séquence de transitions qu’il
a prise jusqu’ici. Les stratégies locales permettent d’assurer que les processus ayant
le même passé prennent la même décision. Par exemple, à partir de la configuration
initiale, donc avec un passé vide, si un processus choisit d’effectuer une action interne,
par la suite tous les processus avec un passé vide doivent effectuer la même action
interne, à moins qu’ils obtiennent des informations supplémentaires en recevant un
message.

Nous étudions les problèmes de l’accessibilité et de la synchronisation paramétrées
dans les réseaux limités aux stratégies locales. Nous considérons deux types de réseaux
différents : d’abord, les réseaux reconfigurables de diffusion pour lesquels les messages
atteignent seulement un sous-ensemble des processus choisis de façon non-déterministe.
Dans ces réseaux, sans l’hypothèse de stratégies locales, le problème d’accessibilité
paramétré est connu pour être PTIME [DSTZ12], de même pour le problème de syn-
chronisation. Dans la deuxième classe de réseaux, la topologie considérée est une clique,
i.e. les messages atteignent toujours tous les processus.

Nous montrons que les problèmes de l’accessibilité et de la synchronisation avec des
stratégies locales dans les réseaux reconfigurables sont NP-complets. Pour obtenir la
borne supérieure, nous prouvons que les stratégies locales peuvent être succinctement
représentées par des arbres finis que nous appelons les patrons de stratégie. Intuitive-
ment, les patrons de stratégie sont des dépliages finis du protocole avec l’hypothèse
supplémentaire que, à partir de chaque nœud, une seule action active est présente. Ils
représentent donc les choix de la stratégie locale. En outre, pour répondre aux prob-
lèmes d’accessibilité et de synchronisation, nous montrons que nous pouvons équiper les
patrons de stratégie avec un ordre représentant l’ordre dans lequel une exécution peut
visiter les nœuds du modèle. Enfin, nous obtenons un algorithme NP en montrant que
nous pouvons nous concentrer sur les patrons de stratégie de tailles polynomiales afin
de résoudre les problèmes paramétrés.

Pour les réseaux en clique, sans surprise, les problèmes sont plus difficiles car le prob-
lème d’accessibilité paramétré a déjà été démontré non primitif récursif, sans l’hypothèse
de la localité. Nous montrons que le problème est en fait indécidable avec la restriction
à des stratégies locales. La preuve est basée sur la simulation d’une machine à deux
compteurs pour laquelle le problème de l’arrêt est indécidable [Min67]. Néanmoins,
avec l’hypothèse supplémentaire que chaque message peut être reçu dans chaque état,
donc que toutes les communications apportent des informations à tous les processus
dans le réseau, nous pouvons montrer que le problème de l’accessibilité est décidable.
La preuve de décidabilité est basée sur une abstraction que nous prouvons être un sys-
tème de transition bien structuré, ce qui implique que le problème de l’accessibilité est
décidable [ACJT96, AJ01, FS01]. Ces résultats ont été publiés dans [BFS15].

Il est à noter que le problème notablement difficile de synthèse de contrôleurs dis-
tribués [PR90] est relativement proche du problème de l’existence d’une stratégie lo-
cale. En effet, une stratégie locale correspond à un contrôleur local pour les processus
dont le rôle est de résoudre les choix non déterministes. De plus les stratégies locales
sont d’un grand intérêt pour mettre en œuvre des algorithmes distribués. En effet, le
non-déterminisme est difficile à mettre en œuvre en pratique, on peut donc voir les

13

stratégies locales comme une version déterministe implémentable d’une spécification
non-déterministe pour un algorithme distribué.

La suite du manuscrit détaille ces contributions. La langue employée est l’anglais
pour pouvoir être lu par un jury de thèse international.

14

Introduction

In recent years, computerized systems have been more and more present in our every
day life from computers and smart-phones to cars and planes. Due to their critical
use, in power plants or air traffic control for example, it is of paramount importance
to guarantee the absence of flaws in the implementations. There is thus a need in
developing tools that allow to automatically check the safety and correctness of these
systems. One of the approaches to prove their correctness is formal verification. In
particular, model checking is a fully automated formal verification technique. Model
checking consists in verifying that the system meets its specification by verifying that a
model of the system satisfies a formula representing the specification, see e.g. [BK08].
It performs an exhaustive exploration of all possible behaviors of the model and checks
if those behaviors all satisfy the given specification. In the negative case, a counter-
example (i.e. some behavior that violates the specification) is output for debugging
purposes. As a witness of the importance of model checking, Clarke, Emerson, and
Sifakis were awarded in 2007 the ACM Turing Award for their work on the subject.
Model checkers such as UPPAAL [LPY97] or Prism [KNP11] are widely used.

At the beginning, model checking techniques were applicable to systems with few
states. However, considering systems composed of many sub-systems, the number of
states grows rapidly making the model checking inefficient. This issue is known as the
state space explosion problem. To tackle this problem, many techniques were developed
such as symbolic data representation, partial order reduction or abstractions. An other
development for model checking was to consider parameterized systems for which some
value is unfixed and considered as a parameter. Analyzing parameterized systems is
equivalent to studying a whole family of systems where each of them is obtained by
instantiating the value of the parameter. In this thesis, we investigate parameterized
verification of networks and we consider the size of the networks as a parameter. Our
objective is to develop techniques to verify networks independently of the number of
components.

Parameterized systems

Thanks to the advances in hardware and software architectures, distribution and con-
currency have become one of the main paradigms when developing large systems. Pro-
viding methods to analyze and verify distributed systems is a complex task and this
for several reasons. First, there are different families of distributed systems depending

15

16 Introduction

on the communication means (shared memory or message passing), on the computing
power of the involved entities, on the knowledge of the system provided to the entities
(full knowledge, or local knowledge of their neighbors, or no knowledge at all) and on
the type of communication topology (ring, tree, arbitrary graph, etc). Second, most of
the protocols developed for distributed systems are supposed to work for an unbounded
number of participants; hence in order to verify that a system behaves correctly, one
needs to develop methods which allow to deal with such a parameter. Indeed, one can
no longer be satisfied by a certification of one component independently of the whole
network, or even of a finite number of participants in a network. This motivates the
framework of parameterized systems.

In their seminal paper on distributed models with many identical entities [GS92],
German and Sistla represent the behavior of a network by finite state machines inter-
acting via ‘rendezvous’ communications. Variants have then been proposed to han-
dle different communication means, like broadcast communication [EFM99], token-
passing [CTTV04, AJKR14], message passing [BGS14] or shared memory [EGM13].
In his survey on parameterized models [Esp14], Esparza shows that minor changes,
such as the presence or absence of a controller in the system, can drastically modify the
complexity of the verification problems.

Broadcast protocols. Among the various parametric models of networks, broadcast
protocols, originally studied by Esparza et al. [EFM99], have later been analyzed under
a new viewpoint, leading to new insights on the verification problems. Specifically, a
low level model to represent the main characteristics of ad-hoc networks has been pro-
posed [DSZ10]. It characterizes the following aspects of such systems: the network is
equipped with a communication topology and the nodes in the network can only com-
municate with their neighbors using broadcast communication. Moreover, the number
of participants is unbounded. In this model, each entity behaves similarly, following a
protocol which is represented by a finite state machine performing three kinds of ac-
tions: (1) broadcast of a message, (2) reception of a message and (3) internal action.
Furthermore, the communication topology does not change and no entity is deleted or
added during an execution.

The reachability problem consists in determining whether there exist an initial num-
ber of entities and a communication topology such that it is possible to reach a con-
figuration where at least one process is in a specific control state. The reachability
problem thus allows to detect an error in the conception of the protocol by detecting
the possibility to reach an error state for some process. The main difficulty in solv-
ing such a problem lies in the fact that both the number of processes and the initial
communication topology are parameters for which one wishes to prove that the state
is not reachable for all instantiations. In [DSZ10], it is proven that the parameterized
reachability problem is undecidable in broadcast protocols. The same holds for the syn-
chronization problem, which asks whether all processes can converge to a set of target
states. For both the reachability and the synchronization problems, decidability can
however be regained, by considering communication topologies that can change non-
deterministically at any moment [DSTZ12]. Another option to recover decidability of
the reachability problem is to restrict the topologies to complete graphs (aka cliques),

Introduction 17

or bounded depth graphs [DSZ11a], or acyclic directed graphs [AAR13].

This thesis falls within this framework. We study parameterized verification prob-
lems in order to verify a network independently of the number of components, without
enumerating all possible sizes of the network.

Quantitative aspects

In addition to concurrency, quantitative analysis of systems is really important. In-
deed, it may not be enough to say that a property is satisfied or not, but to what
extent. To this aim probabilistic models have been studied. They allow to model
unknown behaviors, typically the environment interaction with the system is modeled
by stochastic actions. With probabilistic models it is possible to express how likely
a property is satisfied. Probabilistic models are also of interest for distributed algo-
rithms. Indeed, randomized algorithms are widely used since they allow to break the
symmetry of components for example in Lehmann-Rabin’s randomized solution to the
well-known problem of the dining philosophers [RL94] or in the CSMA algorithms used
for contention resolution in computer networks (see e.g. the standard ZigBee [Spe]).

For finite state systems with non-determinism and probabilities (like finite state
Markov Decision Processes), most verification problems are decidable [BK08], but when
the number of states is infinite, they are much harder to tackle. A general framework
for purely probabilistic infinite state transition systems has been proposed in [AHM07].
However, it seems hard to adapt such a framework to the case with probabilistic and
non-deterministic choices. Indeed, the introduction of probabilities might even lead to
the undecidability of problems that are decidable in the non-probabilistic case. For
instance for extensions of pushdown systems with non-deterministic and probabilis-
tic choices, the model checking problems for linear time or branching time logics are
undecidable [EY05, BKS05]. On the other hand, it is not always the case that the
introduction of probabilistic transitions leads to undecidability, but then dedicated ver-
ification methods have to be developed, as it is the case for instance for non-deterministic
probabilistic lossy channel systems [BBS07].

An additional aspect of nowadays systems is timed behaviors. Computerized systems
are used for critical applications that require timing constraints. One not only requires
that the system answers but that the answer is given in a certain delay. Timed automata,
introduced in [AD90, AD94], are finite state automata equipped with dense time or
discrete time clock variables. These automata have been widely investigated and most
verification problems are known to be decidable. However, when turning towards infinite
state systems with dense time clock variables, the problems become more difficult.
Indeed, parameterized verification of networks composed of an unbounded number of
processes equipped with clocks has been studied [AJ03, ADM04, ADR+11] and the
parameterized verification problems are undecidable when the processes have more than
one clock.

18 Introduction

So far, up to our knowledge, the automated verification of timed probabilistic pro-
tocols has only been performed for a fixed, and rather small, number of nodes, see e.g.
[Fru06]. Indeed, the classical approach is to build the network as the product of the
participating protocols, and then to run a model checker on this product. However,
this method faces the state space explosion problem due to the product of several com-
ponents. In comparison, in this thesis we develop new techniques that allow to verify
probabilistic networks, independently of their size.

Determining the frontier between decidability and undecidability In addi-
tion to the practical use of this work allowing to model distributed systems combining
time and probabilities as well as unbounded number of participants, this work is really
interesting on a theoretical point of view. Indeed, parameterized systems are really
powerful and this leads to undecidability of verification problems. Many restrictions
have been studied to be able to perform model checking on parameterized models. This
thesis thus investigates the frontier of decidability and undecidability of the verification
problems for probabilistic parameterized problems. Moreover, even when the problems
are decidable it often turns out that they are non-tractable because of high complex-
ity. We thus investigate restrictions on the communication topology in order to obtain
tractable solutions.

Organization and contributions of the thesis

This thesis is organized as follows.

Chapter I The first chapter is dedicated to the introduction of the basic models used
in the thesis. In particular, we introduce timed automaton, Markov chains and Markov
decision processes as well as some infinite state transition systems. For each of these
models, some key results or techniques are presented.

Chapter II This chapter is dedicated to existing work on parameterized verification.
This overview of the state of the art shows the existing models used in the literature for
modeling systems built on a large number of components. In particular, the attention is
focused on broadcast protocol networks which are the basis on which this work is built.
The new models we introduce in this thesis are all variations of broadcast protocols.

We then come to chapters dedicated to the technical contributions of this thesis.

Chapter III The first contribution presented in this thesis is the introduction of
a new model, namely networks of probabilistic timed protocol, that combines three
aspects: unknown number of components, probabilities and time. In this model, an
unbounded number of components are set in a network, each of these components runs
the same protocol described by a finite state machine that combines probabilistic actions
as well as timing constraints. Moreover, the components are allowed to communicate
with each other via broadcasts of a finite number of messages. Although this model

Introduction 19

is really interesting by the fact that it is an infinite system combining probabilities,
non-determinism and time, it turns out that the basic verification problems, such as the
parameterized reachability problem, are undecidable.

Only few infinite models combine probabilities and non-determinism, one of them
are channel systems. In this model, a finite state machine can write and read mes-
sages in an unbounded fifo channel. It was shown that the verification problems are
undecidable for channel systems [BZ83]. However, allowing faults in the system via loss
of messages leads to decidability [AJ93]. In particular, considering probabilistic lossy
channel system, where at each step each message has an independent probability to
get lost, the verification problems are decidable. Inspired by these works, in order to
represent the notion of mobility in the network, we further introduce dynamic prob-
abilistic timed networks, where processes can disappear and be created, according to
fixed probability laws.

Given a (static or dynamic) probabilistic timed network, we consider relevant pa-
rameterized verification problems, such as the following. For a distinguished state of
the process model, can a configuration with some process in this particular state be
reached almost surely, for any initial number of processes and for every scheduling pol-
icy? Equivalently, the problem is whether, independently of the number of processes,
the minimum probability to reach a target configuration is 1. An other question is
whether, for a set of target states, the configurations with all processes gathered in this
target set can be reached almost surely? Beyond these particular problems, we con-
sider all variants where the minimum or maximum probabilities are compared to the
thresholds between 0 or 1.

Even though the parameterized reachability problem has been shown to be decid-
able for clique networks [DSZ11a], in static probabilistic timed networks most of the
parameterized verification problems are undecidable. This is shown via reduction of the
halting problem for two-counter machines, which is known undecidable [Min67]. The re-
maining cases are decidable, either by reduction to the non-probabilistic case or thanks
to a monotonicity result, stating that it is enough to consider networks composed of a
unique process in order to answer the problem.

For dynamic probabilistic timed networks, we show that one can abstract the value
of the clock by considering regions, which are an adaption of the region abstraction in
timed automata but with an unbounded number of clocks. Moreover, we can equip these
regions with a well quasi order, and show that the abstracted network enjoys the finite
attractor property. Thus we can adapt the technique developed for non-deterministic
lossy channel systems in order to solve the qualitative problems. These results were
published in [BF13].

New in this thesis, we also investigate quantitative parameterized problems. Instead
of comparing the value of probability only to qualitative thresholds (0 or 1), we allow
to compare to any bound between 0 and 1. Although the quantitative parameterized
problems are still open, we obtain a nice result showing the decidability of the ap-
proximation of the minimal probability to reach a state, for a given fixed initial size of
network. Notice that, even if the initial size is fixed, there can be an unbounded number
of participants in the network, due to probabilistic creation of processes. This result is

20 Introduction

interesting since it is inspired by the approximation scheme in fully probabilistic lossy
channel systems, however such an approximation was missing for non-deterministic and
probabilistic infinite state systems.

Chapter IV In this chapter, we present a new model named selective broadcast net-
works of probabilistic protocols. This model extends the model of reconfigurable broad-
cast networks studied in [DSTZ12] by allowing probabilistic internal actions, that is,
a process can change its internal state according to a probabilistic distribution. The
main difference with the clique networks studied in Chapter III is that the broadcast
no longer reaches all processes, but a subset of processes chosen non-deterministically.
Whereas the semantics of reconfigurable broadcast networks was given in terms of an
infinite state system with non-determinism, due to the different possibilities of sending
messages from different nodes and also to the non-determinism of the protocol itself, we
obtain here an infinite state system with probabilistic and non-deterministic choices.

In selective broadcast networks, a broadcast reaches a subset of processes. This
allows to model peer to peer applications in networks equipped with a switch that
chooses to whom the message is intended. This is in opposition to clique networks
that are closer to networks equipped with a hub that redistributes all the messages
to every one. Selective broadcasts can also be useful to model wireless systems with
high mobility. For example, in a flock of birds all equipped with a wireless sensor, the
reception of a message broadcast by a sensor is limited to the sensors on the birds near
the broadcaster. Moreover, due to the movement of the birds, the set of birds within
reach between two communications can be totally different, from the whole flock if all
the birds are close together, to no one if the bird sending the message took its distance
with the flock.

In this chapter, we study the probabilistic versions of the state reachability problem
that asks whether there exists a strategy resolving non-determinism that allows to
reach a configuration in which at least one process is in a specific state. We focus on
the qualitative variants of this problem by comparing probabilities only with 0 and 1.
This problem is relevant since it allows to check whether the protocol is well designed,
for example by checking whether a bad state can be reached with positive probability.
In addition to the existence of a strategy, we also study the problem asking whether all
the strategies meet the probability threshold. This allows to check, for example, that
whatever the non-deterministic choices, the protocol avoids a bad state almost surely.

In the previous chapter (Chapter III), we have seen that clique networks of timed
probabilistic protocols are a powerful model leading to undecidability of the qualitative
parameterized reachability problems. However, taking inspiration from a well known in-
finite state model combining non-determinism and probabilities, namely lossy channel
systems, we regain decidability when considering networks with probabilistic disap-
pearance and creation of processes i.e. networks for which the size evolves randomly
over time. However, the decidability comes at the price of high complexity. In order
to achieve better complexity bounds, this chapter is devoted to the study of selective
broadcast networks. Indeed, the complexity for the reachability problem is much lower
(PTIME) in reconfigurable broadcast networks. Moreover, instead of applying well

Introduction 21

quasi order which have a high complexity, in this chapter we adapt a known reduc-
tion (see for instance [CdAFL09]) for verification of finite probabilistic models, which
consists in translating a Markov decision process into a 2-player game, for which the
existence of a winning strategy is equivalent to the reachability questions in the MDP.
However, due to the unknown number of participants in the parameterized verification
problem, we have an infinite model, hence we cannot apply directly this solution.

In order to solve this problem, we introduce selective broadcast of parity protocols,
which are networks composed of an unknown number of processes that all run the same
finite state parity protocol. The novelty is that there are now two players and a par-
ity objective. Since the second player is introduced in order to simulate probabilistic
choices, it is less powerful than player 1. Indeed, in selective broadcast of parity pro-
tocols, the first player is the one deciding which process plays, which processes receive
the messages and the action to play when the selected process is in a state belonging
to player 1. However, the second player can only choose the action to play when the
first player has chosen a process in a state belonging to player 2. In this setting, we
show that one can decide in co-NP whether player 1 has a strategy that fulfills a parity
objective for any choices made by player 2. Moreover, we provide a translation, at
the protocol level, from the parameterized qualitative reachability problems in selective
broadcast networks of probabilistic protocols to the parameterized game problem in
selective broadcast networks of parity protocols.

In addition to their usefulness to solve the qualitative probabilistic problems, we
believe that selective broadcast of parity protocols are an interesting tool on their own.
Indeed, this model of a distributed game, as well as the techniques used to solve the
game, are really interesting and could be of use in different settings of the many identical
processes field. The results presented in this chapter were published in [BFS14].

Chapter V The last chapter presenting contributions of this thesis is based on the
following remark: the solutions given for parameterized broadcast protocols all rely on
centralized strategies to choose the actions of the processes with a full knowledge of the
network. Due to the non-determinism in the description of the protocol, it may happen
that two processes behave differently, even if they have the same information on what
has happened so far in an execution. To forbid such non-truly distributed behaviors,
in Chapter V, we constrain processes to take the same decisions in case they fired the
same sequence of transitions so far.

Here, we consider networks composed of an arbitrary number of components, or
processes, all running the same protocol. These protocols are finite state machines with
three kinds of transitions: internal actions that affect only the process performing it,
broadcast that send a message to the other processes, and receptions that allow processes
to receive the messages sent by broadcast. In this setting, the past of a process is the
sequence of transitions it has taken so far. The local strategies ensure that processes with
the same past take the same decision. As an example, from the initial configuration,
hence with an empty past, if a process chooses to perform an internal action, then all
the processes with an empty past should perform the same internal action, unless they
get additional information by receiving a message.

22 Introduction

We study the parameterized reachability and synchronization problems in broadcast
protocol networks restricted to local strategies. The first problem asks whether there
exist a network size and a local strategy such that a configuration with at least one
process in a given state is reached. The latter asks whether a configuration with all
processes gathered in a given set of states is reached. We consider two different settings
for the networks: first, reconfigurable broadcast networks for which the messages reach
only a subset of the processes chosen non-deterministically. In these networks, without
the assumption of local strategies, the parameterized reachability problem is known to
be PTIME [DSTZ12], as well as the synchronization problem. The second class networks
are clique broadcast networks, in which the messages always reach all processes.

We show that the reachability and synchronization problems under local strategies
in reconfigurable broadcast networks are NP-complete. To obtain the upper bound,
we prove that local strategies can be succinctly represented by finite trees that we call
strategy patterns. Intuitively, strategy patterns are finite unfoldings of the protocol with
the additional assumption that, from each node, only one active action is present, thus
they represent the choices of the local strategy. Moreover, to answer the reachability
and synchronization problems, we show that we can equip the strategy patterns with an
order representing the order in which an execution can visit the nodes of the pattern.
Finally, we obtain an NP algorithm by showing that we can focus on polynomial size
strategy patterns in order to solve the parameterized problems.

For clique networks, with no surprise, the problems are harder since the parameter-
ized reachability problem was already shown to be non-primitive recursive, without the
locality assumption. We show that the problem is in fact undecidable when restricting
to local strategies. The proof is based on the simulation of two-counter machines for
which the termination is known to be undecidable [Min67]. The proof relies on the fact
that some processes can wait in some states without any receptions, hence without get-
ting any new information. With these processes, and thanks to the locality assumption,
we can run exactly the same simulation of the two-counter machine a second time to
check that it was correct. This property is a key for undecidability. Indeed, with the
additional assumption that every message can be received in every state, hence that all
communications bring information to all processes in the network, we can show that
the reachability problem is decidable. The decidability proof is based on a counting
abstraction on which we can show that it is a well structured transition system and
thus that the reachability problem is decidable [ACJT96, AJ01, FS01]. These results
were published in [BFS15].

Interestingly, the notably difficult distributed controller synthesis problem [PR90] is
relatively close to the problem of existence of a local strategy. Indeed, a local strategy
corresponds to a local controller for the processes executing the protocol, and whose role
is to resolve the non-deterministic choices. Local strategies are of interest to implement
distributed algorithms. Indeed, non-determinism is hard to implement in real life, thus
one can see the local strategy as an implementable deterministic version of a non-
deterministic specification for a distributed algorithm.

We conclude this thesis by listing some possible extensions of our work.

Personal publications

[BF13] Nathalie Bertrand and Paulin Fournier. Parameterized verification of many
identical probabilistic timed processes. In FSTTCS, volume 13, pages 501–
513, 2013.

[BFS14] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Playing with prob-
abilities in reconfigurable broadcast networks. In Foundations of Software Sci-
ence and Computation Structures, pages 134–148. Springer, 2014.

[BFS15] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Distributed local
strategies in broadcast networks. In 26th International Conference on Con-
currency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015, pages
44–57, 2015.

23

24 Personal publications

Chapter I

Preliminaries

Several models have been proposed in the literature in order to represent complex
systems. Typically, one can be interested in modeling time, randomness, and unbounded
data structures. We review here models and results for some quantitative or infinite
systems that we will use in the rest of the document.

After introducing some preliminary notations, we present timed automata that are
finite state machines equipped with clock variables that range over positive reals. Timed
automata allow to model systems with timing constraints. The dense time clock vari-
ables give rise to infinite state systems, however abstraction techniques have been pro-
posed in order to verify some properties on these systems.

Then we present the quantitative model of Markov chains that are state machines for
which the transition relation is given by probabilistic distributions. Markov chains allow
to model randomness of events, typically the actions of the environment. Moreover, in
Markov chains it is possible to quantify over the set of executions and thus to express,
e.g. that a property is almost surely satisfied. In addition to probabilities, it may
be useful to have some non-determinism in the model. Indeed, the non-determinism
allows to model controllable events. For example to model a faulty communicating
machine, whether message a or message b is sent is done thanks to non-determinism,
but the loss of messages is uncontrollable and modeled by probabilistic distributions.
We thus introduce Markov decision processes that combine both probabilities and non-
determinism. The probabilities in Markov decision processes can be seen as a random
adversary to the scheduler that resolves the non-determinism. We then introduce 2-
player games, where the adversary is given full power and not only fixed probabilistic
distributions.

More general classes of infinite transition systems have been proposed for which
some verification questions are decidable, such as well-structured transition systems for
which the monotonicity of the transition relation with respect to a well-quasi order
allows to run a backward analysis to decide coverability. Finally, we present results
for two particular well structured transition systems: lossy channel systems and vector
addition systems with states. We also review the undecidability results for two-counter
machines.

25

26 Preliminaries

1 Basic definitions

We use R+ to denote the set of non-negative real numbers. For two reals a, b ∈ R+, we
denote by [a, b] = {x | a ≤ x ≤ b} the set of all reals between a and b.

A probability distribution over a countable set E is a function d : E → [0, 1], such
that

∑

x∈E d(x) = 1. We denote by Dist (E) the set of all probability distributions over
E.

For an arbitrary set E, we write M(E) for the set of finite basis multisets over E,
i.e. the set of multiplicity functions M : E → N such that the set {x ∈ E | M(x) > 0}
is finite. We also use an alternative notation for multisets, for example M = 〈x, x, x, y〉
denotes the multiset defined by M(x) = 3, M(y) = 1 and ∀z ∈ E \ {x, y},M(z) = 0.
We now introduce simple operations on multisets. For M ∈ M(E) and x ∈ E we
write M + x for the multiset M ′ defined by M ′(x) = M(x) + 1 and M ′(y) = M(y) for
y 6= x. Symmetrically, and assuming M(x) > 0, M − x is a notation for M ′ such that
M ′ + x = M . Given an integer n ∈ N, we denote by Mn(E) the set of multisets with
n elements i.e the set of multisets M ∈ M(E) such that

∑

x∈E M(x) = n. Notice that
M(E) =

⋃

n∈NMn(E).

We now introduce transition systems which are used to describe the potential be-
haviors of discrete systems.

Definition 1.1 (Transition systems) A transition system is a tuple T S = (S, s0,→)
where:

• S is a set of states,

• s0 ∈ S is the initial state, and

• →⊆ S× S is the transition relation.

The transition system T S is said to be finite if S is finite, and infinite otherwise.

2 Timed automata

We now introduce timed automata that are infinite state systems due to clock variables
that range over the non-negative reals. During an execution, clock values all increase
at the same speed. Timed automata are useful to model timing constraints since the
values of clocks can be compared to integers to enable or disable transitions. Timed
automata can be used to model and analyze the timing behavior of computer systems,
e.g., real-time systems or networks.

Given a finite set of real-valued clocks C, we denote by G(C) the set of guards
composed of conjunctions of constraints of the form c ∼ n where c ∈ C, n ∈ N and
∼∈ {≤, <,=, >,≥}. Moreover, Up(C) denotes the set of updates of the clocks. An
update up : C → {∅, c := 0} assigns to each clock an update action that either leaves
the clock unchanged (up(c) = ∅) or resets it to zero (up(c) = c := 0).

We now give the definition of timed automata introduced in [AD90, AD94].

Timed automata 27

Definition 2.1 (Timed automata) A timed automaton is a tuple A = (L, ℓ0,C,
Σ,∆) where:

• L is a finite set of locations;

• ℓ0 ∈ L is the initial location;

• C is a finite set of real valued clock variables;

• Σ is a finite alphabet, and

• ∆ ⊆ L× G(C)×Σ× Up(C)× L is a transition relation.

Semantics In order to define the semantics of timed automata, we introduce clock
valuations which are assignments of the clocks to real values. Precisely, a valuation is a
mapping v : C → R+ representing that the clock c ∈ C has the real value v(c). Given
a real d ∈ R+, we denote by v + d the valuation v ′ in which all the clock values are
increased by d i.e. for every clock c ∈ C, v ′(c) = v(c) + d. Given a guard g ∈ G(C), we
say that a valuation v satisfies the guard if and only if, for every constraint c ∼ n of
the guard g, we have v(c) ∼ n. Given an update up and a valuation v , we define the
effect of the update on the valuation as the valuation v ′ in which all the clocks reset
by the update are set to zero. Formally, up(v) = v ′ where for every clock c ∈ C if
up(c) = c := 0 then v ′(c) = 0 and otherwise v ′(c) = v(c).

The semantics of a timed automaton is given as a transition system T = (S, (ℓ0,0),

→) where the states are pairs s = (ℓ, v) from S = L× R+C and such that:

• (ℓ, v)
d
−→ (ℓ, v + d) for every d ∈ R+, and

• (ℓ, v)
a
−→ (ℓ′, v ′) for every a ∈ Σ such that there exists (ℓ, g, a, up, ℓ′) ∈ ∆ with v

satisfying the guard g, and v ′ = up(v).

Notice that the transition system T has infinitely many states due to the valuations
taking values in R+. However one can abstract valuations into equivalence classes called
regions in order to obtain a finite abstraction.

Region abstraction The region abstraction, introduced in the seminal paper [AD94],
forms a finite partition of the valuations over C. This abstraction is based on the
observation that, for reachability problems, the relevant information in clock valuations
consists of the integer part of each clock (up to the maximal constant appearing in
guards) and the ordering of their fractional parts.

Given x ∈ R+ a non-negative real, we denote by ⌊x⌋ its integer part and {x} its
fractional part. Note that x = ⌊x⌋+ {x}.

Definition 2.2 (Region equivalence) Let b ∈ N and let s1 = (ℓ1, v1) and s2 = (ℓ2, v2)
be two states.

The states s1 and s2 are b-region equivalent, denoted s1 ≈b s2 if:

28 Preliminaries

(i) ℓ1 = ℓ2: the locations match,

(ii) for every clock c ∈ C, (⌊v1(c)⌋ ≤ b) ∨ (⌊v2(c)⌋ ≤ b) ⇒ ⌊v1(c)⌋ = ⌊v2(c)⌋: integer
parts of clocks agree up to b,

(iii) for every clock c ∈ C, ({v1(c)} = 0) ⇔ ({v2(c)} = 0): the set of clocks with integer
values are equal,

(iv) for ∼∈ {<,=, >}, and for every pair of clocks c, c′, ({v1(c)} ∼ {v1(c
′)}) ⇔

({v2(c)} ∼ {v2(c
′)}): the orderings of fractional parts in v1 and v2 coincide.

Notice that the region equivalence is indexed by a bound b. For a given timed automa-
ton, this bound is set to the maximal constant appearing in guards, we will thus omit
this bound in the sequel. Given a state s ∈ S, [s] denotes its equivalence class for ≈,
and is called a region. It is shown in [AD94] that one can quotient T by the relation ≈
to obtain a finite automaton called region automaton and denoted [T]. Moreover, for
any execution in a timed automaton there exists an execution in the region automaton
that consists in abstracting the value of the clocks and the delays. Reciprocally, for
any execution in the region automaton, one can concretize the delays in order to obtain
an execution in the timed automaton. This shows, in particular, that to decide the
location reachability in the infinite transition system T , one can check for reachability
of a region containing the goal location in the region abstraction [T].

3 Markov chains, Markov decision processes and games

Model checking techniques focus on certifying correctness of the system for all possible
behaviors. However, systems are subject to random phenomena such as message losses
or failures of components, thus the non-deterministic approach is too pessimistic and
does not take into account how likely these events happen. In these settings, probabilis-
tic models have been studied in order, not to absolutely guarantee that a property is
satisfied, but to what extent the property holds. With these models it is possible to ex-
press how likely a property is satisfied. In this section, we present Markov chains which
are a fully probabilistic model. The successor of a state is given by a fixed probability
distribution. In addition to the probabilistic behaviors it may be useful to have non-
determinism in order to represent non-random events e.g. whether a controller switches
on or off a component is model by non-determinism and whether a component fails by
a probabilistic distribution. We thus present Markov decision processes that combine
non-determinism and probabilities. An other way to model the environment is to see it
as purely random, see it as a non-deterministic adversary. This is the case for 2-player
games, that give the environment full power and not just probabilistic distributions.
We introduce this model at the end of this section.

3.1 Markov chains

We consider homogeneous discrete time Markov chains with a countable state space.
These are Markov chains in which the probability to go from one state to another,

Markov chains, Markov decision processes and games 29

representing a step, is given by a fixed probabilistic distribution.

Definition 3.1 (Markov chains) A Markov chain is a tuple M = (S, s0, P rob)
where:

• S is a countable set of states,

• s0 ∈ S is the initial state, and

• Prob : S → Dist (S) is the transition probability function that assigns to each state
s ∈ S a probability distribution over S.

A path in a Markov chain M = (S, s0, P rob) is a finite or infinite sequence s0s1 . . . of
states in S starting with the initial state s0. The set of all finite paths is denoted Paths∗
and the set of all infinite paths is denoted Pathsω. Markov chains naturally induce a
probability measure on their set of infinite paths. We use the classical probability space
(see [KSK66]) {Ω,∆,P} on infinite paths, which is defined as follows:

• Ω = {s0s1 · · · | si ∈ S} = Pathsω is the set of infinite paths,

• ∆ is the smallest σ-algebra that contains all cylinder sets Cyl(s0s1 . . . sn) =
{s0s1 . . . sn . . . }

• P is the probability measure defined by P(Cyl(s0s1 . . . sn)) =
∏n

i=1 Prob(si−1, si),
and which is extended to ∆ by Carathéodory’s extension theorem.

It was shown in [Var85] that the set of paths eventually reaching a state s, denoted
✸s, is measurable. Given a Markov chain M and a state s we thus denote P(M |= ✸s)
the measure of the set of infinite paths reaching s.

3.2 Markov decision processes

A natural extension of Markov chains is Markov decision processes. In addition to
the transition probability function, Markov decision processes allow for some non-
determinism. The set of states is thus partitioned into probabilistic states, from which
the successor is given as in Markov chains by the transition probability function, and
non-deterministic states, from which the successor is defined by the non-deterministic
transition relation.

Definition 3.2 (Markov decision processes) A Markov decision process is a tuple
M = (S,S(p),S(n),S0, T, Prob) where

• S is a countable set of states,

• S(p) and S(n) partition S in respectively, probabilistic states and non-deterministic
states,

• S0 ⊆ S is the set of initial states,

30 Preliminaries

• T ⊆ S(n) × S is the non-deterministic transition relation, and

• Prob : S(p) → Dist (S) is the transition probability function that assigns to each
state s ∈ S(p) a probability distribution over S.

One cannot directly define a probability space on a Markov decision process due to the
non-determinism. However, once the non-deterministic choices are fixed we obtain a
Markov chain for which we can define a probability space. We thus define the schedulers
which are in charge of resolving the non-determinism, they associate a transition with
every finite path ending in a non-deterministic state.

Definition 3.3 (Schedulers) A scheduler is a function σ : Paths∗ → T such that for
every finite path s0s1 . . . sn with sn ∈ S(n), σ(s0s1 . . . sn) ∈ ({sn} × S) ∩ T .

A Markov decision process M together with a scheduler σ give rise to a Markov chain
Mσ. Indeed, the non-determinism being resolved by the scheduler, one can consider the
Markov chain Mσ, that has for state space the set of finite paths in M, the transition
probability function being naturally lifted from S(p) for paths ending in probabilistic
states and reflecting the choices of the scheduler for paths ending in non-deterministic
states.

An interesting subclass of schedulers are memoryless schedulers which are scheduler
for whose the decisions do not depend on the whole execution but only on the current
state.

Definition 3.4 (Memoryless schedulers) A scheduler σ is memoryless if for every
pair of finite paths ρ = s0 . . . sn and ρ′ = s′0 . . . s

′
m, if sn = s′m then σ(ρ) = σ(ρ′).

Notice that the state space of the Markov chain induced by memoryless schedulers
can be restricted to S. Indeed, the decision of the scheduler only depends on the state
and not on the finite path.

Given a scheduler σ and a state s, the probability to reach the state s is defined as
the probability to reach a path ending in s in Mσ and is denoted Pσ(M |= ✸s). The
reachability problems for Markov decision processes amount to establishing the best
lower or upper probability bounds for reaching a state, when ranging over all schedulers.
Formally, it amounts to computing supσ Pσ(M |= ✸s) and infσ Pσ(M |= ✸s).

For finite state Markov decision processes, it is well known that all quantitative
reachability problems are decidable in PTIME [KNPS08, BK08]. Moreover, an inter-
esting result is that the extremal probabilities are attained by memoryless schedulers.
One can thus e.g. compute maxσ Pσ(M |= ✸s) together with an optimal memoryless
scheduler. This is done by linear programming.

Theorem 3.1 Given a finite-state Markov decision process M and a state s

• computing infσ Pσ(M |= ✸s) and supσ Pσ(M |= ✸s) can be done in polynomial
time.

• there exists a memoryless scheduler σ such that Pσ(M |= ✸s) = infσ Pσ(M |= ✸s),
and similarly for supσ Pσ(M |= ✸s).

Markov chains, Markov decision processes and games 31

One can see a Markov decision process as a 1− 1
2 player game. Indeed the first player

is in charge of resolving the non-determinism and thus plays in the non-deterministic
states, whereas the second player is purely random and chooses the outcome of proba-
bilistic choices. Notice that in these games the role of the second player is really limited
since its decision can only be taken according to fixed probability distributions.

3.3 2-player games

We introduce now 2-player games in which, contrary to Markov decision processes, both
players have the same decision power.

Definition 3.5 (2-player games) A 2-player game is a tuple G = (S,S(1),S(2),T, col)
where:

• S is a countable set of states, partitioned into S(1) the states of player 1, and S(2)

the states of player 2;

• s0 ∈ S is the initial state;

• T ⊆ S× S is the transition relation;

• col : T → N is the parity function.

A play ρ in a 2-player game is an infinite sequence of states s0s1 . . . such that
for every i ∈ N, (si, si+1) ∈ T. The parity associated with a play is the maximal
parity seen infinitely often. Formally, the parity of play ρ = s0, s1, . . . is defined as
col(ρ) = max{c ∈ N | ∀i,∃j ≥ i, col(sj , sj+1) = c}. A play is said to be winning for
player 1 if its associated parity is even. Otherwise it is winning for player 2.

Similarly to schedulers for Markov decision processes, we define the notion of strate-
gies that, given a finite prefix of play, called finite run, dictate the choice of the players.

Definition 3.6 (Strategies) A strategy α for player 1 is a function that associates
with every finite run ρ = s0, s1, . . . , sn, with sn ∈ S(1) a transition (sn, sn+1) ∈ T.

Symmetrically, a strategy β for player 2 is a function that associates with every
finite run ρ = s0, s1, . . . , sn, with sn ∈ S(2) a transition (sn, sn+1) ∈ T.

Given a 2-player game G, a pair of strategies (α, β) defines a single play ρ(G, α, β) =
s0, s1, . . . such that for every n ∈ N with sn ∈ S(1) we have α(s0, s1, . . . sn) = (sn, sn+1),
and otherwise, when sn ∈ S(2), β(s0, s1, . . . sn) = (sn, sn+1). Strategy α for player 1 is
said to be winning against strategy β for player 2, if the run ρ(G, α, β) is winning for
player 1, that is, if col(ρ(G, α, β)) is even. A strategy for player 1 is winning if it is
winning against all strategies of player 2, and symmetrically for player 2.

As for Markov decision processes, an interesting result in finite games is that: first
the game is determined, in other words, either there is a winning strategy for player 1
or there is one for player 2. Moreover, winning strategies are memoryless. The problem
of deciding whether player 1 or player 2 is winning is in NP∩co-NP. Whether it is in
PTIME is a long-standing open problem.

32 Preliminaries

4 Infinite transition systems

4.1 Well-structured transition systems

An interesting subclass of infinite transition systems is the one of well-structured tran-
sition systems, for which several verification problems can be decided algorithmically.
In particular the coverability of a state is decidable. Well-structured transition systems
include a large number of well-known infinite-state systems such as Petri nets, lossy
channel systems, . . .

The intuition behind such systems is that some monotonicity of the system, allows
us to consider finite symbolic representations of infinite sets of states. More precisely, a
well-quasi ordering on the states allows to represent finitely upward closed sets of states
by their minimal elements. The transition relation is monotonic with respect to this
order, thus one can simulate the effect of one step on an infinite upward closed set by
only computing the effect on the finite set of minimal elements. To decide coverability,
one can thus apply a backward analysis, computing iteratively one step predecessors of
the upward closure of the goal state. Finally, this symbolic computation is guaranteed
to terminate since, at a certain point, newly computed upward sets will be subsumed
by older ones.

In order to define such systems we first introduce well-quasi orders. Note that there
are several equivalent definitions for such orderings but we introduce here only one.

Definition 4.1 (Well quasi orders) A well quasi order ⊑ over a set E is a partial
order such that for every infinite sequence x1, x2, · · · ∈ Eω there exist two indices i and
j such that i < j and xi ⊑ xj .

Definition 4.2 (Well structured transition systems)[ACJT96, AJ01, FS01] A
well structured transition system is a transition system, T S = (S, s0,→) equipped with
a well quasi order ⊑ such that → is compatible with ⊑ i.e. if s1 → s2 and s1 ⊑ s3 then
there exists s4 such that s2 ⊑ s4 and s3 →

∗ s4.

In this definition, the monotonicity of the transition system is defined by s3 →∗ s4
i.e. a step of lower configuration can be simulated from higher configurations in an
arbitrary number of steps. There are several variants for this condition, depending on
the desired property, such as for example the exact simulation that requires that the
step can be simulated in one step, i.e that s3 → s4. However this assumption does not
affect the general algorithm for deciding the coverability problem, which asks, given a
configuration s, whether there exists s ⊑ s′ such that s0 →∗ s′. Under the assumption
that the predecessor of an upward-closed set is effectively computable, the algorithm
consisting in iteratively computing the set of predecessors of the upward closure of a
configuration is ensured to terminate and allows to decide the coverability problem.

Theorem 4.1 ([ACJT96, AJ01, FS01]) The coverability problem is decidable for
well structured transition systems.

Infinite transition systems 33

4.2 Lossy channel systems

Lossy channel systems form a class of well structured transition systems. They are
finite state machines equipped with an unbounded FIFO channel on which we can write
and read messages from a finite alphabet. Moreover, faults in the communication are
modeled by the loss of messages in the channel.

Definition 4.3 (Lossy channel systems) A lossy channel system is a tuple L =
(Q, q0,M, δ) composed of a finite set of states Q, an initial state q0 ∈ Q, a finite set of
messages M and a transition relation δ ⊆ Q× {?, !} ×M×Q.

A configuration is a pair (q,w) ∈ Q × M∗ composed of the current state q and the
current contents of the channel w . The initial configuration is the configuration (q0, ǫ)
composed of the initial state and the empty word. Given two words over M representing
channel contents, w = m1 . . .mn and w ′ = m ′

1 . . .m
′
m, w is smaller than w ′ with respect

to the sub-word order, denoted w ≤l w
′, if n ≤ m and there exists an increasing function

f such that for all i ∈ [1 . . . n], mi = m ′
f(i). Transitions between configurations of L

derive from the reading and writing rules in δ. There is a transition from (q,mw) to
(q,w ′) as soon as w ′ ≤l w and (q, ?,m, q′) ∈ δ. Also there is a transition from (q,w) to
(q,w ′) as soon as w ′ ≤l wm and (q, !,m, q′) ∈ δ.

Theorem 4.2 ([AJ93, CS08]) Given a lossy channel system L = (Q, q0,M, δ) and
a state q ∈ Q, the problem of whether q is reachable from the initial configuration is
decidable and Fωω -complete.

Probabilistic lossy channel systems A probabilistic variant of lossy channel sys-
tems was studied in [ABRS05] where losses are no longer non-deterministic but at each
step each message in the channel has an independent probability to be lost. Moreover,
a weight function on transitions allows to derive their probability to be fired.

Definition 4.4 (Probabilistic lossy channel systems)[ABRS05] A probabilistic
lossy channel system is a tuple L = (Q, q0,M, δ, λ−,w) composed of a lossy channel
system (Q, q0,M, δ), a loss rate λ−, and a weight function w : δ → N+.

Here again, a configuration is a pair (q,w) ∈ Q×M∗ composed of the current state
q and the current contents of the channel w , and the initial configuration is the pair
(q0, ǫ). From a given configuration, the probability to pick an enabled transition is
defined as the weight of this transition divided by the sum of the weights of all the
possible transitions. The probabilistic distribution ruling the evolution of the channel
contents is derived from the loss rate λ−; each message has an independent probability
of λ− to be lost. The probabilistic transition between configurations is thus defined by
the probability to pick a given transition multiplied by the probability to get a given
channel contents.

An important property to notice is that, since message losses are independent events,
the more messages in the channel, the higher the probability to lose some.

34 Preliminaries

Definition 4.5 (Finite attractor) A set E ⊆ S is a finite attractor for a Markov
chain M = (S, s0, P rob) if E is finite and from every state s ∈ S, E is almost surely
reachable from s, i.e. P((S, s, P rob) |= ✸E) = 1.

The finite attractor property states that Markov chains induced by lossy channel systems
admit a finite recurrent set [ABRS05]. Indeed, from any configuration, a configuration
with no message in the channel will be almost surely reached. Roughly said, some results
for finite Markov chains extend to infinite Markov chains with a finite attractor. In
particular, qualitative state reachability problems are decidable for probabilistic channel
systems.

An other interesting result on probabilistic lossy channel systems is that one can
compute, with an arbitrary precision, the probability to reach a state (see [IN97, Rab03,
AHM07]). The idea of the proof of this result is to consider the set of executions of
length n, and to partition it into three sets: Reachn the executions that already reached
the goal qf , Escapen the executions that have not and cannot be extended to reach the
goal, and Undecidedn for the remaining executions. It was shown that if the Markov
chain has a finite attractor then the probability to be undecided (denoted p?n) decreases
towards 0 as n increases. Moreover, writing p+n = P(Reachn) for the probability to
have reached the target before n steps, p+n is an under approximation and p+n + p?n
an over-approximation of P(✸qf). Hence, this gives an algorithm to approximate the
probability to reach the goal up to any desired precision.

A more complex model for lossy channel systems is the one of non-deterministic prob-
abilistic lossy channel systems [BS03, BBS07, BS13] which combines non-determinism
and probabilities in an infinite state system. The notion of attractor can be extended
to Markov decision processes, asking that the finite set is an attractor for any sched-
uler. One can still achieve decidability of the qualitative control state reachability in
non-deterministic probabilistic lossy channel systems. However, for the quantitative
problems to our knowledge no approximation scheme is known for this variant.

4.3 Vector addition systems with states

An other example of well structured transition system is the model of vector addition
system with states. Vector addition systems with states are finite state machines ma-
nipulating unbounded counters that can be incremented and decremented while staying
non-negative.

Definition 4.6 (Vector addition system with states (VASS)) A VASS of dimen-
sion n is defined as a tuple V = (S,E) where:

• S is a finite set of control states;

• E ⊆ S× Nn × S is the transition relation.

A configuration of a VASS, is a pair (s, v) ∈ S×Nn composed of a state and an n-tuple
of integers. With the VASS V is associated the transition system TV = (S×Nn, →֒) where

Infinite transition systems 35

→֒⊆ (S × Nn) × (S × Nn) is the transition relation, defined as follows: (s, v) →֒ (s′, v′)
if there exists a transition (s,v, s′) ∈ E such that v′ = v + v, where + is the addition
component by component. Note that the vectors in configurations of TV are tuples of
naturals, so that a transition can only be fired if the resulting configuration ensures
non-negativity of all components. An infinite run of V starting from a configuration
(s0, v0) is an infinite sequence of the form (s0, v0) →֒ (s1, v1) →֒ (s2, v2) A cycle
(s, v) →֒ (s1, v1) . . . →֒ (s, v′) starting and ending in the same control state is said to
have positive effect on each component if v ≤ v′, i.e. for all i ∈ [1 . . . n] we have
v[i] ≤ v′[i].

An interesting result on VASS is recalled in the following theorem. It states that the
existence of a cycle with positive effect on each component, is decidable in polynomial
time.

Theorem 4.3 ([KS88]) Given a VASS V = (S,E) of dimension n, deciding whether
there exist s ∈ S and a vector v ∈ Nn such that there exists a cycle (s, v) →֒+ (s, v′) with
v′ ≥ v, is decidable in PTIME.

The detection of cycles with positive effect is done thanks to linear programming.
Since VASS are well structured transition systems, when considering the natural order
on n-tuples, positive effect cycles are interesting since they can be iterated. Indeed since
the last configuration of the cycle is bigger than the first configuration, one can repeat
the sequence of transitions of the cycle, and this as many time as desired.

4.4 two-counter machines

two-counter machines are also finite states machines manipulating counters. However,
contrary to VASS, in addition to increments and decrements, one can also test to zero
the value of a counter.

Definition 4.7 (Minsky machines [Min67]) A Minsky machine is a tuple M =
(K, L0, Lacc, c1, c2) manipulating two integer variables c1 and c2 called counters and is
composed of a finite set of instructions K. Each instruction L ∈ K is either of the form:

Increment L : ci := ci + 1; goto L′, or

Decrement L : if ci = 0 then goto L′ else ci := ci − 1; goto L′′

where i ∈ {1, 2} and L, L′, L′′ are labels preceding each instruction. L0 is the initial label
and there is furthermore a special label Lacc from which nothing can be done.

In this thesis we will consider deterministic Minsky machines i.e. Minsky machines
for which the label is unique for each instruction. We will hence use the labels to refer
to the instructions.

A configuration is a tuple of K×N× Nand the configuration π = (L, n1, n2) means
that the machine is at instruction L with counter c1 with value n1 and counter c2 with

36 Preliminaries

value n2. For a configuration π = (L, n1, n2) we write K(π) = L for the instruction, and
ci(π) = ni for i ∈ {1, 2} the value of counter i in π.

A deterministic Minsky machine M = (K, L0, Lacc, c1, c2) gives rise to a unique run,
finite or infinite, which is a sequence of configurations π0π1 . . . such that K(π0) = L0,
and ci(π0) = 0 for i ∈ {1, 2}, and for all j, if K(πj) = L is an increment of counter c1,
i.e. of the form L : c1 := c1 + 1; goto L′, then c1(πj+1) = c1(πj) + 1, c2(πj+1) = c2(πj)
and K(πj+1) = L′ (similarly for increment of counter c2); if K(πj) = L is a decrement
of counter c1, i.e. of the form L : if c1 = 0 then goto L′ else c1 := c1 − 1; goto L′′

then if c1(πj) = 0 then ci(πj+1) = ci(πj) for i ∈ {1, 2} and K(πj+1) = L′, otherwise
c1(πj+1) = c1(πj) − 1, c2(πj+1) = c2(πj) and K(πj+1) = L′′ (similarly for decrement of
counter c2);

The halting problem then asks whether or not the unique run of M reaches Lacc;
we assume here, without loss of generality, that M stops in Lacc or does not terminate.

A Minsky machine is said to be bounded if there exists a bound B ∈ N such that
the value of the counters is always smaller than B, i.e. ∀j ∈ N, c1(πj) + c2(πj) ≤ B.
Notice that if the machine halts it is bounded. The boundedness problem asks whether
a Minsky machine is bounded.

Theorem 4.4 ([Min67]) Both the boundedness problem and the halting problem are
undecidable for (deterministic) Minsky machines.

Contrary to VASS which are monotonic, the tests to zero of counters in Minsky machines
breaks the monotonicity. Indeed there are transitions that are enabled for configurations
where one of the counter has value zero but not for bigger configurations where the
counter is not zero. Thus two-counter machines are not well structured transition
systems. This difference is crucial since it even leads to undecidability of the reachability
problem which was decidable for VASS.

Chapter II

Parameterized verification

Generally speaking, parameterized systems are systems in which some value is unfixed
and considered as a parameter. Analyzing parameterized systems is equivalent to study-
ing a whole family of systems where each of them is obtained by instantiating the value
of the parameter. In the recent years, an increasing interest has been shown in the
verification of such systems for a variety of parameters.

As an example, the parameter can be the value present in guards of timed automata,
as in parameterized timed automata [AHV93]. This allows to model number of systems
with unknown timing constraints. It also brings some robustness in the verification
of the systems by proving correctness for different values of the parameter. Most of
the interesting problems are undecidable for parameterized timed automata. However,
several restrictions, such as L/U-automata [HRSV02] where the parametric constraints
are either used as upper or lower bound but not both, have been proposed for which
the parameterized verification is decidable.

An other example is a parameter for the probability of an event. In [Daw05] the
authors introduce parametric Markov chains for which the probability of an action
is parametric. Numerous works have been published in this field and some tools for
parameter synthesis have been developed, such as PROPhESY [DJJ+15].

In general, considering parameterized programs allows to ensure robustness of the
verification. Indeed, one can use the parameter as an unknown variable but with known
bounds for its possible values. The parameterized verification thus ensures the correct-
ness of the whole family of systems defined by the different instances of the parameter.
One can also consider the parameter synthesis problem, that consists in computing the
set of parameter values for which the property is satisfied.

In this thesis, we focus on parameterized systems modeling networks, where the
parameter is the number of components of the network. We thus present in the next
sections the state of the art in parameterized verification for models with many identical
processes.

37

38 Parameterized verification

1 Many identical processes

Already in the 80’s, Apt and Kozen showed the undecidability of very general parame-
terized model-checking problems [AK86]. In their seminal paper on distributed models
with many identical entities [GS92], German and Sistla represent the behavior of a
network by finite state machines interacting via ‘rendezvous’ communications. Vari-
ants have then been proposed to handle different communication means, like broadcast
communication [EFM99], token-passing [CTTV04, AJKR14], message passing [BGS14]
or shared memory [EGM13]. In his survey on parameterized models [Esp14], Esparza
shows that minor changes, such as the presence or absence of a controller in the system,
can drastically modify the complexity of the parameterized verification problems. In ad-
dition to finite state protocols, some works have been done to investigate infinite-state
machines such as [Hag11] where pushdown automata communicate via finite shared
memory. Surprisingly, some undecidable problems for non-parameterized systems be-
come decidable in the parameterized setting.

Another model for parameterized systems, combining dense time clock variables and
a parametric number of processes has been proposed in [AJ03]. Such networks, called
networks of timed processes, are composed of a finite state controller and an arbitrary
number of processes equipped each with one real-valued clock. The evolution of the
network is described by a finite set of rules that allow the controller and arbitrary set
of processes to move simultaneously. The rules may also be conditioned by the values
of the clock and may manipulate them by resetting the clocks to zero. It was shown
that one can abstract the configurations of such a network into constraints in order
to represent finitely the real valued clock variable. Moreover, these constraints can
be equipped with a well-quasi order and it was shown that the abstract network is a
well structured transition system, hence that the reachability problem is decidable. In
continuation with this work, networks where the processes have multiple real-valued
clocks have been studied [ADM04]. The reachability problem is undecidable for such
networks. Indeed, with two clock variables per process, one can use the clocks to link
the processes into a tape. Intuitively, two processes are linked if the first clock of a
process shares the value as the second clock of the second process. This construction
together with the parametric number of components and the dense valued clocks allow
to link arbitrarily many processes in a tape and thus to simulate Turing machines.

More recently, in [AdFE15], the authors consider parameterized networks, called
population protocols, under a new point of view. They consider only fair executions,
i.e. executions for which all the processes execute an action infinitely often. The pro-
cesses also synchronize via a finite set of rules, however the studied questions differ since
the authors do not look for reachability but ask for a consensus of all the processes,
i.e. they ask whether all the processes can gather in the same state for all fair execu-
tions. They say that the protocol computes a predicate if for all initial configurations
a consensus is reached. It is shown that the problems of deciding whether a protocol
ensures a consensus for all initial configurations and deciding whether it computes a
given predicate are both decidable.

Among the various parametric models of networks, broadcast protocols, originally

Ad Hoc networks 39

studied by Esparza et al. [EFM99], have later been analyzed under a new viewpoint,
leading to new insights on the verification problems. Specifically, a low level model to
represent the main characteristics of ad-hoc networks has been proposed [DSZ10]: the
network is equipped with a communication topology and processes communicate via
broadcast to their neighbors.

2 Ad Hoc networks

Ad Hoc networks introduced in [DSZ10] are networks composed of an arbitrary number
of communicating processes, all running the same finite state protocol, distributed over
an undirected graph representing the communication topology of the network. Every
process behaves similarly following a protocol which is represented by a finite state
machine, performing three kinds of actions: (1) broadcast of a message from a finite
alphabet, (2) reception of a message and (3) internal action. Furthermore, the commu-
nication topology does not change during an execution and no entity is deleted or added
during an execution. When a process broadcasts a message, all its neighbors with an
enabled reception for this message must take a reception transition.

The control state reachability problem consists then in determining whether there
exist an initial number of entities and an initial communication topology, such that it
is possible to reach a configuration where at least one process is in a specific control
state (considered for instance as an error state). The main difficulty in solving such a
problem lies in the fact that both the number of processes and the initial communication
topology are parameters, for which one wishes to find an instantiation. In [DSZ10], it is
proven that this problem is undecidable. Indeed, it is possible to create a gadget that
extract a chain of processes in the topology graph. Note that it may not be possible
for some topology graphs, in such case the gadget just ends the computation. Once
such a chain is extracted, simulation of a 2-counter machine follows easily thanks to the
unbounded number of participants.

The shape of the communication topology is crucial here for the undecidability
proof. Restricting the set of possible communication topologies to complete graphs
(aka cliques) or bounded depth graphs, the reachability problem is decidable [DSZ10,
DSZ11a]. Indeed in such graphs, it is no longer possible to design a protocol that will
extract an unbounded simple path from the topology, in the first case, because all the
messages reach all the components and in the second case, because there are no such
path in bounded depth graphs. Moreover, it is possible to equip the ad hoc networks
restricted to these topologies with a well-quasi order and to show that they are well-
structured transition systems. The class of topologies for which the reachability problem
is decidable is even wider since it was shown in [DSZ11a] that decidability extends to
bounded path maximal clique graphs, i.e. to graphs composed of cliques arranged in
such a way that the underlying clique graph is a bounded path graph. An other way to
regain decidability is to consider acyclic directed graphs of bounded depth [AAR13].

A timed version of parameterized broadcast networks was studied in [ADR+11].
In this work, the authors augment the protocols with clock variables, representing the

40 Parameterized verification

elapse of time, and all growing at the same rate. Interestingly, the topology of the
network also plays a role in the decidability status. Indeed, even for bounded path
graphs the reachability problem is undecidable with dense time clocks. However, in the
case of clique topologies, the problem becomes decidable assuming only one clock per
process as for timed networks [AJ03, ADM04].

An other constraint on the communication topology leading to decidability of the
parameterized reachability is to consider non-deterministic reconfiguration of the com-
munication topology. Reconfigurable networks, are networks in which the nodes can,
at any moment, move and change their neighborhood. In [DSTZ12], the parameterized
reachability problem is shown to be PTIME-complete. Moreover, the synchronization
problem, which asks whether all processes can gather at the same time in a given set
of states is shown to be in NP. The key idea is that in parameterized reconfigurable
networks, one can use the parametric number of components to double the number of
processes and use the reconfiguration of the topology to partition the network in two sub
networks. Thus, from an execution reaching a set of states, one can build an execution
with twice as much processes in each of these states. This remark allows to design a
PTIME algorithm for the reachability problem by building the set of reachable states:
one start with the initial state, and adds all the reachable states with internal action,
then the reachable states with a broadcast, and finally the reachable states thanks to a
reception of a message that can be sent from an accessible state. Repeating these three
steps, one obtain a saturation algorithm computing in polynomial time the set of all
reachable states.

In fact reconfigurable broadcast networks enjoy the following properties.

Lemma 2.1 ([DSTZ12]) Let P be a broadcast protocol and Occur(P) denote the set
of reachable states.

1. The set Occur(P) is effectively computable in PTIME.

2. For every k ∈ N, there exist a network size and a finite execution such that for all
q ∈ Occur(P), there are at least k processes in state q at the end of the execution.

3. There exists K ∈ N such that for all k ≥ K, there exist a network size and a finite
execution such that for all q ∈ Occur(P), there are exactly k processes in state q

at the end of the execution.

A logic, called cardinality constraint, was introduced in [DSTZ12] in order to express
the presence or absence of processes in given states in a configuration. Qualitative
cardinality constraints are expressed by the following grammar:

φ := #q = 0 | #q ≥ 1 | φ ∧ φ | φ ∨ φ .

The semantics of cardinality constraints is rather natural, e.g. a configuration satisfies
the formula φ = (#q1 ≥ 1 ∧#q2 = 0) ∨ (#q3 = 0) if either some process is in state q1
and none are in state q2, or no process is in state q3. The authors studied the problem of

Ad Hoc networks 41

satisfiability of cardinality constraint formulas, meaning the existence of a network size
for which there exists an execution reaching a configuration satisfying the formula. This
problem subsumes the reachability and the synchronization problems since they can be
encoded into such formulas. Indeed, the reachability problem of a state q corresponds
to the cardinality constraint formula #q ≥ 1, and the synchronization problem for
a set of states S to the formula

∧

q/∈S #q = 0. It was shown in [DSTZ12] that the
satisfiability of cardinality constraint is NP-complete. However, we sketch here a proof
stating that the complexity comes in fact from the complexity of the formula. Indeed,
considering disjunctive normal form formulas, the problem is PTIME-complete in the
size of the protocol and the formula. Disjunctive normal form formulas can be seen as
disjunctions of synchronization problems, the algorithm thus consists in checking each
of these synchronization problems until one is satisfied or that the formula is proven
false.

To check the synchronization problem in PTIME, we use the algorithm of [DSTZ12],
computing the set of reachable states. The idea is to remove from the protocol the non-
reachable states, after what we transform the protocol by reverting all its transitions,
and considering the set of target states as the initial states. One can compute the set
of reachable states in this reverted protocol called co-reachable states. Intuitively, co-
reachable states correspond to states for which, starting from an initial configuration
with ‘enough’ processes in each state, one can find an execution reaching a configuration
satisfying the synchronization problem. Reciprocally, a state which is not co-reachable
cannot be visited by an execution satisfying the synchronization problem since there is
no way to ‘bring back’ the process to a state of the target set. Thus, we can remove
the non-co-reachable states from the protocol. Iterating this procedure, we end with a
protocol containing only the states that are both reachable and co-reachable. Assuming
that the obtained protocol is not empty, using point 3. of Lemma 2.1 on both the
protocol an the reverted protocol, one can exhibit an execution satisfying the synchro-
nization property. We thus obtain a PTIME procedure to decide the synchronization
problem, and more generally, thus show cardinality constraint problems to be PTIME
for disjunctive normal form formulas.

In comparison with these works, in this thesis, we extend the model of reconfigurable
networks with probabilities by allowing probabilistic transitions in the description of the
protocol. We also consider a new restriction for the reconfigurable networks by consid-
ering only local strategies, i.e. enforcing the processes to behave in a truly distributed
way. Local strategies assume that the processes choose their action only according to
their knowledge of the current execution, i.e. the transitions they have taken so far,
and not according to the whole network history. But first, we investigate a probabilistic
and timed extension of clique protocols, where the number of processes is parametric
and all the messages reach every component.

42 Parameterized verification

Chapter III

Clique networks of probabilistic

timed protocols

1 Introduction

In this chapter, we introduce the model of clique networks of probabilistic timed proto-
cols and study the parameterized verification of this model. A clique network of prob-
abilistic timed protocols is formed of many identical probabilistic timed automata(see
e.g. [KNPS08]), with a single clock. Interaction between processes is modeled by broad-
casts of messages to all the processes in the network. This model is a probabilistic and
timed extension of the models studied in [DSZ11b, DSZ11a, DSZ12]. Notice that this
formalism combines infinite-state space, due to an unknown number of processes in the
network, as well as data structures with infinite domains (dense clocks), and probabilis-
tic behaviors. Moreover, in order to represent the notion of mobility in the network, we
further introduce dynamic probabilistic timed networks, where processes can disappear
and be created, according to fixed probability laws.

This model of probabilistic timed networks is quite natural since a potential ap-
plication domain for parameterized verification is the one of wireless sensor networks
(WSN). WSN consist of a large number of nodes measuring and transmitting data. The
number of nodes is a significant parameter while setting up the network, since it affects
in particular the performances by influencing the risk of collision in communications.
Most protocols for WSN include probabilistic choices and timing constraints. Indeed,
the probabilities are used to break the symmetry between the nodes and the timing con-
straint to ensure reactivity of the system. Also, in many cases the number of nodes in
the network evolves over time due to nodes breaking down, or nodes refilling their bat-
tery using e.g. solar energy. Moreover, in some applications, the placement of sensors
and their exact number are unknown. We therefore advocate that (dynamic) proba-
bilistic timed networks with a parametric number of processes make a quite suitable
model for WSN protocols.

So far, up to our knowledge, the automated verification of such protocols, combining
probabilities and time, has only been studied for a fixed, and rather small, number of

43

44 Clique networks of probabilistic timed protocols

nodes, as in [Fru06] where Prism [KNPS08] is used to verify the contention resolution
protocol in IEEE standard 802.15.4. In comparison, the parameterized verification of
probabilistic timed networks that we investigate in this chapter would provide answers
for an arbitrary number of processes.

Given a probabilistic timed network, we consider two kinds of relevant parame-
terized verification problems: parameterized reachability problems and parameterized
synchronization problems. An example of parameterized reachability problem is the
following. Given a distinguished state of the protocol model, can a configuration with
some process in this particular state be reached almost surely, for any initial number
of processes and for every scheduling policy? Equivalently, the problem is whether,
independently of the number of processes, the minimum probability to reach a target
configuration is 1. An other interesting problem is the synchronization problem: for a
set of target states, can the configurations with all processes gathered in this target set
be reached almost surely? Note that our model, clique networks of probabilistic timed
protocols, combines both probabilities and non-determinism, we thus need to quantify
over the possible resolution of the non-determinism. Hence, beyond these two particu-
lar problems, we consider all the existential and universal variants for quantifying over
strategies and all the thresholds between 0 or 1.

The rest of this chapter is organized as follows. We formally define the model of
probabilistic timed protocols in Section 2 and we detail the semantics we attach to clique
networks of such protocols: in a first part, a static semantics is considered, where the
number of processes is unknown but fixed; and in a second part, a dynamic semantics
is detailed where the number of processes evolves in a probabilistic way.

Section 3 is devoted to parameterized verification for the static semantics. We show
that most qualitative parameterized verification problems are undecidable when the
topology is static, that is, if the number of processes is constant (but unknown). These
undecidability results already hold in the untimed case, i.e. when the individual pro-
cesses are Markov decision processes (MDP) rather than probabilistic timed automata.
To establish the undecidability results, we explain how a clique network of probabilistic
protocols can simulate a 2-counter machine [Min67], using the processes to encode the
counter values.

Section 4 is devoted to the dynamic case, where the initial number of processes is
unknown and in which the processes are created and disappear according to fixed prob-
ability distributions. In contrast to the static case, parameterized verification becomes
decidable in this setting, and we provide a decision procedure for all the qualitative
parameterized verification problems of interest. The algorithm consists in computing,
by fix point iteration, the set of configurations for which the property holds. In each
case, the termination of the algorithm is ensured by a dedicated well-quasi-order on
configurations of the network, and the correctness of the algorithm relies on a finite
attractor property [ABRS05] in our model. We also establish a complexity lower-bound
by reducing the reachability problem in lossy channel systems [AJ93, CS08]: the qual-
itative parameterized verification problems in the dynamic case are thus non-primitive
recursive.

Modeling probabilistic networks 45

Afterwards, we move to the more complex problem of quantitative parameterized
verification. Unfortunately, we left the quantitative parameterized verification problems
open. However we provide a partial answer: for a fixed initial configuration, we give an
approximation procedure of the minimal probability to reach a target state. This result
is in a non-parameterized setting, yet it is still of interest since it is, to the best of our
knowledge, the first result on the probability approximation on infinite state models
combining probabilities and non-determinism. Moreover, this result can be generalized
to other infinite state models combining probabilities and non-determinism such as lossy
channel systems with insertion.

2 Modeling probabilistic networks

This section is devoted to the introduction of probabilistic timed protocols and to the
semantics we attach to clique networks of such protocols. We define both the static se-
mantics where the number of processes is unknown but fixed, and the dynamic semantics
where the number of processes evolves in a probabilistic way.

2.1 Probabilistic timed protocols

In order to model the behaviors of processes evolving in a network, we introduce prob-
abilistic timed protocols. This model is an extension of the broadcast protocol model
studied in [DSZ11b, DSZ11a, DSZ12] but with probabilities and one clock variable.
For each process, its behavior may now be guarded by some constraints on the value
of its own clock. We restrict the number of clocks to one by process because of the
undecidability result of the reachability problem with multiple clocks for a similar non-
probabilistic model [ADM04]. Moreover, the probabilistic extension allows us to model
randomized algorithms as well as the uncertainty of the result of an action.

We recall that (see Section I.2) given a clock variable x, G(x) denotes the set of
guards on the clock composed of conjunctions of constraints of the form x ∼ n where
n ∈ N is an integer and ∼∈ {≤, <,=, >,≥} is a comparison operator. Moreover,
Up(x) ∈ {∅,x := 0} denotes the set of updates on the clock variable that either (for ∅)
leaves the clock value unchanged or (for x := 0) resets it to zero.

Definition 2.1 (Probabilistic timed protocols) A probabilistic timed protocol is
a tuple P = (Q,Q(p),Q(n), q0,x,Σ,∆) where:

• Q is a finite set of control states, partitioned into probabilistic states Q(p) and
non-deterministic states Q(n),

• q0 ∈ Q(n) is the initial state,

• x is a clock variable,

• Σ is a finite message alphabet,

• ∆ is the edge relation, partitioned into

46 Clique networks of probabilistic timed protocols

– internal actions: ∆i ⊆ Q(n) × G(x) × {ε} × Up(x)×Q(p),

– broadcasts: ∆b ⊆ Q(n) × G(x)× {!!m | m ∈ Σ} × Up(x)×Q(n),

– receptions: ∆r ⊆ Q(n) × G(x) × {??m | m ∈ Σ} × Up(x)×Q(n),

– probabilistic transitions: ∆p : Q
(p) → Dist

(

Q(n)
)

that, for each probabilistic

state q ∈ Q(p), associates a unique distribution.

In our model, a control state can be the source of several internal actions, each
giving rise to a probability distribution for the successor state, whereas broadcasts and
receptions are not probabilistic. This is not a real restriction:

Remark 2.1 (Probabilistic receptions and broadcasts) Notice that models with
probabilistic and non-deterministic choices for broadcasts and receptions can be encoded
in our model by introducing intermediary states and additional internal actions.

Notice that the model of probabilistic timed protocol is equivalent to the model
of probabilistic timed automata [KNPS08] with one clock. However, we choose to
redefine it here to emphasize two points: first the particularities of our model such as
the restriction to one clock and broadcast communication, and second the link with
broadcast protocol models [DSZ11b, DSZ11a, DSZ12] for which probabilistic timed
protocols form a timed probabilistic extension.

Example 2.1 A simple example of probabilistic timed protocol modeling mutual exclu-
sion over two resources is given in Figure 2.1. For simplicity sake, in the example, non
specified guards are the trivial guards, and only reset updates are specified.

The initial state of this protocol is the state idle. From here, there is an internal
transition (idle, true, ε,x := 0, p) ∈ ∆i going to a probabilistic state p ∈ Q(p). When
taking this transition, the clock is reset to zero. The probabilistic transition d associated
with p, (p, d) ∈ ∆p, is such that d(req1) = p and d(req2) = 1− p.

The non-deterministic states req1 ∈ Q(n) and req2 ∈ Q(n) represent the requests
of (respectively) resource one and two. Once the clock has a value greater than 1, the
transition (req1,x > 1, !!1 ,x := 0,CS1) ∈ ∆b can be taken. This transition broadcasts
the message 1 and allows to move to CS1, resetting the clock to zero.

In state req1, one can also move back to the state idle by receiving the message 1

thanks to the transition (req1, true, ??1 , ∅, idle) ∈ ∆r.
The semantics of this example protocol will be explained in Example 2.2.

In the semantics (formally defined in the next section), we consider non-blocking
broadcasts, meaning that the absence of reception of a message does not forbid the
broadcast of the message. Hence a self-loop on any state where a reception is not
defined would give the same semantics. Moreover, in the case where several reception
transitions are defined for the same state, we can ‘split’ this state thanks to internal
actions in order to consider only one possible reception at a time in every state. These
two points allow to assume that protocols have complete deterministic edge relation for
receptions as stated in the following remark.

Modeling probabilistic networks 47

idle p

req1

req2

CS1

CS2

end
ε,x := 0

p

1− p

??1

??2

x > 1, !!1 ,x := 0

x > 1, !!2 ,x := 0

x < 1, !!1 ,x := 0

x < 1, !!2 ,x := 0

ε

ε

??1

??2

Figure 2.1: A probabilistic timed protocol modeling mutual exclusion over two resources.

Remark 2.2 (Simplification: complete deterministic receptions) The edge re-
lation is assumed, for simplicity, complete and deterministic for receptions: from every
state q, for every value x of clock variable x and for every message m ∈ Σ, there exists
a single edge (q, g, ??m, Up(x), q′) ∈ ∆r with x |= g.

2.2 Static semantics for clique networks of probabilistic timed proto-
cols

In this section, we now introduce networks composed of probabilistic timed protocols.
We consider that the components are arranged in a clique, i.e. that a broadcast reaches
all the processes and that they all execute the same probabilistic timed protocol P.

Definition 2.2 (Clique network of probabilistic timed protocol) A clique net-
work C(PN) is composed of N ∈ N copies, called processes, of a probabilistic timed
protocol P.

Note that in a clique network C(PN) the number of processes is fixed to N along
all computations; hence we will, sometimes, refer to this network as static networks in
opposition to dynamic networks presented in the next section.

Example 2.2 The intuitive semantics of a clique network composed of processes run-
ning the protocol given in Figure 2.1 is the following:

Each process starts in state idle with clock value 0. At any time, any process in state
idle can request access to a resource. The choice of the allocated resource is probabilistic.
The requesting process must then stay in the corresponding request state (reqi) at least
one time unit before moving to the critical section state (CSi representing usage of
resource i). If a requesting process receives a message indicating that the resource is
already used, it moves back to the initial state idle. While using a resource, a process
informs the others by broadcast, at least once every time unit.

48 Clique networks of probabilistic timed protocols

idle, 0

idle, 0

idle, 0idle, 0

p, 0

idle, 0.5

idle, 0.5idle, 0.5

req1, 0

idle, 0.5

idle, 0.5idle, 0.5

req1, 0.3

p, 0

idle, 0.8idle, 0.8

req1, 0.3

req1, 0

idle, 0.8idle, 0.8

CS1, 0

idle, 1.2

idle, 2idle, 2

0.5, ε p

0.3,ε

p1.2, !!1

Figure 2.2: An execution of a clique network of 4 processes running the protocol repre-
sented in Figure 2.1.

An example of an execution is given in Figure 2.2. In this figure, the pair corre-
sponding to the current state and clock value of a process is represented inside a circle
if the state is non-deterministic (e.g (idle, 0) in the first configuration) and in a square
if it is probabilistic (e.g. (p, 0) in the second configuration). Symmetrically, the proba-
bilistic configurations (here the second and fourth configurations) are boxed whereas the
non-deterministic configurations are circled.

In this execution, first, after 0.5 time unit, a process requests access to a resource,
with probability p it moves to the request state req1. After 0.3 time unit, an other
process also requests access to a resource and ends in state req1. Finally, after 1.2 time
units (since its clock is now greater than 1), the first process accesses the resource by
broadcasting the message 1 , the other process thus moves back to the state idle.

We now formalize this semantics. The semantics of a clique network C(PN) of
N processes running the probabilistic timed protocol P = (Q,Q(p),Q(n), q0,x,Σ,∆) is
given as a Markov decision process, denoted C (PN), which is detailed below.

Recall that processes do not carry identifiers, so that one cannot distinguish between
two processes with same control state and same clock value. As a consequence, we define
a configuration as a finite multiset of size N , γ ∈ MN (Q × R+) over the set of pairs
composed of a control state and a real value for the clock. Intuitively, if configuration γ
contains exactly two occurrences of (q, 0.5), written γ(q, 0.5) = 2, then two processes
have current state q and current clock value x = 0.5. Abusing notations, we denote by
γ(q) =

∑

x∈R+ γ(q, x) the number of processes in state q. Moreover, since N processes

Modeling probabilistic networks 49

are involved in the network,
∑

q∈Q γ(q) = N .

The semantics of a clique network C(PN) is the Markov decision process C (PN) =
(Γ,Γ(p),Γ(n), {γ0}, T

(n), T (p)), where:

• Γ is the set of configurations partitioned into probabilistic configurations Γ(p) and
non-deterministic configurations Γ(n);

– Γ(p) = {γ ∈ MN (Q × R+) |
∑

q∈Q(p) γ(q) = 1} is the set of probabilistic
configurations, i.e. configurations in which exactly one process (the process
performing the probabilistic action) is in a probabilistic state;

– Γ(n) = MN (Q(n) × R+) is the set of non-deterministic configurations;

• γ0 ∈ Γ(n) is the initial configuration, defined by γ0(q0, 0) = N and γ0(q, x) = 0
otherwise;

• T (p) is the transition probability function that is naturally lifted from ∆p, i.e. if
(q, d) ∈ ∆p and there exists x ∈ R+ such that γ(q, x) = 1 then (γ, d′) ∈ T (p) with
d′ such that for all γ′ ∈ Γ, if there exists q′ ∈ Q such that γ′ = γ − (q, x) + (q′, x)
then d′(γ′) = d(q′) and d′(γ′) = 0 otherwise;

• T (n) ⊆ Γ(n) ×R+ × (Q×R+)×∆× Γ is the non-deterministic transition relation
defined as follow: (γ, y, (q, x), δ, γ′) ∈ T (n) if δ is a broadcast or an internal action
and denoting δ = (q′, g, a, up, qδ), we have q = q′ and there exists γ1 ∈ MN (Q ×
R+) and γ2, γ3 ∈ MN−1(Q × R+) such that:

Time elapsing: for all q̄ ∈ Q and all z ∈ R+, γ1(q̄, z + y) = γ(q̄, z), i.e. all the
clock values are incremented by y.

Non-deterministic choice of a process: there exists a process in state q with
clock value x, i.e. γ1(q, x) > 0, the transition δ is enabled for this process,
i.e. x � g, and the process is treated separately γ2 = γ1 − (q, x).

Execution of the action: if δ is an internal action, i.e. if a = ε, then the
other processes are unaffected hence γ2 = γ3. Otherwise, a =!!m and all the
processes have to receive the message m by taking a reception transition,
hence we update their states and their clock value according to the upgrade
specified on the reception. Formally, for all states q3 ∈ Q and all clock
values z ∈ R+, γ3(q3, z) =

∑

{γ2(q
′
3, z

′) | (q′3, g
′, ??m, up′, q3) ∈ ∆r and z′ �

g′ and z = up(z′)}1.
Finally, the state of the process performing the action and its clock value are
updated according to δ, i.e. γ′ = γ3 + (qδ, up(x)).

Moreover, in order to forbid finite runs, we use a special action unlock that is
enabled only when no other active action (either internal action or broadcast) is
enabled, even after some time elapsing, i.e. if ({γ}×R+× (Q×R+)× (∆i∪∆b)×
Γ)∩ T (n) = ∅ we add a special transition (γ,unlock, γ) in T (n) that loops on the
configuration γ.

1Recall that we consider complete deterministic edge relation for reception (Remark 2.2).

50 Clique networks of probabilistic timed protocols

Informally, the non-deterministic transition relation is split in three parts; in the
first part, we let time elapse (possibly 0 unit of time) and all the clocks in the networks
are incremented by the same value, this leads to the configuration γ1; in the second
part, a process is chosen non-deterministically to perform an action, we thus divide the
multiset into a multiset and a pair (q, x) representing the selected process; in the last
part, this process performs an enabled action (i.e. an action such that its clock value
satisfies the guard), it can either be an internal action that affects only itself and leads
to a probabilistic configuration (for which the probability distribution is given by T (p)),
or a broadcast, that reaches all other processes in the network, in which case they all
update their clocks and state according to the reception transition they use. These
steps are graphically represented in Figure 2.3. However, since we do not distinguish

γ γ1

(q, x)

γ2 γ3

(qδ , up(x))

γ′
time elapsing choice

of

a process

Execution of
the action

receptions

Figure 2.3: Graphical representation of a non-deterministic transition.

between processes with same control state and same clock value, the intuitive semantics
of non-deterministic steps is not to select a process, but rather to select a pair (q, x)
with γ(q, x) > 0 and then to fire for any process in state (q, x) an enabled action.

In order to simplify notations in the case where (γ, y, (q, x), δ, γ′) ∈ T (n) (resp.

(γ,unlock, γ′) ∈ T (n)), we will write γ
y,(q,x),δ
−−−−−→ γ′ (resp. γ

unlock
−−−−→ γ′) or even simply

γ → γ′.
An execution in C (PN) is a finite, or infinite, sequence of configurations ρ =

γ0γ1γ2 . . . starting in the initial configuration γ0 and such that for all i, if γi ∈ Γ(n)

then γi → γi+1 and if γi ∈ Γ(p), then denoting d the probability distribution such that
(γi, d) ∈ T (p) then d(γi+1) > 0. The set of all executions is denoted E .

2.3 Dynamic semantics for clique networks of probabilistic timed pro-
tocols

Clique networks of probabilistic timed protocols from Definition 2.2 are networks where
the number of processes is fixed along any execution. We now discuss a reasonable way to
introduce some mobility in the network. In the application to wireless sensor networks,
the number of nodes may change during the execution of the system, since nodes may
break down or run out of battery, but also, may be newly inserted or have their battery
refilled. We therefore propose a model of probabilistic timed networks, in which the
number of processes evolves over time, and in which, disappearances and creations
of processes are independent random events following fixed probability distributions.
Abstracting mobility by random events seems to be a good trade-off between simplicity

Modeling probabilistic networks 51

and realism of the model.
Moreover, in such systems with dynamism there is often a base station that is fixed

all along the execution. For example, in the case of wireless sensor networks, there can be
a fixed antenna connected to the network in order to collect data. We therefore consider
a model with a fixed base in addition to a parametric number of mobile processes.

Definition 2.3 (Dynamic clique networks of probabilistic timed protocols) A
dynamic clique network DC(B,PN

Λ) is composed of one probabilistic timed protocol B
called the base and several (initially N ∈ N) copies, called processes, of a probabilistic
timed protocol P. The number of processes evolves according to probability distributions
given by the pair Λ = (λ+, λ−), consisting of a creation rate λ+ ∈]0, 1[and a deletion
rate λ− ∈ (0, 1).

The semantics of a Dynamic Clique network, composed of a base running the pro-
tocol B and processes running the protocol P (with initially N processes) with pair of
mobility rates Λ, is given as a Markov decision process DC (B,PN

Λ) which is detailed
below.

The rates λ+ and λ− represent respectively dynamic creation and disappearance of
processes according to fixed probabilistic laws: after each discrete action, each process
disappears with probability λ−, followed by the creation of k processes (in control state
q0 with clock value 0) with probability λk

+(1− λ+), for every integer k ∈ N.
Notice that the case λ+ = λ− = 0 is a particular case ruled out here in or-

der to avoid the static case. Indeed, with λ+ = λ− = 0, the number of processes
would be constant and if the base also runs the protocol P, we recover the model of
(non-dynamic) clique network of probabilistic timed protocols from Definition 2.2, i.e
C (PN) = DC (P,PN−1

(0,0)).

Example 2.3 An execution of DC (P,P3
(0.1,0.2)) is represented in Figure 2.4. For sim-

plicity, both the base and the processes run the protocol P. Notice that each step is
similar to the execution in the static network except for the configuration indexed by (d)
from which the dynamism takes place. In this example, the base is represented by the top
state. The base first performs an internal action that leads with probability p to the state
req1. After that, the dynamism takes place, one process disappears and none are created,
thus the probability is

(3
1

)

0.11(1−0.1)2(0.2)0(1−0.2) = 0.1944. Next, after 1.1 time units
the base sends the message 1 that all processes receive. Then, one process disappears
and four are created, the probability is thus

(2
1

)

0.11(1−0.1)1(0.2)4(1−0.2) = 0.0002304.

We now detail the semantics DC (B,PN
Λ) of a dynamic clique network DC(B,PN

Λ),

with B = (QB ,Q
(p)
B ,Q

(n)
B , b0,xB ,Σ,∆B) and P = (Q,Q(p),Q(n), q0,x,Σ,∆). The se-

mantics of non-deterministic actions and probabilistic transitions is really close to the
semantics for static networks, the only difference is that we have to take into account
the base here; however there is a major difference after each non-deterministic action
and probabilistic transition since there are random creations and disappearances of
processes.

52 Clique networks of probabilistic timed protocols

idle, 0

idle, 0

idle, 0idle, 0

p, 0

idle, 0.5

idle, 0.5idle, 0.5

req1, 0

idle, 0.5

idle, 0.5idle, 0.5

(d)

req1, 0

idle, 0.5

idle, 0.5

CS1, 0

idle, 1.6

idle, 1.6

(d)

CS1, 0

idle, 0

idle, 1.6idle, 0

idle, 0

idle, 0

0.5, ε p

0.1944

1.1, !!10.0002304

Figure 2.4: An execution of a dynamic clique network of (initially) three processes and
a base all running the protocol represented in Figure 2.1.

A configuration is now a pair γγγ = ((b, xB), γ) composed of the state of the base and
its clock value, together with a finite multiset γ ∈ M(Q × R+) over the set of pairs
composed of a control state and a real value for the clock. Notice that now, we consider
multisets that can be of any size. Since, thanks to the dynamism, even if we start with
N processes, there can later be any number of processes in the network.
In order to simplify definitions, we sometimes abuse notation and see the pair γγγ =
((b, xB), γ) as the multiset γ + 〈(b, xB)〉.

The semantics of a dynamic network DC(B,PN
Λ) is given in terms of a Markov

decision process DC (B,PN
Λ) = (Γ,Γ(p),Γ(n), {((b0, 0), γ0)}, T

(n), T (p)), where:

• Γ(n) = (Q
(n)
B ×R+)×M(Q(n)×R+) is the set of non-deterministic configurations;

• Γ(p) is the set of probabilistic configurations that is partitioned in two sets: first,
{γγγ ∈ (QB × R+) ×M(Q × R+) |

∑

q∈Q(p)∪Q
(p)
B

γγγ(q) = 1} configurations in which

exactly one process is in a probabilistic state; and second {γγγ(d) | γγγ ∈ Γ(n)} a copy
of the non-deterministic configurations (the dynamism will take place from these
configurations as explained in the following).

• ((b0, 0), γ0) ∈ Γ(n) is the initial configuration, defined by γ0(q0, 0) = N and
γ0(q, x) = 0 otherwise;

Modeling probabilistic networks 53

• The non-deterministic transition relation is defined exactly as for the static case
but now leads to a probabilistic configuration from which the dynamism will take
place: T (n) ⊆ Γ(n) × R+ × ((Q ∪ QB) × R+) × (∆ ∪ ∆B) × Γ(p) is such that
(γγγ, y, (q, x), δ,γγγ ′′) ∈ T (n) if and only if, either δ is an internal action denoted
δ = (q′, g, ε, up, qδ) then γγγ′′ = γγγ′ ∈ Γ(p), or δ is a broadcast action denoted
δ = (q′, g, !!m, up, qδ) then γγγ′′ = γγγ′(d) with γγγ′ ∈ Γ(n) and we have, q = q′ and
there exists γγγ1,γγγ2,γγγ3 ∈ M(Q× R+ ∪QB × R+) such that:

Time elapsing: for all q1 ∈ Q∪QB and all z ∈ R+, γγγ1(q1, z+ y) = γγγ(q1, z), i.e.
all the clock values are incremented by y.

Non-deterministic choice of a process: there exists a process (or the base)
in state q with clock value x, i.e. γγγ1(q, x) > 0, the transition δ is enabled for
this process, i.e. x � g and the process is treated separately γγγ2 = γγγ1− (q, x).

Execution of the action: if δ is an internal action, i.e. if a = ε then the other
processes are unaffected, hence γγγ2 = γγγ3. Otherwise, a =!!m and all the
processes have to receive the message m by taking a reception transition,
hence we update their states and their clock values according to the reception.
Formally, for all states q3 ∈ Q∪QB and all clock values z ∈ R+, γγγ3(q3, z) =
∑

{γγγ2(q
′
3, z

′) | (q′3, g
′, ??m, up′, q3) ∈ ∆ ∪∆B and z′ � g′ and z = up′(z′)}.

Finally, the state of the process performing the action and its clock value are
updated according to δ, i.e. γγγ′ = γγγ3 + (qδ, up(x)).

Moreover, as in the static case, in order to forbid finite runs, we use a special
action unlock that is enabled only when no other active action (either internal
action or broadcast) is enabled, even after some time elapsing.

• The probabilistic transition function T (p) is defined differently depending on the
type of the probabilistic configuration. First, for a configuration γγγ such that
∑

q∈Q(p)∪Q
(p)
B

γγγ(q) = 1 the probabilistic transition function is, as before, naturally

lifted from ∆p, i.e. if (q, d) ∈ ∆p and there exists x ∈ R+ such that γ(q, x) = 1
then (γγγ, d′) ∈ T (p) with d′ such that for all q′ ∈ Q, d′(((b,xB), γ − (q, x) +

(q′, x))(d)) = d(q′) and d′(γγγ ′) = 0 otherwise. Similarly, if b ∈ Q
(p)
B and (b, d) ∈ ∆B

then (γγγ, d′) ∈ T (p) with d′ such that for all b′ ∈ QB, d′(((b′,xB), γ)
(d)) = d(b′)

and d′(γγγ′) = 0 otherwise.

Dynamism We now explain how the dynamism in the network is modeled.
With each configuration γγγ = ((b, xB), γ)

(d) ∈ Γ(p), we associate the probability
distribution d, i.e. (γγγ, d) ∈ T (p) where d is such that for all configurations γγγ′ =
((b′, xB

′), γ′) ∈ Γ.

– d(γγγ′) = 0 if b′ 6= b or xB
′ 6= xB or γγγ′ /∈ Γ(n);

– otherwise d(γγγ′) =
∑

γ1
P−(γ, γ1)·P+(γ1, γ

′) where we write P−(γ1, γ2) for the
probability to obtain γ2 from γ1 when processes disappear; recall that each

54 Clique networks of probabilistic timed protocols

process can disappear with probability λ−. Hence P−(γ1, γ2) = 0 if γ2 * γ1

and P−(γ1, γ2) =
∏

(q,x)∈γ1

(γ1(q,x)
γ2(q,x)

)

λ
γ1(q,x)−γ2(q,x)
− (1− λ−)

γ2(q,x) otherwise.

Similarly, P+(γ1, γ2) is the probability to obtain γ2 from γ1 when processes
are created; recall that for every integer k, k processes are created (in (q0, 0))
with probability λk

+(1− λ+).

As before, to simplify notations in the case where (γγγ, y, (q, x), δ,γγγ ′) ∈ T (n), we will

write γγγ
y,(q,x),δ
−−−−−→ γγγ′ or even simply γγγ → γγγ′.

As in the static case, an execution in DC (B,PN
Λ) is a finite or infinite sequence of

configurations ρ = γγγ0γγγ1γγγ2 . . . starting in the initial configuration γγγ0 and such that for
all i, if γγγi ∈ Γ(n) then γγγi → γγγi+1 and if γγγi ∈ Γ(p), denoting d the distribution such that
(γγγi, d) ∈ T (p) then d(γγγi+1) > 0. We denote by E the set of all executions.

2.4 Parameterized probabilistic verification problems

In this section, we consider a protocol B = (QB ,Q
(p)
B ,Q

(n)
B , b0,xB ,Σ,∆B) for the base

and a protocol P = (Q,Q(p),Q(n), q0,x,Σ,∆) for the processes. The definitions here
are given for a dynamic network but still hold for a static network considering B = P
and λ− = λ+ = 0.

Recall that a scheduler resolves the non-determinism in Markov decision processes
(see Definition 3.3). In networks, decisions are taken by a strategy.

Definition 2.4 (Strategy) A strategy for a dynamic clique network is a scheduler
for the Markov decision process representing its semantics. Formally a strategy is a
function σ : E → (R+ × ((Q ∪QB)×R+)× (∆ ∪∆B)) ∪ {unlock}, specifying for each
execution a delay, a process and a discrete action to perform next, and such that for
all executions ρ = γγγ0...γγγn with γγγn ∈ Γ(n) there exists a configuration γγγ′ ∈ Γ and a

transition γγγn
σ(ρ)
−−→ γγγ′.

In words, a strategy resolves the non-determinism by choosing in each configuration
a delay τ , a process represented by the pair (q, x) followed by some discrete action
δ ∈ (∆ ∪ ∆B), or if the system is in deadlock the strategy chooses the special action

unlock. The condition γγγn
σ(ρ)
−−→ γγγ′ ensures that σ only chooses delays and actions

consistent with the semantics of the network or the special action unlock when the
network is in deadlock so that all executions are infinite.

We are now in a position to introduce relevant verification questions for clique
networks of probabilistic timed protocols. First, we define quantitative reachability
problems.

Let qf ∈ Q∪QB be a state, and ρ = γγγ0γγγ1 . . . be an infinite execution of DC (B,PN
Λ).

The execution ρ satisfies ✸qf , denoted ρ |= ✸qf , if there exists a configuration γγγi =
((b,xB), γ) along ρ with γγγi(qf) > 0.

Given a strategy σ for DC (B,PN
Λ), we write Pσ(DC (B,PN

Λ) |= ✸qf) for the prob-
ability, under the scheduler σ, of the set of infinite executions ρ such that ρ |= ✸qf .

Parameterized verification of static clique networks of probabilistic timed protocols 55

The aim of this work is to verify a good property in the networks independently
of the number of participants. Dually, this amounts to check for the existence of a
network size satisfying a bad property. We thus define the following family of decision
problems to decide the reachability of a particular control state for an arbitrary number
of components. Formally, for ∈ {∃,∀} a quantifier, p ∈ [0, 1] a probability threshold
and ∼∈ {<,=, >} a comparison operator:

REACH∼p(DC)
Input: Two probabilistic timed protocols B and P, a rate pair Λ, and a control
state qf ∈ Q ∪QB.
Question: Does there exist N ∈ N>0 such that σ, Pσ(DC (B,PN

Λ) |= ✸qf) ∼ p?

Second, we define the quantitative synchronization problem. Let TB ⊆ QB , T ⊆ Q
be subsets of states, and ρ = γγγ0γγγ1 . . . be an infinite execution of DC (B,PN

Λ). The
execution ρ satisfies ✸↓ (TB , T), denoted ρ |= ✸↓ (TB , T), if there exists a configuration
γγγi along ρ such that, whenever γγγi(q) > 0 then q ∈ TB ∪ T .

Given a strategy σ for DC (B,PN
Λ), we write Pσ(DC (B,PN

Λ) |= ✸↓ (TB , T)) for the
probability under σ of the set of infinite executions ρ such that ρ |= ✸↓ (TB , T).

We define the following family of decision problems to answer whether the processes
can gather at the same time in some target states for an arbitrary number of components.
For ∈ {∃,∀} a quantifier, p ∈ [0, 1] a probability threshold and ∼∈ {<,=, >} a
comparison operator:

SY NC∼p(DC)
Input: Two probabilistic timed protocols B and P, a rate pair Λ, and a pair of
sets of control states TB ⊆ QB, T ⊆ Q.
Question: Does there exist N ∈ N>0 such that σ, Pσ(DC (B,PN

Λ) |=
✸↓ (TB , T)) ∼ p?

Notice that here the problems are defined as the existence of an initial network
size that satisfies the property. But since we consider all the variants for ∈ {∃,∀},
p ∈ [0, 1] and ∼∈ {<,=, >}, the problems where one asks whether the property is
satisfied for any number of processes can be obtained by negation. For example, if the
answer is negative for REACH∃

=1(DC) that means that for all N ∈ N>0 and for all
strategies σ, Pσ(DC (B,PN

Λ) |= ✸qf) < 1.
The decidability results obtained are presented in Table III.1 where decidable prob-

lems are in green and undecidable ones in red.

3 Parameterized verification of static clique networks of

probabilistic timed protocols

In this section, we consider the static case i.e., when λ− = λ+ = 0, and B = P. We
start by establishing simple decidability results, before showing the undecidability of
the other problems.

56 Clique networks of probabilistic timed protocols

= 0 = 1 > 0 < 1 = p > p < p

REACH
C

∃ Theorem 3.4 Theorem 3.3 Theorem 3.2 Theorem 3.4 Theorem 3.3 open Theorem 3.4
∀ Theorem 3.1 Theorem 3.5 Theorem 3.5 Theorem 3.1 Theorem 3.5 Theorem 3.5 Theorem 3.1

DC
∃ Theorem 4.2 Theorem 4.4 Theorem 4.1 Theorem 4.3 open open open
∀ Theorem 4.1 Theorem 4.3 Theorem 4.2 Theorem 4.4 open open open

SY NC
C Theorem 3.6

DC Theorem 4.6 open

Table III.1: Summary of the decidability results of this chapter. In green decidable
problems and in red undecidable ones. In this table p ∈]0, 1[.

3.1 Some decidability results using monotonicity

First, let us establish a monotonicity result.

Lemma 3.1 For every strategy with N processes σN , there exist a strategy σN+1 for
N + 1 processes such that PσN

(C (PN) |= ✸qf) ≤ PσN+1
(C (PN+1) |= ✸qf).

Proof Any strategy σN in C (PN) can be mimicked by a strategy σN+1 in C (PN+1)
by ignoring a process, until a deadlock is reached in C (PN), after what the choice in
σN+1 can be arbitrary.

The probability to reach qf under σN+1 is thus greater than under σN . Indeed,
σN+1 captures all executions reaching qf with the same probability, and all executions
reaching a deadlock are extended (thanks to the additional process); moreover, the
ignored processes may reach qf (due to receptions) along executions previously avoiding
qf . �

Using this Lemma, we obtain the following decidability result.

Theorem 3.1 The problems REACH∀
=0(C), REACH∀

<p(C) for all p ∈ [0, 1] are de-
cidable for static clique networks of probabilistic timed protocols.

Proof Lemma 3.1 allows us to bring the parameterized problems back to their equiva-
lent problems in finite Markov decision process. Indeed, since the parameterized prob-
lems ask for the existence of a network size, one can first check if the property already
hold for a network composed of only one process, hence in a finite MDP. Moreover, if the
property does not hold, for example, if ∀σ, Pσ(C (P1) |= ✸qf) = 0 does not hold, that
means that ∃σ, Pσ(C (P1) |= ✸qf) > 0. Then applying Lemma 3.1 multiple times, we
obtain that for all network sizes N , ∃σ, Pσ(C (PN) |= ✸qf) > 0. Thus the answer of the
parameterized problem REACH∀

=0(C) is negative. Hence the parameterized problem
REACH∀

=0(C) is equivalent to ∀σ, Pσ(C (P1) |= ✸qf) = 0.
With the same arguments one can show that for any threshold p ∈ [0, 1], ∃N ∈

N, ∀σ, Pσ(C (PN) |= ✸qf) < p is equivalent to ∀σ, Pσ(C (P1) |= ✸qf) < p.
The decidability of REACH∀

=0(C), and REACH∀
<p(C) thus derives from the de-

cidability of the following verification questions for finite state timed Markov decision
process [KNPS08, BK08]: ∀σ, Pσ(M |= ✸qf) = 0 (resp. < p). �

Parameterized verification of static clique networks of probabilistic timed protocols 57

REACH∃
>0(C) is an other problem that can be easily resolved thanks to preexisting

works. Indeed, this problem asks for the existence of a finite path to the target state
and is thus equivalent to the reachability problem in the non-probabilistic case, hence
this problem is decidable as stated in the following theorem.

Theorem 3.2 The problem REACH∃
>0(C) is decidable for static clique networks of

probabilistic timed protocols.

Proof Observe that, for a fixed size N ∈ N, ∃σ, Pσ(C (PN) |= ✸qf) > 0 if and only if
there exist an execution ρ in C (PN) with ρ |= ✸qf . The decidability of REACH∃

>0(C)
is therefore a consequence of the decidability of the parameterized reachability problem
in the non-probabilistic case, established in [ADR+11]. �

3.2 Undecidability results

We now consider the remaining cases, and prove their undecidability, already for the
restricted class of untimed probabilistic protocols. Untimed probabilistic protocols can
be seen as probabilistic timed protocols for which all the guards are the trivial guard.
Since the clock does not play any role in this protocol, in this section we omit the clock
(together with the guards and updates) in the description of the protocols.

In order to show the undecidability of the remaining problems, we use a reduction
from deterministic Minsky machines (see Section I.4.4) for which the halting problem
and the boundedness problem are known to be undecidable (Theorem 4.4 [Min67]).
Each of the problems involves a different reduction relying on its specificity but we use
the same backbone that is weak simulation of the Minsky machine thanks to clique
networks of probabilistic (untimed) protocols. This general idea is presented in the
following, and the proofs of undecidability of each case are stated in Theorems 3.3, 3.4,
and 3.5.

Simulation of a Minsky machine. Let M = (K, L0, Lacc, c1, c2) be a Minsky ma-
chine, we sketch here how to build a protocol that weakly simulates M, i.e. that either
simulates correctly M if possible, or for which we are able to detect an error in the
simulation.

First, notice that in a clique network it is easy to isolate one process i.e. to reach a
configuration in which there is one and only one process in a particular state. Indeed,
by making a process perform a broadcast, since all the other processes receive this
broadcast, we can ensure that the process is alone in a particular state. We will use this
idea to simulate increment and decrement of the counter values, and to initially isolate
one process to keep track of the current instruction.

At the beginning of the simulation, one process is isolated to play the role of the
controller, that keeps track of the current instruction in M. The other processes will
serve to encode the values of the counters, and are grouped in state idle. The increment
of counter ci is represented by moving a process from idle to state ci where the counter
value is encoded. This can be done by two communications: one from the controller
to the processes in idle, followed by one from one “counter” process to the controller.

58 Clique networks of probabilistic timed protocols

Symmetrically, the decrement of counter ci is represented by moving a process state ci
to idle.

The test to zero of counter ci is more tricky since there is no way to test whether
there is a process in a given state or not. However, we rely on non-deterministic guesses
of the controller to establish whether the counter value is zero or not. The idea is to
detect errors when they occur. If the guess is zero while ci > 0, all processes in ci move
to an error state errz that will be used to detect that an error occurred in the simulation.
Symmetrically, if the guess is not zero while ci = 0, the unfeasibility of the decrement
will allow us to detect the error. If the guess is correct, the simulation proceeds, and
no process is in an error state.

This general reduction gives us a way to weakly simulate a Minsky machine. In the
following, we tune this sketch in order to show undecidability of the different problems.
But first, we define more formally this construction to capture the important properties
of the reductions.

Formally, from a Minsky machine M = (K, L0, Lacc, c1, c2), we build the non prob-
abilistic protocol PM = (Q,Q(p),Q(n), q0,Σ,∆) represented in Figure 3.5, and such
that:

• Q(p) = ∅,

• Q(n) = K ∪K×K ∪
⋃2

i=1{ci, ci++, ci−−} ∪ {idle, errz, q0},

• Σ =
⋃2

i=1{ci++, ci−−, z (ci)} ∪ {ok , ctrl},

• ∆ = ∆i ∪∆c ∪∆K is partitioned into three parts:

Initialization: ∆i = {(q0, !!ctrl , L0), (q0, ??ctrl , idle)}.
The initialization transitions are represented in purple in the figure.

Counter part: ∆c is composed of the following transitions; (ci, ??z (ci), errz) for
tests to zero; (ci, ??ci−−, ci−−), (ci−−, ??ok , ci), and (ci−−, !!ok , idle) for
decrements; and (idle, ??ci++, ci++), (ci++, ??ok , idle), and (ci++, !!ok , ci)
for increments.
The increment transitions are represented in red, and the decrement transi-
tions are represented in blue in the figure.

Controller part: ∆K is composed of the following transitions:

– for all increment instructions L : ci := ci + 1; goto L′ there are two
transitions (L, !!ci++, (L, L′)) and ((L, L′), ??ok , L′) and

– for all decrement instructions L : if ci = 0 then goto L′ else ci :=
ci − 1; goto L′′ there are transitions (L, !!z (ci), (L, L

′)), ((L, L′), ε, L′),
(L, !!ci−−, (L, L′′)), and ((L, L′′), ??ok , L′′).

The test to zero transitions are represented in green in the figure.

We now give some properties on the executions of C (PN
M). We say that a configura-

tion γ of the network encodes a configuration π = (L, v1, v2) of the Minsky machine M if
γ(L) = 1, γ(c1) = v1, γ(c2) = v2 and for all q ∈ Q \ {L, c1, c2, idle} we have γ(q) = 0. In

Parameterized verification of static clique networks of probabilistic timed protocols 59

Counter c1

Counter c1

Counter c2

Counter c2

Controller part of the gen-
eral reduction Controller part

Controller

q0idle

c1++

c2++

c1

c2

c1−−

c2−−

errz

L0 . . .

L LL′ L′

L1

...
L1L

′
1 L′1

L1L
′′
1 L′′1

Lacc

...

!!c
tr
l

??ctrl

??
c
1 +

+

??
c
2
+
+

??
o
k

!!ok

??
c
1 −

−

??z (c
1)

??
o
k

!!ok

??
o
k

!!ok

??
c 2
−
−

??
z
(c
2
)

??
o
k

!!ok

!!c1++ ??ok

!!c
2
−
−

!!z (c
2)

??ok

ε

Figure 3.5: General framework of the reductions.

words, if the controller points to the right instruction, the number of processes encoding
each counter is correct and all remaining processes are in state idle.

We say that an execution ρ = γ0γ1 . . . of the network simulates a run of the Minsky
machine π0π1 . . . if for all finite prefixes π0 . . . πn of the run there exists a sub-sequence
γj0 . . . γjn of ρ such that for all k ∈ [0 . . . n], γjk encodes πk.

Let us now detail how the reduction works:

Initialization: From the initial configuration, the only possible transition is for one
process to broadcast the message ctrl and move to L0; all the other processes
receive this message and move to the state idle. Notice that the resulting config-
uration encodes the initial configuration π0 of M.

Increment: In a configuration in which the controller is in a state representing an
increment instruction, the only possible transition is, for the controller, to broad-
cast the message ci++ that is received by all processes in state idle. One of these
processes will then broadcast the message ok making all the processes in state
ci++ move back to idle and the controller moves to the next instruction state.
In the new configuration, there is now one more process in state ci (the process
that broadcasts ok). Notice that in the case where there was no process in state
idle, no process can send the message ok and the network reaches a deadlock
configuration.

Decrement: In a configuration in which the controller is in a state representing a

60 Clique networks of probabilistic timed protocols

decrement instruction, a possible transition is, for the controller, to broadcast
the message ci−− that is received by all the processes in state ci, one of these
processes will then broadcast the message ok making all the processes in state
ci−− move back to ci and the controller moves to the next instruction state. In
the new configuration, there is now one less process in state ci (the process that
broadcasts ok). Notice that in the case where the controller chooses the decrement
although there is no process in state ci, no process can send the message ok and
the network reaches a deadlock configuration.

Zero test: Lastly, for a configuration in which the controller is in a state representing
a decrement instruction, the only other possible transition is for the controller to
broadcast the message z (ci), and then move to the next state representing the
next instruction. However, notice that in the case where the controller makes a
wrong guess (i.e. assumes the counter to be zero while it is not) all the processes
in state ci receive the message z (ci) and thus move to errz, and since it is a sink
state, they will stay there for the rest of the execution.

Example 3.1 Consider the deterministic Minsky machine with initial label L0, accept-
ing label Lacc and composed of the following instructions:

L0 : c1 := c1 + 1; goto L1
L1 : c1 := c1 + 1; goto L2
L2 : if c1 = 0 then goto L1 else c1 := c1 − 1; goto L3
L3 : if c2 = 0 then goto Lacc else c2 := c2 − 1; goto L1

Its associated run is Π = (L0, 0, 0)(L1 , 1, 0)(L2, 2, 0)(L3, 1, 0)(Lacc, 1, 0).

We give examples of possible executions for a clique network composed of processes
running the protocol PM. First, an execution simulating Π, with 4 processes:

〈q40〉
!!ctrl
−−−→ 〈L0, idle

3〉
!!c1++
−−−−→ 〈L0L1, c1++3〉

!!ok
−−→ 〈L1, c1, idle

2〉
!!c1++
−−−−→ 〈L1L2, c1, c1++2〉

!!ok
−−→ 〈L1, c

2
1, idle〉

!!c1−−
−−−−→ 〈L2L3, c1−−2, idle〉

!!ok
−−→ 〈L3, c1, idle

2〉
!!z(c2)
−−−−→ 〈L3Lacc, c1, idle

2〉
ε
−→ 〈Lacc, c1, idle

2〉

Then, an execution with 2 processes simulating Π, but lacking processes to do an incre-
ment, hence reaching a deadlock:

〈q20〉
!!ctrl
−−−→ 〈L0, idle〉

!!c1++
−−−−→ 〈L0L1, c1++〉

!!ok
−−→ 〈L1, c1〉

!!c1++
−−−−→ 〈L1L2, c1〉

Lastly, an execution with 4 processes making a wrong guess for a zero test, hence reaching
the error state:

〈q40〉
!!ctrl
−−−→ 〈L0, idle

3〉
!!c1++
−−−−→ 〈L0L1, c1++3〉

!!ok
−−→ 〈L1, c1, idle

2〉
!!c1++
−−−−→ 〈L1L2, c1, c1++2〉

!!ok
−−→ 〈L1, c

2
1, idle〉

!!z(c1)
−−−−→ 〈L2L1, errz

2, idle〉
!!ε
−→ 〈L1, errz

2, idle〉 . . .

Parameterized verification of static clique networks of probabilistic timed protocols 61

The following proposition summarizes the properties of the reduction. The proofs
are straightforward from the definition and are omitted.

Proposition 3.1 Let M = (K, L0, Lacc, c1, c2) be a Minsky machine and π0π1 . . . be its
associated run. In C (PN

M), the clique network composed of N processes running protocol
PM, the following properties hold: for an execution ρ = γ0 . . . γn

1. There is a unique process playing the role of the controller, i.e. if n ≥ 1 then
∑

q∈K∪K×K γn(q) = 1.

2. When the controller is in a state representing an instruction, there are no processes
in intermediary states ci++ and ci−− for i ∈ {1, 2}, i.e. if

∑

q∈K γn(q) = 1 then
∑

q∈{ci++,ci−−|i∈{1,2}} γn(q) = 0.

3. For each infinite execution ρ′ = γ0γ1 . . . , either:

• ρ′ simulates the run π0π1 . . . , or

• there are not enough processes to simulate the run, i.e. there is an
index k such that γk encodes a configuration π = (L, v1, v2) and such that L
corresponds to an increment and v1+v2 = N−1, hence the execution reaches
a deadlock in configuration γk+1, or

• the controller wrongly guessed zero, i.e there is an index k such that
γk encodes a configuration π = (L, v1, v2) and such that L corresponds to a
test to zero decrement of counter i ∈ {1, 2} and vi > 0 and the next action of
the controller is a broadcast of z (ci) then all the processes in state ci move
to errz and stay there for the rest of the execution, or

• the controller did not guess zero when it was, i.e there is an index
k such that γk encodes a configuration π = (L, v1, v2) and such that L cor-
responds to a test to zero decrement of counter i ∈ {1, 2} and vi = 0 and
the next action of the controller is a broadcast of ci−−, then, the execution
reaches a deadlock in configuration γk+1.

4. There exists an execution that simulates the run π0π1 . . . if and only if N − 1 ≥
maxk c1(πk) + c2(πk).

In the following paragraphs, we explain how to use and adapt, for the particularity
of each problem, the above reduction in order to show undecidability of the reachability
problems.

Undecidability of REACH∃
=1(C). We first focus on the problem REACH∃

=1(C),
i.e. whether, for some number of processes, there exists a strategy that allows to
reach, almost surely, a goal state. We then prove the undecidability of the problems
REACH∃

=p(C) for p ∈]0, 1].
To establish the undecidability of REACH∃

=1(C), we slightly modify PM into P ′ =

(Q′,Q(p)′,Q(n)′, q0,Σ
′,∆′) such that: P ′ contains now a probabilistic state Q(p)′ = {p}

62 Clique networks of probabilistic timed protocols

and two more non-deterministic states Q(n)′ = Q(n) ∪ {reset,w}. The distribution
associated with p is d (i.e (p, d) ∈ ∆′) and is such that d(w) = 0.5 and d(reset) =
0.5. Moreover, P ′ contains the additional transitions (Lacc, ε, p), (reset, !!r , L0) and
(ci, ??r , idle).

See Figure 3.6 for a representation of P ′. In this figure, the new elements in compar-
ison with Figure 3.5 are in brown. The idea is that after reaching Lacc with probability
0.5, the controller moves to the state w, and with probability 0.5, it starts again the
computation from L0. However, since errz is a sink state, the new computation may
not use the processes stuck in errz. Hence, if the execution was not a simulation of the
Minsky machine, the new computation will start with strictly less processes.

Counter c1

Counter c2

Controller

q0idle

c1

c2

errz

L0

..

.

Lacc

w

reset

ε

0.5

0.
5

!!r

!!c
tr
l

??ctrl

Figure 3.6: Reduction for REACH∃
=1(C).

In order to prove that REACH∃
=1(C) is undecidable, we show the following lemma.

Lemma 3.2

∃N ∈ N>0, ∃σ, Pσ(C (NP ′

) |= ✸w) = 1 ⇐⇒ M terminates.

Proof Assume that M terminates and let Π = π0 . . . πn be its run. Let N be an
integer greater than the maximal value of the sum of the counters along Π e.g. N =
maxj(c1(πj) + c2(πj)) + 1. From point 4 of Proposition 3.1, we know that there is an
execution ρΠ in C (PN

M) that simulates Π. But since PM is a sub-protocol of P ′, we
can define a strategy σ such that when the controller is in a state of Q \ {Lacc}, σ plays
as ρΠ and whenever the controller reaches Lacc, the strategy makes the controller go to
the probabilistic state p; if the probabilistic transition leads to reset then σ starts over
the computation by choosing the broadcast of r . Hence from L0, under σ, the controller
reaches Lacc and no process is in the error state errz. From Lacc with probability 0.5, it

Parameterized verification of static clique networks of probabilistic timed protocols 63

moves to w and with probability 0.5, it starts again with the same number of processes.
Hence, the probability to eventually reach w is 1.

Assume now that M does not terminate, and consider an execution ρ of C (P ′N) for
an arbitrary number of processes N ∈ N. Assume that ρ ends in Lacc. This execution
does not faithfully simulate Π and thus, some processes must be in the error state
errz. As a consequence, each time the network tries to reach w with probability 0.5,
it needs to retry from L0 with at least one more process stuck in errz. Therefore,
each execution of C (P ′N) cannot visit Lacc more than N − 1 times. We thus obtain
∀σ, Pσ(C (P ′N) |= ✸w) ≤ 0.5N−1, which concludes the proof of Lemma 3.2. �

Theorem 3.3 The problems REACH∃
=p(C) for p ∈]0, 1] are undecidable for static

clique networks of probabilistic (timed) protocols.

Proof Using a small gadget (represented in Figure 3.7) one can, from a protocol P and
p ∈]0, 1[, design a new protocol Pp that behaves exactly as P with probability p and
deadlocks with probability 1− p. This gadget consists in a new initial state from which
the only possibility is to broadcast a message s, after that the process has probability
p to broadcast again the message s and probability 1− p to reach a deadlock state; the
other processes in the initial state, at the reception of s move to a state w from which
the reception of s leads to the initial state of P; if the second s is not broadcast, the
processes are stuck in the state w.

q′0

q1 p q2 ⊥

w q0 P

!!s

ε
p

1− p

!!s

??s

??s

Figure 3.7: Gadget to run P with probability p ∈]0, 1[.

This gadget, together with Lemma 3.2, gives the undecidability of the problems
REACH∃

=p(C) for p ∈]0, 1], and thus concludes the proof of Theorem 3.3. �

Undecidability of REACH∃
=0(C). We now focus on the problem REACH∃

=0(C),
i.e. whether, for some number of processes, there exists a strategy that allows to avoid,
almost surely, a goal state. We then prove undecidability of the problems REACH∃

=0(C)
and REACH∃

<p(C) for p ∈]0, 1].
To prove undecidability of REACH∃

=0(C), we redefine P ′ from PM by adding for
all q ∈ K× K a transition (q, ε, errz). See Figure 3.8 for a representation of P ′. In this

64 Clique networks of probabilistic timed protocols

figure, the new elements in comparison with Figure 3.5 are in brown. Note that P ′ is
not probabilistic in this case. The idea is that in this protocol, the only way to avoid
the state errz is to simulate the run of M. However, we know that this is only possible
if the counters are bounded.

Counter c1

Counter c2

Controller part for the reduction

Controller

q0idle

c1

c2

errz

L0

L LL′ L′

L1

...
L1L

′
1 L′1

L1L
′′
1 L′′1

Lacc

ε

ε

ε

!!c
tr
l

??ctrl

!!c1++ ??ok

!!c
2
−
−

!!z (c
2)

??ok

ε

Figure 3.8: Reduction for REACH∃
=0(C).

In order to prove that REACH∃
=0(C) is undecidable, we show the following lemma.

Lemma 3.3

∃N ∈ N>0, ∃σ, Pσ(C (P ′N) |= ✸errz) = 0 ⇐⇒ M is bounded.

Proof Assume that ∃σ, Pσ(C (P ′N) |= ✸errz) = 0. Since P ′ is not probabilistic, it
means that there is a maximal execution that avoids errz. Indeed, in the absence
of probabilities, a strategy leads to a unique execution, hence under a strategy the
probability to reach errz is either 0 or 1. Since, with the transition added in P ′, the
controller cannot be blocked elsewhere than in Lacc. The fact that an execution avoids
errz means that the execution faithfully simulates Π. Using point 4 of Proposition 3.1,
we know that, for such an execution to exist, necessarily N−1 ≥ maxj(c1(πj)+c2(πj)).
Hence, M is bounded.

Assume that M is bounded and let N = maxj(c1(πj) + c2(πj)) + 1. By point 4
of Proposition 3.1, we know that there exists an execution ρΠ that faithfully simulates

Parameterized verification of static clique networks of probabilistic timed protocols 65

Π, and hence avoids errz. Thus, defining σ as the strategy that simulates M, we have
Pσ(C (P ′N) |= ✸errz) = 0, which concludes the proof of Lemma 3.3. �

Theorem 3.4 The problems REACH∃
=0(C) and REACH∃

<p(C) for p ∈]0, 1] are un-
decidable for static clique networks of probabilistic (timed) protocols.

Proof Remark that the proof of Lemma 3.3 also gives a proof for the undecidability
of REACH∃

<p(C) for p ∈]0, 1]. Hence we showed Theorem 3.4. Indeed, we recall that
since P ′ is not probabilistic, the probability to reach errz is either 0 or 1. �

Undecidability of REACH∀
>0(C). We now focus on the problem REACH∀

>0(C),
i.e. whether, for some number of processes, all the strategies reach a target state with
positive probability. We then prove the undecidability of the problems REACH∀

>p(C)

for p ∈ [0, 1[and REACH∀
=p(C) for p ∈]0, 1].

For these cases, we define P ′ from PM by adding an error state errc, for all q ∈
K∪K×K a transition (q, ε, errc), and the transitions: (errc, !!err , errc), (idle, ??err , errz),
(ci++, ??err , errz) and (ci−−, ??err , errz) for i ∈ {1, 2}. See Figure 3.9 for a represen-
tation of P ′. Note that here again P ′ is not probabilistic. The idea is to force all the
executions to eventually reach errz except for: 1) the executions that simulate the run
of M when it is infinite and 2) the executions that simulate the run but lack processes
to perform an increment.

Counter part for
the reduction

Counter c1

Counter part for
the reduction

Counter c2

Controller part
for the reduction

Controller

q0idle

c1++

c2++

c1

c2

c1−−

c2−−

errz

L0 L0L

..

.

Lacc L′L′′

errc

ε

ε

!!e
rr

??err

??
er
r

??err

??
er
r

!!c
tr
l

??ctrl

Figure 3.9: Reduction for REACH∀
>0(C).

In order to prove that REACH inf
>0(C) is undecidable, we show the following lemma.

66 Clique networks of probabilistic timed protocols

Lemma 3.4

∃N ∈ N>0, ∀σ, Pσ(C (P ′N) |= ✸errz) > 0 ⇐⇒ M terminates.

Proof Assume that M terminates, we let N = maxj(c1(πj)+c2(πj))+2. We distinguish
between executions of C (P ′N) that faithfully simulate Π and others. Any execution that
faithfully simulates Π reaches Lacc with at least one process in state idle. From Lacc,
the only choice is to take one of the additional transitions and move to errc and then
to send the message err , forcing the processes in idle to move to errz. Consider now
an execution that does not faithfully simulate Π. Then, either one process was sent
to errz, or the controller moved to errc with at least one process in idle. Again, from
errc the only choice is to send an err message, forcing the processes in idle to move to
errz. Therefore, all executions reach errz, hence ∀σ, Pσ(C (|=P ′,N)✸errz) > 0, and the
probability is even 1 since P ′ is not probabilistic.

Assume now that M does not terminate, and let us show that for all network sizes
N ∈ N>0, ∃σ, Pσ(C (P ′N) |= ✸errz) = 0. We distinguish between two cases. The first
case is when M is not bounded. For all N , consider the execution ρN that first simulates
the prefix π0 . . . πn of Π, where πn is the first configuration such that c1(πn)+ c2(πn) =
N − 1 and c1(πn+1) + c2(πn+1) = N , and then, the controller moves to errc and loops
there by broadcasting err . This execution ρN does not reach errz since, it first simulates
a prefix of Π, and then, when err is sent, there are no process in state idle to receive it,
since all the processes are either in state c1 or c2. Hence ∀N,∃σ, Pσ(C (P ′N) |= ✸errz) =
0. Second, if M is bounded, then for N < maxj(c1(πj)+ c2(πj))+ 1, we again consider
ρN and get the same result. And for N ≥ maxj(c1(πj) + c2(πj)) + 1, using point 4 of
Proposition 3.1, there exists an execution ρΠ that faithfully simulates Π and therefore
never reaches errz. Hence, for all N , ∃σ, Pσ(C (P ′N) |= ✸errz) = 0. This concludes the
proof of Lemma 3.4. �

Theorem 3.5 The problems REACH∀
>p(C) for p ∈ [0, 1[and REACH∀

=p(C) for p ∈
]0, 1] are undecidable for static clique networks of probabilistic (timed) protocols.

Proof Notice that since P ′ (defined in the proof of Lemma 3.4) is not probabilistic,
for all strategies σ, Pσ(C (P ′N) |= ✸errz) > 0 if and only if Pσ(C (P ′N) |= ✸errz) = 1.
We hence deduce the undecidability of the two following problems: REACH∀

=1(C) and
REACH∀

>p(C) for p ∈ [0, 1[. Moreover, the gadget presented in Figure 3.7 also allows
one to obtain the undecidability of REACH∀

=p(C) for p ∈]0, 1[. Which concludes the
proof of Theorem 3.5. �

3.3 Undecidability of synchronization

We now consider the synchronization property, i.e. whether the processes can gather
at the same time in some specific states.

Notice that we can use the target set to check whether the simulation of a Minsky
machine presented in Section 3.2 has reached the error state (that is a deadlock state).

Theorem 3.6 The following problems are undecidable:

Parameterized verification of static clique networks of probabilistic timed protocols 67

• SY NC∃
=p(C) and SY NC∀

=p(C) for p ∈ [0, 1];

• SY NC∃
>p(C) and SY NC∀

>p(C) for p ∈ [0, 1[; and

• SY NC∃
<p(C) and SY NC∀

<p(C) for p ∈]0, 1],

for static clique networks of probabilistic (timed) protocols.

Proof To prove undecidability of these problems, we use the protocol PM defined in
Section 3.2, represented in Figure 3.5. Notice that we can use the synchronization
property to ensure that the error state is absent from the last configuration, hence
that the run of the Minsky machine was simulated without error. Considering the
target set T = {Lacc, c1, c2, idle}, we know, thanks to Proposition 3.1, that there exists
an execution synchronizing in T if and only if the Minsky machine terminates. Since
there is no probability in this protocol, the existence of an execution is equivalent to
the existence of a strategy that satisfies synchronization with probability 1. We hence
get the undecidability of SY NC∃

>p(C) for p ∈ [0, 1[. Moreover, using the gadget from
Figure 3.7, we also get the undecidability of SY NC∃

=p(C) for p ∈]0, 1].
Consider now the protocol represented in Figure 3.8 for which there is an internal

transition to the error state from all intermediary states of the controller. For this
protocol, the only executions for which the controller does not move to the error state are
of two kinds: either (1) executions that simulate the Minsky machine or (2) executions
that wrongly guessed zero and then either the controller reaches the final instruction
or the controller can simulate infinitely many instructions, and hence avoid the error
state. To detect these two false simulations with a target set, we modify the protocol:
first, we add a self loop broadcasting a message err on the error state and a reception
of this message from Lacc to errz. Doing so, if an execution reaches Lacc while there are
some processes in the error state, the controller is forced to move to the error state.
Second, we allow to use the processes modeling the counters only once: this is done
by moving them in a new deadlock state idle′ at the end of a decrement instead of
idle. When reaching idle′, a process is said to be consumed. In order to prevent infinite
simulations, we add before all original instructions two additional instructions that
increment then decrement the same counter. That way, the simulation of each original
instruction consumes at least one process, hence there is no infinite simulation. We thus
ruled out the two cases and now the only execution where the controller does not reach
the error state is the execution that simulates the Minsky machine. For the target set
T = Q \ (K∪K×K∪{q0}), there is an execution where all the processes do not gather
in T if and only if the Minsky machine terminates. Hence SY NC∃

=0(C) is undecidable,
and since there are no probabilities in the protocol, the problems SY NC∃

<p(C) are
equivalent to SY NC∃

=0(C) and hence also undecidable.
Now, replace the internal transition from LL′ to the error state when L is an incre-

ment, by a reception of message err , and add an internal transition from idle to errz. If
the number of processes is smaller than the maximum sum of the two counters plus one
then, there is an execution in which the controller is stuck while doing an increment.
Otherwise, for all the executions, the controller eventually reaches errz. Hence, for the

68 Clique networks of probabilistic timed protocols

target set T = Q \ (K ∪ K × K ∪ {q0}), the problem SY NC∀
=1(C) is equivalent to the

non-boundedness of the Minsky machine and is thus undecidable. Since there are no
probabilities, the problems SY NC∀

>p(C) for p ∈ [0, 1] are equivalent to SY NC∀
=1(C),

and hence also undecidable. Moreover, using the small gadget from Figure 3.7 we also
obtain the undecidability of SY NC∀

=p(C) for p ∈]0, 1].
Last, consider the protocol represented in Figure 3.9, remove the internal transition

LL′ to the error state when L is a decrement and replace the internal transition LL′ to
the error state when L is an increment by a broadcast of err . Consider the target set
T = {c1, c2, idle, errc}. If the number of processes is smaller than the maximum of the
two counters sum plus one, then there is an execution that simulates M until it tries to
perform an increment and lack processes, and the controller then moves to errc. Thus,
there exists a strategy that gathers all processes in the target set with probability
1 (since the protocol is not probabilistic). Otherwise, if the number of processes is
greater than the maximum of the two counters sum plus one, then the execution that
simulates M avoids errc, and the other executions are either stuck in a state LL′, or
some processes are in state errz. Thus, for all strategies, the probability to gather all the
processes in the target set is 0. Hence, the problem SY NC∀

=0(C) is equivalent to the
non-boundedness of the Minsky machine, and is thus undecidable. Since there are no
probabilities, the problems SY NC∀

<p(C) for p ∈]0, 1] are equivalent to SY NC∀
=0(C),

and hence also undecidable. �

In this section, we considered the parameterized verification of (static) clique net-
works of probabilistic timed protocols. We first have established the decidability of the
problems REACH∀

=0(C), and REACH∀
<p(C) for all p ∈ [0, 1] thanks to a monotonicity

property. Then, we have shown the undecidability of all the remaining reachability prob-
lems as well as the undecidability of the synchronization problems thanks to encodings
of Minsky machines.

A well known infinite state model share this undecidability result: channel systems.
However, in channel systems if one consider that message can be lost, the reachability
problems become decidable. We will see in the following Section that similar results
hold also in our case: if we consider unreliability in the model by introducing loss of
process the problems are decidable.

4 Parameterized verification of dynamic networks of prob-

abilistic timed protocols

We now turn to dynamic clique networks of probabilistic timed protocols, and will see
that the decidability of the qualitative parameterized verification problems is recovered
thanks to probabilistic disappearance and creation of processes. To establish this re-
sult, we first abstract the Markov decision process (MDP for short) DC (B,PN

Λ) into
a discrete Markov decision process, using an ad-hoc region abstraction which preserves
probabilities. This abstraction allows one not to consider all the possible real values of
the clocks, but only a finite number of integer parts as well as an ordering on their frac-
tional parts. Then, similarly to what is done for lossy channel systems [BBS07, BS13],

Parameterized verification of dynamic networks of probabilistic timed protocols 69

we prove that the so-called region MDP enjoys the finite attractor property, that it
can be equipped with a well-quasi-ordering on its region-configurations, and that we
can effectively compute the predecessor operator (thus perform a backward reachability
analysis). These two properties entail the decidability of the qualitative verification
questions in the region MDP that are equivalent to the parameterized verification prob-
lems in the network.

4.1 Region abstraction

Recall that the classical region abstraction for timed automata, presented in the seminal
paper [AD94] (see Section 2), is based on the observation that the relevant information
in clock valuations consists of the integral part of each clock (up to the maximal constant
appearing in guards) and the ordering of their fractional parts. In our context, since
the number of processes is unbounded (hence the number of clocks is unbounded), the
region abstraction cannot be used directly. Still, based on classical regions, we present
an equivalence relation over configurations.

Recall that (see Section 2) for x ∈ R+ a non-negative real, we denote by ⌊x⌋ its
integral part and {x} its fractional part. Note that x = ⌊x⌋+ {x}.

Definition 4.1 (Region equivalence) Let b ∈ N and let γγγ1 = ((b1, xB1), γ1) and
γγγ2 = ((b2, xB2), γ2) be two configurations, with γ1 = 〈(q1, x1), . . . , (qn, xn)〉 and γ2 =
〈(p1, y1), . . . , (pm, ym)〉. For convenience, we denote b1 = q0, xB1 = x0, b2 = p0, and
xB2 = y0.

The configurations γγγ1 and γγγ2 are region equivalent, denoted γγγ1 ≈b γγγ2 if γγγ1 = γγγ(d) if
and only if γγγ2 = γγγ′(d), and there exist a bijection h : [0 . . . n] → [0 . . . m] (hence m = n)
such that the following conditions hold, ∀i, j ∈ [0 . . . n]:

(i) h(0) = 0: the indices for the two base clocks match,

(ii) qi = ph(i): states of processes agree,

(iii) (⌊xi⌋ ≤ b) ∨ (⌊yh(i)⌋ ≤ b) ⇒ ⌊yh(i)⌋ = ⌊xi⌋: integral parts of clocks agree up to b,

(iv) ({xi} = 0) ⇔ ({yh(i)} = 0): clocks with integer values agree,

(v) for ∼∈ {<,=, >}, ({xi} ∼ {xj}) ⇔ ({yh(i)} ∼ {yh(j)}): the orderings of fractional
parts coincide.

In Definition 4.1, the region equivalence is indexed by a bound b. For two given protocols
B and P, this bound is set to the maximal constant appearing in guards. For simplicity,
we omit it in what follows and simply write ≈. Given γγγ ∈ Γ a configuration, [γγγ] denotes
its equivalence class for ≈, and is called a region-configuration. As an example with
b = 1, 〈(q1, 0), (q2, 2.1)〉 ≈ 〈(q1, 0), (q2, 4.5)〉 6≈ 〈(q1, 0.8), (q2, 4.5)〉.

Similarly to classical regions in timed automata, two region-equivalent configurations
exhibit similar future behaviours in DC (B,PN

Λ). This is formalized in the following
proposition:

70 Clique networks of probabilistic timed protocols

Proposition 4.1 Let γγγ1 and γγγ2 be two configurations. If γγγ1 ≈ γγγ2, then γγγ1 and γγγ2 are
time-abstract bisimilar, i.e.:

• for all (y, (q, x), δ) ∈ R+ × ((Q∪QB)×R+)× (∆∪∆B) such that (γγγ1, y, (q, x), δ,
γγγ′1) ∈ T (n) there exist y′, x′ ∈ R+ and γγγ′2 ∈ [γγγ ′

1] such that (γγγ2, y
′, (q, x′), δ,γγγ ′

2) ∈
T (n),

• if (γγγ1,unlock,γγγ
′
1) ∈ T (n) then there exist γγγ′2 ∈ [γγγ ′

1] such that (γγγ2,unlock,γγγ
′
2) ∈

T (n),

• if (γγγ1, d1) ∈ T (p) then (γγγ2, d2) ∈ T (p) and for all γγγ′1 ∈ Γ there exist γγγ′2 ∈ [γγγ ′
1] such

that d1(γγγ
′
1) = d2(γγγ

′
2).

Proof Let γγγ1 and γγγ2 be two configurations with γγγ1 = 〈(q0, x0), (q1, x1), . . . , (qn, xn)〉
and γγγ2 = 〈(p0, y0), (p1, y1), . . . , (pm, ym)〉 and such that γγγ1 ≈ γγγ2. Let h be a bijection
witnessing the equivalence of γγγ1 and γγγ2 i.e. satisfying the conditions of Definition 4.1.
Let γγγ′1 be a configuration.

If (γγγ1,unlock,γγγ′1) ∈ T (n), by definition we know that γγγ′1 = γγγ
(d)
1 and that no transi-

tion is enabled in γγγ1. Since the bijection h ensures that the processes of γγγ2 are in the
same state as the processes of γγγ1 and with clock values satisfying the same guards (recall
that we compare clock values to integers only) we know that no transition is enabled in

γγγ2 hence (γγγ2,unlock,γγγ
(d)
2) ∈ T (n) and the same bijection h satisfies the conditions of

Definition 4.1 for γγγ(d)
1 and γγγ

(d)
2 hence γγγ

(d)
1 ≈ γγγ

(d)
2 .

If (γγγ1, d1) ∈ T (p), there are two cases. Either γγγ1 = γγγ(d) then d1 corresponds to
dynamism and γγγ2 = γγγ′(d). Note that the probabilities of disappearance and creation
of processes will be equal from two equivalent configurations, and will lead again to
equivalent configurations. Or, there is a process that is in a probabilistic state, i.e.

there exist k ∈ [0 . . . n] such that qk ∈ Q(p) ∪ Q
(p)
B , d1 is thus directly lifted from the

distribution d such that (qk, d) ∈ ∆p. Since γγγ1 ≈ γγγ2 we know that qk = ph(k), hence

(γγγ2, d2) ∈ T (p) where d2 is lifted from d. Since the clock value as well as the state of the
other processes do not change, we obtain that the reached configurations are equivalent.

If (γγγ1, t, (q, x), δ,γγγ ′′
1) ∈ T (n) for some (t, (q, x), δ) ∈ R+×((Q∪QB)×R+)×(∆∪∆B),

we first focus on time elapsing. We distinguish between three cases:

• Assume first that there is some index k ∈ [1 . . . n] such that {xk + t} = 0. We
partition the indices in three sets depending on whether the fractional part of
their clock is lower, equal or greater to the fractional part of xk. Formally, for
∼∈ {<,=, >}, we define the set I∼ = {i ∈ [0 . . . n] | {xi} ∼ {xk}}.Intuitively, after
elapsing the delay t, all clocks in I= will have null fractional part, all clocks in
I> will increase by ⌊t⌋+1 their integral parts, and have positive fractional parts,
and all clocks in I< will increase by ⌊t⌋ their integral parts, and have positive
fractional parts. The sets I<, I=, and I> as well as their evolutions after time
elapsing are represented in Figure 4.10. In this figure, t = n + 0.55 for some
n ∈ N, and I= = {5, 6} since {x5} = {x6} and {x5 + t} = 0, I> = {7}, and
I< = {1, 2, 3, 4}.

Parameterized verification of dynamic networks of probabilistic timed protocols 71

0 1

{x1} {x2}
{x3}

0.15

{x4}

0.32

{x5}

0.45

{x6}
{x7}

0.7

I< I= I>

0 1

{x1 + t}

0.55

{x2 + t}
{x3 + t}

0.7

{x4 + t}

0.87

{x5 + t}
{x6 + t}

{x7 + t}

0.25

0 1

{yh(1)} {yh(2)}
{yh(3)}

0.21

{yh(4)}

0.43

{yh(5)}

0.55

{yh(6)}
{yh(7)}

0.75 0 1

{yh(1) + t′}

0.45

{yh(2) + t′}
{yh(3) + t′}

0.66

{yh(4) + t′}

0.88

{yh(5) + t′}
{yh(6) + t′}

{yh(7) + t′}

0.2

t = n+ 0.55

t′ = n+ 0.45

≈ ≈

Figure 4.10: Evolution of the fractional parts.

We now define t′ = ⌊t⌋+1−{yh(k)}, and prove that γγγ′2 = γγγ2+ t′ satisfies γγγ′2 ≈ γγγ′1
(using the same bijection h).

First, notice that for i, j in the same set I∼ the ordering of {xi} and {xj} is the
same as the ordering of {xi + t} and {xj + t} and that the ordering of {yh(i)} and
{yh(j)} is the same as the ordering of {yh(i) + t′} and {yh(j) + t′}. Second, notice
that ∀i< ∈ I<, ∀i= ∈ I=, ∀i> ∈ I> we get that:

– {xi<} < {xi=} < {xi>},

– {xi= + t} < {xi> + t} < {xi< + t}, and

– {yh(i<)} < {yh(i=)} < {yh(i>)},

– {yh(i=) + t′} < {yh(i>) + t′} < {yh(i<) + t′}.

Moreover,

(i) ∀i ∈ [0 . . . n], qi = ph(i), still holds because control states did not change;

(ii) The integral parts still agree since:

– The integral parts agree for γγγ1 and γγγ2, i.e ∀i ∈ [0 . . . n], (⌊xi⌋ ≤ b) ∨
(⌊yh(i)⌋ ≤ b) ⇒ ⌊yh(i)⌋ = ⌊xi⌋;

– By definition of the set I< and of t′, we know that ∀i ∈ I<, ⌊xi + t⌋ =
⌊xi⌋+ ⌊t⌋ and ⌊yh(i) + t′⌋ = ⌊yh(i)⌋+ ⌊t′⌋ = ⌊yh(i)⌋+ ⌊t⌋;

– And finally, by definition of the set I>, I= and of t′, we know that
∀i ∈ I= ∪ I>, ⌊xi + t⌋ = ⌊xi⌋+ ⌊t⌋+1 and ⌊yh(i)+ t′⌋ = ⌊yh(i)⌋+ ⌊t⌋+1.

We can thus conclude that for all i ∈ [0 . . . n], (⌊xi + t⌋ ≤ b)∨ (⌊yh(i) + t′⌋ ≤
b) ⇒ ⌊yh(i) + t′⌋ = ⌊xi + t⌋;

(iii) ∀i ∈ [0 . . . n], ({xi + t} = 0) ⇔ (i ∈ I=) ⇔ ({yh(i)} = {yh(k)}) ⇔ ({yh(i) +
t′} = 0),

(iv) ∀i, j ∈ [0 . . . n] for ∼∈ {<,=, >}, ({xi + t} ∼ {xj + t}) ⇔ ({yh(i) + t′} ∼
{yh(j) + t′}), is straightforward from the two remarks above.

72 Clique networks of probabilistic timed protocols

• Assume now that there is no index k such that {xk + t} = 0. Then let k be an
index such that ∀i,

(

{xi} ≥ {xk} =⇒ ⌊xi⌋ + ⌊t⌋+ 1 = ⌊xi + t⌋
)

and ∀i,
(

{xi} <
{xk} =⇒ ⌊xi⌋ + ⌊t⌋ = ⌊xi + t⌋

)

. The above proof also works with I< = {i ∈
[0 . . . n] | {xi} < {xk}}, I= = ∅ and I> = {i ∈ [0 . . . n] | {xi} ≥ {xk}}.

• Last, in the remaining cases, defining t′ = ⌊t⌋+ (1−maxi({yi}))/2, it is straight-
forward that γγγ′2 ≈ γγγ2 + t′.

We now focus on the execution of the discrete action. Since δ is enabled in γγγ′1,
there exist an index i such that (qi, xi) = (q, x) from where δ is performable. Since
γγγ′1 ≈ γγγ′2 (with witness bijection h), yh(i) satisfies the same guards as xi. Moreover,
ph(i) = qi and hence transition δ is also enabled in (ph(i), yh(i)). If δ is a communication,
a similar argument implies that the yh(i′)’s satisfy the same guards as the xi′ ’s, so that
all the processes in γγγ′2 will receive the message and take the same transition as their
corresponding processes in γγγ′1. In particular, the clock updates are the same.

Hence for all t ∈ R+, (q, x) ∈ (Q ∪ QB) × R+, and δ ∈ (∆ ∪ ∆B) such that
(γγγ1, t, (q, x), δ,γγγ

′′
1) ∈ T (n) there exist two reals t′, x′ ∈ R+ and a configuration γγγ′′2 ∈ [γγγ ′′

1]
such that (γγγ2, t

′, (q, x′), δ,γγγ ′′
2) ∈ T (n).

�

Thanks to Proposition 4.1, the MDP DC (B,PN
Λ) can be abstracted into its quotient

by ≈, a countable MDP, formally defined as follows:

Definition 4.2 (Region MDP) The region MDP of a dynamic clique network of
probabilistic timed protocols DC (B,PN

Λ) = (Γ,Γ(p),Γ(n), {((b0, 0), γ0)}, T
(n), T (p)) is

the MDP R(DC (B,PN
Λ)) = (Γr,Γ

(p)
r ,Γ

(n)
r , r0, T

(n)
r , T

(p)
r) defined by:

• Γr = Γ
(p)
r ∪ Γ

(n)
r ,

• Γ
(p)
r = {[γγγ] | γγγ ∈ Γ(p)} and Γ

(n)
r = {[γγγ] | γγγ ∈ Γ(n)},

• r0 = {[((b0, 0), γ0)]},

• T
(n)
r is such that

– if (γγγ1, y, (q, x), δ,γγγ
′
1) ∈ T (n) then ([γγγ1], δ, [γγγ

′
1]) ∈ T

(n)
r

– if (γγγ1,unlock,γγγ
′
1) ∈ T (n) then ([γγγ1],unlock, [γγγ

′
1]) ∈ T

(n)
r

• T
(p)
r is such that if (γγγ, d) ∈ T (p) then ([γγγ], d′) ∈ T

(p)
r with d′([γγγ ′]) =

∑

γγγ1∈[γγγ′] d(γγγ1).

Remark that the region MDP R(DC (B,PN
Λ)) is well-defined, thanks to Proposition 4.1.

First, the existence of successors by discrete actions is uniform inside an equivalence
class. Moreover, the sum

∑

γγγ1∈[γγγ′] d(γγγ1) does not depend on γγγ ′ but only on [γγγ′]: since
there is no clock update in probabilistic transitions and only states change, it implies
that for γγγ1 6= γγγ2 with d(γγγ1) > 0 and d(γγγ2) > 0 we have γγγ1 /∈ [γγγ2]. Last, the above sum
is well-defined since there is at most a unique γγγ1 ∈ [γγγ′] such that d(γγγ1) > 0.

Parameterized verification of dynamic networks of probabilistic timed protocols 73

As before, we refer to schedulers in the region MDP R(DC (B,PN
Λ)) as strategies.

Given qf ∈ Q ∪ QB, and ρ = [γγγ0][γγγ1] . . . an infinite execution of R(DC (B,PN
Λ)),

we say that ρ satisfies ✸qf , denoted ρ |= ✸qf , if there exist a region-configuration
[γγγi] = [((b,xB), γ)] along ρ with either b = qf or γ(qf ,x) > 0 for some arbitrary clock
value x. Given a strategy σr for R(DC (B,PN

Λ)), we write Pσr(R(DC (B,PN
Λ)) |= ✸qf)

for the probability under σ of the set of infinite executions ρ with ρ |= ✸qf . We extend,
in a straightforward way, the region abstraction from configuration to executions. Given
an execution ρ = γγγ0γγγ1 . . . of DC (B,PN

Λ), [ρ] denotes the execution [γγγ0][γγγ1]
As intended, the region MDP R(DC (B,PN

Λ)) is equivalent to DC (B,PN
Λ) in the

following sense:

Proposition 4.2 Let ∼∈ {<,=, >} be a comparison operator, p ∈ [0, 1] be a proba-
bilistic threshold, and E be a set of executions.

∃σr Pσr(R(DC (B,PN
Λ)) |= [E]) ∼ p ⇐⇒ ∃σ Pσ(DC (B,PN

Λ) |= E) ∼ p .

Proof We fix N ∈ N an initial number of processes.
The right-to-left implication of the equivalence is the easiest: from a strategy σr in

the region MDP, one can define a scheduler σ for the original network by mimicking the
discrete actions, and turning the abstract delays into concrete ones. This construction
ensures the same probability of obtaining an execution of E. Thus

∀σr, ∃σ, Pσr(R(DC (B,PN
Λ)) |= [E]) = Pσ(DC (B,PN

Λ) |= E).

For the other implication, first we show that a strategy in the network cannot lead
to two different executions that are region equivalent. Afterwards, we can simply lift the
strategy to a strategy for the region MDP and show that their probabilities of reaching
an execution of E agree.

We show that for two executions, ρ = γγγ0 . . . γγγn and ρ′ = γγγ ′
0 . . . γγγ

′
n, respecting σ, if

[ρ] = [ρ′] (i.e if for all i ∈ [0 . . . n], [γγγi] = [γγγ′i]) then ρ = ρ′, by induction on the length
of the executions. First, consider ρ = γγγ0 and ρ′ = γγγ0. Since there is an unique initial
configuration, we obtain ρ = ρ′.

Assume now that, for all pairs ρ and ρ′ of executions of length n respecting σ, we
have: [ρ] = [ρ′] implies ρ = ρ′.

Consider the two executions of length n + 1 respecting σ, ρ = γγγ0 . . . γγγnγγγn+1 and
ρ′ = γγγ′0 . . . γγγ

′
nγγγ

′
n+1. Assume that [ρ] = [ρ′], by induction hypothesis, we have that

γγγ0 . . . γγγn = γγγ′0 . . . γγγ
′
n. We distinguish between two cases on whether γγγn is a probabilistic

or non-deterministic configuration. First, when γγγn is a non-deterministic configuration,
γγγn+1 is given by σ(γγγ0 . . . γγγn) = σ(γγγ ′

0 . . . γγγ
′
n) hence γγγn+1 = γγγ′n+1. Second, when γγγn is

a probabilistic configuration, since there is no clock update in probabilistic transitions
but only one state change it implies that if γγγn+1 6= γγγ′n+1 then [γγγn+1] 6= [γγγ′n+1]; which
contradicts [ρ] = [ρ′]. Hence in both cases ρ = ρ′.

As a consequence, we can naturally lift a strategy σ into a region strategy σr by
letting σr([γγγ0 . . . γγγn]) as σ(γγγ ′

0 . . . γγγ
′
n) if [γγγ ′

0 . . . γγγ
′
n] = [γγγ0 . . . γγγn], and be arbitrary if there

is no such execution. By construction we get:

∀σ, ∃σr, Pσr(R(DC (B,PN
Λ)) |= [E]) = Pσ(DC (B,PN

Λ) |= E).

74 Clique networks of probabilistic timed protocols

This ends the proof of the second implication, and thus the proof of Proposition 4.2. �

A consequence of Proposition 4.2 is that for ∈ {∃,∀},

σ, Pσ(DC (B,PN
Λ) |= ✸qf) ∼ p ⇐⇒ σr, Pσr(R(DC (B,PN

Λ)) |= ✸qf) ∼ p

and

σ, Pσ(DC (B,PN
Λ) |= ↓ (T1, T2)) ∼ p ⇐⇒ σr, Pσr(R(DC (B,PN

Λ)) |= ↓ (T1, T2)) ∼ p .

Therefore, the parameterized verification problems are equivalent in the dynamic
probabilistic timed network and its region MDP.

4.2 Deciding parameterized problems on the region MDP

We have seen, with Proposition 4.2, that the qualitative reachability problems are equiv-
alent in DC (B,PN

Λ) and in R(DC (B,PN
Λ)). We now expose how to decide them in the

region MDP. The decidability result relies on two key arguments: first, R(DC (B,PN
Λ))

admits a finite attractor, and second, in R(DC (B,PN
Λ)), the predecessor operator is ef-

fective and preserves upward-closure for some well-quasi-ordering. The decidability can
then be derived by applying similar techniques as for non-deterministic and probabilistic
lossy channel systems [BBS07, BS13].

The finite attractor property was introduced originally for probabilistic lossy channel
systems (LCS) and states that Markov chains induced by LCS admit a finite recurrent
set [ABRS05, BBS06a] (see Section 4.2). Roughly said, some results for finite Markov
chains extend to infinite Markov chains with a finite attractor. A Markov chain is said
to have a finite attractor, if there exist a finite set of states that is visited infinitely
often almost-surely (i.e., with probability 1). Further, a Markov decision process has a
finite attractor if there exist a finite set of states which is an attractor under all possible
schedulers.

Proposition 4.3 The set {[((q, n), ∅)] | q ∈ QB , n ∈ [0 . . . b]} is an attractor for
R(DC (B,PN

Λ)).

Proof This proof is similar to the proof of existence of a finite attractor for LCS with
insertion errors [ABRS05].

Let us fix a strategy σ for the region abstraction R(DC (B,PN
Λ)). The state space of

R(DC (B,PN
Λ)) can be partitioned according to the number of processes in the region-

configuration. For this partition, the Markov chain defined by R(DC (B,PN
Λ)) under

scheduler σ is almost left-oriented: there exist M0 ∈ N and η ∈ R+ such that from any
region-configuration γγγ with M ≥ M0 processes, the expected number of processes of the
next region-configuration under σ is smaller than or equal to M − η. To see this, write
K for the expected number of processes that are created in one step. Starting from γγγ of
size M , the expected size of the next region-configuration is bounded by M(1−λ−)+K.
Taking M0 large enough, there exist η > 0 such that ∀M ≥ M0, M(1 − λ−) + K ≤
M−η. This shows that the Markov chain is almost left-oriented, and applying [BBS06a],

Parameterized verification of dynamic networks of probabilistic timed protocols 75

R(DC (B,PN
Λ)) thus admits a finite attractor: the set of region-configurations with size

smaller than M0.
From every region-configuration of this attractor there is a positive probability that

all processes disappear in the next step, and none are created. Hence the region-
configurations with the base only and with no process also form a finite attractor. �

Now that the existence of a finite attractor has been established, we define an
appropriate partial order ✂ on all the region-configurations Γr. Intuitively, region-
configuration r is smaller than r

′, if we can remove some processes of a configuration of
γγγ′ ∈ r

′ and obtain a configuration γγγ ∈ r. We also add a side-condition on the clocks with
integer value, which is needed to obtain a good property on the predecessor operator.
Formally:

Definition 4.3 (Ordering on region-configurations) The order ✂ ⊆ Γr × Γr

is defined as follows: for r, r′ ∈ Γr, r ✂ r
′ if there exist γγγ = ((b, xB), γ) ∈ r and

γγγ′ = ((b′, xB
′), γ′) ∈ r

′ such that:

(i) b = b′ and xB = xB
′; and

(ii) ∀q ∈ Q, ∀x ∈ R+, γ(q, x) ≤ γ′(q, x); and

(iii)
∑

q∈Q

∑

n∈N γ(q, n) = 0 =⇒
∑

q∈Q

∑

n∈N γ′(q, n) = 0.

Adapting the proof of Higman’s lemma, one obtains:

Proposition 4.4 The partial order ✂ is a well-quasi-ordering.

Recall that Higman’s lemma states that the sub-word relation on words is a well-quasi-
ordering. We adapt here its proof to establish that ✂ is a well-quasi-ordering. Our
proof of Proposition 4.4 is technical, but follows the same lines as the one for Higman’s
lemma, and is just given here for the sake of completeness.

Proof First, remark that ✂ is well-founded. Indeed, if r✂ r
′ then r necessarily has less

processes than r
′, and thus there cannot be any infinite decreasing sequence for ✂.

Let us now show that there are no infinite sequences (ri)i∈N such that for all i <
j ∈ N, ¬(ri ✂ r

j). Such a sequence is called a bad sequence, and we will prove that bad
sequences do not exist. To do so, we first introduce some notations. Let F : N × Γ →
[0, 1) be the function such that F (0,γγγ) = 0, and for i > 0, F (i,γγγ) is the i-th smallest
fractional part greater than 0 appearing in γγγ.

We define rChunk : N× Γ → 〈Q× [0, .., b + 1]〉 as the function such that

rChunk(i, ((b, xB), γ)) {(q, n)m | n ∈ [0 . . . b], q ∈ Q, γ(q, n+ F (i, γ)) = m
or n = b+ 1 and

∑

k>b γ(q, k + F (i, γ)) = m}∪
{(b, n) | n ∈ [0 . . . b], b ∈ QB, n+ F (i, γ) = xB

or n = b+ 1 and ∃k > b, k + F (i, γ) = xB}

with the convention that rChunk(i,γγγ) = ∅ if there are less than i different fractional
parts in γγγ.

76 Clique networks of probabilistic timed protocols

Intuitively, rChunk(i,γγγ) is the multiset composed of the pairs of states and integral
parts of clocks (up to b+1) for processes or the base that have the i-th smallest fractional
parts.

Notice that ∀γγγ′ ∈ [γγγ],∀i ∈ N, rChunk(i,γγγ ′) = rChunk(i,γγγ), and whenever γγγ′ /∈
[γγγ], there exist an index i ∈ N such that rChunk(i,γγγ ′) 6= rChunk(i,γγγ). Hence [γγγ] is
characterized by the multisets rChunk(i,γγγ). Also observe that Q × [0 . . . b+ 1] ∪ QB ×
[0 . . . b+1] is finite, hence ⊆, the natural inclusion on multisets is a well-quasi-ordering
on M(Q× [0 . . . b+ 1] ∪QB × [0 . . . b+ 1]).

Let us now go back to the proof of Proposition 4.4. Assume, towards a contradiction
that there are bad sequences for ✂. We define r

0 as one of the regions with the minimal
number of processes that starts such a bad sequence. Then, we let r1 as one of the regions
with minimal number of processes that can follow r

0 in a bad sequence. Inductively,
r
k is defined as one of the regions with the smallest number of processes that can

follow r
0 · · · rk−1 in a bad sequence. The infinite bad sequence built this way exists by

assumption, and is written S = r
0, r1, · · · .

Since ⊆ is a well-quasi-ordering, we can extract a subsequence r
k0 , rk1 , · · · such that

rChunk(0, rk0) ⊆ rChunk(0, rk1) ⊆ · · · . We now define S ′ = (ukn)n∈N as a sequence
where ukn is the region such that rChunk(0, ukn) = rChunk(0, rkn) ∩ QB × [0 . . . b + 1]
and ∀i > 0, rChunk(i, ukn) = rChunk(i, rkn).

To reach a contradiction, we observe that S ′ is also a bad sequence and has “less
processes” than S, contradicting the minimality of S.

First, S ′ is a bad sequence: indeed, assuming uki ✂ ukj for some ki < kj , then there
exist γγγi ∈ uki and γγγj ∈ ukj that satisfy the three conditions of Definition 4.3. Letting
γγγ′i = γγγi+ rChunk(0, rki)∩Q× [0 . . . b+1] and γγγ′j = γγγj + rChunk(0, rkj)∩Q× [0 . . . b+1],
a direct consequence is that γγγ′i ∈ r

ki , γγγ′j ∈ r
kj and that γγγ′i, γγγ

′
j also satisfy the three

conditions of Definition 4.3, since rChunk(0, rki) ⊆ rChunk(0, rkj). Hence, r
ki ✂ r

kj ,
although S is assumed to be a bad sequence.

Last, let us show that S ′ contradicts the definition of S as “minimal” bad sequence.
There are two cases:

• If rChunk(0, rk0) * QB × [0 . . . b+ 1], the sequence r
0, · · · , rk0−1, uk0 , uk1 , · · · is a

bad sequence and uk0 has less processes than vk0 . This contradicts the definition
of rk0 .

• If rChunk(0, rk0) ⊆ QB × [0 . . . b + 1], we repeat the construction of the subse-
quence on the second factor in rChunk(1, rki). With the same arguments, we
extract a subsequence S ′′ = (uk

′
n)n∈N with rChunk(0, uk

′
n) = rChunk(0, vk

′
n) and

∀i > 0, rChunk(i, uk
′
n) = rChunk(i + 1, vk

′
n). We obtain a contradiction since

r
0, · · · , rk

′
0−1, uk

′
0 , uk

′
1 , · · · is a bad sequence and its k′0-th element has less pro-

cesses than the one of S.

To sum up, we proved that ✂ is well-founded and every infinite sequence contains a
pair of ordered elements, so that ✂ is a well-quasi-ordering. �

We now consider the upward-closure operator ↑ w.r.t. ✂: given C ⊆ Γr,

↑ C = {r′ ∈ Γr | ∃r ∈ C such that r✂ r
′} .

Parameterized verification of dynamic networks of probabilistic timed protocols 77

Notice that the condition r
′ ∈ Γr ensures that the base is represented only once, and

that there is at most one process (or the base) in a probabilistic state. A set C ⊆ Γr

is said to be upward-closed whenever C =↑ C. Since ✂ is a well-quasi-ordering, any
non-decreasing sequence of upward-closed sets eventually stabilizes. This property will
be useful in the sequel.

Last, we define the predecessor operator: for r ∈ Γ
(n)
r , Pre(r) denotes the set of

region-configurations r
′ ∈ Γ

(n)
r that can reach r after a non-deterministic action and

the probabilistic transition that follows (from mobility and possibly from probabilistic
states). Notice that here, the initial number of processes is not specified, since the
predecessor operator is independent of this initial number. It happens that for any
upward-closed set C ⊆ Γ

(n)
r , the set Pre(C) can be computed, and is upward closed.

Proposition 4.5 The predecessor operator Pre(.) preserves upward-closure, is effective

and satisfies for any set C ⊆ Γ
(n)
r , Pre(C) = Pre(↑ C).

Proof To prove Proposition 4.5, we have to show that given an upward-closed set C,
then Pre(C) is upward-closed, and can be computed effectively from C and the protocols

B and P. Moreover, we will show that Pre(C) = Pre(↑ C) for any set C ⊆ Γ
(n)
r .

The predecessor operator Pre can be split into two operators Pred and Pres such
that Pre = Pres ◦ Pred where Pred is the dynamism predecessor operator that ap-
plies to the non-deterministic region-configurations r ∈ Γ

(n)
r , and Pres is the static

predecessor operator that applies to probabilistic region-configurations r ∈ Γ
(p)
r . The

static predecessor operator can itself be split into two operators Pret and Prea, for
predecessors by time elapsing, or by a discrete action, such that Pres = Pre∗t ◦ Prea.

Let C be an upward-closed set of configurations. To prove that Pre∗t (C) is upward-
closed and effective, we explain how it can be computed, starting from the finitely many
minimal elements of C. Let r be a region-configuration.

• If rChunk(0, r) = ∅, meaning that no clock has an integer value in r, then

Pret(↑ r) =↑ r∪ ↑ r
′ ∪

⋃

(q,n)∈Q×[0...b+1]

↑ r(q,n).

Where r
′ is the region defined as ∀i ∈ N, rChunk(i, r′) = rChunk(i + 1, r). And

where r(q,n) stands for the region defined as rChunk(0, r(q,n)) = 〈(q, n)〉 and ∀i >
0, rChunk(i, r(q,n)) = rChunk(i, r).

• If rChunk(0, r) ∩ ((Q ∪ QB) × {0}) 6= ∅, meaning that some clocks have value 0
then

Pret(↑ r) =↑ r.

• If rChunk(0, r) 6= ∅ and rChunk(0, r) ∩ ((Q ∪ QB)× {0}) = ∅, meaning that some
clocks have non null integer value in r, then

Pret(↑ r) =↑ r∪ ↑ r
′

78 Clique networks of probabilistic timed protocols

where, r′ is defined as: rChunk(0, r′) = ∅, for the minimal index imax such that
∀i > imax, rChunk(i, r) = ∅, rChunk(imax, r

′) = rChunk(0, r) − 1 and ∀i 6= 0, i 6=
imax, rChunk(i, r

′) = rChunk(i, r). Assuming rChunk(0, r) = 〈(q1, x1)...(qn, xn)〉,
then rChunk(0, r) − 1 is a notation for 〈(q1, x1 − 1)...(qn, xn − 1)〉.

This case inspection provides an upward-closed set as result of the computation of
the time predecessor of a basic upward-closed set. One concludes that Pret preserves
upward-closure and is effective.

Now, considering predecessors by a discrete action, the above proof can be adapted
to show that Prea(↑ C) is upward-closed and effective. The case inspection is only
technical and omitted here.

Finally, let us consider the dynamism predecessor operator. We show that for any set
C, Pred(C) = Pred(↑ C). Let us detail the non-trivial inclusion Pred(↑ C) ⊆ Pred(C).
Let r ∈ Pred(↑ C), then there exist r1✂r and r2 with r1✂r2 and r2 ∈ ↑ C, these regions

are obtained by the sequence of steps r
loss
−−→ r1

creation
−−−−−→ r2. Therefore r2 = r

′
2 + r

′′
2

with r
′
2 ∈ C. We then define r

′
1 such that r

′
1 ✂ r

′
2 and r

′
1 ✂ r1. The sequence of steps

r
loss
−−→ r

′
1

creation
−−−−−→ r

′
2 then witnesses that r ∈ Pred(C) as it is shown in the graphical

representation in Figure 4.11.

r ∈ Pred(↑ C)

r1

r2 ∈↑ C

r
′
2 ∈ C

r
′
1

≤
disappearances +(

q 0
, 0
)
n

+
(q

0
, 0
)n

′

disappearances

Figure 4.11: Graphical representation to show Pred(↑ C) ⊆ Pred(C).

�

4.2.1 Solving reachabilty

Propositions 4.3, 4.4 and 4.5 are decisive to obtain the decidability of qualitative pa-
rameterized reachability problems in the region MDP R(DC (B,PN

Λ)). Combined with
Proposition 4.2 we obtain the decidability of the qualitative reachability problems for
dynamic clique networks as stated in Theorems 4.1, 4.2, 4.3, and 4.4.

Parameterized verification of dynamic networks of probabilistic timed protocols 79

We first fix some notations. We denote by γγγN0 = ((b0, 0), 〈(q0, 0)
N 〉) the initial

configuration in DC (B,PN
Λ), and [γγγN0] its equivalence class for ≈. γγγN0 =

⋃

N∈N γγγ
N
0

denotes the set of all initial configurations and [γγγN0] the union of their equivalence
classes.

Now, for each qualitative problem, we reduce to a decidable reachability question in
the region MDP.

Theorem 4.1 The problems REACH∃
>0(DC) and REACH∀

=0(DC) are decidable for
dynamic probabilistic timed networks.

Proof As stated above, by Proposition 4.2, we can consider the same decision problem
in the region MDP. To show decidability of REACH∃

>0(DC) (resp. REACH∀
=0(DC)),

it thus suffices to show the decidability of whether there exist N ∈ N and a scheduler
σ such that Pσ(R(DC (B,PN

Λ)) |= ✸qf) > 0 (resp. Pσ(R(DC (B,PN
Λ)) |= ✸qf) = 0).

Given N ∈ N, we have the series of equivalences:

∃σ, Pσ(DC (B,PN
Λ) |= ✸qf) > 0 ⇐⇒ ∃σ, Pσ(R(DC (B,PN

Λ)) |= ✸qf) > 0

⇐⇒ [γγγN0] ∈ Pre∗(↑ qf).

Recall that ↑ qf represents the set of equivalence classes where at least one process
is in state qf , and is thus upward-closed. Since the Pre operator preserves upward-
closure and is effective, and because ✂ is a well-quasi-ordering, the set Pre∗(↑ qf) can
be computed effectively by successive iterations of Pre.

To answer whether there exist a network size N ∈ N and a scheduler σ such
that Pσ(DC (B,PN

Λ) |= ✸qf) > 0, it then suffices to test whether one of the region-
configurations of [γγγN0] belongs to Pre∗(↑ qf). Hence, it suffices to test whether [γγγN

0] ∩
Pre∗(↑ qf) 6= ∅ to decide REACH∃

>0(DC). As a consequence, we obtain the decidabil-
ity of REACH∃

>0(DC).
In the same way, one can answer whether for all N ∈ N there exist a scheduler σ

such that Pσ(DC (B,PN
Λ) |= ✸qf) > 0 by testing whether [γγγN0] ⊆ Pre∗(↑ qf). And

since

∃N,∀σ, Pσ(DC (B,PN
Λ) |= ✸qf) = 0 ⇔ ¬[∀N,∃σ, Pσ(DC (B,PN

Λ) |= ✸qf) > 0]

it suffices to test whether [γγγN
0] ⊆ Pre∗(↑ qf) to decide REACH∀

=0(DC). As a conse-
quence, we obtain the decidability of REACH∀

=0(DC). �

For the remaining cases, as for qualitative verification of LCS [BBS06b], apart from
the predecessor operator Pre, we also introduce a kind of controlled predecessor oper-
ator, SPre called the safe predecessor operator, and defined as follows:

SPreA(B) = {r ∈ Γ(n)
r | Post[α](r) ∩B 6= ∅ and Post[α](r) ⊆ A} ,

where Post[α](r) stands for the set of successors of r after the non-deterministic action
α (and probabilistic transition for internal actions) and after the following probabilistic

80 Clique networks of probabilistic timed protocols

transitions (from dynamism). In words, a region-configuration r belongs to SPreA(B) if
there exist an action which can lead to B (if the processes disappearances and creations
are favourable) and necessarily leads to A (whatever the process disappearances and
creations).

Also, we define the following notation for the downward-kernel of a set of configu-
rations with respect to ✂. Given C ⊆ Γr,

⇓ C = {r ∈ C | ∀r′ ✂ r, r
′ ∈ C} .

The operator ⇓ is the dual of the upward-closure one ↑, in the following sense: for every
set C ⊆ Γr, ↑ (Γr \ C) = Γr \ (⇓ C).

Using this notation, the safe predecessor operator enjoys the following properties:

Proposition 4.6 SPre is effective and satisfies SPreA(B) = SPre⇓A(↑ B).

Proof The effectivity of SPre derives from the one of Pre, since

SPreA(B) =
⋃

α

Pre[α](B) ∩ Γr \ Pre[α]
(

Γr \ A
)

.

Now, we establish that SPreA(B) = SPre⇓A(↑ B).

SPreA(B) =
⋃

α

Pre[α](B) ∩ Γr \ Pre[α]
(

Γr \ A
)

=
⋃

α

Pre[α](↑ B) ∩ Γr \ Pre[α]
(

↑
(

Γr \A
)

)

=
⋃

α

Pre[α](↑ B) ∩ Γr \ Pre[α]
(

Γr \
(

⇓ A
)

)

= SPre⇓A(↑ B) .

�

To prove the decidability of the remaining cases, we will rely on a general convergence
result for terms defined in the µ-calculus [BS13]. Roughly, the convergence is guaranteed
for any closed term defined by a µ-calculus expression in which (1) the variables for least
fix-points are under the scope of an upward-closure operator, and (2) the variables for
greatest fix-points are under the scope of a downward-kernel operator.

Theorem 4.2 The problems REACH∃
=0(DC) and REACH∀

>0(DC) are decidable for
dynamic probabilistic timed networks.

Proof Once again, we use Proposition 4.2 in order to consider the same decision prob-
lem in the region MDP. We then use a greatest fix-point and the safe pre operator to

Parameterized verification of dynamic networks of probabilistic timed protocols 81

compute the set of region-configurations from which there is a scheduler avoiding almost
surely qf . Given N ∈ N we have:

∃σ, Pσ(DC (B,PN
Λ) |= ✸qf) = 0 ⇐⇒ ∃σ Pσ(R(DC (B,PN

Λ)) |= ✸qf) = 0

⇐⇒ [γγγN0] ∈ W1,

where W1 is defined as the following greatest fix-point: W1 = νX.(¬ ↑ qf)∩SPreX(Γr).
In words, the greatest fix-point W1 computes the set of region-configurations that do not
contain qf and have an action that allows to stay almost surely in this set. The proof
for non-deterministic and probabilistic lossy channel systems can be adapted mutatis
mutandis to show the correctness as well as the effective computability of W1 in our
case. More generally, the correctness and effective computation hold for any MDP with
a finite attractor, and such that Pre(A) = Pre(↑ A). Thanks to Proposition 4.6, W1

can be rewritten as
W1 = νX.(¬ ↑ qf) ∩ SPre⇓X(Γr) ,

which is a guarded term: X, a greatest fix-point variable, is downward-guarded.
To decide whether there exist N ∈ N and a scheduler σ such that Pσ(DC (B,PN

Λ) |=
✸qf) = 0, it then suffices to test whether [γγγN0] intersects W1. This proves the decidability
of REACH∃

=0(DC).
Similarly, to decide whether for all N ∈ N there exist a scheduler σ such that

Pσ(DC (B,PN
Λ) |= ✸qf) = 0, it then suffices to test whether [γγγN

0] is a subset of W1.
And since:

∃N,∀σ, Pσ(DC (B,PN
Λ) |= ✸qf) > 0 ⇐⇒ ¬[∀N,∃σ, Pσ(R(DC (B,PN

Λ)) |= ✸qf) = 0],

it suffices to test whether [γγγN
0] ⊆ W1 to decide REACH∀

>0(DC). As a consequence, we
obtain the decidability of REACH∀

>0(DC). �

To obtain the decidability of REACH∃
<1(DC) and REACH∀

=1(DC), we use the
combination of a least fix-point and a greatest fix-point in order to obtain the set of
region-configurations from which there exist a strategy that avoids qf with positive
probability.

Theorem 4.3 The problems REACH∃
<1(DC) and REACH∀

=1(DC) are decidable for
dynamic probabilistic timed networks.

Proof Once again, we use Proposition 4.2 in order to consider the same decision prob-
lem in the region MDP. Here we reuse the greatest fix-point W1 and combine it with a
least fix-point, in order to obtain that given N ∈ N:

∃σ Pσ(DC (B,PN
Λ) |= ✸qf) < 1 ⇐⇒ ∃σ Pσ(R(DC (B,PN

Λ)) |= ✸qf) < 1

⇐⇒ [γγγN0] ∈ W2,

where W2 is the least fix-point defined by W2 = µX.W1∪(Pre(X)∩¬(↑ qf)). Intuitively,
W2 is the set of region-configurations from which we can reach W1 before reaching

82 Clique networks of probabilistic timed protocols

qf , hence from which there exist a strategy that reaches W1 before qf with positive
probability. Moreover, from the previous case we know that from W1 there is a strategy
avoiding qf almost surely. Equivalently, W2 = µX.W1 ∪ (Pre(↑ X) ∩ ¬(↑ qf)). Again,
following what was proven for non-deterministic and probabilistic lossy channel systems,
W2 can be effectively computed.

To decide whether there exist N ∈ N and a scheduler σ such that Pσ(DC (B,PN
Λ) |=

✸qf) < 1, it then suffices to test whether [γγγN0] intersects W2. This implies the decid-
ability of REACH∃

<1(DC).
Similarly, to decide whether for all network sizes N ∈ N and a scheduler σ such that

Pσ(DC (B,PN
Λ) |= ✸qf) < 1, it then suffices to test whether [γγγN

0] ⊆ W2. And since

∃N, ∀σ, Pσ(DC (B,PN
Λ) |= ✸qf) = 1 ⇔ ¬[∀N,∃σ, Pσ(R(DC (B,PN

Λ)) |= ✸qf) < 1],

this implies the decidability of REACH∀
=1(DC). �

The decidability of the last two cases is proved with the combination of a least-fix
point and a greatest fix-point in order to obtain the set of region configurations from
which there exist a strategy that reaches qf almost surely.

Theorem 4.4 The problems REACH∃
=1(DC) and REACH∀

<1(DC) are decidable for
dynamic probabilistic timed networks.

Proof Once again, we use Proposition 4.2 in order to consider the same decision prob-
lem in the region MDP. Here, we introduce W3 which combines a greater and a least
fix-point, in order to obtain that given N ∈ N:

∃σ, Pσ(DC (B,P, 0,Λ, |=✸
q)f) = 1 ⇐⇒ ∃σ Pσ(R(DC (B,PN

Λ)) |= ✸qf) = 1

⇐⇒ [γγγN
0] ∈ W3

where W3 is defined as the following fix-point: W3 = νX.[µY.(SPreX(Y) ∨ (↑ qf))].
Intuitively, the inner least fix-point computes the region-configuration from where there
is a strategy reaching qf , and the outer greater fix-point ensures that the probability to
stay in these region-configurations is 1. Hence we cannot reach a region-configuration
from where qf is not accessible. Here again, applying the proof techniques for non-
deterministic and probabilistic lossy channel systems, one obtains that W3 is correct
(justifying the last equivalence). Also, W3 can be rewritten into a guarded term using
Proposition 4.6:

W3 = νX.[µY.(SPre⇓X(↑ Y) ∨ (↑ qf))] .

Deciding REACH∃
=1(DC) thus boils down to the computation of W3 followed by the

test: [γγγN
0] ∩W3 6= ∅?

Equivalently, deciding whether for all N there exist σ such that Pσ(DC (B,P0
Λ) |=

✸qf) = 1 boils down to the computation of W3 followed by the test: [γγγN0] ⊆ W3? And
since

∃N, ∀σ, Pσ(DC (B,PN
Λ) |= ✸qf) < 1 ⇔ ¬[∀N,∃σ, Pσ(R(DC (B,PN

Λ)) |= ✸qf) = 1],

this implies the decidability of REACH∀
<1(DC). �

Parameterized verification of dynamic networks of probabilistic timed protocols 83

In this section we showed decidability of the qualitative reachability problems. Al-
though the quantitative problems are still open, we are able to compute, given an initial
network size, the value of the infimum on the strategies to reach the goal state within
arbitrary precision. The next section is dedicated to this result.

4.2.2 Approximation of minimal probability

We now move to quantitative analysis, i.e. to problems where the probabilistic threshold
is not only 0 or 1 but can be all possible values between 0 and 1. The quantitative
reachability problems are still open, however given an initial network size we are able
to compute, within arbitrary precision, the minimal probability to reach the target.

This proof is inspired by the approximation scheme for the probability to reach a
goal in fully probabilistic LCS [ABRS05]. The idea is to consider the set of executions
of length n, and to partition it into three sets: Reachn the executions that already
reached the target, Escapen the executions that have not and cannot be prolongated to
reach the goal, and Undecidedn for the remaining executions. It was shown that if the
Markov chain has a finite attractor then the probability to be undecided (denoted p?n)
decreases towards 0 as n increases. Moreover, denoting p+n = P(Reachn) the probability
to have reach the target before n steps, p+n is an under approximation and p+n + p?n an
over-approximation of P(✸qf). Hence, this gives an algorithm to approximate the
probability to reach the target.

In order to adapt this approximation scheme to our setting, we must overcome two
main difficulties. First, we have to lift the approximation to Markov decision processes
rather than Markov chains. Second, due to creations, from any region-configuration
one can, in one step, reach an unbounded number of region-configurations. In order to
tackle this problem, in beyond bounding the length of the executions, we also bound
the number of processes along executions.

Let us fix some notations. In the following, we consider a fixed region MDP
R(DC (B,PN

Λ)) and we omit it in the notations. Notice that we thus consider a fixed
initial number of processes, N .

For n ∈ N, let Γr
≤n be the set of region-configurations with less than n processes. Let

W1 be the set of region-configurations from which there is a scheduler avoiding almost
surely qf (note that this set is effectively computable, see the proof of Theorem 4.2).
Clearly, from W1 the infimum probability is 0.

Let Reachn = {γγγ0 . . . γγγn · · · | ∃k ≤ n, (qf ∈ γγγk) ∧ (∀i ≤ k, γγγi ∈ Γr
≤n)} be the set

of infinite executions that reach qf in less than n steps and with less than n processes.
Let Escapen = {γγγ0 . . . γγγn · · · | ∃k ≤ n, (γγγk ∈ W1) ∧ (∀i ≤ k, γγγi ∈ Γr

≤n)} be the set
of executions that reach W1 in less than n steps and with less than n processes.

Let Greatern = {γγγ0 . . . γγγn · · · | ∃k ≤ n, γγγk ∈ Γr \ Γr
≤n} be the set of executions

that have more than n processes before step n.
Let Undecidedn = {γγγ0 . . . γγγn · · · | ∀k ≤ n, qf /∈ γγγk ∧ γγγk /∈ W1 ∧ γγγk ∈ Γr

≤n} be the
rest of the executions.

To obtain an approximation scheme for infσ Pσ(✸qf), we first show the following
inequalities:

84 Clique networks of probabilistic timed protocols

Lemma 4.1

inf
σ

Pσ(Reachn) ≤ inf
σ

Pσ(✸qf) ≤ inf
σ

Pσ(Reachn) + sup
σ

Pσ(Greatern) + sup
σ

Pσ(Undecidedn) .

Proof To prove the first inequality, notice that for all n ∈ N, all executions ρ in Reachn
satisfy ✸qf . Hence, for all strategies σ, Pσ(Reachn) ≤ Pσ(✸qf). We thus deduce that
infσ Pσ(Reachn) ≤ infσ Pσ(✸qf).

To prove the second inequality we define SW1=0 as the family of strategies that once
they reach a configuration of W1 play to avoid qf almost surely. Notice that, for any
strategy σ, there exists a strategy σ′ ∈ SW1=0 such that σ′ plays as σ until a configura-
tion of W1 is reached and then plays to avoid qf almost surely. Formally, for any exe-
cution γγγ0 . . . γγγk, if γγγk ∈ W1, σ′(γγγ0 . . . γγγk) = σ0(γγγ0 . . . γγγk) where Pσ0(γγγk |= ✸qf) = 0 and
σ′(γγγ0 . . . γγγk) = σ(γγγ0 . . . γγγk) otherwise. On the one hand, under this definition of σ′, we
have Pσ′(Reachn) ≤ Pσ(Reachn), hence infσ′∈SW1=0

Pσ′(Reachn) ≤ infσ Pσ(Reachn).
On the other hand, we have infσ Pσ(Reachn) ≤ infσ∈SW1=0

Pσ(Reachn) since SW1=0 is
a subset of strategies. Thus, infσ Pσ(Reachn) = infσ∈SW1=0

Pσ(Reachn).
Now, notice that for all n ∈ N, Reachn, Escapen, Greatern, and Undecidedn form a

partition of the set of all executions E . Thus, for every strategy σ ∈ SW1=0, Pσ(✸qf) =
Pσ(Reachn∩✸qf)+Pσ(Escapen∩✸qf)+Pσ(Greatern∩✸qf)+Pσ(Undecidedn∩✸qf).
And by definition of SW1=0 , Pσ(Escapen ∩✸qf) = 0.

Hence, we obtain the following inequalities:

inf
σ

Pσ(✸qf)

≤ inf
σ∈SW1=0

Pσ(✸qf)

= inf
σ∈SW1=0

(

Pσ(Reachn ∩✸qf) + Pσ(Greatern ∩✸qf) + Pσ(Undecidedn ∩✸qf)
)

= inf
σ∈SW1=0

(

Pσ(Reachn) + Pσ(Greatern ∩✸qf) + Pσ(Undecidedn ∩✸qf)
)

≤ inf
σ∈SW1=0

(

Pσ(Reachn) + Pσ(Greatern) + Pσ(Undecidedn)
)

≤ inf
σ∈SW1=0

Pσ(Reachn) + sup
σ∈SW1=0

Pσ(Greatern) + sup
σ∈SW1=0

Pσ(Undecidedn)

≤ inf
σ

Pσ(Reachn) + sup
σ

Pσ(Greatern) + sup
σ

Pσ(Undecidedn)

�

Lemma 4.2 infσ Pσ(Reachn), supσ Pσ(Undecidedn) and supσ, Pσ(Greatern) are ef-
fectively computable for every n ∈ N.

Proof For every n ∈ N, one can build a finite MDP Mn = (Q,P) with state space
{γγγ0 . . . γγγk | k ≤ n ∧ ∀i ≤ k, γγγi ∈ Γr

≤n} ∪ {⊥} and the probabilistic function P
is such that P (γγγ0 . . . γγγk, α,γγγ0 . . . γγγkγγγk+1) = P(γγγk

α
−→ γγγk+1) and P (γγγ0 . . . γγγk, α,⊥) =

∑

γγγ /∈Γr
≤n P(γγγk

α
−→ γγγ).

Parameterized verification of dynamic networks of probabilistic timed protocols 85

For every strategy σ in the region MDP, there exists a strategy σ′ in Mn such that
Pσ(Reachn) = PMn

σ′ (✸Reachn) and reciprocally. Idem for Undecidedn. On the other
hand for Greatern, we obtain Pσ(Greatern) = PMn

σ′ (✸⊥).
Hence

inf
σ

Pσ(Reachn) = inf
σ

PMn
σ (✸Reachn) = min

σ
PMn
σ (✸Reachn),

sup
σ

Pσ(Undecidedn) = sup
σ

PMn
σ (✸Undecidedn) = max

σ
PMn
σ (✸Undecidedn),

and
sup
σ

Pσ(Greatern) = sup
σ

PMn
σ (✸⊥) = max

σ
PMn
σ (✸⊥)

are effectively computable. �

Lemma 4.3 limn→∞ supσ Pσ(Greatern) = 0.

Proof Notice that the probability to have executions with more than n processes before
step log(n) does not depend on the strategy since the strategy has no influence on the
probability of creation and deletion. Thus, there exists K such that for all strategies σ,
Pσ(Greatern) = K. In the following, we denote by P(Greatern) this value.

We denote by p
k

ℓ−→j
(resp. p

k
ℓ−→>j

) the probability to start in a configuration with

k processes and end in a configuration with j (resp. more than j) processes in at most
ℓ steps.

First, remark that P(Greatern) = 1 for any n ≤ N , since the first configuration has
already more than n processes.

We now prove that for n > N , Pσ(Greatern) ≤ log(n).p
n

1
−→>n

. We prove this by

showing by induction on ℓ that for any k < n, p
k

ℓ
−→>n

≤ ℓ.p
n

1−→>n
.

First notice that for all k ≤ n we have p
k

1
−→>n

≤ p
n

1
−→>n

showing the base case.

Intuitively, whatever the rates λ+ and λ−, there is a greater probability to obtain more
processes starting from a bigger configuration.

Now, assume the induction hypothesis p
k

ℓ
−→>n

≤ ℓ.p
n

1
−→>n

.

p
k

ℓ+1
−−→>n

= p
k

1
−→>n

+
∑

k′≤n

p
k

1
−→k′

· p
k′

ℓ−→>n

≤ 1 · p
n

1−→>n
+

∑

k′≤n

p
k

1−→k′
· ℓ · p

n
1−→>n

≤ p
n

1
−→>n

+ (1− p
k

1
−→>n

) · p
n

1
−→>n

≤ p
n

1
−→>n

+ 1 · p
n

l−→>n

≤ (l + 1) · p
n

1
−→>n

.

This proves that for any ℓ ≥ 1 and any k ≤ n, p
k

ℓ−→>n
≤ ℓ · p

n
1
−→>n

.

86 Clique networks of probabilistic timed protocols

Hence Pσ(Greatern) = p
N

log(n)
−−−−→>n

≤ n · p
n

1−→>n
.

We now show that limn→∞ n · p
n

1
−→>n

= 0.

lim
n→∞

n.p
n

1−→>n
= lim

n→∞
n.

n
∑

k=0

(

n

k

)

λk
−(1− λ−)

n−k
∞
∑

i=k+1

λi
+(1− λ+)

= lim
n→∞

n.(1− λ−)
nλ+(1 +

λ−λ+

1− λ−
)n

= lim
n→∞

n.λ+.(1 − λ−(1− λ+))
n

= 0

Which concludes the proof of Lemma 4.3, since lim
n→∞

sup
σ

Pσ(Greatern) ≤ lim
n→∞

n ·

p
n

1−→>n
= 0. �

Lemma 4.4 limn→∞ supσ Pσ(Undecidedn) = 0.

Proof We now show that limn→∞ supσ Pσ(Undecidedn) = 0.
Let σn = argmaxσPMn

σ (✸Undecidedn). Notice that for any k ≥ n, Undecidedk ⊆
Undecidedn, hence Pσk

(Undecidedn) ≥ Pσk
(Undecidedk) .

Let us define inductively a sequence (Sn)n∈N of sets of strategies such that SW1=0 =
{σn | n ∈ N}, and for all k ∈ N, Sk+1 is an infinite subset of Sk such that, for all
strategies σ, σ′ ∈ Sk+1 and all executions γγγ0 . . . γγγk such that for all i ≤ k, γγγi ∈ Γr(≤ k)
and σ(γγγ0 . . . γγγk) = σ′(γγγ0 . . . γγγk). This subset exists by the pigeonhole principle, since
there is a finite number of executions γγγ0 . . . γγγk, a finite number of actions from each
region-configuration of Γr(≤ k) and an infinite number of strategies in Sk.

Let σmax be a strategy such that ∀n ∈ N, σmax ∈ Sk.
Assume now toward a contradiction that there exists ǫ > 0 such that ∀n ∈ N,

Pσn(Undecidedn) > ǫ. Remark that Pσmax(Undecidedn) = Pσk
(Undecidedn) for some

k ≥ n such that σk ∈ Sn. Since Pσk
(Undecidedn) ≥ Pσk

(Undecidedk) > ǫ, we obtain
that for every n ∈ N, Pσmax(Undecidedn) > ǫ hence limn→∞ Pσmax(Undecidedn) =
Pσmax(Undecided) > ǫ which is impossible since DC (B,PN

Λ) together with the strategy
σmax is a Markov chain with finite attractor.

Hence supσ Pσ(Undecidedn) −−−→
n→∞

0, which concludes the proof of Lemma 4.4. �

Putting together the Lemmas 4.1, 4.2, 4.3, and 4.4, we obtain the following theorem.

Theorem 4.5 Given two protocols P and B, a pair of rates Λ ∈]0, 1[2, an initial number
of processes N ∈ N, and a bound ǫ ∈]0, 1], one can effectively compute a value p ∈ [0, 1]
such that |(infσ Pσ(DC (B,PN

Λ) |= ✸qf))− p| < ǫ.

Parameterized verification of dynamic networks of probabilistic timed protocols 87

4.2.3 Synchronization analysis

For the synchronization analysis, we do not just want to reach an upward closed set
as we did for the reachability analysis; we also require that all the processes are in
the target set. This rather corresponds to the complementary of an upward closed set.
In [BBS06b], the authors consider simple symbolic sets, which in words consist of an
upward closed set minus a sum of upward closed sets, i.e. a symbolic set of the form
↑ X − ↑ Y1 · · · − ↑ Yn. They have shown that for LCS these symbolic sets are closed
under Boolean operations, upward closure, and predecessor operator and also that all
these operations are effective.

One can adapt the proofs given in Section 4.2.1 to show that in our case we can
also effectively compute the predecessor of a symbolic set. Moreover, synchronization in
sets TB and T can be expressed as the symbolic set ↑ Γr−

∑

b∈QB\TB
↑ b−

∑

q∈Q\T ↑ q.
Last, it is shown in [BBS06b] that symbolic sets defined by fix-points expressions can be
computed effectively (under guardedness conditions for fix-point terms). We can thus
reuse the fix-point expressions presented in section 4.2.1 and adapt it to symbolic sets
to obtain the decidability of the qualitative synchronization analysis.

Theorem 4.6 The problems SY NC∼p(DC) are decidable for p ∈ {0, 1}.

4.2.4 Complexity

In the previous sections, we have shown the reachability and synchronization problems
to be decidable. However, the proofs rely on a backward analysis, for which we showed
termination thanks to a well-quasi-ordering. This gives an algorithm of high complexity.
We show in this section that these problems are in fact Fωω -complete using a reduction
from reachability in LCS that is known to be Fωω -complete (see section 4.2).

Theorem 4.7 The problems REACH∼p(DC) are Fωω -hard.

Proof The idea to prove Fωω -hardness, is to reduce the reachability problem in LCS,
which is Fωω -complete. The main idea of the reduction is to use the clock of each process
to order them: intuitively, the order given by the clock values corresponds to the order
in which messages appear in the channel of a LCS configuration. To do so, we define
two (non-probabilistic) protocols, and use the base to encode the state of the LCS, and
the processes to encode the messages. The dynamism in the network will correspond
to loss in the LCS.

Let L = (Q, q0,M, δ) be a lossy channel system. First, we define the base protocol

BL = (QB ,Q
(p)
B ,Q

(n)
B , b0,x,Σ,∆B) as (see Figure 4.12):

• Q
(p)
B = ∅

• Q
(n)
B = Q ∪ δ

• b0 = q0

• Σ = {ok , r} ∪ {mr,mw | m ∈ M}

88 Clique networks of probabilistic timed protocols

• ∆B is such that for every transition t = (q, ?,m, q′) ∈ δ, there are transitions
(q, tt, ??mr, ∅, t) and (t, tt, ε, ∅, q′) to read a message in the channel and for every
transition t = (q, !,m, q′) ∈ δ there are transitions (q,xB > 0, !!mw,xB := 0, t)
and (t, tt, ??ok , ∅, q′) to write a message in the channel. Finally, from any state
b ∈ QB, there is a transition (b, tt, !!r ,xB := 0, b0) that allows one to restart the
simulation from an initial configuration.

q0

t1

t3

t2

q1

x
B
>

0,
!!
m

w

x
B
:=

0 ??
o
k

??
m r ε

xB > 0, !!m ′
w

xB := 0

??ok

!!r ,xB := 0

!!r
,
x
B
:=

0
!!r
,x

B
:=

0

!!r ,xB := 0

!!r ,xB := 0

Figure 4.12: Base protocol obtained from a LCS with two states q0 and q1 and three
transitions t1 = (q0, !m, q0), t2 = (q0, ?m, q1), and t3 = (q1, !m

′, q0).

Then, the protocol PL = (Q,Q(p),Q(n), q0,x,Σ,∆) is defined as (see Figure 4.13):

• Q(p) = ∅

• Q(n) = {q0} ∪ {m, m̄ | m ∈ M}

• Σ = {ok} ∪ {mr,mw | m ∈ M}

• ∆ is such that for every message m ∈ M, there are transitions: (q0, tt, ??mw,x :=
0, m̄), (m̄, tt, ??ok ,x := 0, q0), and (m̄,x = 0, !!ok ,x := 0,m) that correspond to
writing a message to the channel and (m,x = 1, !!mr ,x := 0, q0) that corresponds
to reading a message from the channel. And from any state q ∈ Q, there is a
transition (q, tt, ??r ,x := 0, q0) that allows one to restart the simulation from an
initial configuration.

We now prove that a given state q is reachable in L if and only if q ∈ QB is
reachable with probability 1 in the dynamic clique network DC (BL,PL

N
Λ) with arbitrary

(positive) rates Λ.
We say that a configuration γγγ = ((b,xB), γ) encodes a configuration (q,w) if b = q

and denoting w = m1 . . . mn, there exist x1, . . . , xn ∈ [0, 1] such that x1 > · · · > xn and

Parameterized verification of dynamic networks of probabilistic timed protocols 89

q0

m

m̄

m ′

m̄ ′

??m
w

x
:=
0

??
m

′
w

x
:=
0

??ok

??
ok

x
=

0,
!!
o
k

x
=

0,
!!
o
k

x
=
1,
!!m

r

x
=
1, !!m

′
r

??
r??r

??r

??
r

Figure 4.13: Protocol obtained from a LCS with two messages m and m ′.

for all i ∈ [1 . . . n] we have γ(mi, xi) = 1. Moreover, all the other processes are either in
the initial state or in a message state (i.e a state of M) but with a clock value greater
than one (these processes correspond to lost messages, and cannot be used anymore).
Formally, if γ(q, x) > 0 with (q, x) 6= (mi, xi) then q = q0 or q = m ∈ M and x > 1.

Remark 4.1 The construction of BL and PL ensures that if γγγ encodes (q,mw) and if
there is a transition t = (q, ?,m, q′) in the LCS then there exist γγγ′ and γγγ′′ such that

γγγ
x,(m,1),δ
−−−−−→ γγγ′

y,(t,xB),δ′

−−−−−−→ γγγ′′ for some y ∈ R+ and where x = 1 − x1, δ = (m, x =
1, !!mr ,x := 0, q0) and δ′ = (t, tt, ε, ∅, q′). Moreover γγγ′′ encodes a configuration (q′,w ′)

such that (q,mw)
?,m
−−→ (q′,w ′).

Similarly, if γγγ encodes (q,w) and if there are some processes in the initial state
and if there is a transition t = (q, !,m, q′) in the LCS then there exist γγγ′ and γγγ ′′ such

that γγγ
x,(q,x′),δ
−−−−−→ γγγ′

0,(m′,0),δ′
−−−−−−→ γγγ′′ where x′ > 0, δ = (q,xB > 0, !!mw ,x := 0, t) and

δ′ = (m ′, x = 0, !!ok , ∅,m). Moreover γγγ′′ encodes a configuration (q′,w ′) such that

(q,w)
!,m
−−→ (q′,w ′).

Assume that q is reachable in L and let (q0, ǫ)
a1−→ (q1,w1) . . .

an−→ (qn,wn) be the
execution such that qn = q, and where the ai’s are of the form ?m or !m, thus read or
write actions.

We define the strategy σ such that in a configuration γγγ that encodes (qi,wi), the
strategy simulates ai+1 with the two transitions given by Remark 4.1. There are two
cases where this strategy can fail: first, if there are no process in the initial state to
simulate the writing; second, if the resulting configuration does not encode the next
configuration in the LCS. This case happens when the dynamism (in particular disap-
pearances) in the network does not match the non-deterministic losses in the LCS. In
these two cases, when the strategy fails, it resets the network and starts again from

90 Clique networks of probabilistic timed protocols

the beginning. This strategy has a positive probability to simulate the execution of the
LCS and since it resets the network each time it fails to simulate, the probability to
eventually simulate the LCS is 1. Therefore, q is reached almost-surely.

Assume now that there is a strategy σ that reaches q with probability 1. Let ρ be
a finite execution respecting σ that reaches q, and consider a sequence of transitions
between the initial configuration or a reset and a configuration containing q. By con-
struction, this sequence follows the pattern of transitions given in Remark 4.1. Hence
we can extract from this sequence an execution in the LCS that reaches q. This proves
that REACH∃

=1(DC) is Fωω -hard.
In order to prove the hardness of the other problems, one can use this idea to

encode LCS and either reduce from the reachability problem or the termination problem
(asking whether all runs of the lossy channel system are finite) which is better suited
to verification problems with an universal quantifier on strategies. �

5 Conclusion

In this chapter, we investigated parameterized verification of networks of probabilis-
tic timed protocols. Such networks form a probabilistic and timed extension of the
broadcast networks studied in [DSZ11b, DSZ11a, DSZ12].

We have shown that most of the qualitative parameterized verification problems are
undecidable for a static semantics. The proofs of undecidability are done through sim-
ulation of 2-counter machines, using the processes to encode the counter values. Then,
taking inspiration from lossy channel systems, which are an other model combining
probabilities and non-determinism, we considered dynamic networks, i.e. networks in
which the number of processes evolves along the computation according to probabilistic
distributions. We have shown that the dynamic networks enjoy a finite attractor prop-
erty similar to the one of lossy channel systems. This is achievable only through a first
abstraction, namely the region abstraction, that allows to abstract away the real values
of the clocks. This abstraction generalizes the region abstraction for timed automata in
a non trivial way in order to cope with the unbounded and dynamic number of clocks.
We further provided a well-quasi-order on the extended regions, and together with the
effective computation of the predecessor operation and the finite attractor property,
obtained the decidability of the parameterized qualitative problems. Notice that the
termination of the decision procedure is obtained via the classical backward computation
on well-structured transition systems and is thus of high complexity (Ackerman-hard).
However, we also provide a reduction from the reachability problem in lossy channel
systems to show that these problems are in fact non primitive recursive.

An attempt towards the decision of quantitative properties has been made. Even
though the parameterized quantitative problems are still open, we gave a procedure
to approximate the minimal probability to reach a control state for a fixed number
of processes. This approximation scheme is adapted from one of the probability ap-
proximations for fully probabilistic lossy channel systems [ABRS05] or decisive Markov
chains [AHM07]. The adaptation is not trivial since we possibly have to deal with an

Conclusion 91

infinite number of schedulers that resolve non determinism. Our approximation scheme
is interesting in itself since it only exploits general properties, for examples the effective-
ness of the predecessor operator, the effectiveness of computing the set of states from
where we can avoid the target with probability one, and the finite attractor property.
Therefore, it can easily be generalized to a larger class than dynamic networks, that
would in particular include probabilistic lossy channel systems with insertions.

The decision algorithms we have developed have a high worst-case complexity. In
order to establish whether they are applicable in practice, I started to implement them
into a prototype tool. In any case, it would be interesting to have an answer for every
number of processes, even to a high cost, compared to a cheaper solution but only
for a finite bounded number of processes. This tool is developed in C in order to use
the Antichain and Pseudo-Antichain Library Aapal [AaP], a C library dedicated to
the representation and manipulation of antichains and pseudo-antichains, which are
well-suited data structures for partially ordered sets.

The high complexity lower-bounds are not really surprising since parameterized
reachability in untimed non-probabilistic clique networks is already Ackermann hard.
In order to achieve better complexity bounds, we considered an other model, recon-
figurable broadcast networks, where the broadcast does not reach all the components
but only a subset, chosen non-deterministically [DSTZ12]. Since parameterized reach-
ability is tractable for this model, there is hope that a probabilistic extension will have
manageable complexity decision procedures. This is the subject of the next chapter.

92 Clique networks of probabilistic timed protocols

Chapter IV

Selective broadcast networks of

probabilistic protocols

1 Introduction

In this chapter, we introduce and study the parameterized verification of selective broad-
cast networks of probabilistic protocols. This model extends the model of reconfigurable
broadcast networks studied in [DSTZ12] by allowing probabilistic internal actions: a
process can change its state according to a probabilistic distribution. The main dif-
ference with the clique networks presented in the previous chapter (see Chapter III)
is that the broadcast no longer reaches all processes but a subset of them, chosen
non-deterministically. The semantics of reconfigurable broadcast networks was given in
terms of an infinite state transition system. Here, due to the different possibilities of
sending messages from different nodes and also to the non-determinism of the proto-
col itself, we obtain an infinite state system with probabilistic and non-deterministic
choices.

In selective broadcast networks, sent messages may reach a subset of processes.
This allows to model peer to peer applications in networks equipped with a switch that
redirect the messages to a subset of participants. This is in contrast with clique networks
that are closer to networks equipped with a hub that redistributes all the messages to
everyone. Selective broadcast networks can also be useful to model wireless systems
with high mobility. For example, in a flock of birds all equipped with a wireless sensor,
the reception of a message broadcast by a sensor is limited to the sensors on the birds
near the emitter. Moreover, due to the movement of the birds, the set of birds in reach
between two messages can be totally different, from the whole flock if all the birds are
close together, to no one if the bird sending the message took its distance with the flock.

We propose, in this chapter, to study the probabilistic version of the parameterized
control state reachability by seeking for the existence of a scheduler, resolving non-
determinism, which minimizes or maximizes the probability to reach a configuration in
which at least one process is in a specific state. We focus on the qualitative aspects of
this problem by comparing extremal probabilities only to 0 and 1.

93

94 Selective broadcast networks of probabilistic protocols

In the previous chapter (Chapter III), we have seen that clique networks of timed
probabilistic protocols are a powerful model leading to undecidability of the qualitative
parameterized reachability problems. However, taking inspiration from a well-known
infinite state model combining non-determinism and probabilities, namely lossy chan-
nel systems [BS03, BBS07, BS13], we regained decidability when considering networks
with probabilistic disappearance and creation of processes i.e. networks for which the
size evolves randomly over time. However, the decidability comes at the price of high
complexity. In order to achieve better complexity bounds, this chapter is devoted to the
study of selective broadcast networks. Indeed, the complexity for the reachability prob-
lem is much lower (PTIME) in reconfigurable broadcast networks. Moreover, instead of
applying well structured transition systems techniques which have a high complexity,
in this chapter we adapt a technique (see for instance [CdAFL09]) for the verification
of finite probabilistic models, which consists in translating a Markov decision process
into a 2-player game, for which the existence of a winning strategy is equivalent to the
reachability questions in the MDP. However, due to the unknown number of partici-
pants in the parameterized verification problem, we have an infinite model, hence we
cannot apply directly this solution.

In order to solve this problem, we introduce selective broadcast of parity protocols,
which are games on a network composed of an unknown number of processes that all
run the same finite state parity protocol. The novelty is that there are now two players
and a parity objective. The states of the parity protocols are thus partitioned into
player 1 and player 2 states. Moreover, a parity function assigns to each transition of
the protocol a given parity. The aim for player 1 is to achieve an execution in which
the maximal parity seen infinitely often is even, the aim for player 2 is to make it
odd. Since the second player is introduced in order to simulate probabilistic choices,
it is less powerful than player 1. Indeed, in selective broadcast of parity protocols,
the first player is the one deciding which process plays, which processes receive the
messages and the action to play when the selected process is in a state belonging to
player 1. However, the second player can only choose the action to play when the
first player has chosen a process in a state belonging to player 2. In this setting, we
show that one can decide in co-NP whether player 1 has a strategy that fulfills a parity
objective for any choice made by player 2. Moreover, we provide a translation, at
the protocol level, from the parameterized qualitative reachability problems in selective
broadcast networks of probabilistic protocols to the parameterized game problem in
selective broadcast networks of parity protocols.

In addition to their usefulness to solve the qualitative probabilistic problems, we
believe that selective broadcast of parity protocols are an interesting tool on their own.
Indeed, this model of distributed games, as well as the techniques used to solve the
game, could be of use in different settings of parameterized systems with many identical
processes.

The chapter is organized as follow. First, in Section 2, we introduce the model of se-
lective broadcast networks of probabilistic protocols which are a probabilistic extension
of the reconfigurable broadcast protocols [DSTZ12]. We define as well the parameter-
ized qualitative state reachability that we study in this chapter. An example of these

Selective broadcast networks of probabilistic protocols 95

problems asks whether there exist a network size and a scheduler resolving the non-
determinism that allows to reach almost surely a configuration in which at least one
process is in a given control state. In addition to this particular problem, we also study
all the variants by comparing to both thresholds 0 and 1, and considering existential
and universal quantifiers over the schedulers.

Our proof technique relies on the transformation into distributed games. We there-
fore introduce in Section 3 the new model of selective broadcast networks of parity
protocols. This model is a 2-player game described in a parameterized way. A paramet-
ric number of processes run a finite state parity game protocol for which the states are
split in two parts: states of player 1 and states of player 2. In this game, at each turn,
player 1 has the role of choosing which process will play and the set of its neighbors.
The action to be performed is then let to the player to whom the state of the selected
process belongs. These choices for both players are called strategies, and we say that
a strategy is winning for player 1 if for all strategies of player 2, the maximal parity
seen infinitely often on the transition of the resulting run is even. We thus define the
parameterized game problem as whether there exists a network size such that player 1
has a winning strategy.

We present, in Section 3.3, an algorithm that allows one to solve the parameterized
game problems. This result is obtained thanks to a key argument stating that one can
consider only very simple strategies of player 2 in order to decide whether player 1 has a
winning strategy. These simple strategies for player 2 are called state-based and consist
of strategies that always choose the same edges at the protocol level independently of
the whole network configuration, or history. The algorithm then consists in guessing
such a strategy, candidate to be winning for player 2, and checking whether there
exists an infinite path of even parity. This last part is done thanks to a counting
abstraction, translating the problem into a parameterized VASS for which finding a
loop with positive effect is known to be solvable in polynomial time [KS88]. We thus
obtain an NP algorithm for the parameterized game problem.

Finally, Section 4 is dedicated to present several reductions of the probabilistic
parameterized problems to parameterized game problems allowing us to derive decid-
ability of these first problems. We also give lower bounds on the complexity of the
probabilistic parameterized problems matching the upper bounds of the parameterized
game problems. This is performed by reduction from UNSAT, the unsatisfiability prob-
lem of formula in conjunctive normal form. We thus obtain that all these parameterized
problems, both probabilistic and game, are NP-complete.

2 Selective broadcast networks of probabilistic protocols

This section is devoted to the introduction of probabilistic protocols and to the seman-
tics we attach to selective broadcast networks of such protocols. A selective broadcast
network of probabilistic protocols is a network in which the number of participants is
fixed but unknown, and in which the participants follow the same behaviour described
as a probabilistic protocol. Each participant can interact with the others via broad-

96 Selective broadcast networks of probabilistic protocols

cast and reception of messages. Contrary to clique networks studied in the previous
chapter, these broadcasts do not necessarily reach all the participants but rather a non-
deterministically selected subset of participants, hence the name of selective networks.

2.1 Probabilistic protocols

In order to model randomized algorithms, we now introduce probabilistic protocols.
This model is a probabilistic extension of the broadcast protocol model studied in
[DSZ11b, DSZ11a, DSZ12] or, equivalently, a restriction of the probabilistic timed pro-
tocol model defined in Definition 2.1 without the clock variable, or equivalently, where
the guards are always true. We give here an other definition in order to emphasize this
difference and to simplify the notations of this chapter.

Definition 2.1 (Probabilistic protocol) A probabilistic protocol is a tuple P =
(Q,Q(p),Q(n), q0,Σ,∆) where:

• Q is a finite set of states partitioned into probabilistic states Q(p) and non-de-
terministic states Q(n),

• q0 ∈ Q(n) is the initial control state,

• Σ is a finite alphabet of messages,

• ∆ is the edge relation, partitioned into:

– internal actions: ∆i ⊆ (Q(n) × {ε} ×Q),

– communications: ∆c ⊆ (Q(n) × {!!m, ??m | m ∈ Σ} × Q(n)), that can be
broadcasts (!!m) or receptions (??m)

– probabilistic transitions: ∆p : Q(p) → Dist
(

Q(n)
)

that, for all q ∈ Q(p),
associates a unique distribution.

We refer to broadcasts and internal actions as active actions since they can be
initiated by a process, in opposition to receptions that are only triggered when another
process sends a message.

As for probabilistic timed protocols, broadcasts and receptions are non-deterministic
and only internal actions can lead to probabilistic behaviors. Again, this is not a
real restriction since probabilistic choices for broadcasts and receptions can be encoded
thanks to additional states and internal actions (see Remark 2.1). Also, simplifying
definitions (with the same idea as Remark 2.2), we consider that there is (at least) one
reception of every message from every state, i.e. one could say that the protocols are
"input complete". Again, this is not a real restriction since, in the semantics defined
in the following section, we consider non-blocking broadcasts. We can hence add a self
loop receiving a message for all the unspecified receptions.

Example 2.1 A toy example of a probabilistic protocol is given in Figure 2.1. For
simplicity, the self loops for the receptions are omitted. For example, in state q2 there
is a self loop (q2, ??a, q2) that is not represented.

Selective broadcast networks of probabilistic protocols 97

q0

q1 qp,1 qf

q3

q2 qp,2 q5

q4

??a

!!a

ε

ε

1
2

1
2

1
2

1
2

!!a

??a

ε

Figure 2.1: Simple example of probabilistic protocol.

The initial state of this protocol is q0. From here, there is a broadcast transition
(q0, !!a, q2) ∈ ∆c going to state q2 by broadcasting message a. Upon reception of message
a in state q0, there is a reception transition (q0, ??a, q1) ∈ ∆c that leads to q1.

In state q1, there is an internal transition (q1, ε, qp1) ∈ ∆i that leads to qp,1. The
distribution associated to qp,1 gives, with probability 1

2 , qf , and with probability 1
2 , q3.

2.2 Semantics of selective broadcast networks

We now introduce selective broadcast networks. In contrast to clique networks (defined
in Section 2.2), the broadcast may not reach all the participants. Indeed the sets of
participants receiving the messages are chosen non-deterministically.

Definition 2.2 (Selective broadcast network of probabilistic protocol) A se-
lective broadcast network S(PN) is composed of N ∈ N copies, called processes, of a
probabilistic protocol P.

In a selective broadcast network S(PN), as in a static clique network defined in
Section 2.2, the number of processes is fixed to N along all computations. However,
the communication topology is no longer a clique but evolves over the computations.
More precisely, at each broadcast, a set of processes is selected as destination of this
broadcast and only them receive the message.

Example 2.2 The intuitive semantics of a selective broadcast network composed of
processes running the protocol given in Figure 2.1 is the following.

Each process starts in state q0. From here, a process is selected to perform an active
action (either an internal transition or a broadcast). In state q0, the only possible
active action is a broadcast of a, leading to state q2. While executing a broadcast, a
set of processes is selected. This set contains all the processes that receive the broadcast

98 Selective broadcast networks of probabilistic protocols

q0

q0

q0

q0

q2

q1

q1

q0

q2

qp,1

q1

q0

q2

q3

q1

q0

qp,2

q3

q1

q0

q4

q3

q1

q0

q2

q1

q1

q1

1, !!a

{2, 3}

2, ε

∅

2, 12 1, ε

∅

1, 12 1, !!a

{2, 4}

Figure 2.2: An execution of a selective broadcast network of 4 processes running the
protocol represented in Figure 2.1.

message. In this case, all the processes in the reception set receive message a by taking
the transition (q0, ??a, q1) and thus move to state q1.

In the case of an internal action, for example from state q1, taking the transition
(q1, ε, qp,1) only affects the process performing it. Then, in state qp1, the process moves
to q3 with probability 1

2 and moves to qf with probability 1
2 .

An example of an execution is given in Figure 2.2. In this execution, first process
1 is selected to perform a broadcast of a by moving to state q2. For this broadcast,
the selected reception set consists in processes 2 and 3, only them receive the message
and move to q1. Process 4 is not concerned by the broadcast and thus stays in state
q0. After that, process 2 performs an internal action leading to qp,1. Since it is a
probabilistic state, it is directly followed by a probabilistic transition leading to q3 with
probability 1

2 . Next, process 1 performs an internal action and moves to qp,2 and then to
q4 with probability 1

2 . Notice that for internal actions, the reception set does not matter
(here it is chosen to be the empty set but any other set would give the same result). Last,
process 1 performs a broadcast of a and moves to q2, with reception set {2, 4}, hence
processes 2 and 4 receive the message a and move to q1.

Since we have to keep track of which processes are in the reception set, we now
consider that processes have a unique identifier. However, theses identifiers are not
manipulated during the computation, they are only used to specify the processes per-
forming the action as well as the processes receiving the messages.

We define a configuration as, either a vector of control states γ ∈ QN of size N ,
or as a pair (γ, pid) ∈ QN × [1 . . . N], denoting that the process with index pid has to
perform the next action.

Selective broadcast networks of probabilistic protocols 99

The semantics of a selective broadcast network S(PN) is the Markov decision process
S (PN) = (Γ,Γ(n),Γ(p), γ0, T

(n), T (p)), where:

• Γ ⊆ QN ∪ (QN × [1 . . . N]) is the set of configurations partitioned into non-
deterministic configurations Γ(n) and probabilistic configurations Γ(p);

• Γ(n) = Q(n)N ∪ (Q(n)N × [1 . . . N]) is the set of non-deterministic configurations;

• Γ(p) = {(γ, pid) ∈ QN × [1 . . . N]) | γ[pid] ∈ Q(p)} is the set of probabilistic con-
figurations, i.e. configurations in which the designate process is in a probabilistic
state;

• γ0 ∈ Γ(n) is the initial configuration, defined by for all pid ∈ [1 . . . N], γ0[pid] = q0;

• T (p) is the transition probability function naturally lifted from ∆p, i.e. if ∆p(q) =
d and (γ, pid) ∈ Γ(p) with γ[pid] = q then T (p)((γ, pid)) = d′ with d′(γ′) = 0 if
there exists pid ∈ [1 . . . N] \ {pid} such that γ[p′id] 6= γ′[p′id] and d′(γ′) = d(γ′[pid])
otherwise;

• T (n) ⊆ (Γ(n)×[1 . . . N]×Γ(n))∪(Γ(n)×∆×2[1...N]\{pid}×Γ) is the non-deterministic
transition relation defined as follow:

Choice of a process (γ, pid, (γ, pid)) ∈ T (n) if there exists an active action from
γ[pid]

Internal action ((γ, pid), δ, R, γ′) ∈ T (n) if δ = (γ[pid], ε, γ
′[pid]) and γ′[pid] ∈

Q(n) or ((γ, pid), δ, R, (γ′, pid)) ∈ T (n) if δ = (γ[pid], ε, γ
′[pid]) and γ′[pid] ∈

Q(p) where, in both cases, γ′ is such that for all p′id ∈ [1 . . . N] \ {pid},
γ′[p′id] = γ[p′id].

Communication ((γ, pid), δ, R, γ′) ∈ T (n) if δ = (γ[pid], !!m, γ′[pid]) and for all
pRid ∈ R (γ[pRid], ??m, γ′[pRid]) ∈ ∆ and for all p′id ∈ [1 . . . N] \ ({pid} ∪ R),
γ′[p′id] = γ[p′id].

We denote γ → γ′ for (γ, γ′) ∈ T (n) or if T (p)(γ)(γ′) > 0.
A finite execution ρ is a finite sequence of configurations γ1 . . . γn such that for all

i ∈ [1 . . . n− 1] γi → γi+1. An infinite (or maximal) execution is an infinite sequence of
configurations such that all its prefixes are finite executions. We denote by E the set of
all (finite and infinite) executions.

Remark 2.1 (Non-blocking execution) In this chapter, we assume that all maxi-
mal executions are infinite, i.e. that from all configurations γ there exists a configuration
γ′ such that γ → γ′. This restriction will be explained in Section 3.3.1 for the proof
of Lemma 3.1. Notice that the example given in Figure 2.1 satisfies this assumption.
Indeed, for any execution, there is at least a process in the bottom part that can cycle
on the states q2, qp,2 and q4 or loop in state q5.

100 Selective broadcast networks of probabilistic protocols

2.3 Parameterized probabilistic verification problems

In order to define the relevant parameterized qualitative reachability problems, we first
define strategies for selective broadcast networks that will be in charge of resolving non-
determinism. Hence strategies choose the process performing an action, the performed
action, as well as the reception set associated with this action.

Definition 2.3 (Strategy) A strategy for a selective broadcast network is a scheduler
for the Markov decision process S(PN) representing the semantics. Formally, a strategy
is a function σ : E → [1 . . . N] ∪ ∆ × 2[1...N], specifying for each execution either the
process selected to play the next action or the action to be performed together with the
reception set. Moreover, a strategy is such that for all executions ρ = γ1 . . . γn, there

exists a configuration γn+1 such that γn
σ(ρ)
−−→ γn+1.

The problems we propose to investigate are qualitative questions, where we will
compare to 0 or 1 the probability of reaching a particular state in a network built over a
probabilistic protocol. Given a probabilistic protocol P = (Q,Q(p),Q(n), q0,Σ,∆) and
a state qf ∈ Q, we denote by ✸qf the set of all maximal paths of S(PN) of the form
γ0γ1 · · · such that there exists i ∈ N verifying γi[pid] = qf for some process pid, i.e. the
set of paths which eventually reach a configuration where a process is in state qf .

We are now ready to provide the definition of the different qualitative reachability
problems studied in this chapter. Given a quantifier ∈ {∃,∀}, a qualitative probabil-
ity threshold p ∈ {0, 1} and a comparison operator ∼∈ {<,=, >}, let REACH∼p(S)
be the following decision problem:

Input:
A probabilistic protocol P, and a control state qf ∈ Q.
Question:
Does there exist a network size N ∈ N such that σ, Pσ(S(P

N) |= ✸qf) ∼ p

Remark that these decision problems are parameterized by the network size. Assum-
ing a fixed initial configuration, all problems boil down to the analysis of a finite Markov
decision process, and are decidable in PTIME [KNPS08, BK08] (see Section I.3).

3 Selective broadcast networks of parity protocols

In order to solve the parameterized qualitative reachability problems for selective broad-
cast networks REACH∼p(S) defined in the previous section, we use a polynomial
transformation to selective broadcast game networks of parity protocols. These proto-
cols are a 2-player extension of the broadcast protocols. This section is devoted to the
introduction of parity protocols, and to the semantics we attach to selective broadcast
game networks of parity protocols.

Selective broadcast networks of parity protocols 101

3.1 Parity protocols

Parity protocols are a two player extension of broadcast protocols (see Section I.3.3).
Equivalently, they are defined as probabilistic protocols, except that there are no prob-
ability but a second player who controls a subset of states (previously probabilistic
states). From such states, the outcome is no longer given by a probabilistic distribution
but is chosen by player 2 among the possible internal actions.

Definition 3.1 (Parity protocol) A parity protocol is a tuple G = (L,L(1),L(2), l0,Σ,
∆, col, safe) where:

• L is a finite set of control states partitioned into L(1) states of player 1 and L(2)

states of player 2;

• l0 ∈ L(1) is the initial control state;

• Σ is a finite message alphabet;

• ∆ is the transition relation partitioned into:

– internal actions for player 1: ∆ ⊆ L(1) × {ε} × L,

– internal actions for player 2: ∆ ⊆ L(2) × {ε} × L,

– broadcasts and receptions: ∆ ⊆ L(1) × {!!m, ??m | m ∈ Σ} × L;

• col : ∆ → N is the coloring function, assigning a color (or parity);

• safe ⊆ ∆ is a set of safe edges.

As before, we refer to broadcast and internal actions as active actions. Moreover, we
denote by ActStates = {l ∈ L | ∃l′ ∈ L, (l, ε, l′) ∈ ∆ or ∃m ∈ Σ, (l, !!m, l′) ∈ ∆} the set
of all states that are sources of at least one active action.

Notice that the protocols are equipped by a coloring function that colors the edges,
and by a subset of safe edges. Intuitively, the unsafe edges are edges that player 1
must avoid to win the safety game. Additionally, for player 1 to win the parity game,
the maximal color taken infinitely often should be even. The semantics is detailed in
Section 3.2.

Example 3.1 An example of a parity protocol is given in Figure 3.3. In this example
(as in the rest of this chapter), the states of player 1 are circles and those of player 2
are squares; the color of each edge is given separated of the action by a colon; and the
unsafe edges are dotted.

The initial state of this protocol is l0, and belongs to player 1. From here, there is a
broadcast of message a, leading to the state l2 also belonging to player 1. This edge has
color 0 and is a safe edge. Formally, δ = (l0, !!a, l2) ∈ ∆ ∩ safe, and col(δ) = 0.

In state l22, player 2 can choose between two internal transitions, an unsafe edge
(l22, ε, l5) of parity 0, and a safe edge (l22, ε, l4) of parity 1.

102 Selective broadcast networks of probabilistic protocols

l0

l1 l21 lf

l3

l2 l22 l5

l4

??a
: 0

!!a : 0

ε:10

ε:0

ε:2

ε:0

ε:2

ε:1

!!a:3

??a:0

ε:4

Figure 3.3: Simple example of a parity protocol.

3.2 Semantics of selective broadcast game networks of parity proto-
cols

Parity protocols form the basic (finite) ingredient of an infinite number of 2-player games
that are formed by networks of processes running the same parity protocol. Here again,
similar to all models of networks of many identical processes, the infiniteness comes
from the unbounded size of the networks. In this subsection, we define the semantics
that we attach to such networks as well as the parametric safety and parity winning
conditions on the games.

Definition 3.2 (Selective broadcast game networks of parity protocol) A se-
lective broadcast game network SG(GN) is composed of N ∈ N copies, called processes,
of a parity protocol G.

Example 3.2 An example of a play is given in Figure 3.4. In this example, the choices
made by player 1 are represented in blue and the choices made by player 2 in red. First,
player 1 chooses that process 1 should perform an action. Since process 1 is in state
l0 ∈ L(1) that belongs to player 1, player 1 also chooses the action to take (here the
broadcast of message a with reception set {2, 3}); it also chooses the reception edges to
be taken by processes 2 and 3 (even though there are no choice here).
Next, player 1 decides that process 2 should do an action. Again, since process 2 is in
a state of player 1, the action to take is also chosen by player 1, and similarly for the
next step in which process 1 takes an internal transition.
In the fourth step of the play, player 1 chooses that it is the turn of process 2 to play
again. Since process 2 is in state l21 ∈ L(2), player 2 chooses the transition to be taken
by process 2, here it moves to l3. Similarly, process 1 moves to state l4. Lastly, player
1 chooses that process 1 broadcasts message a to process 2.

Notice that this run is safe since it does not take any unsafe transitions. Since the
last and second configurations are the same, we can consider the infinite play that loops

Selective broadcast networks of parity protocols 103

l0

l0

l0

l0

l2

l1

l1

l0

l2

l21

l1

l0

l22

l21

l1

l0

l22

l3

l1

l0

l4

l3

l1

l0

l2

l1

l1

l0

1, !!a : 0

{2, 3}

2, ε : 10

∅

1, ε : 0

∅

2, ε : 2

∅

1, ε : 1

∅

1, !!a : 3

{2}

Figure 3.4: Example of a play with 4 processes running the parity protocol given in
Figure 3.3.

from the last configuration to the second and where both players keep making the same
decisions. Naturally, this infinite play is also safe, and it contains infinitely often the
colors 10, 0, 2, 1 and 3. Since the maximal parity seen infinitely often is even (here 10)
this infinite play is winning for player 1.

The semantics associated with a selective broadcast game network SG(GN) is given
in terms of a 2-player game whose definition is similar to Markov decision process
associated with selective broadcast network of probabilistic protocol. Recall that one
can see a Markov decision process as a 1 − 1

2 player game. Here also, player 1 has the
ability to choose a node which will perform an action, and according to the control
state labelling this node, either player 1 or player 2 will then perform the next move.
Note that the roles of player 1 and player 2 are not symmetric, because player 1 only,
by definition of ∆, can initiate a communication, whereas player 2 may only perform
internal actions. Also, player 1 chooses the reception set in case of a communication.

Let G = (L,L(1),L(2), l0,Σ,∆, col, safe) be a parity protocol. We define a configu-
ration of the selective broadcast game network SG(GN) as a vector of size N , λ ∈ LN

of control states, or as a pair (λ, pid) ∈ LN × [1 . . . N], denoting that the process with
index pid has been chosen to perform the next action.

Player 1 owns configurations where no process is selected to perform an action, and,
for i ∈ {1, 2}, player i owns configurations (λ, pid) where the selected process pid is in a
player i control state. Formally:

Λ
(1)
G = LN ∪ {(λ, pid) ∈ LN × [1 . . . N] | λ[pid] ∈ L(1)}

and
Λ
(2)
G = {(λ, pid) ∈ LN × [1 . . . N] | λ[pid] ∈ L(2)}.

The semantics of the network built over G is then given in terms of the 2-player
game S G (GN) = (ΛG ,Λ

(1)
G ,Λ

(2)
G , TG , colG , safeG) where TG ⊆ ΛG × ΛG is defined using

104 Selective broadcast networks of probabilistic protocols

reconfiguration and process choices for player 1 and internal and communication rules
as the one defined in the case of probabilistic protocols (see page 99). The coloring
function colG : TG → N and the safe set of transitions safeG ⊆ TG are lifted from their
analog at the protocol level, col and safe. More precisely, the color associated with an
internal action is lifted at the level of configurations, and in case of communication, the
color of a communication transition between configurations is defined as the color of the
corresponding broadcast transition (colors of reception edges are ignored). Moreover,
a transition at the level of configurations is declared safe if and only if all individual
transitions that compose it are safe. Finally, we will say that a configuration λ ∈ LN is
initial if λ[pid] = l0 for all pid ∈ [1 . . . N].

Formally: TG ⊆ ΛG × ΛG , colG : TG → N and safeG ⊆ TG are defined as follows:

Choice of a process (λ, pid, (λ, pid)) ∈ TG if λ[pid] ∈ ActStates;
in this case, the transition is safe and of color 0 i.e. colG((λ, pid, (λ, pid))) = 0 and
(λ, pid, (λ, pid)) ∈ safeG .

Internal action ((λ, pid), δ, R, λ′) ∈ TG if δ = (λ[pid], ε, λ
′[pid]) and γ′ is such that for

all p′id ∈ [1 . . . N] \ {pid}, γ′[p′id] = γ[p′id];
in this case, colG(((λ, pid), δ, R, λ′)) = col(δ) and (λ, pid, (λ, pid)) ∈ safeG if and
only if δ ∈ safe.

Communication ((λ, pid), δ, R, λ′) ∈ TG if δ = (λ[pid], !!m, λ′[pid]) and for all pRid ∈ R
(λ[pRid], ??m, λ′[pRid]) ∈ ∆ and for all p′id ∈ [1 . . . N] \ ({pid} ∪R), λ′[p′id] = λ[p′id];
in this case, colG(((λ, pid), δ, R, λ′)) = col(δ) and ((λ, pid), δ, R, λ′) ∈ safeG if δ ∈
safe and for all pRid ∈ R, (λ[pRid], ??m, λ′[pRid]) ∈ safe.

A finite path ρ is a finite sequence of configurations λ0λ1 · · ·λn ∈ Λ∗
G such that

(λi, λi+1) ∈ TG for all 0 ≤ i < n. Such a path is said to start at configuration λ0. An
infinite path is an infinite sequence ρ ∈ Λω

G such that any finite prefix of ρ is a finite
path. Maximal paths in S G (GN) are infinite paths. As for selective broadcast networks
(see Remark 2.1), we assume that there is no finite maximal path, i.e. there is no paths
ending in a configuration λ such that there is no configuration λ′ with (λ, λ′) ∈ TG .
This restriction will be explained in Section 3.3.1 for the proof of Lemma 3.1.

A strategy for player 1 dictates its choices in configurations of Λ(1). More precisely, a
strategy for player 1 in the game S G (GN) = (ΛG ,Λ

(1)
G ,Λ

(2)
G , TG , colG , safeG) is a function

α : Λ∗
GΛ

(1)
G → ΛG such that for every finite path ρ and λ ∈ Λ

(1)
G , (λ, α(ρλ)) ∈ TG .

Strategies β : Λ∗
GΛ

(2)
G → ΛG for player 2 are defined symmetrically, and we write S(1)

and S(2) for the set of strategies for each player. A strategy profile is a pair of strategies,
one for each player. Given a strategy profile (α, β) and a network size N ∈ N, the
game S G (GN) gives rise to the following maximal path, also referred to as the play,

ρ(S G (GN), α, β) = λ0λ1 · · · such that for all i ∈ N, if λi ∈ Λ
(1)
G then λi+1 = α(λ0 . . . λi),

otherwise λi+1 = β(λ0 . . . λi).
The winning condition for player 1 is a subset of plays Win ⊆ Λω

G . In this chapter,
we characterize winning conditions through safety, parity objectives and combinations

Selective broadcast networks of parity protocols 105

of these two objectives, respectively denoted by Wins, Winp and Winsp, and defined
as follows:

Wins = {ρ ∈ Λω
G | ∀0 ≤ i < |ρ| − 1.(ρ(i), ρ(i + 1)) ∈ safe}

Winp = {ρ ∈ Λω
G | max{n ∈ N | ∀i ≥ 0.∃j ≥ i.col((ρ(j), ρ(j + 1))) = n} is even}

Winsp = (Winp ∩Wins)

The safety objective contains all infinite paths that use only edges in safe. The parity
objective contains all infinite paths for which the maximum color visited infinitely often
is even. Finally, the safety-parity objective contains the infinite paths which respect
both the parity and the safety objectives.

Note that in the context of games played over a finite graph, the safety-parity
objective can easily be turned into a parity objective, by removing the unsafe edges
and by adding a self-loop of even parity on deadlock states. However, in our case,
this transformation is difficult because removing unsafe edges may introduce deadlock
configurations (which are forbidden) and since the number of processes is not known a
priori, adding self-loops only on this deadlock configurations may be difficult.

Finally, we say that a play ρ is winning for player 1 for an objective Win ⊆ Λω
G if ρ ∈

Win, in the other case it is winning for player 2. Last, as usual, a strategy α for player 1
is a winning strategy if for every strategy β of player 2, the play ρ(S G (GN), α, β) is
winning for player 1.

Given a parity protocol G and a winning condition Win, the game problem is defined
as follows:

Input:
A parity protocol G, and a winning condition Win ∈ {Wins,W inp,W insp}.
Question:
Does there exist a network size N ∈ N such that player 1 has a winning strategy α in
the game S G (GN)?

3.3 Resolution of the game

3.3.1 Restricting the strategies of player 2

In order to solve the game problem for parity protocols, we first show that we can restrict
the strategies of player 2 to what we call state based strategies. These state based
strategies always choose from a given control state the same successor, independently
of the rest of the configuration and of the game history.

We consider a parity protocol G = (L,L(1),L(2), l0,Σ,∆, col, safe). We begin by
defining state based strategies for player 2 in S G (GN). A state based behavior for
player 2 in S G (GN) is a function b : (L(2) ∩ ActStates) → ∆ such that for every
l ∈ L(2) ∩ ActStates, b(l) ∈ {(l, ε, l′) | (l, ε, l′) ∈ ∆}. Such a state based behavior
induces a state based strategy βb for player 2 in S G (GN) defined as follows: let ρ be

a finite path in Λ∗
G and (λ, pid) ∈ Λ

(2)
G , we have βb(ρλ) = λ′ where λ′ is the unique

configuration obtained from λ by applying, according to the definition of S G (GN),

106 Selective broadcast networks of probabilistic protocols

the rule corresponding to b(l) (i.e. the internal action initiated from process pid). We

denote by S
(2)
sb the set of state based strategies for player 2. Note that G contains a finite

number of states and edges, so that the set S
(2)
sb is finite and of cardinality bounded by

|∆|.
The next proposition shows that we can restrict strategies of player 2 to state based

ones in order to solve the game problem for G when considering safety, parity and
safety/parity winning objectives.

Proposition 3.1 For Win ∈ {Wins,W inp,W insp}, we have

∃N ∈ N, ∃α ∈ S(1). ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Win
⇐⇒

∀β ∈ S
(2)
sb . ∃N ∈ N, ∃α ∈ S(1), ρ(S G (GN), α, β) ∈ Win .

The proof of this proposition is split into two parts. First we establish (Lemma 3.1)
that the existence of a winning strategy against each state based strategy of player 2
implies the existence of a winning strategy against any strategy of player 2. This proof
shares some similarities with the one showing that memoryless strategies are sufficient
for player 2 in energy parity games [CD12]. It consists of an induction on the number
of states of player 2 in the parity protocol. In the induction step, a configuration is
split into several sub-configurations (one for each state based strategy of player 2) and
player 1 navigates among the sub-configurations each time player 2 changes strategy.
For instance, if player 2 has two choices, say left and right, then at the beginning player 1
plays in the “left” sub-configuration and in case player 2 chooses right rather than left,
then the associated process is moved to the “right”-sub-configuration and the game
proceeds in this sub-configuration. Intuitively, we show that if player 1 wins against the
stubborn strategy which chooses always left and against the one which chooses always
right, then it wins against any strategy of player 2.

In the second part (Lemma 3.2), we show that we can build a unique strategy of
player 1 that wins against all state based strategies of player 2, assuming we are given
winning strategies of player 1 for each state based strategy of player 2. The idea here is
to guess the state based strategy of player 2 , and then play the corresponding winning
strategy.

Let us start with the first part of the proof, and the following lemma:

Lemma 3.1 For Win ∈ {Wins,W inp,W insp}, we have:

∃N ∈ N. ∃α ∈ S(1). ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Win
⇐⇒

∃N ∈ N. ∃α ∈ S(1). ∀β ∈ S
(2)
sb , ρ(S G (GN), α, β) ∈ Win

Proof Only the right-to-left implication deserves a proof, since S
(2)
sb ⊆ S(2). We assume

that there exist a number of processes N ∈ N and a strategy α for player 1 such that
for all state based strategies β of player 2, ρ(S G (GN), α, β) ∈ Win. The proof is done
by induction on |L(2)|, the number of states of player 2 in the parity protocol.

Selective broadcast networks of parity protocols 107

If L(2) = ∅, player 2 makes no decision in the game, hence, the set of state based
strategies agrees with the set of all strategies and they are empty. Therefore, the base
case is obvious.

Assume now that the property holds for |L(2)| < n, and let us consider a parity
protocol G with |L(2)| = n. We suppose that L(2) = {l1, · · · , ln}. We first rule out the
case where in ln a single internal transition is enabled. In that case, player 2 has no
real choice in ln, and ln can as well belong to L(1), so that the induction hypothesis
applies. Without loss of generality, we consider that two transitions, δℓ = (ln, ε, lℓ) and
δr = (ln, ε, lr), are enabled in ln. From G, we derive two variants of the parity protocol
Gℓ and Gr, where only the left transition δℓ (resp. the right transition δr) is present, and
in which ln belongs to L(1). Any state based strategy of player 2 in the game S G (GN

ℓ)
is also a state based strategy in S G (GN), and similarly for S G (GN

r). Therefore, the
strategy α wins against all local strategies in both S G (GN

l) and S G (GN
r).

Because the number of player 2 states in Gℓ [resp. Gr] is at most n−1, the induction
hypothesis applies, and there exist a number of processes Nℓ [resp. Nr] and a strategy
αℓ [resp. αr] for player 1 such that αℓ [resp. αr] wins against all strategies of player 2
in S G (GNℓ

ℓ) [resp. S G (GNr
r)]. We now explain how to define a winning strategy α for

player 1 in the game S G (GNℓ+Nr), using αℓ and αr.
First, we will refer to the first Nℓ processes of a configuration as the “left” part and to

the Nr others as the “right” part. Now, we explain how α is defined, the idea being that
this strategy simulates αℓ on the “left” part of the configuration and αr on the “right”
part of the configuration. Also, α sometimes exchanges processes from both parts: for
instance, a process in state ln present in the “left” part and from which player 2 will
choose to perform δr. Note that moving such a process is possible because the actions
of player 2 are only internal actions (labeled with ε) and consequently they only change
the states of a single node.

The global strategy α starts by playing as αr on the processes in the “right” part,
until the decision in αr is to choose a process prid in state ln, meaning that the next
move for player 2 will be to decide which transition to perform between δr and δℓ. Note
that, if this never happens, the play is clearly winning for player 1 since αr is winning in
S G (GNr

r). Just before choosing prid, the simulation of αr is suspended, and α changes
mode to play as αℓ in the “left” part. Similarly as above, if αℓ never dictates to choose
a process pℓid in state ln, then α sticks to αℓ, and the play is winning.

Otherwise, player 1 has to choose one process (either prid or pℓid) in state ln. Assume
it does so, in the “left” part, choosing pℓid. Assuming further that the next move of
player 2 corresponds to choosing transition δℓ, then α continues to simulate αℓ on the
processes of the “left” part. Else, if player 2 chooses to play transition δr, the processes
plid and prid are exchanged (remember that prid and pℓid where both in state ln just before
the choice of player 2) and α changes mode and now simulates αr on the right part.
Note that now the right part is composed of the previous Nr processes, from which prid
was removed, and pℓid added.

If we consider now a strategy β for player 2, the play ρ(S G (GNℓ+Nr), α, β) can have
the three following forms where we add a superscript (ℓ) or (r) to denote for each state
whether the game is played as in S G (GNℓ

ℓ) or in S G (GNr
r):

108 Selective broadcast networks of probabilistic protocols

1. λ
′(r)
0 . . . λ

(ℓ)
i . . . λ

(r)
j λ

(r)
j+1λ

(r)
j+2 . . . in which after some point α plays only as αr in

S G (GNr
r);

2. λ
′(r)
0 . . . λ

(ℓ)
i . . . λ

(ℓ)
j λ

(ℓ)
j+1λ

(ℓ)
j+2 . . . in which after some point α plays only as αℓ in

S G (GNℓ

ℓ);

3. λ
′(r)
0 . . . λ

(ℓ)
i λ

(ℓ)
i+1λ

(ℓ)
i+2 . . . λ

(r)
j λ

(r)
j+1λ

(r)
j+2 . . . λ

(ℓ)
k λ

(ℓ)
k+1λ

(ℓ)
k+2 . . . in which, infinitely often,

α plays alternatively as αr in S G (GNr
r) and as αℓ in S G (GNℓ

ℓ).

Notice that this is only possible since we assumed all plays to be infinite. Without
this assumption, let us consider the right play to be finite. While α is playing as αr in
the right part, it will eventually reach a deadlock configuration; the strategy α will thus
be forced to play again in the left part, but the configuration in the left part may not
correspond to a configuration reachable with the strategy αℓ, since a process in state lℓ
is missing.

From the fact that αr and αℓ are winning strategies in their respective game, it
is obvious that in the two first cases ρ(S G (GNℓ+Nr), α, β) is a winning play. For the
third case, from how we build our strategies α, it is clear that the play obtained from
ρ(S G (GNℓ+Nr), α, β), by considering only the left sub-configurations and removing the
configurations with superscripts (r), corresponds to a play in S G (GNℓ

ℓ) which respects
a strategy profile (αℓ, β

′) for some strategy β′ of player 2, and consequently the play
is winning. Symmetrically, the play obtained by removing the left sub-configurations
and the configurations with superscripts (ℓ) is winning in S G (GNr

r). Consequently the
“composition” of these two plays is necessarily winning: for the safety objective, it never
uses “unsafe” actions and for the parity objective, the maximal color seen infinitely often
is either in the (ℓ) part or in the (r) part and in both cases it is even. This shows that
ρ(S G (GNℓ+Nr), α, β) is a winning play for player 1. �

In order to complete the proof of Proposition 3.1, we still need to prove:

Lemma 3.2

∃N ∈ N. ∃α ∈ S(1). ∀β ∈ S
(2)
sb , ρ(S G (GN), α, β) ∈ Win
⇐⇒

∀β ∈ S
(2)
sb . ∃N ∈ N. ∃α ∈ S(1), ρ(S G (GN), α, β) ∈ Win

Proof Here again, only the right-to-left implication deserves a proof.
Without loss of generality, when the winning objective is Win = Winp, we assume

that safe = ∆.
Assume that for every state based strategy β of player 2, there exist Nβ ∈ N and

αβ ∈ S(1) such that ρ(S G (GNβ), αβ , β) ∈ Win. The intuition is to define a strategy α
for player 1 that guesses which state based strategy player 2 is playing, and plays the
adequate counter strategy αβ . When the guess is incorrect, and the error is detected, α
starts again on an other part of the network and guesses an other state based strategy
for player 2.

Selective broadcast networks of parity protocols 109

In order to define α, we let S(2)
sb,ns denote the set of unsafe state based strategies for

player 2, for which there is no risk for player 1 to guess them, since they fire unsafe
transitions. Formally, S(2)

sb,ns is the set of strategies βb induced by the local behaviors b

such that ∀l ∈ L(2) if there exists δ = (l, ε, l′) ∈ ∆ with δ /∈ safe then b(l) /∈ safe. Hence

S
(2)
sb,ns is the set of strategies that always choose an unsafe transition if possible.

We define N as the sum of Nβ for all local unsafe strategies β ∈ S
(2)
sb,ns, and for each

strategy β ∈ S
(2)
sb,ns we refer to the Nβ corresponding processes as the sub-configuration

β.
The strategy α for player 1 is defined as the strategy that starts playing as αβ on

the sub-configuration β for some β ∈ S
(2)
sb,ns. When α detects a wrong guess (when

the last move was (l, ε, l′) whereas β should have done (l, ε, l′′)), α changes for an other
sub-configuration β′ in which he did not already play and switches to αβ′ .

Notice that when α detects that the current strategy is the wrong one, since the
strategy currently played wins against some strategy of S(2)

sb,ns, necessarily the transition
(l, ε, l′) is safe. Also notice that before detecting that β is a wrong copy, α is playing a
strategy winning for some β′ hence never fires an unsafe transition.

Let β ∈ S
(2)
sb be any state based strategy that player 2 plays against α. Let us con-

sider the play ρ(S G (GN), α, β). It can be decomposed into ρ1.ρ2 where ρ2 is the longest
suffix of the play that remains in the same sub-configuration, say β′ sub-configuration.
Let ρ′2 be defined as the projection of ρ2 on the sub-configuration β′. Since α is playing
as αβ′ in this suffix, and since it never detects a wrong guess in this suffix, we know
that ρ′2 = ρ(S G (GNβ′), αβ′ , β) = ρ(S G (GNβ′), αβ′ , β′) ∈ Win. Therefore, ρ2 ∈ Win.
Finally, because ρ1 never uses unsafe transitions, we obtain ρ1.ρ2 ∈ Win. �

3.3.2 Solving the game against state based strategies

In this section, we explain how to decide whether there exists a network size such that
there exists a strategy for player 1 which is winning against a fixed state based strategy
for player 2. We consider a parity protocol G = (L,L(1),L(2), l0,Σ,∆, col, safe) and a lo-
cal behavior b. From G and b, we build a parity protocol G′ = (L,L, ∅, l0,Σ,∆

′, col′, safe′)
by removing the choices of player 2 not corresponding to b and by merging states of
player 1 and states of player 2; this protocol is formally defined as follows: ∆′ ⊆ ∆
and (l, α, l′) ∈ ∆′ if and only if l ∈ L(1) and (l, α, l′) ∈ ∆, or, l ∈ L(2) ∩ ActStates and
b(l) = (l, α, l′), furthermore col′ is the restriction of col to ∆′ and safe′ = ∆′ ∩ safe.

Example 3.3 This construction is illustrated in Figure 3.5, on the example given in
Figure 3.3 with the local behavior that from state l21 chooses the transition leading to l3
and from state l22 chooses the unsafe transition leading to l5.

The following lemma states the relation between G and G′.

Lemma 3.3 For Win ∈ {Wins,W inp,W insp}, there exists a path ρ in S G (G′N),
for some network size N ∈ N, such that ρ ∈ Win if and only if ∃N ∈ N. ∃α ∈
S(1), ρ(S G (GN), α, βb) ∈ Win.

110 Selective broadcast networks of probabilistic protocols

l0

l1 l21 lf

l3

l2 l22 l5

l4

??a
: 0

!!a : 0

ε:10

ε:0 ε:0

ε:2

!!a:3

??a:0

ε:4

Figure 3.5: Example of the parity protocol obtained when considering a local behavior
on the protocol illustrated in Figure 3.3.

Solving the game thus amounts to decide the following property: whether there exist
N ∈ N and an infinite path in Winp∩Wins on S G (G′N). The remaining of this section
is devoted to the resolution of this question: we provide an algorithm to decide whether
there exist N ∈ N and a winning path in S G (G′N).

3.3.3 Existence of an infinite winning path

We now consider the safety/parity winning condition and show how to decide in polyno-
mial time whether there exists an infinite path starting from some initial configuration
and belonging to Winp ∩ Wins. Notice that considering only safety/parity condition
is not a restriction since: if the winning condition was initially only parity, one can
consider the same parity protocol with all edges safe, and for the safety condition one
can consider the same protocol with all parities set to 0.

The brief idea to decide in polynomial time whether there exists a winning infinite
path starting from some initial configuration, is to first remove from the broadcast
protocol G all unsafe edges. Then, we compute in polynomial time the set Occur(G) of
reachable control states, using the techniques from [DSTZ12, Algorithm 1]. Moreover,
as recalled in Lemma 2.1 section 2, there must exist a reachable configuration λ ∈ ΛG

with as many processes as desired in each of the reachable control states. We finally
look for the existence of a loop from λ that respects the parity condition. This last
step relies on a counting abstraction that translates the game S G (GN) into a Vector
Addition System with States (VASS, see Section 4.3), and reduces to the existence of
a cycle in this VASS with positive effect on each component, which is decidable in
polynomial time [KS88].

Let us now see in details how, given a local behavior for player 2, to decide whether
there exists an infinite play satisfying the winning conditions.

Selective broadcast networks of parity protocols 111

Lemma 3.4 Let G = (L,L(1),L(2), l0,Σ,∆, col, safe) be a parity protocol with all states
belonging to player 1, i.e. such that L(1) = L and L(2) = ∅. Then, one can decide in
polynomial time whether there exist N ∈ N and an infinite path in S G (GN) belonging
to Winp ∩Wins.

First remove all unsafe edges from G in order to obtain a broadcast protocol G′ =
(L, l0,Σ,∆

′, col′), where col′ is the restriction of col to ∆′. Note that we leave the safe set
in G′ unspecified, meaning that all transitions are considered as safe. The existence of
an infinite path in S G (GN) that belongs to Winp∩Wins is equivalent to the existence
of a cycle in S G (G′N) from a reachable configuration such that the maximum color
along this cycle is even.

To decide the existence of such a cycle, we use a counting abstraction which consists
in abstracting away the processes of each configuration and remembering only for each
control state l of G′ how many processes are in state l. We therefore translate the
selective broadcast game networks obtained from G′ into a Vector Addition System
with States.

As introduced in Section 4.3, a VASS of dimension n with parities is defined as a tuple
V = (S,E, col) where S is a finite set of control states, E ⊆ S×Nn × S is the transition
relation over n-tuples of integers and col : E → N is the coloring function. To the VASS
V is associated the transition system TV = (S × Nn, →֒, col) where S × Nn is the set of
configurations, →֒⊆ (S×Nn)× (S×Nn) is the transition relation and col :→֒→ N is the
coloring function, defined as follows: (s, v) →֒ (s′, v′) and col((s, v) →֒ (s′, v′)) = c if and
only if there exists a transition (s,v, s′) ∈ E such that v′ = v + v and col((s,v, s′)) = c.
Note that the vectors in configurations of TV are tuples of naturals, so that a transition
can only be fired if the resulting configuration ensures non-negativity of all components.
An infinite run of V starting from a configuration (s0, v0) is an infinite sequence of the
form (s0, v0) →֒ (s1, v1) →֒ (s2, v2) . . . and we say that it is valid with respect to col if
it satisfies the parity condition, i.e. if max{c ∈ N | ∀i ≥ 0 ∃j ≥ i s.t. col((sj , vj) →֒
(sj+1, vj+1))) = c} is even.

We now explain how to build a VASS VG′ with parities from the broadcast protocol
G′ = (L, l0,Σ,∆

′, col′), such that there exist, in VG′ , a configuration (s0, v0) and a valid
infinite run starting from this configuration if and only if there exist N ∈ N and an
infinite path ρ in S G (G′N) satisfying ρ ∈ Winp. Let us write Occur(G′) = {l1, . . . , ln}
for the set of reachable states in G′. From G′, we define a VASS VG′ = (SG′ ,EG′ , col′′)
of dimension 2n as follows:

• SG′ = {s0} ∪ {s1δ , s
2
δ | δ ∈ ∆′ is of the form (li, !!a, lj) or (li, ε, lj)};

• EG′ is the smallest relation such that for every edge δ = (li, α, lj) ∈ ∆′:

– if α = ε or α =!!m, then {(s0,v, s
1
δ), (s

1
δ ,0, s

2
δ), (s

2
δ ,v

′, s0)} ⊆ EG′′ with:

∗ v[i] = −1 and v[k] = 0 for every k 6= i;

∗ v
′[j] = 1 and v[k] = 0 for every k 6= j;

and col′′(s0,v, s
1
δ) = col′′(s1δ ,0, s

2
δ) = col′′(s2δ ,v

′, s0) = col′(δ);

112 Selective broadcast networks of probabilistic protocols

s0

s1δ1

s2δ1

s1δ3

s2δ3

l 1
−
−

0

l ′1 +
+

l3 −
−

0

l′ 3
+
+

l2 −−; l′2
2 ++

l′2
2 −−; l′2 ++

Figure 3.6: Example of a VASS obtained with the construction.

– if α =??m, then for each edge δ′ = (lk, !!a, lℓ) ∈ ∆′, we have {(s1δ′ ,v, s
1
δ′),

(s2δ′ ,v
′, s2δ′)} ⊆ EG′ with:

∗ v[i] = −1, v[n + j] = 1 and v[k] = 0 for every k 6= i, k 6= n+ j;
∗ v

′[j] = 1, v′[n+ j] = −1 and v[k] = 0 for every k 6= j, k 6= n+ j;

and col′′(s1δ′ ,v, s
1
δ′) = col′′(s2δ′ ,v

′, s2δ′) = 0.

Example 3.4 An example of this construction is given in Figure 3.6. This example
illustrates the construction on a protocol composed of one broadcast transition δ1 =
(l1, !!m, l′1), one reception δ2 = (l2, ??m, l′2) and an internal transition δ3 = (l3, ε, l

′
3).

For simplicity l++ (resp. l−−) represents that the dimension corresponding to l is
incremented by one (resp. decremented). Also l2 corresponds to the second dimension
i+ n if dimension i corresponds to l.

In this example, one cycle on the left part, going from s0 to s0 through s1δ3 and s2δ3 ,
has as effect to decrement by one the dimension corresponding to l3 and increment by
one the dimension corresponding to l′3. This cycle represents the fact that one process
took the transition δ3 and thus moved from l3 to l′3.

With the same idea, on the right part, going from s0 to s0 through s1δ1 and s2δ1 rep-
resents the fact that one process took the transition δ1 and thus moved from l1 to l′1.
Moreover, since this transition is a broadcast of message m, for each reception of mes-
sage m (here only δ2) there is a self loop on s1δ1 that decrements the origin of the reception
and increments its destination. However, since we want to forbid the same process to
receive multiple times the same message, we use an intermediary dimension (l′2

2 in the
example, and n+i in the definition) that allows to ensure only one reception of a message
by process.

Intuitively, in a configuration of VG′ , each vector value represents the number of nodes
in a state. To simulate a broadcast δ = (lk, !!a, lℓ), one first decreases by one the compo-

Selective broadcast networks of parity protocols 113

nent corresponding to lk when taking the transition from s0 to s1δ . Then, corresponding
reception rules of the form (li, ??a, lj) are simulated by decrementing by one the com-
ponent corresponding to li and incrementing the lj-component; precisely, this is done
using the n + j-th component. Last, when the simulation of receptions is over, one
increments by one the component corresponding to lℓ, thanks to the transition from l2δ
to l0.

Note that two dimensions per state are needed, otherwise we could simulate a se-
quence of receptions by the same node. Moreover, the value of component n + j (for
1 ≤ j ≤ n) is not necessarily reset to 0 after the simulation of a communication. This
is not a problem since it would just represent processes that are not present in any
reception set.

The next lemma formalizes the properties of the above construction. Its proof is a
direct consequence of the semantics of the game S G (G′N) and of the definition of VG′ .

Lemma 3.5 Let λ be a configuration of S G (G′N) such that for all pid ∈ [1 . . . N],
λ[pid] ∈ Occur(G′) and v ∈ N2n such that v[i] = |{pid ∈ [1 . . . N] | λ[pid] = li}| for every
i ∈ {1, . . . , n} and v[i] = 0 for every i ∈ {n+ 1, . . . , 2n}. Then, there exists an infinite
path in S G (G′N) starting from λ and belonging to Winp if and only if there exists an
infinite run in VG′ starting from (s0,v) and valid with respect to col′′.

By definition of VG′ , there exists a vector v ∈ N2n with v[i] = 0 for all i ≥ n + 1
such that there exists an infinite run in VG′′ starting from (s0,v) and valid with respect
to col′′ if and only if there exists a cycle (s0,v0, s1)(s1,v1, s2) . . . (sk,vk, s0) in VG′ such
that

∑k
j=0 vj ≥ 0 and max {col′′(sj ,vj , sj+1) | j ∈ {0, . . . , k}} is even.

As stated by the following lemma, checking the existence of such a cycle can be done
in polynomial time, using a known algorithm to detect, in a graph labeled with vector
of integers, a cycle whose accumulated sum is greater than 0 [KS88].

Lemma 3.6 Given VG′ = (SG′ ,EG′ , col′′) the VASS associated with G′, one can decide
in polynomial time whether there exists a finite path (s0,v0, s1) . . . (sk,vk, sk+1) in VG′

with sk+1 = s0 and such that
∑k

i=0 vi = 0 and max {col′′(si,vi, si+1) | i ∈ [0 . . . k]} is
even.

Proof First note that, by construction of VG′ , the existence of a cycle of positive ac-
cumulated sum is equivalent to the existence of a cycle of accumulated sum equal to 0

and starting from s0. Indeed, the sum of all components is constant and no null cycle
can loop only on states of the form s1δ or s2δ since simple loops on these states decrease a
vector component. Solving a system of linear inequalities, one can decide in polynomial
time the existence of null cycles starting in s0 [KS88]. The catch is that such a cycle
may not satisfy the parity condition (i.e., that the maximum color visited along the
cycle is even).

For every even color c that appears on some transition of the VASS VG′ , we explain
how to decide the existence of a non-negative cycle starting in s0 and with maximum
color c. First, we remove from VG′ all transitions labeled with a color c′ > c. Second, we

114 Selective broadcast networks of probabilistic protocols

augment the VASS with a 2n + 1-th dimension, and modify the transitions as follows:
for every edge δ = (li, !!a, lj) or δ = (li, ε, lj) in G′, if col′(δ) 6= c, we transform the
corresponding transition (s0,v, s

1
δ) by additionally decrementing the component 2n+ 1

by 1; otherwise, if col′(δ) = c, we add a self loop on the corresponding state s1δ that
increments the component 2n + 1 by 1. After these modifications, the only possibility
for a null cycle is to take at least one transition colored by c.

Applying the polynomial time algorithm by Kosaraju and Sullivan [KS88] a linear
number of times (for each even color c), we obtain a polynomial time decision procedure
for our problem. �

If there exists a non-negative cycle from (s0,v) satisfying the parity condition, then
the same cycle can be fired infinitely often from any (s0,v

′) such that v
′[i] ≥ v[i] for

every i ∈ {1, . . . , n}, and v
′[i] = 0 for every i ∈ {n+ 1, . . . , 2n}.

Let us put all arguments together in order to complete the proof of Lemma 3.4. From
Lemma 2.1, we can compute in polynomial time Occur(G′), and know that for every k ∈
N there exists a reachable configuration for which each state of Occur(G′) labels at least
k vertices. Then, using Lemmas 3.5 and 3.6, we can decide in polynomial time whether
from one of these configurations there exists an infinite path in S G (G′N) satisfying the
parity condition. Since G′ only has safe edges, we obtain the decidability in polynomial
time of the existence of infinite path in S G (GN) that belongs to Winp ∩Wins.

3.3.4 Solving parity networks

Back to our parity networks, given a state based strategy βb ∈ S
(2)
sb , by Lemma 3.3 and

Lemma 3.4, we obtain a polynomial time algorithm to decide whether there exist a net-
work size N ∈ N and a strategy α ∈ S(1) for player 1 such that ρ(S G (GN), α, βb) ∈ Win
for Win ∈ {Wins,W inp,W insp}. Since the number of state based strategies is fi-

nite, this gives us a non deterministic algorithm to solve whether ∃β ∈ S
(2)
sb . ∀N ∈

N. ∀α ∈ S(1), ρ(S G (GN), α, β) /∈ Win with Win ∈ {Wins,W inp,W insp}. The algo-
rithm consists in guessing a state based strategy β for player 2 and checking, thanks to
Lemma 3.3 and Lemma 3.4, in polynomial time, that it is indeed a strategy such that
∀N ∈ N. ∀α ∈ S(1), ρ(S G (GN), α, β) /∈ Win with Win ∈ {Wins,W inp,W insp}.

Moreover, Proposition 3.1 tells us that to solve the game problems we need to check
the absence of such strategy for player 2. Hence, we proved the main result of this
section.

Theorem 3.1 For safety, parity and safety-parity objectives, the game problem for par-
ity protocol is decidable in co-NP.

3.3.5 Restriction to urgent strategies

Another interesting result on selective game networks is that, player 1 does not loose
power by making player 2 make its choices as soon as possible. This is intuitive since
the sooner player 2 has to make its choice the less information he has and thus it is

Solving probabilities with games 115

more difficult for him to be harmful. This result will be useful in the next section to
reduce the parameterized reachability problems to the game problem.

First, we define urgent strategies for player 1: α ∈ S(1) is urgent if for every play ρλ
with λ ∈ QN there exists pid ∈ [1 . . . N] such that λ[pid] ∈ L(2), then α(ρλ) = (λ, pid).
In words, the urgent strategies are those where player 1 activates the processes in states
belonging to player 2 as soon as possible. The set of urgent strategies for player 1 is
denoted S

(1)
u . Note that if αu is urgent, and ρλ respects αu, we have |{pid ∈ [1 . . . N] |

λ[pid] ∈ L(2)}| ≤ 1, that is, at most one process is in a state of player 2.
We prove that there is a winning strategy for player 1 if and only if there is an

urgent one.

Lemma 3.7

∃N ∈ N. ∃α ∈ S(1). ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Win
⇐⇒

∃N ∈ N. ∃α ∈ S
(1)
u , ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Win

Proof Only the right-to-left implication deserves a proof, since S
(1)
u ⊆ S(1).

We assume that there exist a network size N ∈ N and a strategy for player 1
α ∈ S(1) such that ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Win. Without loss of generality, we
can assume that α is memoryless. Indeed, given the size of the network N ∈ N, the
game is finite, hence there is a winning strategy if and only if there is a memoryless
winning strategy.

Intuitively, the urgent strategy α′ plays similarly to α but delays the moment the
processes enter in state of L2 until α would have played them. Strategy α′ is then
urgent, but has memory.

More formally, on the one hand, in λ, if α would have moved a process to a state
l ∈ L(2) then for the paths ρ that α′ identifies to λ, α′ remembers that this process
should be in l. On the other hand, in λ, if α would have chosen a process in a state
l′ ∈ L(2) to play, then for the paths ρ that α′ identifies to λ, α′ first moves the process
to l′ and then chooses it immediately to play.

Let β be a strategy for player 2. With a play ρ(S G (GN), α′, β), we can associate
the play ρ̃(S G (GN), α′, β) of configurations as stored in the memory of α′. Notice
that ρ̃(S G (GN), α′, β) corresponds to a play for α, and hence satisfies the winning
condition Win. Moreover, the transitions visited along that play are the same as
ρ(S G (GN), α′, β). Hence, the urgent strategy α′ built above is winning: for every
strategy β for player 2, ρ(S G (GN), α′, β) ∈ Win. �

4 Solving probabilities with games

In this section, we solve the qualitative reachability problems for probabilistic recon-
figurable broadcast networks. The most involved case is REACH∃

=1(S) for which we
reduce to games on parity protocols with a parity winning condition.

116 Selective broadcast networks of probabilistic protocols

4.1 Decidability using monotonicity

The decidability and complexity of the first cases are established directly, without re-
ducing to games on parity protocols. First, let us establish a monotonicity property:
intuitively, with more processes, the probability to reach the target can only increase.

Lemma 4.1 ∀σ, ∀N ∈ N, ∀N ′ ≥ N, ∃σ′, Pσ(S (PN) |= ✸qf) ≤ Pσ′(S (PN ′

) |=
✸qf).

Proof Intuitively, with N ′ processes σ′ behaves as σ on the N first processes. The
N ′ −N other processes stay in the initial state. �

Using this monotonicity property, the problems are then reduced to qualitative
reachability problems in the finite state MDP for the network with a single process, and
thus belong to PTIME.

Theorem 4.1 REACH∀
=0(S), REACH∀

<1(S), REACH∀
=1(S) and REACH∀

>0(S)
are decidable in PTIME.

Proof Due to Lemma 4.1, it is sufficient to consider the network of size 1. We then
solve these decision problems on the corresponding finite-state MDP.

If ∀σ, Pσ(S (P1) |= ✸qf) = 0, then, trivially, the answer to REACH∀
=0(S) is

positive. Otherwise, ∃σ, Pσ(S (P1) |= ✸qf) > 0, and by Lemma 4.1, we obtain that for
all N ≥ 1 there exists a strategy σ′ with Pσ′(S (PN) |= ✸qf) ≥ Pσ(S (P1) |= ✸qf) > 0.
Therefore, ∃σ, Pσ(S (PN) |= ✸qf) > 0, and the answer to REACH∀

=0(S) is negative.
Exactly the same reasoning applies to REACH∀

<1(S).
If ∀σ, Pσ(S (P1) |= ✸qf) = 1, then, the answer to REACH∀

=1(S) is positive.
Otherwise, ∃σ, Pσ(S (P1) |= ✸qf) < 1, and for N ≥ 1, we consider the class of
strategies that use only one process and always choose an empty communication set.
For this class of strategies, the behavior of the used process is independent of the
other processes, and hence simulates what happens for a single process. Therefore,
∃σ′, Pσ′(S (PN) |= ✸qf) = Pσ(S (P1) |= ✸qf) < 1, and the answer to REACH∀

=1(S)
is negative. Exactly the same reasoning applies to REACH∀

>0(S). �

Then, notice that REACH∃
>0(S) is inter-reducible to the reachability problem in non-

probabilistic reconfigurable broadcast networks, known to be P-complete [DSTZ12].

Theorem 4.2 REACH∃
>0(S) is in PTIME.

4.2 Decidability and complexity of REACH∃
=1(S)

Let us now discuss the most involved case, REACH∃
=1(S), and show how to reduce it

to the game problem for parity protocols with a parity winning condition.
The reduction to the game problem is inspired from the same kind of reduction

for finite state systems. Although, given a network size the network is finite, one
cannot use directly the reduction used in finite state system to decide the existence

Solving probabilities with games 117

of a network size meeting the desired property. To tackle this problem, we define a
reduction at the protocol level, and use the game problem defined in Section 3.2 to
solve the parameterized reachability problem.

From P = (Q,Q(p),Q(n), q0,Σ,∆) a probabilistic protocol and qf ∈ Q a control

state, we derive the parity protocol G = (LG ,L
(1)
G ,L

(2)
G , l0G,ΣG ,∆G , col, safe) as follows:

• LG = L
(1)
G ∪ L

(2)
G ,

• L
(1)
G = Q(n) ∪

(

Q(p) × {1}
)

,

• L
(2)
G = Q(p) × {2}, and

• l0G = q0;

• ΣG = Σ;

• ∆G =
((

Q(n) × {!!m, ??m | m ∈ Σ} ×Q(n)
)

∩ ∆
)

∪ {(qf , ε, qf)}
∪ {(q, ε, (q′, 2)), ((q′, i), ε, q′), ((q, 2), ǫ, (q, 1)) | (q, ǫ, q′) ∈ ∆, i ∈ {1, 2}}
∪ {((q, i), ε, q′) | (q, d) ∈ ∆, d(q′) > 0, i ∈ {1, 2}};

• col((qf , ǫ, qf)) = 2, col(((l, 2), ǫ, q′) = 2 and otherwise col(δ) = 1.

Intuitively, all random choices corresponding to internal actions in P are replaced
in G with choices for player 2, where either he decides the outcome of the probabilistic
choice, or he lets player 1 choose. Only transitions where player 2 makes the decision
corresponding to a probabilistic choice and the self loop on the state lf have parity
2. Figure 4.7 illustrates this reduction on the example probabilistic protocol from Fig-
ure 2.1, page 97.

q0

q1 qp1, 2 qf

qp1, 1q3

q2 qp2, 2 q5

qp2, 1q4

??a
:1

!!a:1

ǫ:1

ǫ:1

ǫ:2

ǫ:2

ǫ:2

ǫ:2
!!a:1

??a
:1

ǫ:1

ǫ:1

ǫ:1

ǫ:1

ǫ:1

ǫ:1

ǫ:2

Figure 4.7: Parity protocol for the probabilistic protocol from Figure 2.1.

This construction ensures:

118 Selective broadcast networks of probabilistic protocols

Proposition 4.1 ∃N ∈ N. ∃α ∈ S(1). ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Winp if and only
if ∃N ∈ N. ∃σPσ(S (PN) |= ✸qf) = 1.

Proof The easiest direction is from left-to-right. Assuming that some strategy σ en-
sures to reach qf with probability 1, one builds a winning strategy α for the parity
objective as follows: when player 2 makes a decision corresponding to a probabilis-
tic choice in P, the strategy chooses to play this probabilistic transition. Now, when
player 1 needs to make a decision in some configuration λ where there is a process pid in
state (q, 1), the strategy is to play along a shortest path respecting σ from γ to a config-
uration containing qf , where γ is defined as λ but the state of pid is q. Assuming that σ
reaches qf with probability 1, such a path must exist for every reachable configuration
in the game. This definition of α ensures to eventually reach qf under the assump-
tion that player 2, from some point on, always lets player 1 decide in configurations
corresponding to probabilistic states of P.

More formally, let us prove the following implication:

∃N ∈ N. ∃σ ∈ S,Pσ(S (PN) |= ✸qf) = 1
⇓

∃N ∈ N. ∃α ∈ S
(1)
u . ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Winp.

First, remark that we can embed configurations of S (PN) in configurations of S G (GN)

by identifying q ∈ Q(p) to (q, 2) ∈ L
(2)
G , so that QP ⊆ LG .

Let N and σ be such that P(S (PN), σ,✸qf) = 1. We can assume, without loss of
generality that σ is memoryless, because, given the initial configuration N , the number
of configurations is finite.

Now we explain how to define α from σ. For a configuration λ:

• If there exists pid ∈ [1 . . . N] with λ[pid] = qf , then α plays forever the two actions
λ → (λ, pid) → λ using the loop on qf , which has parity 2.

• Otherwise, if there exists pid ∈ [1 . . . N] with λ[pid] = (q, 2), for some state q ∈
Q(p), then α moves to the configuration where this process is selected, i.e. (λ, pid).

• Otherwise, if there are no process pid ∈ [1 . . . N] in any state (q, 1) of Q(p) × {1},
λ can be identified to a configuration γ, and α in λ mimics σ in γ.

• Otherwise, there exists pid ∈ [1 . . . N] with λ[pid] = (q, 1) for some state q ∈ L. In
this case, we let γ1 be the configuration corresponding to λ except that pid is in
state q. We then pick a shortest path γ1γ2 . . . γn that respects σ and reaches qf ,
and define α(λ) as the configuration corresponding to γ2.

Strategy α is urgent by definition, and we show now that it is winning. Let β be any
strategy for player 2, and consider the play ρ(S G (GN), α, β). There are two possi-
bilities: either qf is reached, and then α ensures to loop on qf with parity 2 so that
ρ(S G (GN), α, β) ∈ Winp; or qf is not reached. By definition of α, notice that every
configuration that can be reached under α and that has no process labeled with a state

Solving probabilities with games 119

(q, 1) (for q ∈ Q(p)) corresponds to a configuration reachable under σ. Moreover, since
Pσ(S (PN) |= ✸qf) = 1, from every configuration reachable under σ there exists a path
to qf . Second, notice that if, at some point, β always chooses to move processes to
states of the form (q, 1), then α would ensure to reach qf by following a shortest path.
Hence, infinitely often β chooses not to move the process to (q, 1) and this implies that
the play has parity 2. Therefore, ρ(S G (GN), α, β) ∈ Winp.

Let us now briefly explain how the right-to-left implication works. Notice that
if player 2 always chooses transitions with parity 1 (thus letting player 1 decide the
outcome of probabilistic choices), the only way for player 1 to win is to reach qf , and
from there to use the self loop to ensure the parity condition. As a consequence, from
any reachable configuration, the target state qf must be reachable.
From a winning strategy α, we define a strategy σ that mimics the choices of α on
several copies of the network. The difficulty comes from the transformation of choices
of player 1 in states of the form (q, 1) ∈ Q(p) × {1} into probabilistic choices. Indeed,
the outcome of these random choices cannot surely match the decision of player 1. The
idea is the following: when a probabilistic choice in P does not agree with the decision
of player 1 in G, this “wrong choice” is attributed to player 2. The multiple copies thus
account for memories of the “wrong choices”, and a process performing such a choice is
moved to a copy where the choice was made by player 2. With probability 1, a “good
choice” is eventually made, and the 1-1/2 player game can continue in the original copy
of the network. Therefore, the play will almost-surely end in a given copy, where player 1
always decides, and thus qf is reached.

Let us now prove the other direction:

∃N ∈ N. ∃α ∈ S
(1)
u . ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Winp

⇓
∃N ∈ N. ∃σ ∈ S,Pσ(S (PN),✸qf) = 1 .

Let N ∈ N be a network size and α ∈ S
(1)
u be an urgent strategy for player 1 such

that ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Winp.
We define N ′ as n · N , where n is the number of words on the alphabet Q(p), in

which each letter appears at most once. We see the network as partitioned, and for
each w with w = w1 · · ·wk such that for all i, j ∈ {1 . . . k}, we have wi, wj ∈ Q(p) and
if i 6= j then wi 6= wj. We refer to N different processes as the sub-network w. We
use the prefix relation to compare two such words, i.e. w is smaller than w′, written
w � w′ if w is a prefix of w′. Last, for a state w ∈ Q(p), we will say that q belongs to
w, written q ∈ w if there exists i ∈ {1 . . . k} such that wi = q.

We now explain how to define the strategy σ that mimics α in every sub-network w
and that starts in the sub-network ε. Defining a strategy for the probabilistic network
from a strategy for the game network is not straightforward. Indeed in G, every state
q ∈ Q(p) is duplicated in P into (q, 1) and (q, 2). Hence, we cannot establish a direct
correspondence between the configurations of S (PN) and S G (GN). Instead, we use
the memory of σ to make this correspondence feasible. The idea is that σ plays in graph
w as if for every q /∈ w player 2 always chooses in the future to move to (q, 1), and for
q ∈ w as if player 2 always chooses to not move to (q, 1).

120 Selective broadcast networks of probabilistic protocols

Let us consider a fixed probabilistic state q ∈ Q(p) such that (q, µ) ∈ ∆. We can
assume, without loss of generality, that there are only two successors to q, the left one
ql and the right one qr, and hence that µ(qr) + µ(ql) = 1. The built strategy σ has
memory. We will explain how to update the memory states. Assume that w is the graph
in which σ is currently playing, and that its memory state is mσ. Two cases arise:

• Assume first that q /∈ w. The normal behavior of the strategy σ is to mimic
the choice of α on the memory state mσ. If at some point, α moves a process
to the state (q, 2), then σ moves the corresponding process pid, to state q. The
subsequent probabilistic choice then leads to either ql or qr. Assume, for example,
that it is qr. In this case, we store in the memory state mσ that pid should be in
state (q, 1) and the computation continues.

After some time, α may decide to move this process out of (q, 1). Two cases are
possible:

– The easy case is when the strategy dictates to move to qr. Since pid is already
in qr, nothing needs to be done, and the computation resumes.

– Otherwise, the process should have been moved to ql. This somehow con-
tradicts the result of the probabilistic choice that already happened in the
probabilistic protocol. In this case, mσ remembers that the graph w needs
a process in state ql. Also, the strategy σ changes its working graph to the
graph w′, where w′ is a shortest word such that w.q � w′ and such that the
graph w′ does not already need a process in any state.

• Assume now that q ∈ w. As in the other case, σ plays as α would have played
on the state mσ. If at some point, α moves a process to the state (q, 2), then
σ moves the corresponding process pid to state q. The subsequent probabilistic
choice then leads to either ql or qr. Assume for example that it is qr.

If there exists w′ � w such that w′ needs a process in state qr (remark that if
such a w′ exists, it is unique), then σ changes its working graph to w′. Also, σ
switches the process labeled by qr in w and the one “in need” in w′. Doing so,
the configuration in w′ corresponds exactly to a configuration reachable by α, and
the configuration in w corresponds to a configuration where player 2 has chosen
ql instead of qr.

If there is no such w′ � w and if w′ needs a process in state qr (e.g. they may all
need a process in state ql), then σ continues to mimic α in w assuming player 2
chooses to move directly to qr.

First, notice that in every graph w, σ plays according to α. Second, notice that if σ is
playing in graph w then, for every q ∈ w, there must exist w′ � w such that the graph
w′ needs either qr or ql. Last, notice that for every play, there exists a smallest graph
w such that the play visits infinitely often w. Indeed, from w, to reach another graph
w′ with neither w � w′ nor w′ � w, the play necessarily visits a graph w′′ such that
w′′ � w and w′′ � w′.

Solving probabilities with games 121

We now show that σ, as defined above, is winning, that is: Pσ(S (PN) |= ✸qf) = 1.
Towards a contradiction, suppose that there exists a set A of plays respecting σ, such
that Pσ(S (PN) |= A) > 0 and Pσ(S (PN) |= A ∩ ✸qf) = 0. Since there are only
finitely many graphs, we can assume without loss of generality that all plays of A share
the same smallest graph w visited infinitely often.

For q ∈ w, let A′
q ⊆ A be the subset of plays in which state q is visited infinitely

often. Every play of A′
q is composed of a finite prefix, followed by infinitely many

probabilistic choices in q that always have the same outcome. Indeed, otherwise σ would
have moved to a prefix of w that needs qr or ql. Therefore, Pσ(S (PN) |= A′

q) = 0, and
letting A′ = ∪q∈wA

′
q, we conclude Pσ(S (PN) |= A′) = 0.

Consider now a play ρ in A \A′. After a finite prefix, ρ never visits any state of w.
Hence, in the graph w, the strategy σ plays as α when player 2 always moves to the
states Q(p) × {1}. For such choices of player 2, the only way to win is to reach qf , and
then to achieve the parity objective by looping on qf . Since α is winning, we deduce that
ρ eventually reaches qf . Hence we have: Pσ(S (PN) |= (A\A′)∩✸qf) = Pσ(S (PN) |=
A \ A′), and since Pσ(S (PN) |= A) = Pσ(S (PN) |= (A \ A′)) + Pσ(S (PN) |= A′) we
obtain Pσ(S (PN) |= A ∩ ✸qf) > 0. This contradicts the definition of A. Therefore,
Pσ(S (PN) |= ✸qf) = 1. �

We now provide the precise complexity of parameterized almost sure reachability in
probabilistic selective networks.

Theorem 4.3 REACH∃
=1(S) is co-NP-complete.

Proof The co-NP membership is a consequence of Proposition 4.1 and Theorem 3.1.
Indeed, Proposition 4.1 allows us to reduce the problem REACH∃

=1(S) to the game
problem that is shown to be in co-NP in Theorem 3.1. We now establish the matching
lower-bound by reducing the unsatisfiability problem of a formula in conjunctive normal
form, to REACH∃

=1(S). From ϕ, a formula in conjunctive normal form, we define a
probabilistic protocol Pϕ and a control state qf such that ϕ is unsatisfiable if and only
if there exist a network size N ∈ N and a strategy σ such that Pσ(S (PN

ϕ) |= ✸qf) = 1.
We provide here the construction on an example in Figure 4.8. For simplicity,

the initial state q0 of the probabilistic protocol is duplicated in the picture, and the
internal self loops on the states are not represented. The idea is to generate a random
assignment v of the variables (using the gadgets represented on the bottom of the figure).
Assuming ϕ unsatisfiable, v will necessarily violate a clause of ϕ. Choosing this clause
in the above part of the protocol then allows to reach state r1, and from there to reach
qf with probability half. Iterating this process, the target is almost-surely reached.
The converse implication relies on the fact that if ϕ is satisfiable, there is a positive
probability to generate a valuation satisfying it, and then not to be able to reach r1,
a necessary condition to reach qf . Therefore, the maximum probability to reach the
target is smaller than 1 in this case.

We now provide the general definition of the reduction. Let V be a set of variables,
and ϕ =

∧

0≤i≤l xi,1∨xi,2∨xi,3 a formula in conjunctive normal form, where each literal

122 Selective broadcast networks of probabilistic protocols

xi,j is either a variable x ∈ V or its negation x. From ϕ, we define the probabilistic
protocol Pϕ = (Q,Q(n),Q(p), q0,Σ,∆), where:

• Q(n) = {xi,j | 0 ≤ i ≤ l, 1 ≤ j ≤ 3} ∪ {q0, r1, qf} ∪ {x1, x1, x2, x2 | x ∈ V }

• Q(p) = V ∪ {rP };

• Σ = {x, x | x ∈ V } ∪ {ok};

• ∆ = {(xi,j , ??xi,j+1, xi,j+1) | 0 ≤ i ≤ l, 1 ≤ j ≤ 3}
∪ {(q0, ε, xi,0), (xi,3, !!ok, r1) | 0 ≤ i ≤ l}
∪ {(q0, ε, x), (x1, !!x, x2), (x1, !!x, x2), (x2, ??ok, q0), (x2, ??ok, q0) | x ∈ V }
∪ {(r1, ε, rP)} ∪ {(q, ε, q) | q ∈ Q(n)};

• for every x ∈ V , with (x, d) ∈ ∆ d(x1) = d(x1) =
1
2 ,

and with (rP , d
′) ∈ ∆ d′(qf) = d′(q0) =

1
2 .

q0 x1,0

x0,0

x2,0

x0,1

x1,1

x2,1

x0,2

x1,2

x2,2

x0,3

x1,3

x2,3

r1

rp qf

q0

a

a1 a1

a2 a2

q0

b

b1 b1

b2 b2

q0

c

c1 c1

c2 c2

??a ??b ??c

!!ok

??a ??b ??c !!ok

??a ??b ??c

!!ok

1
2

1
2

1 2

12

!!a

!!a

??
ok

??ok 1 2

12

!!b

!!b

??
ok

??ok 1 2

12

!!c

!!c

??
ok

??ok

Figure 4.8: Probabilistic protocol for the formula ϕ = (a∨ b∨ c)∧ (a∨ b∨ c)∧ (a∨ b∨ c).

Let us now prove that ϕ is unsatisfiable if and only if there exist a network size
N ∈ N and a strategy σ such that Pσ(S (PN

ϕ) |= ✸qf) = 1.

Solving probabilities with games 123

Assume first that ϕ is unsatisfiable. Without loss of generality, we assume that
each clause in ϕ does not contain two literals with the same variable (x ∨ x can be
replaced with tt, and x ∨ x with x). We set N = |V | + 1, and we define a strategy σ
for S (PN) as follows. From the initial configuration, and for each variable x ∈ V , σ
decides to perform the transition (q0, ε, x) followed by the corresponding probabilistic
transition, thus moves one process to either state x or state x. These processes are called
variable processes and at this step, their position defines a valuation v : V → {0, 1}.
Alternatively, v can be seen as a set of variables or negated variables that fulfill the
valuation. Since ϕ is unsatisfiable, there exists a clause i such that for every literal xi,j,
xi,j /∈ v. At this stage, σ decides to move the remaining process, called the formula
process, along the transition (q0, ε, xi,0) corresponding to choosing the clause which
is violated by v. Next, the variable processes in state xi,1, xi,2 and xi,3 broadcast in
turn to the formula process, so that the latter moves to state xi,3. The other variable
processes broadcast to no one. Then, the formula process broadcasts to all variable
processes the ok-message: the N − 1 variable processes are back to their initial state
q0. During this broadcast, the formula process reaches state rP , where a probabilistic
choice happens. With probability half, the state qf is reached, and with the remaining
probability the formula process is back in the initial state q0, so that all processes are
back in the initial configuration N . In this first round, σ thus ensures to reach qf
with probability 1

2 . Iterating this over and over, σ ensures to reach qf almost-surely:
Pσ(S (PN) |= ✸qf) = 1.

Assume now that ϕ is satisfiable, and let v : V → {0, 1} be a satisfying assignment
of the variables. We fix σ an arbitrary strategy and N an arbitrary network size. A
probabilistic choice from state x is said consistent with v if it sets x to its truth value
in v. We aim at showing that Pσ(S (PN) |= ✸qf) is bounded away from 1 by some
factor independent of σ. We partition the set of paths E into incompatible events:

E = A0 ⊔A1 ⊔ · · · ⊔AN ⊔AN+1 ⊔A′
1 ⊔ · · · ⊔A′

N , where

• for 0 ≤ k ≤ N , Ak is the set of paths that contain exactly k probabilistic choices,
and all of them are consistent with v;

• AN+1 is the set of paths that contain at least N +1 probabilistic choices, and the
first N + 1 are consistent with v;

• for 1 ≤ k ≤ N , A′
k is the set of paths that contain at least k probabilistic choices,

the first k − 1 are consistent with v and the k-th is not.

Clearly enough, Pσ(S (PN) |= A′
k) ≤

1
2k

, for every 1 ≤ k ≤ N since for each variable,
there is probability 1

2 for the probabilistic choice to be consistent with v. Therefore,
Pσ(S (PN) |= ⊔N

k=1A
′
k) ≤ 1 − 1

2N
. Observe also that AN+1 is empty. Indeed, if the

first probabilistic choices are consistent with v, then the formula processes, if any, stay
stuck in the initial state q0 and the variable processes cannot receive an ok message to
get back to q0. Therefore, starting with N processes, only N consecutive probabilistic
choices consistent with v are possible, and AN+1 is empty. We thus derive a bound

124 Selective broadcast networks of probabilistic protocols

for the remaining paths in the partition: Pσ(S (PN) |= ⊔N
k=0Ak) ≥ 1

2N
. It remains

to prove that all paths in the set Ak end in a deadlock before reaching qf . Indeed,
if the k first probabilistic choices for variable processes are consistent with v, then
the formula processes cannot progress further than states xi,2’s. As a consequence, the
formula processes cannot move back to q0, and they get stuck. Therefore, Pσ(S (PN) |=
¬✸qf) ≥ 1

2N
, or equivalently, Pσ(S (PN) |= ✸qf) ≤ 1 − 1

2N
. Because this holds for

every strategy, we finally obtain ∀σ Pσ(S (PN) |= ✸qf) < 1. �

4.3 Decidability and complexity of REACH∃
=0(S)

Similarly to REACH∃
=1(S), in order to solve REACH∃

=0(S), we reduce it to the game
problem for parity protocols. However, since we want here to avoid almost surely the
target state we use a safety winning condition instead of a parity winning condition.

From P = (Q,Q(n),Q(p), q0,Σ,∆) a probabilistic protocol and qf ∈ Q a control

state, we derive the parity protocol G = (LG ,L
(1)
G ,L

(2)
G , l0G ,ΣG ,∆G , col, safe) as follows:

• LG = L, L(1)
G = L(1), L(2)

G = Q(p), and l0G = q0;

• ΣG = Σ;

• ∆G = ∆ ∪ {(q, ε, q′) | (q, d) ∈ ∆, d(q′) > 0};

• safe = ∆ \ {δ | δ ∈ L×
(

{!!m, ??m | m ∈ Σ} ∪ {ε}
)

× {qf}}.

Notice that we will only need to consider safety objective, hence the coloring function
col does not need to be defined. Intuitively, all random choices in P are replaced in
G with choices for player 2. Figure 4.9 illustrates this reduction on the probabilistic
protocol example from Figure 2.1. As usual, the dotted arrow represents the unsafe
edge.

q0

q1 qp,1 qf

q3

q2 qp,2 q5

q4

??a

!!a

ε

ε

ε

ε

ε

ε

!!a

??a

Figure 4.9: Parity protocol for the probabilistic protocol from Figure 2.1.

Solving probabilities with games 125

This construction gives us a reduction of REACH∃
=0(S) to the game problem for

parity protocols. More formally, this construction ensures the following equivalence:

Proposition 4.2 ∃N ∈ N ∃α ∈ S(1). ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Wins if and only
if ∃N ∈ N. ∃σ Pσ(S (PN),✸qf) = 0.

Proof Transitions with target qf are the only ones that do not belong to the safe set
safe. Hence, a winning strategy in S G (GN) for the safety objective must ensure that
qf is avoided. Similarly, in order to reach qf with probability 0 in S (PN), a strategy
also has to ensure that qf is avoided. Since the parity protocol GP and the probabilistic
protocol P have the same set of states, there is a direct correspondence between the
configurations γ of S (PN) and the configurations λ of S G (GN

P). Hence there is a
direct correspondence between strategies on S (PN) and urgent strategies for player 1.
Indeed, urgent strategies for player 1 lead to configurations with at most one process in
the states of player 2, exactly like strategies in S (PN) that lead to configurations with
at most one process in probabilistic sates.

For a network size N ∈ N and a strategy σ such that Pσ(S (PN) |= ✸qf) = 0, for
every reachable configuration λ we know that qf /∈ λ. For the same network size N ,
the strategy ασ that corresponds to σ never uses a transition leading to qf nor does it
visit a state q ∈ L(2) that may lead to qf . Therefore, ασ ensures the safety objective
from λ0.

For a network size N ∈ N and a strategy α such that ∀β ∈ S(2), ρ(S G (GN),
α, β) ∈ Wins, for every reachable configuration λ, we know that qf /∈ λ, since the safety
objective prevents using action leading to qf . Hence the strategy σα corresponding to
α never reaches a configuration containing qf . Thus, Pσα(S (PN) |= ✸qf) = 0.

This shows the correctness of the reduction. �

From Proposition 4.2 and Theorem 3.1, we deduce the decidability of the problem
REACH∃

=0(S) and establish a matching complexity lower-bound.

Theorem 4.4 REACH∃
=0(S) is co-NP-complete.

Proof The co-NP membership is a consequence of Proposition 4.2 and Theorem 3.1.
Indeed, Proposition 4.2 allows us to reduce the problem REACH∃

=0(S) to the game
problem that is shown to be in co-NP in Theorem 3.1. We now establish the matching
lower-bound. To establish the co-NP-hardness, we reduce the unsatisfiability problem
to REACH∃

=0(S) as we did for REACH∃
=1(S). From ϕ, a formula in conjunctive

normal form, we define a probabilistic protocol P ′
ϕ and a control state ℓ such that ϕ is

unsatisfiable if and only if there exist a network size N ∈ N and a strategy σ such that
Pσ(S (P ′N

ϕ) |= ✸ℓ) = 0.
The protocol P ′

ϕ is a modification of protocol Pϕ defined in the proof of Theorem 4.3
(represented in Figure 4.8). From any state q, of Pϕ, we remove the internal self
loop, and add an internal transition (q, ε, ℓ) to a new state ℓ, and we add the internal
transitions (qf , ε, qf) and (ℓ, ε, ℓ) that loop on qf and ℓ.

126 Selective broadcast networks of probabilistic protocols

With these modifications, the only way to avoid reaching ℓ for an infinite execution
is either to reach qf and then loop there forever or to cycle forever in the original states
of Pϕ. However, we have seen in the proof of Theorem 4.3, that the probability to
obtain infinite executions in Pϕ is 0. Thus, there exist a network size N ∈ N and a
strategy σ such that Pσ(S (PN) |= ✸ℓ) = 0 if and only if Pσ(S (PN) |= ✸qf) = 1.
According to Theorem 4.3, this only happens if and only if ϕ is unsatisfiable.

�

4.4 Decidability and complexity of REACH∃
<1(S)

For REACH∃
<1(S), we reduce to a game problem for parity protocols with a com-

bination of safety and parity winning conditions. From P = (Q,Q(n),Q(p), q0,Σ,∆),
a probabilistic protocol, and qf ∈ Q a control state, we define the parity protocol

G = (LG ,L
(1)
G ,L

(2)
G , l0G ,ΣG ,∆G , col, safe) as:

• L
(1)
G =

(

L(1) × {1, 2}
)

∪
(

Q(p) × {1}
)

, L(2)
G = Q(p) × {2}, and l0G = (q0, 1);

• ΣG = Σ;

• ∆G = {((q, i),_, (q′, i)) | (q,_, q′) ∈ ∆, i ∈ {1, 2}}
∪ {((q, i), ε, (q′ , i)) | (q, d) ∈ ∆, d(q′) > 0, i ∈ {1, 2}}∪ {((q, 1), ε, (q, 2)) | q ∈ Q};

• col((q, i),_, (q′, i′))) = 0 if i′ = 2, and 1 otherwise;

• safe = ∆ \ {δ | δ ∈ L×
(

{!!m, ??m | m ∈ Σ} ∪ {ε}
)

× {qf}}.

Intuitively, G consists of two copies of P. In the first copy, all random choices are
replaced with choices of player 1, whereas in the second copy they are replaced with
choices of player 2. Also, at any time, one can move from the first to the second
copy. Figure 4.10 illustrates this reduction on the example probabilistic protocol from
Figure 2.1. As usual, the dotted arrows represent unsafe edges. The second copy is
represented symmetrically to the first copy in order to clarify the drawing.

This construction gives us a reduction of REACH∃
<1(S) to the game problem for

parity protocols with a safety/parity winning condition. More formally, this construc-
tion ensures the following equivalence:

Proposition 4.3 ∃N ∈ N. ∃α ∈ S(1). ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Winsp if and
only if ∃N ∈ N. ∃σPσ(S (PN),✸lf) < 1.

Proof Since the only unsafe edges are the ones leading to copies of qf , the safety parity
winning condition forces a winning strategy to avoid qf . Moreover, the parity condition
ensures that only a finite number of “probabilistic” choices (i.e. choices that correspond
to probabilistic choices in P) are made by player 1. On the one hand, the existence of
a winning strategy implies that with a fixed finite number of probabilistic choices for
player 1, qf can be avoided. On the other hand, any strategy for which the probability
to reach qf is less than one, guarantees that after a finite prefix (hence after finitely

Solving probabilities with games 127

q0, 1

q1, 1 qp,1, 1 qf , 1

q3, 1

q2, 1 qp,2, 1 q5, 1

q4, 1

??
a:1

!!a:1

ǫ:1

ǫ:1

ε:1

ε:1

ε:1

ε:1

!!a:1

??a:1

q4, 2

q5, 2 qp,2, 2 q2, 2

q0, 2

q1, 2qp,1, 2qf , 2

q3, 2

??a:0

!!a
:0

ǫ:0

ǫ:0

ε:0

ε:0

ε:0

ε:0

!!a:0

??a:0

ε:0

ε:0

ε:0

ε:0

ε:0

ε:0

ε:0

ε:0

ε:0

Figure 4.10: Parity protocol for the probabilistic protocol from Figure 2.1.

128 Selective broadcast networks of probabilistic protocols

many probabilistic choices) qf is avoided with probability 1 (thus whatever the other
probabilistic choices).

We start by proving:

∃N ∈ N. ∃σ ∈ S,Pσ(S (PN) |= ✸qf) < 1
⇓

∃N ∈ N. ∃α ∈ S(1). ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Winsp.

Let N ∈ N be a network size and σ be a strategy such that Pσ(S (PN) |= ✸qf) < 1.
Hence, there exists a finite path ρ that respects σ and such that Pσ(S (PN) |= Cyl(ρ)∩
✸qf) = 0, where Cyl(ρ) is the cylinder of paths starting with prefix ρ.

We define α as the strategy, for the same network size N , that plays the finite prefix
ρ with all processes in the first copy, and after ρ, moves them all to the second copy
and then plays according to σ (as in the proof of Proposition 4.2).

For any finite play respecting α, the safety objective is satisfied because we never
use a transition that enters (qf , 1) during the prefix ρ, and because the same arguments
as in the proof of Proposition 4.2 apply for the suffix in the second copy. Moreover, any
infinite play respecting α only stays for a finite number of steps in the first copy and
then ends in the second copy. Hence the play satisfies the parity objective. Altogether,
α ensures the combined safety/parity objective.

We now prove:

∃N ∈ N. ∃α ∈ S(1). ∀β ∈ S(2), ρ(S G (GN), α, β) ∈ Winsp

⇓
∃N ∈ N. ∃σ ∈ S,Pσ(S (PN) |= ✸qf) < 1.

Let N ∈ N be a network size and α be a strategy for player 1 such that ∀β ∈
S(2), ρ(S G (GN), α, β) ∈ Winsp.

We define N as λ0 but in which the labels (q0, 1) are replaced with q0. Also,
if we merge states (q, 1) and (q, 2), a configuration λ of S G (GN) can be seen as a
configuration of S (PN). We define σ as the strategy that mimics α on these merged
configurations, and that skips the actions leading from the first copy to the second one
(since they have no meaning in P).

Let A be the set of all plays that correspond to a play ρ(S G (GN), α, β) where we
look at merged configurations and in which we removed the actions leading from copy
1 to copy 2. Since α is winning for the safety objective, we know that P(S (PN), σ,A∩
✸qf) = 0. Moreover, since α ensures also the parity objective, we obtain that α only
“chooses” a finite number of probabilistic choices (the choices made in the first copy).
Hence there is a positive probability that these probabilistic choices are all correct in
S (PN) under σ, hence Pσ(S (PN) |= A) > 0.

The combination of Pσ(S (PN) |= A ∩ ✸qf) = 0 and Pσ(S (PN) |= A) > 0 yields
that Pσ(S (PN) |= ✸qf) < 1. �

From Proposition 4.3 and Theorem 3.1, we deduce the decidability of the problem
REACH∃

<1(S) and establish a matching lower-bound.

Conclusion 129

Theorem 4.5 REACH∃
<1(S) is co-NP-complete.

Proof The co-NP membership is a consequence of Proposition 4.3 and Theorem 3.1.
Indeed, Proposition 4.3 allows us to reduce the problem REACH∃

=0(S) to the game
problem with safety/parity condition that is shown to be in co-NP in Theorem 3.1.

We now establish the matching lower-bound. To establish the co-NP-hardness we
reduce the unsatisfiability problem to REACH∃

<1(S) as we did for REACH∃
=1(S) and

REACH∃
=0(S) (see proofs of Theorems 4.3 and 4.4). From ϕ, a formula in conjunctive

normal form, we define a probabilistic protocol P ′′
ϕ and a control state ℓ such that ϕ is

unsatisfiable if and only if there exist a network size N ∈ N and a strategy σ such that
Pσ(S (P ′′N

ϕ) |= ✸ℓ) < 1.
The protocol P ′′

ϕ is defined as an extension of protocol Pϕ defined in the proof of
Theorem 4.3 (represented in Figure 4.8) except that we remove the state qf and rp and
consequently from r1 the internal transition now goes to q0. Additionally, from any
state q of Pϕ, we remove the internal self loop and replace it with an internal transition
(q, ε, ℓ) to a new state ℓ.

With these modifications, the only way to avoid reaching ℓ for a maximal execution
is to loop forever in the original states of Pϕ. However, we have seen in the proof
of Theorem 4.3, that if the formula is satisfiable, for every strategy, the network will
eventually get stuck in the original states of Pϕ and thus one process will have to move
to ℓ. In the other case, when ϕ is not satisfiable, it is possible to loop forever in the
states of Pϕ with probability 1 and thus to avoid ℓ. Therefore, there exist a network
size N ∈ N and a strategy σ such that Pσ(S (P ′′N

φ) |= ✸ℓ) < 1 if and only if ϕ is
unsatisfiable. �

5 Conclusion

In this chapter, we studied a probabilistic extension of the reconfigurable broadcast pro-
tocols studied in [DSTZ12]. These networks consist of a parametric number of processes
running the same finite state protocol. The processes are able to communicate with each
other via selective broadcast of messages. In opposition to the clique networks, stud-
ied in Chapter III, the messages do not reach all the processes but only a subset of
processes, chosen in a non-deterministic way. In addition to these non-deterministic
behaviors, the protocols are equipped with probabilistic internal transitions that allow
processes to change state according to fixed probabilistic distributions. These proba-
bilistic transitions are useful to model uncertainty on the outcome of an action. They
also can be used to model randomized distributed algorithms that use randomness to
break the symmetry between the processes.

On these networks, we studied the parameterized qualitative reachability problems
which consist in determining whether there exist a network size and a scheduler, re-
solving the non-determinism, that allow to reach almost surely a configuration in which
at least one process is in a given state. We studied all the variants of this question
by investigating both qualitative thresholds 0 and 1 and all the comparison operators.

130 Selective broadcast networks of probabilistic protocols

Moreover, we also studied the universal questions which ask whether there exists a net-
work size for which all strategies reach target configurations within the given threshold.

First, we used a key monotonicity result stating that adding processes in the network
may only increase the probability to reach the target. Indeed, thanks to reconfigurations
one can always leave apart the additional processes and simulate a smaller network.
This result allows us to boil down all the universal parameterized questions to the same
questions in a network with a single process. Indeed, intuitively either the property is
true for the network of size one and thus the parameterized problem is solved. Otherwise,
since there are strategies that ignore the additional processes, if it does not hold for the
network of size one it will not hold for bigger networks.

In order to solve the other problems, we introduced selective broadcast networks of
parity protocols which are parameterized distributed games. In these games, the role
of player 1 and player 2 differ since player 1 only is able to decide which process will
play next and its neighbors set. Player 2 only chooses the action to perform when a
process, in a state belonging to player 2, was selected to play. This asymmetry, together
with the fact that player 1 can partition the network, allowed us to prove that player 2
has a counter strategy for the parity or safety parity winning condition if and only if
it has a very simple state-based strategy. The parameterized game problem thus boils
down to checking whether there exist a network size and a strategy for player 1 winning
against all state-based strategies for player 2. Moreover, we provided a reduction to
parameterized VASS [KS88] allowing us to, given a state-based strategy for player 2,
decide in polynomial time whether player 1 has a winning strategy. We thus obtained a
co-NP algorithm consisting in guessing a counter local strategy for player 2 and checking
whether it is indeed a counter strategy.

Finally we provided reductions from the parameterized probabilistic problems to
parameterized game problems by modeling the probabilistic distributions by choices
of player 2. We gave a polynomial reduction for each case, tuning the parity on the
transition in order to reflect the specificity of each case. For example, to solve the
almost sure reachability problem, the reduction consists in letting player 2 perform
a finite number of choices, by setting the parity of these transitions even, and then
checking whether player 1 has a strategy to reach the target by allowing him to perform
the other choices but with odd parity. We also proved the co-NP hardness of these
problems thanks to a reduction from the unsatisfiability problem of conjunctive normal
form formulas. Notice that these hardness results entail the hardness of the game
problems as well. We thus obtain that the game problems as well as the reachability
problems are co-NP-complete.

We believe that distributed games are an interesting approach for the many identical
processes setting and it would be interesting to study them further. In particular, one
assumption made in this chapter is that there is no deadlock configuration. It would
be interesting to see if our results still hold when this hypothesis is relaxed. Moreover,
since in finite state systems the translation from Markov decision process to parity games
allows to solve problems much harder than reachability, it would not be surprising if that
would also be the case here. Our proof of decidability for the game problem crucially
exploits the difference on the powers of player 1 and player 2. Even though giving to

Conclusion 131

player 2 the possibility to perform broadcasts and choose processes will certainly lead
to undecidability, it would be interesting to see to what extent we can grant power
to player 2 while retaining decidability. An other possibility is to investigate other
communication means for distributed game networks, such as broadcasts or shared
memories.

For the probabilistic parameterized problems, we only considered qualitative prop-
erties in this chapter. We are currently investigating the quantitative problems. It
seems that, for some cases, the monotonicity of the networks allows us to reduce the
quantitative problems to the qualitative ones. In the cases where the monotony does
not hold, we believe that all the problems are monotonic in the number of processes
for ‘large enough’ networks. In order to confirm or invalidate this intuition we are im-
plementing, with the help of Aminatou Mohamadou, a master student in internship, a
prototype tool in C. This tool allows us to build networks by making products of pro-
tocols for different sizes and check the desired properties thanks to the model checker
Prism [KNP11].

132 Selective broadcast networks of probabilistic protocols

Chapter V

Local strategies

1 Introduction

In this thesis, we consider parametric models with an unknown number of identical
processes. This is a possible approach to tame distributed systems in which all processes
share the same code. However, the solutions given until now all rely on centralized
strategies to choose the actions of the processes with a full knowledge of the network.
Due to the non-determinism, in the description of the protocol, it may happen that
two processes behave differently, even if they have the same information on what has
happened so far in an execution. To forbid such non-truly distributed behaviors, in this
chapter, we constrain processes to take the same decisions in case they fired the same
sequence of transitions so far.

To concentrate on this aspect of true distributivity, in this chapter we consider un-
timed and non-probabilistic networks composed of an arbitrary number of components,
or processes, all running the same protocol. These protocols are finite state machines
with three kinds of transitions: internal actions that affect only the process performing
it, broadcasts that send messages to the other processes, and receptions that allow pro-
cesses to receive the messages sent by broadcast. In this setting, the past of a process is
the sequence of transitions it has taken so far. The local strategies ensure that processes
with the same past take the same decision. As an example, from the initial configura-
tion, hence with an empty past, if a process chooses to perform an internal action then
all the processes with an empty past should perform the same internal action unless
they get in the mean-time additional information by receiving a message.

We study the parameterized reachability and synchronization problems in broadcast
protocol networks restricted to local strategies. The first problem, reachability, asks
whether there exist a network size and a local strategy such that a configuration with
at least one process in a given state is reached. The later problem, synchronization, asks
to reach a configuration with all processes gathered in a given set of states. We consider
two different settings for the networks: first, reconfigurable broadcast networks for which
the messages reach only a subset of the processes chosen non-deterministically. In these
networks, without the restriction to local strategies, the parameterized reachability

133

134 Local strategies

problem is known to be in PTIME [DSTZ12], and the synchronization problem has
the same complexity (see Chapter II 2). The second networks we consider are clique
broadcast networks, which are a restriction of reconfigurable networks in which the
messages reach all processes every time.

Interestingly, the notably difficult distributed controller synthesis problem [PR90] is
relatively close to the problem of existence of a local strategy. Indeed, a local strategy
corresponds to a local controller for the processes executing the protocol and whose role
is to resolve the non-deterministic choices. Local strategies are of interest to implement
distributed algorithms. Indeed, non-determinism is hard to implement in real life, thus
one can see the local strategy as an implementable deterministic version of a non-
deterministic specification for a distributed algorithm.

The chapter is organized as follows. First, in Section 2 we recall the model of
reconfigurable broadcast networks (see Chapter II 2) also called selective broadcast
networks. We then introduce the notion of local strategies and local executions, as
well as the problems studied, which are parameterized control state reachability and
parameterized control state synchronization.

In Section 3.1, we show that the reachability and synchronization problems under
local strategies in reconfigurable broadcast networks are NP-complete. To obtain the
upper bound, we prove that local strategies can be succinctly represented by a finite tree
of polynomial size in the size of the input protocol. This result is particularly interesting
because deciding the existence of a local strategy is intrinsically difficult. Indeed, even
with a fixed number of processes, the locality constraint cannot be simply tested on the
induced transition system, and a priori local strategies may need unbounded memory.
From our decidability proofs, we derive an upper bound on the memory needed to
implement local strategies. We also give cutoffs, i.e. upper bounds on the minimal
number of processes needed to reach or synchronize in target states.

Lastly, in Section 4, we show the two problems to be undecidable when the com-
munication topology is a clique, that is when the broadcast of a message reaches all
the processes in the network. Moreover, the undecidability proof of the target problem
applies even if the locality assumption is dropped. However, the reachability problem
under local strategies in cliques is decidable (yet non-primitive recursive) for complete
protocols, i.e. when receptions are always possible from every state. Hence when the
processes are input-complete, and when all messages reach all processes, the parame-
terized reachability problem with locality assumption is decidable.

2 Networks of reconfigurable broadcast protocols

2.1 Syntax and semantics

In this chapter, following the seminal approach by Delzanno et al. [DSZ10, DSZ11a,
DSTZ12], we assume that each process in the network executes the same broadcast
protocol given by a (non-deterministic) finite state machine where the actions are of
three kinds: broadcast of a message m (denoted by !!m), reception of a message m

(denoted by ??m) and internal action (denoted by ε). We recall here the definition of a

Networks of reconfigurable broadcast protocols 135

broadcast protocol (see Chapter I Section 2):

Definition 2.1 A broadcast protocol is a tuple P = (Q, q0,Σ,∆) with:

• Q a finite set of control states;

• q0 ∈ Q the initial control state;

• Σ a finite message alphabet and

• ∆ ⊆ Q× ({!!m, ??m | m ∈ Σ} ∪ {ε}) ×Q a finite set of edges.

We denote by Act(q) the set of actions containing broadcasts and internal actions,
called active actions, of P that start from state q. Formally, Act(q) = {(q, ε, q′) ∈
∆ | q′ ∈ Q} ∪ {(q, !!m, q′) ∈ ∆ | q′ ∈ Q,m ∈ Σ}. Furthermore, for each message
m ∈ Σ, we denote by Receptm(q) the set {(q, ??m, q′) ∈ ∆ | q′ ∈ Q} containing
the edges that start in state q and can be taken on reception of message m. We
say that a broadcast protocol is complete if for every state q ∈ Q and every message
m ∈ Σ, Receptm (q) 6= ∅. Contrary to the previous chapters where the completeness
of the protocols was assumed for simplicity of notations, in this chapter we will see
that whether protocols are complete or not may change the decidability status of the
problems we consider (see Section 4).

Example 2.1 An example of a broadcast protocol is given in Figure 2.1. The initial
state is q0. There is a broadcast of message m from this state leading to q1 and a
reception of this message leading to q3, i.e. (q0, !!m, q1) ∈ ∆ and (q0, ??m, q3) ∈ ∆.
Notice that this protocol is not complete since there is no reception of message m in
state qT.

q0 q1 qFq2q′F

q3 q4 qT

!!mε

??m ??
m

??m??m

??m !!m

??m??m

ε

ε

ε

Figure 2.1: Example of a broadcast protocol.

Definition 2.2 (Selective broadcast network) A selective broadcast network is
composed of an arbitrary number of copies, called processes, of a broadcast protocol P.

We now define the semantics associated with such a network. It is common to
represent the network topology by an undirected graph describing the communica-
tion links [DSTZ12]. Since the topology may change at any time (such an opera-
tion is called reconfiguration), we decide here, as in the Chapter IV, to simplify the

136 Local strategies

notations by specifying, for each broadcast, a set of possible receivers that is cho-
sen non-deterministically. The semantics of a network built over a broadcast protocol
P = (Q, q0,Σ,∆) is given by a transition system TP = (Γ,Γ0,→) where Γ = VQ is the
set of configurations (represented by vectors over Q); Γ0 = V{q0} is the set of initial
configurations and →⊆ Γ × N × ∆ × 2N × Γ is the transition relation defined as fol-

lows: (γ, pid, δ, R, γ′) ∈→ (also denoted by γ
pid,δ,R−−−−→ γ′) if and only if |γ| = |γ′| and

pid ∈ [1..|γ|] and R ⊆ [1..|γ|] \ {pid} and one of the following conditions holds:

Internal action: δ = (γ[pid], ε, γ
′[pid]) and γ′[p′id] = γ[p′id] for all p′id ∈ [1..|γ|] \

{pid};
process pid performs an internal action.

Communication: δ = (γ[pid], !!m, γ′[pid]) and (γ[p′id], ??m, γ′[p′id]) ∈ ∆ for all
p′id ∈ R such that Receptm(γ[p′id]) 6= ∅ , and γ′[p′′id] = γ[p′′id] for all p′′id ∈ [1..|γ|] \
(R ∪ {pid}) and for all p′′id ∈ R such that Receptm (γ[p′′id]) = ∅;
process pid broadcasts message m to all the processes in the reception set R (note
that the message m is ignored by processes not ready to receive m).

Obviously, when an internal action is performed, the reception set R is not taken
into account. We point out the fact that the hypothesis |γ| = |γ′| implies that the
number of processes remains constant during an execution. Contrary to Chapter III,
Section 2.3 there is no creation or deletion of processes. Yet, TP is an infinite state
transition system since the number of possible initial configurations is infinite. An
execution of P is then a finite sequence of consecutive transitions in TP of the form

θ = γ0
pid0,δ0,R0
−−−−−−→ γ1 . . .

pidℓ,δℓ,Rℓ
−−−−−−→ γℓ+1 and we denote by Θ[P] (or simply Θ when P is

clear from context) the set of all executions of P. Furthermore, we use nbproc(θ) = |γ0|
to represent the number of processes involved in the execution θ.

2.2 Restricting executions to local strategies and clique executions

Our goal is to analyze executions of broadcast protocols under local strategies, where
each process performs the same choices of edges according to its past history (i.e.
according to the edges of the protocol it has fired so far).

A finite path in P is either the empty path, denoted by ǫ, or a non-empty finite
sequence of edges δ0 · · · δℓ such that δ0 starts in q0 and for all i ∈ [1..ℓ], δi starts in the
state in which δi−1 ends. For convenience, we say that ǫ ends in state q0. We write
Path(P) for the set of all finite paths in P.

For an execution θ ∈ Θ[P], we define, for every pid ∈ [1..nbproc(θ)], the past of
process pid in θ (also referred to as its history), written πpid(θ), as the finite path
in P that stores the sequence of edges of P taken by pid along θ. Formally, for an
execution θ ∈ Θ[P], we inductively define for all pid ∈ [1..nbproc(θ)] the past, or history,

of process pid in θ, written πpid(θ), as follows: πpid(γ0) = ǫ and for ρ = γ0
pid0,δ0,R0
−−−−−−→

γ1 . . .
pidn−1,δn−1,Rn−1
−−−−−−−−−−−→ γn, πpid(ρ

pidn,δn,Rn
−−−−−−−→ γn+1) is equal to:

Networks of reconfigurable broadcast protocols 137

• πpid(ρ)·δn if pidn = pid; the past is augmented by the active action if it is performed
by pid.

• πpid(ρ) · δ if pid ∈ Rn, δ = (γn[pid], ??m, γn+1[pid]) ∈ Receptm (γn[pid]) and δn =
(γn[pidn], !!m, γn+1[pidn]); in the case of a broadcast received by pid, the past is
augmented by the reception performed by pid.

• πpid(ρ) if pid ∈ Rn, δn = (γn[pidn], !!m, γn+1[pidn]) and Receptm(γn[pid]) = ∅; in
the case of a broadcast of a message that pid cannot receive, its past does not
change.

• πpid(ρ) otherwise. In the case where pid is not involved, its past does not change.

Note that by definition of the transition relation → of TP , for every execution θ and
every pid ∈ [1..nbproc(θ)], the past of process pid in θ is a finite path in P.

We can now define local strategies which allow us to focus on the executions in
which each process performs the same choices according to its past.

Definition 2.3 (Local strategy) A local strategy σ for P is a pair (σa, σr) of func-
tions specifying, given a past, the next active action to be taken, and the reception edge
to choose in case of a broadcast, respectively.

Formally σa : Path(P) → Q × ({!!m | m ∈ Σ} ∪ {ε}) × Q satisfies, for every
ρ ∈ Path(P) ending in q ∈ Q, either Act(q) = ∅ or σa(ρ) ∈ Act(q). Moreover, σr :
Path(P) × Σ → Q × {??m | m ∈ Σ} × Q satisfies, for every ρ ∈ Path(P) ending in
q ∈ Q and every m ∈ Σ, either Receptm(q) = ∅ or σr(ρ,m) ∈ Receptm(q).

Since our aim is to analyze executions where each process behaves according to the
same local strategy, we now provide the formal definition of such executions. Given a
local strategy σ = (σa, σr), we say that a path δ0 · · · δℓ respects σ if for all i ∈ [0..ℓ− 1],
we have δi+1 = σa(δ0 . . . δi) or δi+1 = σr(δ0 · · · δi,m) for some m ∈ Σ. Following this,
an execution θ respects σ if for all processes pid ∈ [1..nbproc(θ)], we have that πpid(θ)
respects σ (i.e. each process behaves as dictated by σ). Finally, we define ΘL ⊆ Θ as
the set of local executions (also called local semantics), which are executions θ respecting
a local strategy.

We also consider another set of executions where we assume that every message
is broadcast to all the processes of the network (apart from the emitter). Formally,

an execution θ = γ0
pid0,δ0,R0
−−−−−−→ . . .

pidℓ,δℓ,Rℓ
−−−−−−→ γℓ+1 is said to be a clique execution if

Rk = [1, . . . ,nbproc(θ)] \ {pidk} for every k ∈ [0..ℓ]. We denote by ΘC the set of clique
executions (also called clique semantics). Note that clique executions of broadcast
networks have been studied in [DSZ11a] and that such networks correspond to broadcast
protocols with no rendez-vous [EFM99]. We will also consider combination of these 2
restrictions hence the intersection of these subsets of executions and write ΘLC for the
set ΘL ∩ΘC of clique executions which respect a local strategy.

Example 2.2 To illustrate the notions of local strategies and clique executions, we
provide an example of a broadcast protocol in Figure 2.1. On this protocol, no clique

138 Local strategies

execution can reach state qF : as soon as a process in q0 sends message m, all the other
processes in q0 receive this message, and move to q3 because of the clique topology.
An example of a clique execution is: (q0, q0, q0, q0) → (q1, q3, q3, q3) (where we omit
the labels over →). However, there exists a local execution reaching qF : (q0, q0) →
(q1, q0) → (qF , q1). This execution respects a local strategy. Indeed, from q0 with empty
past, the first process chooses the edge broadcasting m with empty reception set, and
in the next step, the second process, also with empty past, performs the same action,
broadcasting the message m to the first process. On the other hand, no local strategy
permits to reach q′F . Indeed, intuitively, to reach q′F , in state q0 one process with
empty past needs to go to q1 and another one to q2, which is forbidden by locality.
Finally, (q0, q0, q0) → (q1, q0, q3) → (q1, q1, q4) → (qT, qT, qT) is a local execution that
synchronizes all processes in the target set T = {qT}.

2.3 Verification problems

In this work, we study the parameterized verification of the reachability and synchro-
nization properties for broadcast protocols restricted to local strategies. The first one
asks whether there exists an execution respecting some local strategy that eventually
reaches a configuration where a given control state appears. The latter problem seeks for
an execution respecting some local strategy ending in a configuration where all the con-
trol states belong to a given target set. We consider several variants of these problems
depending on whether we restrict to clique executions or not and whether we consider
complete protocols or not.

For an execution θ = γ0
pid0,δ0,R0
−−−−−−→ γ1 . . .

pidℓ,δℓ,Rℓ
−−−−−−→ γℓ+1, we denote by End(θ) =

{γℓ+1[pid] | pid ∈ [1..nbproc(θ)]} the set of states that appear in the last configuration
of θ. Reach[S], the parameterized reachability problem for executions restricted to a
class S ∈ {L, C,LC}, is defined as follows:

Reach[S]
Input: A broadcast protocol P = (Q, q0,Σ,∆) and a control state qF ∈ Q.
Output: Does there exist an execution θ ∈ ΘS such that qF ∈ End(θ)?

In previous works, the parameterized reachability problem has been studied without the
restriction to local strategies. In particular the reachability problem on unconstrained
executions is in PTIME [DSTZ12] and Reach[C] is decidable and Non-Primitive Re-
cursive (NPR) [DSZ11a, EFM99] (actually it is Ackermann-complete [SS13]).

Similarly, Synch[S], the parameterized synchronization problem for executions re-
stricted to the class S ∈ {L, C,LC} is defined as follows:

Synch[S]
Input: A broadcast protocol P = (Q, q0,Σ,∆) and a set of control states T ⊆ Q.
Output: Does there exist an execution θ ∈ ΘS such that End(θ) ⊆ T?

It has been shown that a generalization of the synchronization problem, without restric-
tion to local strategies, can be solved in NP [DSTZ12] (as it is recalled in Section 2).

Networks of reconfigurable broadcast protocols 139

In this work, we focus on executions under local strategies and we obtain the results
presented in the following table:

Reach[L] Reach[LC] Synch[L] Synch[LC]

NP-complete
[Thm. 3.2]

Undecidable [Thm. 4.1]
NP-complete
[Thm. 3.3]

Undecidable
[Thm. 4.1]

Decidable and NPR for complete
protocols [Thm. 4.2]

Most of the problems listed in the above table are monotonic: if, in a network of a
given size, an execution satisfying the reachability or synchronization property exists,
then, in any bigger network, there also exists an execution satisfying the same property.
More precisely:

Proposition 2.1 Let θ be an execution. For every N ≥ nbproc(θ):

• if θ ∈ ΘL there exists θ′ in ΘL such that nbproc(θ′) = N and End(θ) = End(θ′).

• if θ ∈ ΘLC, there exists θ′ in ΘLC such that nbproc(θ′) = N and End(θ) ⊆ End(θ′).

Proof We first prove that, given a local execution θ ∈ ΘL, there exists another local
execution θ′ ∈ ΘL such that nbproc(θ′) = nbproc(θ) + 1 and End(θ) = End(θ′). The
proof is by induction on the length of θ. The idea is to add in θ′ a process denoted
pidadd that behaves exactly as the first process (with process identifier 1) of θ and such
that all other processes behave in θ′ as in θ. Formally, we define inductively a function
copycat (θ), such that copycat (γ0) = γ′0 with |γ′0| = |γ0|+ 1 and

copycat(θ
pid,δ,R−−−−→ γ) =

copycat (θ)
pid,δ,R−−−−→ γ′ if pid 6= 1 and 1 /∈ R

copycat (θ)
pid,δ,R∪{pidadd}−−−−−−−−−−→ γ′ if pid 6= 1 and 1 ∈ R

copycat (θ)
pid,δ,R−−−−→ γint

pidadd ,δ,∅−−−−−−→ γ′ if pid = 1

with γ′[pidadd] = γ[1] and ∀p′id ∈ [1..nbproc(θ)], γ′[p′id] = γ[p′id].

Intuitively, if the transition did not affect the first process in θ, the exact same transition
is fired in θ′, and it affects neither process 1 nor process pidadd . Otherwise, in case
process 1 receives a message, pidadd performs exactly the same reception (as specified
by the reception set and the condition on γ′). Finally, if process 1 performs an active
action in θ, pidadd also performs that active action, yet the associated reception set is
empty, so that execution θ can continue on the original processes.

Clearly enough, for any local execution θ ∈ ΘL, copycat (θ) is also a local execu-
tion. At any time processes 1 and pidadd share the same past and behave similarly.
Moreover this execution satisfies nbproc(copycat (θ)) = nbproc(θ) + 1 and End(θ) =
End(copycat (θ)). Applying iteratively the function copycat , one obtains a local execu-
tion θ′ with arbitrarily many processes and such that End(θ′) = End(θ). This shows the
first item of Proposition 2.1.

We now restrict to local clique executions, and similarly to the previous case, prove
that given a local clique execution θ ∈ ΘLC there exists θ′ ∈ ΘLC such that nbproc(θ′) =

140 Local strategies

nbproc(θ) + 1 and End(θ) ⊆ End(θ′). The proof is easier than for the first item since
we only require an inclusion of the set of states appearing in the last configuration. It
suffices to add a new process pidadd that does not perform any active action, so that θ
can be mimicked exactly, yet on a larger number of processes. Formally, given a strategy
σ and an execution θ following σ, we define inductively the function passiv (θ), such that

passiv (γ0) = γ′0 with |γ′0| = |γ0|+ 1 and passiv (θ
pid,δ,R−−−−→ γ) = passiv (θ)

pid,δ,R∪{pidadd}−−−−−−−−−−→
γ′ where ∀p′id ∈ [1..nbproc(θ)], γ′[p′id] = γ[p′id] and in the case where δ is a broadcast
of m ∈ Σ, we ask that pidadd follows the local strategy: σr(πpidadd (passiv (θ)),m) =
(dest(πpidadd (passiv (θ))), ??m, γ′[pidadd]).

Clearly enough for any local clique execution θ ∈ ΘLC , passiv (θ) is also a local
clique execution since pidadd does not perform any active action and is present in all
reception sets. Moreover, it satisfies nbproc(passiv (θ)) = nbproc(θ) + 1 and End(θ) ⊆
End(passiv (θ)). Applying iteratively the function passiv , one obtains a local execution
θ′ with arbitrarily many processes and such that End(θ) ⊆ End(θ′).

Note that in the case of a clique topology, one cannot preserve the set End(θ) in
general while increasing the number of processes, because processes are bound to re-
ceive all messages. Consider as an example the simple protocol composed only of two
transitions (q0, !!m, q1) and (q0, ??m, q2). It admits a local clique execution θ ∈ ΘLC

with a single process such that End(θ) = {q1}, yet any local clique execution θ′ with at
least two processes satisfies End(θ′) = {q1, q2} or End(θ′) = {q0}. �

These monotonicity properties allow us to look for cutoffs, i.e. minimal number of
processes such that a local execution with a given property exists. Indeed, if we can
effectively compute a network size such that the property holds, using Proposition 2.1,
one obtains that for any bigger network the property holds. We will see that we can
compute an upper-bound on these cutoffs for the problems Reach[L] (Proposition 3.3)
and Synch[L] (Theorem 3.3.2). Moreover, it is shown that these cutoffs are polynomial
in the size of the protocol. For the combined case of locality and clique restricted to
complete protocols (i.e. Reach[LC]), given that the complexity is Ackerman-hard,
such an upper-bound would be non-primitive recursive and thus would not be of any
practical use.

3 Solving verification problems for local executions

We begin with studying the parameterized reachability and synchronization problems
under local executions, i.e. we seek for a local strategy ensuring either to reach a specific
control state, or to reach a configuration in which all the control states belong to a given
set.

3.1 Solving Reach[L]

To obtain an NP-algorithm for Reach[L], we prove that there exists a local strategy
to reach a specific control state if and only if there is a local strategy which can be
represented thanks to a finite tree of polynomial size. The idea behind such a tree

Solving verification problems for local executions 141

is that the paths in the tree represent relevant past histories and the edges outgoing
a specific node represent the decisions of the local strategy. The algorithm will then
consist in guessing such finite tree of polynomial size and verifying that it satisfies some
conditions needed to reach the specified control state. This can be done in polynomial
time, so that we obtain an NP-algorithm.

3.1.1 Representing strategies with trees

We now define our tree representation of strategies called strategy patterns, which are
standard labeled trees with labels on the edges. Intuitively, a strategy pattern defines,
for some of the paths in the associated protocol, the active action and reception edges
to take.

Let us first provide some formal definitions with relation to labeled trees used to
represent strategy patterns.

Definition 3.1 (Labeled tree) A labeled tree is a finite graph T = (N,n0, E,Υ, lab)
where N is a finite set of nodes, n0 ∈ N is called the root of T and E ⊆ N × N
is the edge relation which satisfies the following conditions for all n ∈ N : (n, n) /∈ E;
(n, n0) /∈ E; if n 6= n0 then there exists a unique n′ ∈ N such that (n′, n) ∈ E; moreover,
lab : E → Υ is an edge-labeling function.

For each edge e = (n, n′), we use the following notations: src(e) = n to denote
the source and dest(e) = n′ the destination of e. A path in the tree is then either
the empty path ǫ or a finite sequence of edges e1 · · · eℓ such that src(e1) = n0 and
dest(ei) = src(ei+1) for all i ∈ [1..ℓ − 1]. A node n′ is said to be the descendant of a
node n if there exist a non-empty path e1 · · · eℓ and i, j ∈ [1..ℓ] such that i ≤ j and
src(ei) = n and dest(ej) = n′. We denote by desc(T, n) the set of descendants of a node
n in T .

The subtree at node n ∈ N of T , denoted by Sub(T, n) is the tree (desc(T, n) ∪
{n}, n,E′,Υ, lab′) such that E′ = E ∩ ((desc(T, n) ∪ {n}) × desc(T, n)) and lab′ is the
restriction of lab to E′. For a node n ∈ N such that n 6= n0, we use pred(n) to represent
the unique edge e ∈ E such that dest(e) = n. Finally, we define the size of T , denoted
by |T |, as the number of its nodes.

We are now ready to define strategy patterns, which consist in finite trees labeled
by transitions of a broadcast protocol. Alternatively, one can see a strategy pattern as
a finite unfolding, with constraints, of a broadcast protocol P.

Definition 3.2 (Strategy pattern) A strategy pattern for a broadcast protocol P =
(Q, q0,Σ,∆) is a labeled tree T = (N,n0, E,∆, lab) such that, if e1 · · · eℓ is a path in T ,
then lab(e1) · · · lab(eℓ) ∈ Path(P), and for every node n ∈ N and every message m ∈ Σ,
we have:

• there is at most one edge e = (n, n′) ∈ E such that lab(e) is an active action;

• there is at most one edge e = (n, n′) ∈ E such that lab(e) is a reception of m.

142 Local strategies

Since all labels of edges outgoing a node share a common source state (due to the
hypothesis on labeling of paths), the labeling function lab can be consistently extended
to nodes by letting lab(n0) = q0 and lab(n) = q as soon as (n′, n) ∈ E and lab((n′, n)) =
(q′, a, q).

Given a strategy pattern T = (N,n0, E,∆, lab) for a broadcast protocol P =
(Q, q0,Σ,∆), let us define the history function h : N → Path(P) that associates with
each node of the strategy pattern the path in P it represents. Formally, for every n ∈ N
writing e1 · · · eℓ for the path in T with dest(eℓ) = n then h(n) = lab(e1) · · · lab(eℓ).

Example 3.1 A strategy pattern is represented in Figure 3.2, for the broadcast protocol
from Fig. 2.1.

n0

n1 n2

n3

n4 n6 n8

n5

n7

(q0 , !!m, q1)

(q0
, ??

m, q3
)

(q3, ??m, q4)

(q1, ε, q1) (q1, ??m, qF)

(q3, ε, q3
) (q3, ??m, q4) (q4, !!m, qT)

Figure 3.2: A strategy pattern for the broadcast protocol depicted in Figure 2.1.

In this example, lab(n5) = q4 since the edge entering n5 is labeled by a transition
with destination q4. Moreover, the history h(n6) of node n6 is composed of the sequence
of transitions: (q0, ??mq3)(q3, ε, q3)(q3, ??m, q4).

This example illustrates that strategy patterns somehow correspond to under-specified
local strategies. For example, this pattern corresponds to a local strategy σ = (σa, σr)
such that σr((q0, ??mq3)(q3, ε, q3),m) = (q3, ??m, q4) which is represented by the label
on the edge (n4, n6).

However, strategies patterns are under-specified. Indeed, from node n1 (labeled by
q1) no reception of message m is specified, and from node n5 (labeled by q4) no reception
and no active action are specified. This pattern thus corresponds to many different local
strategies that can take different decisions from node n1 or n5.

More generally, given P a broadcast protocol, and T a strategy pattern for P with
edge-labeling function lab, a local strategy σ = (σa, σr) for P is said to follow T if
for every path e1 · · · eℓ in T , the path ρ = lab(e1) · · · lab(eℓ) in P respects σ. Notice
that any strategy pattern admits at least one local strategy that follows it (actually, in
general, it admits several). Reciprocally, for any local strategy there exists at least one
(several in general) strategy pattern representing it.

Solving verification problems for local executions 143

3.1.2 Reasoning on strategy patterns

We now show that one can test directly on a strategy pattern whether the local strategies
following it can yield an execution reaching a specific control state.

Definition 3.3 (Admissible strategy pattern) An admissible strategy pattern for
P = (Q, q0,Σ,∆) is a pair (T,≺) where T = (N,n0, E,∆, lab) is a strategy pattern for
P and ≺⊆ N ×N is a strict total order on the nodes of T such that:

(1) for all (n, n′) ∈ E we have n ≺ n′;

(2) for all e = (n, n′) ∈ E, if lab(e) = (lab(n), ??m, lab(n′)) for some m ∈ Σ,
then there exists and edge e1 = (n1, n

′
1) ∈ E such that n′

1 ≺ n′ and lab(e1) =
(lab(n1), !!m, lab(n′

1)).

In words, in this definition, (1) states that ≺ respects the natural order on the tree and
(2) that every node corresponding to a reception of m should be preceded by a node
corresponding to a broadcast of m.

Example 3.2 The example of strategy pattern on Fig. 3.2 is admissible with the order
ni ≺ nj if i < j. On the contrary, for any order including n3 ≺ n1 it is not admissible.
Indeed, the destination of a broadcast of m should precede n3.

We now give the relation between admissible strategy patterns and local strategies,
but first we establish the complexity of checking whether a pattern is admissible.

Lemma 3.1 Given a strategy pattern T = (N,n0, E,∆, lab) for a broadcast protocol
P = (Q, q0,Σ,∆) and a strict total order ≺⊆ N × N , checking whether (T,≺) is
admissible can be done in polynomial time.

Proof The proof is by induction on the size of the T .
For the base case, we consider the only possible pattern with a single node: T =

({n0}, n0, ∅,∆, lab). The only strict total order is the trivial ordering ≺= ∅. The two
conditions of the definition are trivially respected because the edge relation is empty.

We now assume that for all strategy patterns of size K and for all strict total orders
on the nodes, we can check in polynomial time whether (T,≺) is admissible. We will
now prove that this property still holds for the strategy patterns of size K + 1.
Let T = (N,n0, E,∆, lab) be a strategy pattern of size K+1 and ≺⊆ N×N be a strict
total order on the nodes. Let n be the maximal node with respect to ≺. First, we can
check in polynomial time if there exists a node n′ ∈ N such that (n, n′) ∈ E. If such a
node exists then (T,≺) is not admissible (contradiction with condition (1)). Otherwise,
let T ′ be the pattern in which we remove the node n and its associated edges and ≺′ the
total order ≺ without the node n. Formally, T ′ = (N \ {n}, n0, E \ {pred(n)},∆, lab′)
and ≺′=≺ \{(n′, n) | n′ ∈ N}. By induction hypothesis, we can check in polynomial
time whether (T ′,≺′) is admissible. If it is not admissible, then one of the conditions
is violated and would also be violated for (T,≺). Otherwise, the last thing to check in

144 Local strategies

the case where lab(pred(n)) is a reception of a message m, is whether there exists an
edge e1 = (n1, n

′
1) ∈ E such that lab(e1) = (lab(n1), !!m, lab(n′

1)), otherwise (2) is not
satisfied. �

Our objective is to show that admissible strategy patterns are necessary and suffi-
cient to represent the sets of states that can be reached under local strategies. To do
so we introduce the following: given an execution θ ∈ Θ[P], process pid is said to be in
node n if h(n) = πpid(θ).

We now prove the following lemma, which states that for all strategy patterns and
all integers M , there exists a local execution that puts at least M processes in each
node of the pattern. Formally:

Lemma 3.2 Given an admissible strategy pattern (T,≺), for all M ∈ N \ {0} and for
all strategies σ that follows T , there exists an execution θ ∈ Θ[P] that respects σ and
such that for all nodes n of T :

|{pid ∈ [0 . . . nbproc(θ)] | πpid(θ) = h(n)}| ≥ M

Proof The proof is by induction on the size of the strategy pattern T .
For the base case, we consider the only possible pattern with a single node: T =

({n0}, n0, ∅,∆, lab) with trivial ordering ≺= ∅. Any local strategy σ follows T . For
any M ∈ N \ {0}, the execution consisting only of the initial configuration γ0 = {q0}

M

respects any local strategy σ and in the last configuration, there are exactly M processes
in node n0.

We now assume that the property holds for all the admissible strategy patterns of
size K and we will prove that it holds for the admissible strategy patterns of size K+1.
Let (T,≺) be an admissible strategy pattern of size K + 1 with T = (N,n0, E,∆, lab).
Let σ be a strategy following T and M ∈ N\{0}. We denote by n ∈ N the maximal node
according to the total order ≺. Note that n is necessarily a leaf thanks to condition (1)
on admissible strategy patterns. We denote by (T ′,≺′) the admissible strategy pattern
obtained from (T,≺) by removing the leaf n and its preceding edge pred(n) = (n′, n).

First, note that σ also follows T ′. By induction hypothesis applied to T ′ and M ′ =
2M + 1, there exists an execution θ such that θ respects σ and such that there are at
least 2M + 1 processes in each node of T ′ in the last configuration of θ.

Let us now explain how θ can be extended depending on the type of the label of the
deleted edge δ = lab(pred(n)):

• If δ is an active action, either internal (q, ε, q′) or a broadcast (q, !!m, q′), then
we know that there are 2M + 1 processes in n′; hence we extend θ by choosing
M processes among those processes to perform the active action δ with an empty
reception set at each step;

• If δ = (q, ??m, q′), then we know that since (T,≺) is an admissible strategy
pattern, there exists an edge e1 = (n1, n

′
1) in T such that n′

1 ≺ n and lab(e1) =
(q1, !!m, q′1). Furthermore, e1 belongs also to T ′, hence there are 2M+1 processes

Solving verification problems for local executions 145

in node n′ and 2M +1 processes in node n1. We extend θ by choosing one process
to perform the broadcast of message m from n1 and the associated reception
set consists of M processes with history h(n′). This results in sending this M
processes in node n.

In all the cases, the obtained execution θ′ respects σ and there are at least M processes
in each node of the pattern in the last configuration of θ′. �

In order to state the relation between admissible strategy patterns and local strate-
gies, we define lab(T) = {lab(n) | n ∈ N} as the set of control states labeling nodes of
T and Reach(θ) = {γi[pid] | i ∈ [0..ℓ + 1] and pid ∈ [1..nbproc(θ)]} as the set of states
that appear along an execution θ = γ0 → · · · → γℓ+1. The next proposition tells us
that admissible strategy patterns are necessary and sufficient to represent the sets of
states that can be reached under local strategies.

Proposition 3.1 For all Q′ ⊆ Q, there exists an admissible strategy pattern (T,≺)
such that lab(T) = Q′ if and only if there exist a local strategy σ and an execution θ
such that θ respects σ and Q′ = Reach(θ). Furthermore, σ follows T .

Proof The first direction is a direct consequence of Lemma 3.2, taking e.g. M = 1.
To prove the second direction we suppose that there exist a local strategy σ and

an execution θ such that θ respects σ and Q′ = Reach(θ). We let θ = γ0
pid0,δ0,R0
−−−−−−→

. . .
pidℓ,δℓ,Rℓ
−−−−−−→ γℓ+1. We will explain how to build an admissible strategy pattern (T,≺)

such that lab(T) = Q′ from this execution. In the sequel, for every i ∈ [1..ℓ + 1], we

denote by θi the prefix execution γ0
pid0,δ0,R0
−−−−−−→ . . .

pidi−1,δi−1,Ri−1
−−−−−−−−−−→ γi consisting of the i

first transitions in θ.
We provide now the definition of a function admtree which, given a prefix θi of

the execution θ, returns an admissible strategy pattern (T,≺) that satisfies that for all
pid ∈ [1 . . . nbproc(θ)] there exists a node n such that h(n) = πpid(θi). The idea is to
build an admissible strategy pattern where the labeled paths characterize all possible
pasts of the different processes involved in θ.

We proceed inductively as follows: admtree(γ0) = (({n0}, n0, ∅,∆, lab),≺) with
≺= ∅ and lab(n0) = q0. For all i ∈ [1..ℓ + 1], if admtree(θi−1) = (T,≺) with
T = (N,n0, E,∆, lab) then admtree(θi) = (T ′,≺′) where T ′ = (N ′, n0, E

′,∆, lab′) is
obtained by completing T according to the following case analysis:

• if δi−1 = (γi−1[pidi−1], ε, γi[pidi−1]) is an internal action and there does not exist
a node n in T such that πpidi−1

(θi) = h(n), then let n′ be the node in T such that
πpidi−1

(θi−1) = h(n′) (such a node necessarily exists by definition of admtree). In
that case, we add a new node n to T and we define lab′(n′, n) = δi−1 and ≺′ is
obtained from ≺ by defining n as the new maximal node.

• if δi−1 = (γi−1[pidi−1], !!m, γi[pidi−1]), then,

146 Local strategies

– first, if there does not exist a node n in T such that πpidi−1
(θi) = h(n),

then let n′ be the node in T such that πpidi−1
(θi−1) = h(n′) (such a node

necessarily exists by definition of admtree). In that case, we add a new node
n to T and we define lab′(n′, n) = δi−1 and ≺′ is obtained from ≺ by defining
n as the new maximal node.

– afterwards for every pid ∈ Ri−1 such that there does not exist a node n in T
verifying πpid(θi) = h(n), let n′ be the node in T such that πpidi−1

(θi−1) =
h(n′). Then, we add a new node n to N ′, and lab′ is extended such that
lab′(n′, n) = (γi−1[pid], ??m, γi[pid]) and we extend ≺′ such that n is the
new maximal of the order ≺′. Note that, in that case, it is important that
the destination node of the broadcast is smaller (with relation to ≺′) to the
destination nodes of the performed receptions, but the order between these
latter nodes is not relevant.

Note that if admtree(θ) = (T,≺), then T is indeed a strategy pattern. The reason is
that θ respects the local strategy σ, hence each path in P is associated via σ to a unique
active action and a unique possible reception per message m. Furthermore, the fact that
admtree(θ) is admissible follows directly from the inductive definition of the order. In
fact, condition (1) of admissible strategy patterns is verified since we add each time
maximal nodes at the end of existing paths, and condition (2) is verified because each
destination node of a reception is larger according to ≺ than a destination node of a
matching broadcast. Finally, lab(T) = Q′ since the labels of the nodes in T correspond
exactly to all the control states seen in θ. It is furthermore clear by construction that
σ follows T , given that T is built using the choices given by σ in the execution θ. �

3.1.3 Minimizing admissible strategy patterns

In the previous section we have shown that strategy patterns are an adequate tool to talk
about local executions. Indeed it was shown in Proposition 3.1 that admissible strategy
patterns are necessary and sufficient to represent the sets of states that can be reached
under local strategies. This section is dedicated to show that, in fact, strategy patterns
are also an efficient tool. Indeed, we show that strategy patterns can be reduced to a
polynomial size. Hence, it is enough to focus on polynomial size strategy patterns to
have an answer on the parameterized reachability problems.

For (T,≺) an admissible strategy pattern, we denote by last(T,≺) the maximal node
w.r.t. ≺ and we say that (T,≺) is qF -admissible if lab(last(T,≺)) = qF . We now show
that there exist polynomial size witnesses of qF -admissible strategy patterns. The idea
is to keep only relevant edges that either lead to a node labeled by qF or that permit
the broadcast of a new message i.e. a message that does not appear in the pattern so
far. Intuitively, a minimal strategy pattern guarantees that (1) there is a unique node
labeled with qF , (2) in every subtree there is either a node labeled by qF or a broadcast
of a new message, and (3) a path starting and ending in two different nodes labeled by
the same state cannot be compressed without losing a new broadcast or a path towards
qF . By compressing, we mean here replacing the first node on the path by the last one.

Solving verification problems for local executions 147

We now formalize these ideas. Given a qF -admissible pattern (T,≺) where T =
(N,n0, E,∆, lab), we denote by NewBroad(T,≺) ⊆ N \ {n0} the set of nodes that
are sources of a new message broadcast. Formally, n ∈ NewBroad(T,≺) if and only
if lab(pred(n)) = (q, !!m, q′) and for all n′ ∈ N \ {n0, n} such that lab(pred(n′)) =
(q′′, !!m, q′′′), we have n ≺ n′. Also, we denote by Imp(T,≺) the set of “important"
nodes corresponding to NewBroad(T,≺) ∪ {last(T,≺)}, i.e. the new broadcast and the
last node labeled by qF .

Definition 3.4 (Minimal qF -admissible strategy patterns) We say that a qF -
admissible strategy pattern (T,≺), where T = (N,n0, E,∆, lab), is minimal if the fol-
lowing conditions are fulfilled:

(a) for all n ∈ N , if lab(n) = qF then n = last(T,≺);

(b) for all n ∈ N , if Sub(T, n) = (N ′, n,E′,∆, lab′) then N ′ ∩ Imp(T,≺) 6= ∅;

(c) for all pairs of different nodes n′, n′′ ∈ N such that lab(n′) = lab(n′′) and n′ 6= n′′,
if Sub(T, n′) = (N ′, n′, E′,∆, lab′) and Sub(T, n′′) = (N ′′, n′′, E′′,∆, lab′′) then
(N ′ \ {n′}) ∩ Imp(T,≺) 6= N ′′ ∩ Imp(T,≺).

Intuitively, condition (a) states that there is a unique node labeled with qF and it
is the last according to ≺; condition (b) expresses that in every subtree there should
be a node labeled by qF or a new broadcast message; and condition (c) ensures that if
two different subtrees have their root labeled by the same state, then there should be at
least a new broadcast or the last state present in one of the subtrees and not in the other
one. The intuition for this last condition is basically that if there is a smaller subtree
included in a subtree such that all the important nodes are in the smaller subtree, we
can replace the bigger subtree by the smaller one without loosing anything.

Lemma 3.3 If there exists a qF -admissible strategy pattern for P, then there exists a
minimal one.

Proof Let (T,≺) with T = (N,n0, E,∆, lab) be a qF -admissible strategy pattern and
assume that (T,≺) is not minimal.

First, we suppose that there exists a node n ∈ N such that lab(n) = qF and
n 6= last(T,≺). Then, let n′ ∈ N be the minimal node labeled by qF . Formally n′ is
such that lab(n′) = qF and for every node n ∈ N \ {n′} verifying lab(n) = qF , we have
n′ ≺ n. In that case, we remove from T all the nodes n such that n′ ≺ n and n 6= n′

and their associated edges . We obtain a qF -admissible strategy pattern for P. Indeed,
thanks to the condition (1) respected by ≺, we know that the transformation preserves
the tree structure and furthermore, since we only remove nodes bigger than n, we know
that condition (2) of ≺ is still satisfied. Finally, it is clear that the obtained admissible
strategy pattern satisfies condition (a).

Now we assume that condition (a) is satisfied by (T,≺) and we suppose that there
exists a node n ∈ N such that Sub(T, n) = (N ′, n,E′,∆, lab′) and N ′ ∩ Imp(T,≺) = ∅.
The transformation to get a pattern satisfying condition (b) is easy: for every node n

148 Local strategies

such that Sub(T, n) = (N ′, n,E′,∆, lab′) and N ′ ∩ Imp(T,≺) = ∅, we remove from T all
nodes in N ′ and their associated edges leading to that nodes. Since we remove subtrees,
the obtained structure is still a strategy pattern. Also since the important nodes consists
in new broadcasts and the last node, Imp(T,≺) = NewBroad(T,≺) ∪ {last(T,≺)}, this
allows us to deduce that this strategy pattern with the restriction of ≺ to the remaining
nodes is still a qF -admissible strategy pattern. Indeed, condition (1) for admissibility
is trivially satisfied. Moreover, since we keep for each message m the minimal node
associated with the broadcast of this message, then condition (2) is also satisfied. Note
finally that the obtained admissible strategy pattern satisfies the conditions (a) and
(b).

We assume now that conditions (a) and (b) are satisfied by (T,≺) and that the
condition (c) is not satisfied. Until condition (c) is satisfied, we perform the following
operations: first assume there are two nodes n′, n′′ ∈ N such that lab(n′) = lab(n′′) and
n′ 6= n′′ with Sub(T, n′) = (N ′, n′, E′,∆, lab′) and Sub(T, n′′) = (N ′′, n′′, E′′,∆, lab′′)
and N ′ ∩ Imp(T,≺) = N ′′ ∩ Imp(T,≺). Then necessarily either N ′ ⊂ N ′′ or N ′′ ⊂ N ′

because they are subtrees rooted at some node. Suppose, without loss of general-
ity, that the second case holds, i.e., that Sub(T, n′′) is a subtree of Sub(T, n′). Since
N ′ ∩ Imp(T,≺) = N ′′ ∩ Imp(T,≺), important nodes matter (as we have seen with the
previous case) and lab(n′) = lab(n′′), we can replace in T the subtree Sub(T, n′) by its
subtree Sub(T, n′′) (and doing so, remove from T the nodes in N ′ \N ′′). The obtained
structure is still a qF -admissible strategy pattern. In fact it is a strategy tree pattern
because lab(n′) = lab(n′′), and it is still qF -admissible because Sub(T, n′′) is a subtree
of Sub(T, n′) and because we did not remove any important node. Repeating this oper-
ation allows us to finally get a qF -admissible strategy pattern which respects conditions
(a), (b) and (c) and hence which is minimal. �

Lemma 3.3 allows us to seek only for minimal qF -admissible strategy patterns. We
show in the following proposition that the size of such a minimal pattern is at most
polynomial in the size of the protocol.

Proposition 3.2 If there exists a qF -admissible strategy pattern for P, then there is
one of size at most (2|Σ|+ 1) · (|Q| − 1) and of height at most (|Σ|+ 1) · |Q|.

Proof Given a strategy pattern T , we call intersection node, a node n in T from which
at least two actions are defined (either two different receptions or a reception and an
active action). We gather under the term noticeable nodes, the nodes that are important
nodes or intersection nodes.

Thanks to Lemma 3.3, to establish Proposition 3.2, it suffices to bound the size
and height of minimal qF -admissible strategy patterns. Let (T,≺) be a minimal qF -
admissible strategy pattern for P = (Q, q0,Σ,∆), where T = (N,n0, E,∆, lab). First,
from condition (b), there are at most |Imp(T,≺)| − 1 ≤ |Σ| intersection nodes. Other-
wise, there would be a subtree that does not contain any important node. Moreover,
there are at most |Σ|+ 1 important nodes: |Σ| for the messages, and 1 for qF . There-
fore, there are at most 2|Σ| + 1 noticeable nodes. Second, from conditions (a) and

Solving verification problems for local executions 149

(c), we know that there are no more than |Q| − 2 nodes between two noticeable nodes.
Otherwise, there would be two nodes with the same label that share the same set of
important nodes, or there would be a node labeled with qF . We thus derive the desired
bound on the size of minimal qF -admissible strategy patterns.

We also obtain a bound on the height of minimal qF -admissible strategy patterns:
in the worst case, all important nodes belong to the same branch of T . We conclude by
recalling that between two important nodes there are at most |Q| − 2 nodes, and that
the number of important nodes is bounded by |Σ|+ 1 (one per message type, plus the
final state). �

By Proposition 3.1, there exists an execution θ ∈ ΘL such that qF ∈ Reach(θ) if
and only if there exists a qF -admissible strategy pattern. Thanks to Proposition 3.2, it
suffices to look only for qF -admissible strategy patterns of polynomial size in the size of
the broadcast protocol. A non-deterministic polynomial time algorithm for Reach[L]
then consists in guessing a strategy pattern of polynomial size and an order, and then
verifying whether it is qF -admissible.

Theorem 3.1 Reach[L] is in NP.

q0q′1q′2· · ·q′r+1 q1 · · · qk
ε!!x1

!!¬x1

!!x2

!!¬x2

!!xr

!!¬xr

??ℓ11

??ℓ12

??ℓ13

??ℓ21
??ℓ22

??ℓ23

??ℓk1
??ℓk2

??ℓk3

Figure 3.3: Encoding a 3-SAT formula into a broadcast protocol.

By reducing 3-SAT, one can furthermore prove Reach[L] to be NP-hard. Let
φ =

∧

1≤i≤k(ℓ
i
1 ∨ ℓi2 ∨ ℓi3) be a 3-SAT formula such that ℓij ∈ {x1,¬x1, . . . , xr,¬xr} for

all i ∈ [1..k] and j ∈ {1, 2, 3}. We build from φ the broadcast protocol P depicted on
Figure 3.3. Under this construction, φ is satisfiable if and only if there is an execution
θ ∈ ΘL such that qk ∈ Reach(θ). The local strategy hypothesis ensures that even if
several processes broadcast a message corresponding to the same variable, all of them
must take the same decision so that there cannot be any execution during which both xi
and ¬xi are broadcast. It is then clear that control state qk can be reached if and only
if each clause is satisfied by the set of broadcast messages. Together with Theorem 3.1,
we obtain the precise complexity of Reach[L].

Theorem 3.2 Reach[L] is NP-complete.

We can furthermore provide bounds on the minimal number of processes and on the
memory needed to implement local strategies. Given a qF -admissible strategy pattern,
one can define an execution following the pattern such that each reception edge of the
pattern is taken exactly once and active actions may be taken multiple times but in a
row. Such an execution needs at most one process per reception edge. Together with

150 Local strategies

the bound on the size of the minimal strategy patterns (see Proposition 3.2), this yields
a cutoff property on the minimal size of network to reach the final state. Moreover,
the past history of every process in this execution is bounded by the depth of the tree,
hence we obtain an upper bound on the size of the memory needed by each process for
Reach[L].

Proposition 3.3 If there exists an execution θ ∈ ΘL such that qF ∈ Reach(θ), then
there exists an execution θ′ ∈ ΘL such that qF ∈ Reach(θ′) and nbproc(θ′) ≤ (2|Σ|+1) ·
(|Q| − 1) and |πpid(θ

′)| ≤ (|Σ|+ 1) · |Q| for every pid ∈ [1..nbproc(θ′)].

The proof of Proposition 3.3 calls for the introduction of the following notations.
Given an execution θ, a process pid and a path ρ ∈ Path(P), we consider the execu-
tion built from θ in which there is an additional process pidadd that behaves exactly
as process pid until its history is ρ. Formally, follow (θ, pid, ρ) is defined inductively:
follow (γ0, pid, ρ) = γ′0 with |γ′0| = |γ0| + 1 and if πpidadd (follow (θ, pid, ρ)) = ρ then

follow (θ
p′
id
,δ,R

−−−−→ γ, pid, ρ) = follow (θ, pid, ρ)
p′
id
,δ,R

−−−−→ γ′ where γ′(p′′id) = γ(p′′id) for every
p′′id 6= pidadd , otherwise

follow (θ
p′
id
,δ,R

−−−−→ γ, pid, ρ) =

θ′
p′
id
,δ,R

−−−−→ γ′ if p′id 6= pid and pid /∈ R

θ′
p′
id
,δ,R∪{pidadd}

−−−−−−−−−−→ γ′ if p′id 6= pid and pid ∈ R

θ′
pid,δ,R−−−−→ γint

pidadd ,δ,∅−−−−−−→ γ′ if pid = p′id

with θ′ = follow (θ, pid, ρ), γ′(pidadd) = γ(pid) and ∀p′′id 6= pidadd , γ′(p′′id) = γ(p′′id).

Notice that follow refines copycat defined page 139, by limiting the copycat behavior
to a given history.

Intuitively, in case pidadd already reached its destination (i.e. has history ρ), the
execution continues exactly as θ. Otherwise, in case of a broadcast by another process
than pid, the new process pidadd behaves as pid, i.e. receives the message in θ′ if and
only if pid receives it in θ. Last, if pid is responsible for the active action, pidadd
performs exactly the same active action, yet the associated reception set is empty, so
that execution θ can continue on the original processes. Note that in all cases, the
inductive definition ensures that θ′ exists and is unique, so that follow (θ, pid, ρ) is well
defined. Moreover, assuming θ is a local execution, since pidadd “mimics” the process
pid, follow (θ, pid, ρ) is a local execution too, and πpidadd (follow (θ, pid, ρ)) = πpid(θ) or
πpidadd (follow (θ, pid, ρ)) = ρ (and then πpidadd (follow (θ, pid, ρ)) is a prefix of πpid(θ)).

Let T = (N,n0, E,∆, lab) be a strategy pattern. Given a subset of nodes N1 ⊆ N ,
we define the restriction of T to the predecessors of nodes in N1; formally T↓N1 =
(N ′, n0, E

′,∆, lab) where N ′ = {n ∈ N | ∃n′ ∈ desc(n, T)∩N1} and E′ = E∩(N ′×N ′).
Assuming T is equipped with an order ≺, for any k ∈ [1..|Imp(T,≺)|] the set of the k first
important nodes with respect to ≺ is denoted Imp(T,≺, k). Formally, we have Imp(T,≺
, k) ⊆ Imp(T,≺) and |Imp(T,≺, k)| = k and if n ∈ Imp(T,≺, k) and n′ ∈ Imp(T,≺) with
n′ ≺ n then n′ ∈ Imp(T,≺, k). The following lemma bounds the number of processes

Solving verification problems for local executions 151

needed to reach a configuration with processes in each of the nodes of Imp(T,≺, k), by
the number of predecessors of these nodes.

Recall that h(n) ∈ Path(P) is the labeling of the path in T from the root to node
n.

Lemma 3.4 Let (T,≺) be an admissible strategy pattern and k ∈ [1..|Imp(T,≺)|]. Then
there exists an execution θ ∈ ΘL with the following properties:

1. {πpid(θ) | pid ∈ [1..nbproc(θ)]} = {h(n) | n ∈ Imp(T,≺, k)}

2. nbproc(θ) ≤ |T↓Imp(T,≺,k)|.

Proof The proof is by induction on k. For the base case k = 1, by definition of
admissibility, the first important node is reachable only via active actions. Therefore,
we can define θ as the execution with a single process pid such that πpid(θ) = h(n1)
where n1 is the first important node.

Assume now that the lemma holds for k − 1. Let θk−1 ∈ ΘL be an execution
such that {πpid(θk−1) | pid ∈ [1..nbproc(θk−1)]} = {h(n) | n ∈ Imp(T,≺, k − 1)} and
nbproc(θk−1) ≤ |T↓Imp(T,≺,k−1)|. Intuitively, in order to build θk that proves the in-
duction step from θk−1, one additional process will follow some process of θk−1 until it
meets some node n on the way to nk the k-th important node of T . Then the additional
process pidadd will aim at reaching nk from n. To do so, since there might be reception
steps between n and nk, some more processes that will broadcast the corresponding mes-
sages are needed. This will work smoothly by using other additional processes, since
the needed broadcast precisely leads to important nodes in Imp(T,≺, k − 1). These
additional processes will be defined thanks to an auxiliary function fill that we define
now.

We consider a local execution θ such that for every node n ∈ Imp(T,≺, k − 1),
there exists a process pid ∈ [1..nbproc(θ)] with πpid(θ) = h(n). Moreover, for pid ∈
[1..nbproc(θ)] and for a sequence of edges e1 . . . el in T such that πpid(θ) = h(src(e1)),
we define a function fill(θ, e1 . . . el, pid) inductively as follows: fill(θ, ǫ, pid) = θ and
otherwise

• if lab(e1) = δ is an active action, we let fill(θ, e1 . . . el, pid) = fill(θ′, e2 . . . el, pid)

with θ′ = θ
pid,δ,∅−−−−→ γ; i.e. the process pid performs the active action with an

empty reception set. Notice that nbproc(θ′) = nbproc(θ), and for every p′id ∈
[1..nbproc(θ)] \ {pid}, πp′

id
(θ′) = πp′

id
(θ).

• if lab(e1) = δ is a reception of message m, we consider em = (n1, n2) such that
lab(em) is a broadcast of m and such that n2 ∈ Imp(T,≺, k−1). Such an edge ex-
ists because T is admissible. By assumption on θ, there exists p′id ∈ [1..nbproc(θ)]
such that πp′

id
(θ) = h(n2). We consider the execution follow (θ, p′id, h(n1)), and

write pidm for the additional process in that execution compared to θ. Then, we

let θ′ = follow (θ, p′id, h(n1))
pidm ,lab(em),{pid}
−−−−−−−−−−−→ γ, and finally fill(θ, e1 . . . el, pid) =

fill(θ′, e2 . . . el, pid) i.e. the additional process pidm broadcasts message m to

152 Local strategies

pid only. Notice that nbproc(θ′) = nbproc(θ) + 1, πpidm (θ) = h(n2), for every
p′id ∈ [1..nbproc(θ1)] \ {pid}, πp′

id
(θ′) = πp′

id
(θ), and n2 ∈ Imp(T,≺, k − 1).

To conclude the induction step of the proof, we now explain how to obtain θk
applying fill to θk−1. Let nk be the k-th important node in T with respect to ≺. Let n
be the last node appearing on the path to nk and such that n is visited by some process
pid1 along θk−1. We write e1 . . . el for the sequence of edges between n and nk and
consider θ′ = follow (θk−1, pid1, h(n)) the execution in which an additional process goes
to node n, and we denote by p′id this process. The situation is illustrated on Figure 3.4
where important nodes are circled.

n0

n

nk−1

nk

e
1

el

Figure 3.4: Illustration for the construction of θk from θk−1.

By induction hypothesis on θk−1, we know that for every node n ∈ Imp(T,≺, k− 1),
there exists pid ∈ [1..nbproc(θk−1)] such that πpid(θk−1) = h(n). This also holds for
the execution θ′ extended with the additional process p′id. As a consequence, we can
apply fill to θ′ for the sequence of edges e1 . . . el and the process p′id. The resulting
execution θ′′ = fill(θ′, e1 . . . el, p

′
id) satisfies that for every n ∈ Imp(T,≺, k−1) there exists

pid ∈ [1..nbproc(θ′′)] with πpid(θ
′′) = h(n), and since the process pid fired the sequence of

edges e1 . . . el, θ′′ moreover satisfies πpid(θ
′′) = h(nk). By definition of fill, all additional

processes end in important nodes, so that {πpid(θ
′′) | pid ∈ [1..nbproc(θ′′)]} = {h(n) |

n ∈ Imp(T,≺, k)}. Last, applying fill adds at most one process per edge of the sequence
e1 . . . el from n to the k-th important node nk. As a consequence, we obtain the following
bound on the number of processes: nbproc(θ′′) ≤ |T↓Imp(T,≺,k−1)|+ l = |T↓Imp(T,≺,k)|. �

Lemma 3.4 combined to Proposition 3.2 implies Proposition 3.3, therefore we were
able to show a bound on the minimal number of processes and on the memory needed
to implement local strategies.

Solving verification problems for local executions 153

3.2 Solving Synch[L]

Admissible strategy patterns can also be used to obtain an NP-algorithm for Synch[L].
As we have seen, given an admissible strategy pattern, one can build an execution where
the processes visit all the control states present in the pattern. When considering the
synchronization problem, one also needs to ensure that the processes can afterwards be
directed to the target set. To guarantee this, it is possible to extend admissible strategy
patterns with another order on the nodes which ensures that (a) from any node there
exists a path leading to the target set and (b) whenever on this path a reception is
performed, the corresponding message can be broadcast by a process that will only
later on be able to reach the target.

We formalize this idea now.

Definition 3.5 (T-coadmissible strategy patterns) For T ⊆ Q a set of states,
a T-coadmissible strategy pattern for P = (Q, q0,Σ,∆) is a pair (T,✁) where T =
(N,n0, E,∆, lab) is a strategy pattern for P and ✁ ⊆ N × N is a strict total order
on the nodes T such that, for every node n ∈ N with lab(n) /∈ T, there exists an edge
e = (n, n′) ∈ E with n✁ n′, and either:

• lab(e) = (lab(n), ε, lab(n′)) or,

• lab(e) = (lab(n), !!m, lab(n′)) for some m ∈ Σ or,

• lab(e) = (lab(n), ??m, lab(n′)) for some m ∈ Σ and there exists an edge e1 =
(n1, n

′
1) ∈ E such that n✁ n1, n✁ n′

1 and lab(e1) = (lab(n1), !!m, lab(n′
1)).

Intuitively, the order ✁ in a T-coadmissible strategy pattern corresponds to the
order in which processes must move along the tree towards the target; the conditions
express that any node with label not in T has an outgoing edge that is feasible. In
particular, a reception of m is only feasible before all edges carrying the corresponding
broadcast are disabled.

When convenient, in order to manipulate the order ✁ more easily, we will equiva-
lently use an injective rank function rk✁ : N → Z such that, for every pair of nodes
(n, n′), we have rk✁(n) < rk✁(n

′) if and only if n✁ n′.
A strategy pattern T equipped with two orderings ≺ and ✁ is said to be T-

biadmissible whenever (T,≺) is admissible and (T,✁) is T-coadmissible.

n0

n1

n2

n5 n6

n3 n4

(q0, ??
m, q3)

(q0, !!m, q1)

(q3, ??m, q4) (q4, !!m, qT)

(q1, ε, q1) (q1, ??m, qT)

Figure 3.5: A T-coadmissible strategy pattern on the example protocol of Figure 2.1.

Example 3.3 To illustrate the notion of T-coadmissible patterns, we give in Figure 3.5
an example pattern, that, equipped with the natural order ni ✁ nj if and only if i <

154 Local strategies

j, is T-coadmissible for T = {qT}. Indeed, all leaves are labeled with a target state,

and the broadcast edge n5
(q4,!!m,qT)
−−−−−−→ n6 allows all processes to take the corresponding

reception edges. This T-coadmissible pattern is in particular obtained from the execution
(q0, q0, q0) → (q1, q3, q0) → (q1, q3, q0) → (qT, q4, q1) → (qT, q4, q1) → (qT, qT, qT). Notice
that ✁ is not an admissible order, because n1✁n2, and in an admissible order, a broadcast
must precede its receptions. However there are admissible orders for this pattern, for
example the order n0 ≺ n2 ≺ n3 ≺ n4 ≺ n1 ≺ n5 ≺ n6. Under these definitions,
(T,≺,✁) is T-biadmissible.

Similarly to Lemma 3.1 for admissible patterns, we can establish the following:

Lemma 3.5 Given a strategy pattern T = (N,n0, E,∆, lab) for a broadcast protocol
P, a set of states T and a strict total order ✁ ⊆ N × N , checking whether (T,✁) is
T-coadmissible can be done in polynomial time.

As for Reach[L], one can show that polynomial size witnesses of T-biadmissible
strategy patterns exist, yielding an NP-algorithm for Synch[L]. Also, the size of mini-
mal T-biadmissible strategy patterns gives here also a cutoff on the number of processes
needed to satisfy the target objective, as well as an upper bound on the memory size.

3.3 Link between biadmissibility and local executions

The relation between biadmissible strategy patterns and local strategies satisfying a
target objective is stated in the next proposition.

Proposition 3.4 There exists a T-biadmissible pattern (T,≺,✁) if and only if there
exist a local strategy σ and an execution θ such that θ respects σ and End(θ) ⊆ T;
furthermore σ follows T .

Proof First, we suppose that there exist a local strategy σ and an execution θ such

that θ respects σ and End(θ) ⊆ T. We write θ = γ0
pid0,δ0,R0
−−−−−−→ . . .

pidℓ,δℓ,Rℓ
−−−−−−→ γℓ+1. Let us

define a function coadmorder which, given a prefix of the execution θ, returns an order ✁
on the nodes of admtree(θ), where admtree is the function returning a strategy pattern
and an admissible order corresponding to a local execution (See Proof of Proposition
3.1 for the formal definition). The idea of the order coadmorder (θ) is that if n ✁ n′

then, the last time some processes are in node n, during θ, happens before the last
time some processes are in n′. Let admtree(θ) = (T,≺) with T = (N,n0, E,∆, lab).
The coadmissible order is defined inductively as follows, denoting θi the prefix of θ of
size i : coadmorder (γ0) = ∅, and for all i ∈ [1..ℓ + 1], if coadmorder (θi−1) = ✁i−1,
coadmorder (θi) = ✁i is obtained by completing ✁i−1 according to the following case
analysis:

• if δi−1 = (γi−1[pidi−1], ε, γi[pidi−1]), by definition of admtree , there exist two nodes
n and n′ in T such that πpidi−1

(θi−1) = h(n) and πpidi−1
(θi) = h(n′). We obtain

coadmorder (θi) by defining n as the second maximal node and n′ as the maximal
node for ✁i. Formally, coadmorder (θi) = ✁i−1 \ ({n, n′} × N ∪ N × {n, n′}) ∪
{(n1, n) | n1 ∈ N \ {n′}} ∪ {(n1, n

′) | n1 ∈ N}.

Solving verification problems for local executions 155

• if δi−1 = (γi−1[pidi−1], !!m, γi[pidi−1]), then,

– first, for every pid ∈ Ri−1, by definition of admtree , there exist two nodes nid

and n′
id in T such that πpid(θi−1) = h(nid) and πpid(θi) = h(n′

id). We obtain
coadmorder (θi) by defining nid as the second maximal node and n′

id as the
maximal node for ✁i. Formally, coadmorder (θi) = ✁i−1 \ ({nid, n

′
id} ×N ∪

N × {nid, n
′
id}) ∪ {(n1, nid) | n1 ∈ N \ {n′

id}} ∪ {(n1, n
′
id) | n1 ∈ N}.

– afterwards, we treat the process pid responsible for the broadcast as in the
case of the internal transition. That is: by definition of admtree , there exist
two nodes n and n′ in T such that πpid(θi−1) = h(n) and πpid(θi) = h(n′).
We obtain coadmorder (θi) by defining n as the second maximal node and n′

as the maximal node. Formally, coadmorder (θi) = ✁i−1 \ ({n, n
′}×N ∪N ×

{n, n′}) ∪ {(n1, n) | n1 ∈ N \ {n′}} ∪ {(n1, n
′) | n1 ∈ N}.

The fact that (T, coadmorder (θ)) is T-coadmissible follows directly from the inductive
definition of the order. In fact, the condition is verified since each time a transition is
taken in the execution we make sure that it is possible to take it according to the order.
And, since End(θ) ⊆ T, from all states that do not belong to T there must be a position
in the execution from which any state out of T does no longer appear in the execution,
yielding a desired outgoing edge.

We now show the other implication: if there exists a T-biadmissible strategy pattern
(T,≺,✁) then there exists a local strategy σ following T and there exists an execution
θ that respects σ such that End(θ) ⊆ T. In order to relate more precisely coadmissible
strategy patterns to local strategies, we define a partition of the nodes of T according
to the position with respect to a given n: part(T,✁, n) = (S,G) with S = {n′ | n′ ✁ n}
the set of all nodes smaller than n and G = {n′ | n ✁ n′} ∪ {n} the set of all nodes
greater than n. Our proof is then based on the following technical lemma.

Lemma 3.6 Let (T,✁) be a coadmissible strategy pattern, n a node of T with lab(n) /∈ T

and θ an execution such that, writing (S,G) = part(T,✁, n) and M = |G|, there are
more than M processes in each node of G at the end of θ. Then there exists an execution
θ′ that extends θ and such that the number of processes in each node of S does not change,
the number of processes in each node of G is at least M − 1 and no processes are in
node n anymore.

Proof By definition of coadmissibility, there exists e = (n, n′) ∈ E such that n ✁ n′

and either:

• lab(e) = (lab(n), ε, lab(n′)) or, lab(e) = (lab(n), !!m, lab(n′)) or,

• lab(e) = (lab(n), ??m, lab(n′)) and there exists an edge e1 = (n1, n
′
1) ∈ E such

that n✁ n1, n✁ n′
1 and lab(e1) = (lab(n1), !!m, lab(n′

1)).

In the first case, one can extend θ into an execution θ′ by considering all the processes
such that πpid(θ) = h(n) and let each of them perform the active action lab(e) with an
empty reception set. In the second case, one builds θ′ by considering one process such

156 Local strategies

that πpid(θ) = h(n1) and let it perform the broadcast of m with as reception set the set
of all processes with πpid(θ) = h(n). In both cases, the processes in nodes of S are not
concerned. At most one process that was in a node of G moved to an other node of G
and all the processes in node n moved to a node of G yielding the desired properties on
θ′. �

To conclude the proof of Proposition 3.4, we observe that given a T-biadmissible
strategy pattern, by Lemma 3.2, there exists an execution with an arbitrary number of
processes in each node at the end of the execution, we can thus consider an execution
that has as many processes per node as the number of nodes. From this execution,
applying Lemma 3.6 to every node by increasing order for ✁, we obtain an execution
for which the last configuration satisfies that all the processes are in a state belonging
to T. �

3.4 Minimizing biadmissible strategy patterns

As for reachability, the size of T-biadmissible strategy patterns can be minimized by
keeping only relevant edges that permit a broadcast of either a new message or the last
message of this type. More formally, given a T-biadmissible pattern (T,≺,✁) where T =
(N,n0, E,∆, lab), we denote as we did before for admissible patterns, NewBroad(T,≺
) ⊆ N \ {n0} the set of nodes that are new broadcasts, that is, n ∈ NewBroad(T,≺) if
and only if lab(pred(n)) = (q, !!m, q′) and for all n′ ∈ N \{n0} such that lab(pred(n′)) =
(q′′, !!m, q′′′), we have n ≺ n′. We further denote by LastBroad(T,✁) ⊆ N \ {n0}
the set of nodes that are last broadcasts, that is, n ∈ LastBroad(T,✁) if and only if
pred(n) = (n′, n) = e, n′✁n, lab(e) = (q, !!m, q′) and for all e′ = (n1, n

′
1) ∈ E such that

n1✁n′
1 and lab(e′) = (q′′, !!m, q′′′), we have n1✁n′. Finally, the set of important nodes

is defined as Imp(T,≺,✁) = NewBroad(T,≺) ∪ LastBroad(T,✁), i.e. it consists of the
new broadcasts and the last broadcasts.

Definition 3.6 (Minimal T-biadmissible strategy pattern) A strategy pattern
(T,≺,✁), where T = (N,n0, E,∆, lab), is said to be a T-biadmissible minimal strategy
pattern if it is T-biadmissible and the following conditions are fulfilled:

(a) for every n ∈ N , if lab(n) ∈ T and Sub(T, n) = (N ′, n,E′,∆, lab′) with N ′ ∩
Imp(T,≺,✁) ⊆ {n} then N ′ = {n};

(b) for every n ∈ N and every n1, n2 ∈ N with (n, n1) ∈ E and (n, n2) ∈ E, if
Sub(T, n1) = (N1, n1, E1,∆, lab1) and Sub(T, n2) = (N2, n2, E2,∆, lab2) then, ei-
ther both N1 ∩ Imp(T,≺,✁) and N2 ∩ Imp(T,≺,✁) are not empty, or n1 = n2;

(c) for every n1, n2, n3 ∈ N pairwise different such that lab(n1) = lab(n2) = lab(n3),
if for i ∈ {1, 2, 3}, Sub(T, ni) = (Ni, ni, Ei,∆, labi), n3 ∈ N2 and n2 ∈ N1, then
there exist i, j ∈ {1, 2, 3} such that Ni ∩ Imp(T,≺,✁) 6= Nj ∩ Imp(T,≺,✁).

Solving verification problems for local executions 157

Intuitively, these conditions state that (a) the branches of the tree end at the first
target node not followed by any important node, (b) for any branching, there cannot
be two subtrees without important nodes and, (c) if three different subtrees have their
root labeled by the same state, then there should be at least one important node in
one of the subtrees and not in the other ones. The reason is the same as for admissible
pattern i.e. otherwise we can replace a bigger subtree by a smaller one.

Proposition 3.5 If there exists a T-biadmissible strategy pattern for P, then there
exists a minimal one.

Proof Let (T,≺,✁) with T = (N,n0, E,∆, lab) be a T-biadmissible strategy pattern
and assume that (T,≺,✁) is not minimal.

First, we suppose that there exists a set of nodes S ⊆ N such that for every node
n ∈ S, lab(n) ∈ T and Sub(T, n) = (N ′, n,E′,∆, lab′) with N ′ ∩ Imp(T,≺,✁) ⊆ {n}.
For each n ∈ S, we remove from T all the nodes in its subtree (i.e. every n′ ∈ N ′ \{n}),
except n, and their associated edges. The resulting object is a T-biadmissible strategy
pattern for P. Indeed thanks to condition (1) of admissibility1 on (T,≺), such an
operation preserves the tree structure. Moreover, since we only remove nodes bigger
than nodes of S with respect to ≺, we know that condition (2) of ≺ is also preserved.
Finally, since no important node was removed, and since the pattern was pruned at a
node labeled by a state in T, we deduce that the conditions for coadmissibility2 are still
respected. In the end, the obtained strategy pattern is admissible, co-admissible and
verifies condition (a) of minimality.

Now, we assume that condition (a) is satisfied by (T,≺,✁) and we suppose that
there exists a node n ∈ N such that there are descendants n1 6= n2 ∈ N with (n, n1) ∈ E,
(n, n2) ∈ E, Sub(T, n1) = (N1, n1, E1,∆, lab1), Sub(T, n2) = (N2, n2, E2,∆, lab2) and
with N1∩ Imp(T,≺,✁) = ∅, and N2∩ Imp(T,≺,✁) = ∅. Getting a pattern that satisfies
in addition condition (b) is easy: for every such node n we remove from T the nodes in
N1 if n1 ✁ n2 (symmetrically those of N2 in case n2 ✁ n1) and their associated edges.
Here again, since we remove entire subtrees, the resulting structure is still a strategy
pattern. Furthermore, since between n1 and n2, the maximal node w.r.t. ✁ was kept,
the condition for coadmissibility concerning node n still holds. Also, since no important
node was removed, the pattern is still biadmissible. Finally the obtained admissible
strategy pattern thus satisfies conditions (a) and (b).

Last, we assume that conditions (a) and (b) are satisfied by (T,≺,✁) whereas
condition (c) is not satisfied. Until condition (c) is satisfied, we perform the following
operations. Suppose that there are three pairwise distinct nodes n1, n2, n3 ∈ N such
that lab(n1) = lab(n2) = lab(n3), for i ∈ {1, 2, 3}, Sub(T, ni) = (Ni, ni, Ei,∆, labi) and
n3 ∈ N2 and n2 ∈ N1 and such that N1∩ Imp(T,≺) = N2∩ Imp(T,≺) = N3∩ Imp(T,≺).
We proceed by case inspection:

• First, assume that n1✁n2. Since N1∩Imp(T,≺,✁) = N2∩Imp(T,≺,✁), important
nodes matter, and lab(n1) = lab(n2), we can replace in T the subtree Sub(T, n1)

1See Definition 3.3, on page 143.
2See Definition 3.5, on page 153.

158 Local strategies

by its subtree Sub(T, n2), and doing so, remove from T the nodes in N1 \N2. The
resulting object is still a T-biadmissible strategy pattern because no important
node was removed, and the predecessor of n1 is now connected to a bigger node,
with respect to ✁. Hence it still satisfies the coadmissibility condition.
The cases n2 ✁ n3 and n1 ✁ n3 are treated similarly.

• Assume now the hardest situation: n3 ✁ n2 ✁ n1. Note that N1 ∩ Imp(T,≺,✁) =
N2∩ Imp(T,≺,✁) = N3∩ Imp(T,≺,✁) hence that N1 \N3∩ Imp(T,≺,✁) = ∅. Let
n′
1, . . . , n

′
k ∈ N be the nodes on the path from n1 to n2 (both included), defined

formally as the nodes such that n′
1 = n1, n′

k = n2 and ∀i ∈ [1..k − 1], (n′
i, n

′
i+1) ∈

E. Since n2 ✁ n1 we know that there exist n′ = n′
i such that n′

i+1 ✁ n′
i, we

denote Sub(T, n′) = (N ′, n′, E′,∆, lab′) for clarity. We now modify ✁ into an
order ✁′ such that n2 ✁

′ n3 and (T,✁′) is T-coadmissible. The idea is that we
can decrease the rank of all the nodes in (N ′ \ N2) ∪ {n2} by the same value
without falsifying the coadmissibility property (in fact none of these nodes are
important nodes). Formally, letting B = minn∈N{rk(n)} −maxn∈N{rk(n)} − 1
we define ✁′ as the order associated with the following rank function: for every
node n ∈ N \ ((N ′ \ N2) ∪ {n2}), rk✁′(n) = rk✁(n) and for all the other nodes
n ∈ (N ′ \ N2) ∪ {n2}, rk✁′(n) = rk✁(n) + B. Let us argue that (T,✁′) is T-
coadmissible. Indeed, the only edges that could cause a problem (to maintain the
existence of an edge e = (n, n′) ∈ E with n✁ n′ for each n such that lab(n) /∈ T)
are of two forms: first, (n′

i+1, n
′
i) since the rank of n′

i was decreased, but since
n′
i+1 ✁ n′

i we are safe; second, the edges leaving n2 but since the rank of n2 was
decreased and not the one of its successor we are also safe. Finally the rank of the
important nodes is left unchanged. As a consequence, (T,✁′) is T-coadmissible
and it satisfies n2✁

′n3, so that we can apply the transformation described for the
first case.

Repeating these operations allows us to finally get a T-biadmissible strategy pattern
which respects conditions (a), (b) and (c), and hence which is minimal. �

We now give a bound on the size of minimal T-coadmissible strategy patterns.

Lemma 3.7 If there exists a T-biadmissible strategy pattern for P, then there is one of
size at most 16|Σ| · |Q| · (|Q|− |T|+1) and of height at most 4|Σ| · |Q|+2(|Q|− |T|)+1.

Proof We proceed in two steps: in the first step, we bound the number of nodes that
precede important nodes, and in the second step we bound the number of nodes that
do not lead to important nodes, but can be useful to converge towards the target.

The first step is very similar to the proof of the bound given for admissible trees.
Let (T,≺,✁) with T = (N,n0, E,∆, lab) be a T-biadmissible strategy pattern for
P = (Q, q0,Σ,∆). By Proposition 3.5, we can assume (T,≺,✁) to be minimal. We
consider T ′ = (N ′, n0, E

′,∆, lab′) = T↓Imp(T,≺,✁) the pattern restricted to predecessors
of important nodes. Recall that important nodes are the new broadcasts and last broad-
casts. Pattern T ′ contains at most |Imp(T,≺,✁)| − 1 ≤ 2|Σ| intersection nodes. One

Solving verification problems for local executions 159

can thus bound the number of noticeable nodes (recall that noticeable nodes gather in-
tersection nodes and important nodes) by 2|Σ|+2|Σ| = 4|Σ|. Moreover, from condition
(c) of minimality, we deduce that there are no more than 2|Q|−1 nodes between two no-
ticeable nodes. Otherwise there would be three nodes with the same label that share the
same set of important nodes. This implies that |N ′| ≤ 4|Σ|(2|Q| − 1) + 4|Σ| = 8|Σ||Q|,
and concludes the first step.

For the second step, from condition (b) of minimality, from every node n′ ∈ N ′, there
can be a node n2 ∈ N with (n′, n2) ∈ E and such that Sub(T, n2) = (N2, n2, E2,∆, lab2)
and N2∩ Imp(T,≺,✁) = ∅ and Sub(T, n2) has a unique branch (by condition (b)). Yet,
conditions (a) and (c) ensure in that case that |N2| ≤ 2(|Q|− |T|)+1. Otherwise there
would be three nodes with the same label (which is impossible by condition (c)) or a
node with a label in target that is not a leaf (which is impossible by condition (a)).

To conclude, we deduce that for each node n′ ∈ N ′, there is at most a unique
node n2 ∈ N with (n′, n2) ∈ E such that Sub(T, n2) = (N2, n2, E2,∆, lab2), N2 ∩
Imp(T,≺,✁) = ∅, N2 ∩ N ′ = ∅ and |N2| ≤ 2(|Q| − |T|) + 1. Since |N ′| ≤ 8|Σ||Q|,
we deduce that the size of a minimal T-biadmissible strategy pattern for P is at most
16|Σ| · |Q| · (|Q| − |T|+ 1).

For what concerns the height, the worst case is that a unique branch containing all
the important nodes (separated by at most 2|Q| nodes, thanks to (c)) and finishing
with 2(|Q| − |T|) + 1 nodes to reach the target. Since the number of important nodes
is bounded by twice the number of letters in Σ, we obtain that the height is bounded
by 4|Σ| · |Q|+ 2(|Q| − |T|) + 1. �

Theorem 3.3 Synch[L] is NP-complete.

Proof Using Proposition 3.4, we deduce that there exists an execution θ ∈ ΘL such
that End(θ) ⊆ T if and only if there exists a T-biadmissible strategy pattern. Lemma 3.7
allows us to look only for T-biadmissible strategy patterns whose size is polynomial in
the size of the broadcast protocol P. Thus, we deduce a non-deterministic polynomial
time algorithm which consists in guessing a strategy pattern (equipped with two orders)
of polynomial size and then verifying whether it is T-biadmissible (this can be done in
polynomial time thanks to Lemma 3.5). This proves that Synch[L] is in NP. More-
over, since Synch[L] is harder than Reach[L] (as we will discuss in Remark 3.1) and
Reach[L] is NP-hard by Theorem 3.2, we establish that Synch[L] is NP-complete. �

We now give a bound on the minimal number of processes needed to implement a
local strategy gathering all the processes in target states.

Theorem 3.4 If there exists an execution θ ∈ ΘL such that End(θ) ⊆ T, then there
exists an execution θ′ ∈ ΘL such that End(θ′) ⊆ T and nbproc(θ′) ≤ 16|Σ| · |Q|+ 4|Σ| ·
(|Q| − |T|+ 1) and |πpid(θ

′)| ≤ 4|Σ| · |Q|+ 2(|Q| − |T|) + 1 for every pid ≤ nbproc(θ′).

Proof We consider a minimal T-biadmissible strategy pattern (T,≺,✁). The cutoff on
the number of processes is proved by constructing an execution that has two phases.

160 Local strategies

The first phase consists in filling all the important nodes (and only them) with at
least one process. This can be done with less processes than |T↓Imp(T,≺,✁)| using the
same techniques as the ones in the proof of Lemma 3.4 and using broadcasts that lead
to nodes of NewBroad(T,≺,✁)). The minimality of T implies an upper bound of 8|Σ||Q|
on the number of processes needed (see the proof of Lemma 3.7 to get the bound on
the size of T↓Imp(T,≺,✁)) .

The second phase consists in emptying the nodes towards target nodes. This is also
done as in the proof of Lemma 3.4 but this time using broadcasts that lead to nodes of
LastBroad(T,≺,✁) and in the order defined by ✁ rather than ≺. Since at the end of
the first phase, all the processes are in important nodes, we only need to consider the
pattern restricted to T↓Imp(T,≺,✁) plus at most one branch per important node that does
not contain an important node and leads to a target node. For k = |Imp(T,≺,✁)|, we
let θimp ∈ ΘL be an execution obtained following the same techniques as for the proof of
Lemma 3.4 and which respects that at the end all the processes are in important nodes
(at least one process in each of them) and the number of processes needed is bound by
the number of nodes in T↓Imp(T,≺,✁), as it is summed up by the following properties:

1. {πpid(θimp) | pid ∈ [1..nbproc(θimp)]} = {h(n) | n ∈ Imp(T,≺,✁)}

2. nbproc(θimp) ≤ |T↓Imp(T,≺,✁)|

We define inductively the function empt that, given a node n ∈ N and an execution
such that there is a process in all the important nodes greater than n w.r.t. ✁, extends
the execution emptying all the non target nodes in the order given by ✁. Formally,
empt(n, θ) = θ if n is the maximal node. Otherwise, letting n′ for the successor of n
w.r.t. ✁, we define empt(n, θ) by:

• empt(n′, θ) if {pid | πpid(θ) = h(n)} = ∅; if there are no processes in n we continue
with the next node.

• empt(n′, θ) if lab(n) ∈ T; if node n is labeled by a state of T we leave processes in
node n unchanged and we continue with the next node.

• empt(n′, θ′) if {pid | πpid(θ) = h(n)} = {pid1, . . . , pidk} and there exists an edge
e = (n, n1) with n✁n1 such that e is labeled with an active action δ = lab(e) and

where θ′ = θ
pid1,δ,∅−−−−→ . . .

pidk,δ,∅−−−−→ γ. In other words, if there is an edge labeled by
an active action outgoing of n, all the processes in n perform this action with an
empty reception set.

• empt(n′, θ′) if there exists an edge e = (n, n′) with n✁n′ such that e is labeled with
a reception of message m, δ = (lab(n), ??m, lab(n′)). We consider em = (n1, n2)
such that lab(em) is a broadcast of m and such that n2 ∈ Imp(T,≺,✁) with
n✁n2. Such an edge exists because T is coadmissible. By assumption on θ, there
exists p′id ∈ [1..nbproc(θ)] such that πp′

id
(θ) = h(n2). We consider the execution

follow (θ, p′id, h(n1)), and write pidm for the additional process in that execution
compared to θ. Then, denoting P = {pid | πpid(θ) = h(n)} the set of all processes

Cliques and local strategies 161

pid in n, we let θ′ = follow (θ, p′id, h(n1))
pidm ,lab(e),P
−−−−−−−−→ γ, i.e. the additional process

pidm broadcasts message m only to the processes of P , and they move along edge
e. Here, πpidm (θ) = h(n2).

By definition of the function empt, the number of processes is incremented by 1 only in
the last case.

Applying iteratively empt on θimp starting from the minimal node (with respect to
✁), one obtains a local execution in which all the processes end in a target state. An
additional process is added (through the function follow) only in the case of a reception,
and at most one process is added per edge labeled by a reception. Moreover, in θimp

all the processes are in important nodes and while applying empt, the processes remain
together, hence the execution θ = empt(n0, θimp) visits only |Imp(T,≺,✁)| branches
that do not belong to T↓Imp(T,≺,✁). As a consequence, we can bound the number of
processes by nbproc(θ) ≤ nbproc(θimp)+|T↓Imp(T,≺,✁)|+|Imp(T,≺,✁)|(2(|Q|−|T|)+1) ≤
16|Σ| · |Q|+4|Σ|(|Q|− |T|+1). In fact, the term |T↓Imp(T,≺,✁)| is the number of additive
broadcasts that needs to be performed to bring all the nodes out of T↓Imp(T,≺,✁). And
then for each of the |Imp(T,≺,✁)| branches, there might be at most 2(|Q| − |T|) + 1
necessary broadcasts to bring the processes at the end of the branch.

To conclude, as in the case of Reach[L], the upper bound on the past of each
process trivially coincides with the upper bound on the height of T . �

Remark 3.1 The NP-hardness derives from the fact that the target problem is harder
than the reachability problem. To reduce Reach[L] to Synch[L], one can add the
broadcast of a new message from qF , and its reception from any state to qF .

Another consequence of this simple reduction is that Synch[L] in NP yields another
proof that Reach[L] is in NP. Yet, the two proofs of NP-membership allowed us to give
an incremental presentation, starting with admissible strategy patterns, and proceeding
with co-admissible strategy patterns.

4 Cliques and local strategies

4.1 Undecidability of Reach[LC] and Synch[LC]

Reach[LC] and Synch[LC] happen to be undecidable and for the latter, even in the
case of complete protocols. The proofs of these two results are based on a reduction
from the halting problem of a two-counter Minsky machine (a finite program equipped
with two integer variables which can be incremented, decremented and tested to zero,
see Chapter I.4.4). The main idea consists in both cases in isolating some processes to
simulate the behavior of the machine while the other processes encode the values of the
counters.

Thanks to the clique semantics it is possible to isolate one process. This is achieved
by setting the first transition to be the broadcast of a message start whose reception
makes all the other processes change their state. Hence, thanks to the clique semantics,
there is only one process that sends the message start , such process, called the controller,

162 Local strategies

will be in charge of simulating the instructions of the Minsky machine. The clique
semantics is also used to correctly simulate the increment and decrement of counters.
The value of the counter is represented by the number of processes in state 1. For
instance to increment a counter, the controller asks whether a process simulating the
counter can be moved from state 0 to state 1 and if it is possible, relying on the clique
topology only one such process changes its state. In fact, all the processes will receive
the request, but the first one answering it, will force the other processes to come back
to their original state, ensuring that only one process will move from state 0 to 1.

The main difficulty is that broadcast protocols (even under the clique semantics)
cannot test the absence of processes in a certain state (which would be needed to
simulate a test to 0 of one of the counters). Here is how we overcome this issue for
Synch[LC]: the controller, when simulating a zero-test, sends all the processes with
value 1 into a sink error state and the target problem allows to check for the reachability
of a configuration with no process in this error state (and thus to test whether the
controller has ‘cheated’, i.e. has taken a zero-test transition whereas the value of the
associated counter was not 0). We point out that in this case, restricting to local
executions is not necessary, we get in fact as well that Synch[C] is undecidable.

For Reach[LC], the reduction is more tricky since we cannot rely on a target set of
states to check that zero-tests were faithfully simulated. Here in fact we will use two
controllers. Basically, before sending a start message, some processes will be able to go
to a waiting state (thanks to an internal transition) from which they can become con-
troller and in which they will not receive any messages (this is where the protocol needs
to be incomplete). Then we will use the locality hypothesis to ensure that two different
controllers will simulate, exactly in the same way, the run of the Minsky machine and
with exactly the same number of processes encoding the counters. Restricting to local
strategies guarantees the two runs to be identical, and the correctness derives from the
fact that if in the first simulation the controller ‘cheats’ while performing a zero-test
(and sending as before some processes encoding a counter value into a sink state), then
in the second simulation, the number of processes encoding the counters will be smaller
(due to the processes blocked in the sink state), so that the simulation will fail (because
there will not be enough processes to simulate faithfully the counter values).

Theorem 4.1 Reach[LC] is undecidable and Synch[LC] restricted to complete pro-
tocol is undecidable.

Proof We begin by recalling the definition of Minsky machines [Min67] (see Sec-
tion 4.4). A deterministic Minsky machine M manipulates two integer variables c1
and c2, which are called counters, and it is composed of a finite set of instructions.
Each of the instructions is either of the form (1) L : ci := ci + 1; goto L′ or (2)
L : if ci = 0 then goto L′ else ci := ci − 1; goto L′′, where i ∈ {1, 2} and L,L′, L′′

are labels of instructions. Furthermore there is a special instruction labeled LF , from
which nothing can be done. The halting problem then asks whether the execution start-
ing from L0 with both counters equal to 0 reaches LF . Without loss of generality, we

Cliques and local strategies 163

can assume that when the machine reaches LF , the values of the two counters are equal
to 0.

q0 wC L0

stock1

ε !!start

??start

Figure 4.6: Initialization phase for Reach[LC].

L Laux L′

⊥

!!incr(i) ??ok

??start ??start

Figure 4.7: Encoding an increment L : ci := ci + 1; goto L′.

We begin by proving that Reach[LC] is undecidable. For this, we encode a Minsky
machine in the broadcast protocol P given in several parts in the Figures 4.6, 4.7, 4.8,
4.9 and 4.10. The protocol P is built so as to simulate twice the run of the Minsky
machine. In order to do so, in P, (at least) two processes will decide the sequence of
instructions of the Minsky machine (represented on Figs. 4.7 and 4.8). The remaining
processes will encode the values of the counters (see Fig. 4.9): precisely, the number of
processes in the state 1i will represent the value of counter ci.

Here are some key points on how this protocol is working along a local clique exe-
cution:

• During the initialization phase (see Figure 4.6), using the internal actions, some
processes may stay in q0, some other may move to a waiting state wC (standing
for waiting controller) where they will wait to become the next controller.

• As soon as a process in wC moves to L0, it broadcasts message start to processes
in q0 and the simulation properly begins. Note that after this step no process can
be in state q0, the clique semantics guarantees that they moved to stock1. Yet
there can be some processes in wC.

• Intuitively the process in L0 will simulate the sequence of instructions of the
Minsky machine while the processes in stock1 will be used to encode the counter

164 Local strategies

L Laux L′′

L′

⊥

!!decr(i) ??ok

??start ??start

!!zero(i)

Figure 4.8: Encoding a test-to-zero L : if ci = 0 then goto L′ else ci := ci −
1; goto L′′.

stock1 incri 1i decri stock2

⊥

??incr(i)

??ok

!!ok

??decr(i)

??ok

!!ok

??zero(i)??start

??start

??start

??start ??start

Figure 4.9: Encoding counter ci.

LF wF qF

⊥

!!end ??end

??start

Figure 4.10: Ending phase for Reach[LC].

Cliques and local strategies 165

values in the first simulation of the run. Later, another process from state wC
will be used to perform the simulation a second time.

• Let us first comment on the following. What happens if a process in wC moves to
L0 while another process is already acting as the controller of the counter machine
(i.e. is in state L or Laux of the Figs. 4.7 or 4.8)? Then the first controller will
receive the message start and move to state ⊥ which is a deadlock (as shown in
the above mentioned figures). The processes simulating the counters will all move
either to ⊥ or to stock1 (see Fig. 4.9). As a consequence, a new simulation starts
and it cannot interfere with the previous one that has been stopped.

• Then let us explain how the simulation of each action works precisely:

Incrementing a counter. To simulate an increment instruction of the form L :
ci := ci + 1; goto L′, the controller behaves as represented in Fig. 4.7. It
broadcasts the message incr(i), which is received by all the processes in
state stock1 which all move to incri (see Fig. 4.9). Then it waits to receive
an acknowledgement message ok, this message is broadcast by one process
in incri; as a consequence, the controller moves to state L′ and exactly one
process moves to 1i (the one which performed the broadcast of ok), whereas
all the other processes in incri move back to stock1.

Decrementing a counter. The decrement of a counter (see Fig. 4.8) is pretty
similar to the increment, and only one process will move from 1i to stock2,
the pool of processes for the second simulation.

Zero testing. When the controller mimics a zero test decrement instruction i.e.
an instruction of the shape L : if ci = 0 then goto L′ else ci := ci −
1; goto L′′, it has no way to know whether some processes are in state 1i or
not. However, it can choose to broadcast zero(i), even if the counter value is
not 0, i.e. if there are some processes in 1i. A consequence of this is that all
the processes in 1i are sent to ⊥. This represents the fact that if the process
performs the broadcast of zero(i) while some processes are in 1i, it cheats:
it assumes that the counter value is 0 although it is not the case.

• Observing the behavior of the processes simulating the counters, one sees that for
each increment-decrement pair, exactly one counter process is sent from stock1 to
stock2 and possibly some processes are lost (i.e. moved to ⊥) when the controller
cheats.

• What happens at the end of a simulation of the two-counter machine run? When
a process controller reaches LF , it may move to state wF (standing for waiting
final) (see Fig. 4.10).

• A new simulation can then begin with a process moving from wC to L0 and
broadcasting start. When the message start is sent (remember that the first
simulation has to be finished otherwise, it will correspond to a new first simulation

166 Local strategies

as explained previously), all the processes in stock1 are moved to ⊥ and all the
processes in stock2 are moved to stock1. Hence there are at most as many processes
in stock1 as the number of decrements during the first simulation.
Because we restrict to local executions, the new controller will perform exactly
the same choices as the previous one, hence mimicking exactly the same run.
Consequently there are two options:

1. Either the first controller has cheated at some point, then the second one will
be eventually stuck, because there will not be enough processes in stock1 to
answer an increment request;

2. Or the first controller did not cheat, which means that the simulation was
correct, and the second simulation will then also be correct. The second
controller will reach LF , then it will reach wF broadcasting end and so the
first controller will move from wF to qF (in case the first controller was not
in wF , another simulation has to be performed).

Under this construction, the Minksy machine halts if and only if there is an execution
θ ∈ ΘLC such that qF ∈ End(θ). This proves that Reach[L] is undecidable.

Remark 4.1 Note that this proof heavily relies on three features: (1) the execution
is local, (2) the execution is a clique execution and (3) the protocols can be incom-
plete. Indeed, restricting to clique executions allows one to distinguish a controller from
processes encoding counters, and to be sure that exactly one process answers to incre-
ment/decrement requests. Second, restricting to local executions ensures that the second
sequence of instructions exactly repeats the first one. Last, we use the fact that the
protocol is not complete to ensure that some processes can stay in wC and that all the
processes arriving for the first time in L0 share the same history.

q0 L0

stock1

!!start

??start

Figure 4.11: Initialization phase for Synch[LC].

To prove that Synch[LC] restricted to complete protocol is undecidable, we use the
same kind of reasoning and we reuse Fig. 4.7, 4.8 and 4.9 for the simulation of the actions
and of the counters. The initialization phase differs and is represented in Fig. 4.11. Note
that in that case, a single controller process will reach L0 and we will guarantee that it
does not cheat by defining as target set of states T = {stock1, stock2, LF }. Following
the same argumentation as the one before, one can show that the target set of states

Cliques and local strategies 167

allows us to ensure that the unique controller process (which reaches LF) did not cheat,
otherwise there will be some processes in ⊥. Hence for the broadcast protocol P we
build here, we can show that there exists an execution θ ∈ ΘLC such that End(θ) ⊆ T if
and only if the Minsky machine halts. Note that the protocol we describe is not actually
complete but it will not harm the reduction to complement it by adding an edge to ⊥
for each unspecified reception.

�

Remark 4.2 In contrast to the undecidability proof for Reach[LC] in which the run
of the Minsky machine is simulated twice in a row, restricting to local executions is not
necessary here, so that we can show that Synch[C] is undecidable.

The undecidability proof for Reach[LC] strongly relies on the protocol being in-
complete. Indeed, in the absence of specified receptions, the processes ignore broadcast
messages and keep the same history, thus allowing to perform twice the same simula-
tion of the run. In contrast, for complete protocols, all the processes are aware of all
broadcast messages, therefore one cannot force the two runs to be identical. In fact,
the reachability problem is decidable for complete protocols, as we shall see in the next
section.

4.2 Decidability of Reach[LC] for complete protocols

To prove the decidability of Reach[LC] for complete protocols, we abstract the behavior
of a protocol under local clique semantics by counting the possible number of different
histories in each control state.

We identify two cases when the history of processes can differ (under local clique
semantics): (1) When a process pid performs a broadcast, its history is unique for ever
(since all the other processes must receive the emitted message); (2) A set of processes
sharing the same history can be split when some of them perform a sequence of internal
actions and the others perform only a prefix of that sequence.

From a complete broadcast protocol P = (Q, q0,Σ,∆) we build an abstract tran-
sition system T LC

P = (Λ, λ0,⇒) where configurations count the number of different
histories in each control state. More precisely the set of abstract configurations is
Λ = fakeQ× {m, s} × {!!ok, !!no}×{ε, !!}. Abstract configurations are thus pairs where
the first element is a multiset and the second element is a flag in {ε, !!}. The latter in-
dicates the type of the next actions to be simulated (sequence of internal actions or
broadcast): it prevents to simulate consecutively two incoherent sequences of internal
actions (with respect to the local strategy hypothesis). For the former, an element
(q, s, !!ok) in the multiset represents a single process (flag s) in state q with a unique
history which is allowed to perform a broadcast (flag !!ok). An element (q,m, !!no)
represents many processes (flag m) in state q, all sharing the same unique history
and none of them is allowed to perform a broadcast (flag !!no). The initial abstract
configuration λ0 is then (〈(q0,m, !!ok)〉, ε). In the sequel we will write HM for the set
fakeQ× {m, s} × {!!ok, !!no} of history multisets, so that Λ = HM×{ε, !!}, and typical
elements of HM are denoted M, M′, etc.

168 Local strategies

In order to provide the definition of the abstract transition relation ⇒, we need to
introduce new notions, and notations. An ε-path ρ in P from q to q′ is either the empty
path (and in that case q = q′) or it is a non-empty finite path δ0 · · · δn that starts in q,
ends in q′ and such that all the δi’s are internal transitions.

An ε-path ρ in P is said to be a prefix of an ε-path ρ′ if ρ 6= ρ′ and either ρ is
the empty path or ρ = δ0 · · · δn and ρ′ = δ0 · · · δnδn+1 . . . δn+m for some m > 0. Since
we will handle multisets, let us give some convenient notations. Given E a set, and
M a multiset over E, we write M(e) for the number of occurrences of element e ∈ E
in M. Moreover, card(M) stands for the cardinality of M: card(M) =

∑

e∈E M(e).
Last, we will write ⊕ for the addition on multisets: M⊕M′ is such that for all e ∈ E,
(M⊕M′)(e) = M(e) +M′(e).

The abstract transition relation ⇒∈ Λ×Λ is composed of two transitions relations:
one simulates the broadcast of messages and the other one sequences of internal transi-
tions. This will guarantee an alternation between abstract configurations flagged with
ε and the ones flagged with !!. Let us first define ⇒!!⊆ (HM × {!!}) × (HM × {ε})
which simulates a broadcast. We have (M, !!) ⇒!! (M′, ε) if and only if there exist
(q1, !!m, q2) ∈ ∆ and fl1 ∈ {s,m} such that

1. M(q1,fl1, !!ok) > 0;

2. there exists a family of functions G indexed by (q,fl , b) ∈ Q×{m, s}×{!!ok , !!no},
such that G(q,fl ,b) : [1..M(q,fl , b)] → HM, and:

M′ = 〈q2, s, !!ok〉 ⊕
⊕

{(q,fl ,b)|M(q,fl ,b)6=0}

⊕

i∈[1..M(q,fl ,b)]

G(q,fl ,b)(i)

and such that for each (q,fl , b) verifying M(q,fl , b) 6= 0, for all i ∈ [1..M(q,fl , b)],
the following conditions are satisfied:

(a) if fl1 = s, card(G(q1,fl1,!!ok)
(1)) = 0 and if fl1 = m, then there exists q′ ∈ Q

such that G(q1,fl1,!!ok)
(1) = 〈(q′,fl1, !!ok)〉 and such that (q, ??m, q′) ∈ ∆;

(b) if (q,fl , b) 6= (q1,fl1, !!ok) or i 6= 1, then there exists q′ ∈ Q such that
G(q,fl ,b)(i) = 〈(q′,fl , !!ok)〉 and such that (q, ??m, q′) ∈ ∆.

Intuitively to provide the broadcast, we need to find a process which is ‘allowed’ to
perform a broadcast and which is hence associated with an element (q1,fl 1, !!ok) in M.
The transition (q1, !!m, q2) tells us which broadcast is simulated. Then the functions
G(q,fl ,b) associate with each element of the multiset M of the form (q,fl , b) a single
element which can be reached thanks to a reception of the message m. Of course this
might not hold for an element of the shape (q1, s, !!ok) if it is the one chosen to do the
broadcast since it represents a single process, and hence this element moves to q2. Note
however that if fl1 = m, then (q1,m, !!ok) represents many processes, hence the one
which performs the broadcast is isolated, but the many other ones have to be treated
for reception of the message. Note also that we use here the fact that since an element
(q,m, b) represents many processes with the same history, all these processes will behave
the same way on reception of the message m.

Cliques and local strategies 169

We now define ⇒ε⊆ (HM × {ε}) × (HM × {!!}) which simulates the firing of
sequences of ε-transitions. We have (M, ε) ⇒ε (M′, !!) if and only if there exists a
family of functions F indexed by (q,fl , b) ∈ Q×{m, s}× {!!ok, !!no}, such that F(q,fl ,b) :
[1..M(q,fl , b)] → HM, and

M′ =
⊕

{(q,fl ,b)|M(q,fl ,b)6=0}

⊕

i∈[1..M(q,fl,b)]

F(q,fl ,b)(i)

and such that for each (q,fl , b) verifying M(q,fl , b) 6= 0, for all i ∈ [1..M(q,fl , b)], we
have:

1. card(F(q,fl ,b)(i)) ≥ 1 and if fl = s, card(F(q,fl ,b)(i)) = 1;

2. if F(q,fl ,b)(i)(q
′,fl ′, b′) 6= 0, then fl ′ = fl ;

3. there exists a pair (q!!,fl !!) ∈ Q× {m, s} such that:

• F(q,fl ,b)(i)(q!!,fl !!, !!ok) = 1,

• for all (q′,fl ′) 6= (q!!,fl !!) F(q,fl ,b)(i)(q
′,fl ′, !!ok) = 0,

• there exists a ε-path ρ!! from q to q!!;

4. for all (q′,fl ′) such that F(q,fl ,b)(i)(q
′,fl ′, !!no) = k > 0, there exist k different

ε-paths (strict) prefix of ρ!! from q to q′.

Intuitively the functions F(q,fl ,b) associate with each element (q,fl , b) of the multiset
M a set of elements that can be reached via internal transitions. We recall that each
such element represents a set (or a singleton if fl = s) of processes sharing the same
history. Condition 1. states that if there are multiple processes (fl = m) then they
can be matched to more states in the protocol, but if it is single (fl = s) it should be
matched by an unique state. Condition 2. expresses that if an element in M represents
many processes, then all its images represent as well many processes. Conditions 3. and
4. deal with the locality assumption. Precisely, condition 3. states that among all the
elements of M′ associated with an element of M, one and only one should be at the end
of a ε-path, and only one process associated with this element will be allowed to perform
a broadcast. This justifies the use of the flag !!ok. Last, condition 4. concerns all the
other elements associated to this element of M: their flag is set to !!no (they cannot
perform a broadcast, because the local strategy will force them to take an internal
transition), and their state should be on the previously mentioned ε-path.

As announced, we define the abstract transitive relation by ⇒=⇒ε ∪ ⇒!!. Note
that by definition we have a strict alternation of transitions of the type ⇒ε and of
the type ⇒!!. An abstract local clique execution of P is then a finite sequence of con-
secutive transitions in T LC

P of the shape ξ = λ0 ⇒ λ1 · · · ⇒ λℓ+1. As for concrete
executions, if λℓ+1 = (Mℓ+1, tℓ+1) we denote by End(ξ) = {q | ∃fl ∈ {m, s}.∃b ∈
{!!ok, !!no}.Mℓ+1(q,fl , b) > 0} the set of states that appear in the end configuration of ξ.

As an example, a possible abstract execution of the broadcast protocol from Fig-
ure 2.1 is: (〈(q0,m, !!ok)〉, ε) ⇒ (〈(q0,m, !!no), (q2,m, !!no), (q2,m, !!ok)〉, !!). This single-
step execution represents the fact that among the processes in q0, some processes will

170 Local strategies

take an internal action to q2 and loop there with another internal action (they are repre-
sented by the element (q2,m, !!ok)), others will only move to q2 taking a single internal
action (they are represented by (q2,m, !!no)), and finally some processes will stay in
q0 (they are represented by (q0,m, !!no)); note that these processes cannot perform a
broadcast, because due to the local strategy hypothesis, they committed to firing the
internal action leading to q2.

Another example of an abstract execution is: (〈(q0,m, !!ok)〉, ε) ⇒ (〈(q0,m, !!ok)〉, !!)
⇒ (〈(q1, s, !!ok), (q3,m, !!ok)〉, ε) ⇒ (〈(q1, s, !!ok), (q3,m, !!no), (q3,m, !!ok)〉, ε). Here in
the first step, no process performs internal actions, in the second step one of the processes
in q0 broadcasts m, moves to q1 and we know that no other process will ever share the
same history, it is hence represented by (q1, s, !!ok); then all the other processes with
the same history represented by (q0,m, !!ok) must receive m and move to q3, they are
hence represented by (q3,m, !!ok). The last step represents the fact that some processes
perform the internal action loop on q3.

The definition of the abstract transition system T LC
P ensures a correspondence be-

tween abstract local clique executions and local clique executions in P. Formally:

Lemma 4.1 Let qF ∈ Q. There exists an abstract local clique execution ξ of P such
that qF ∈ End(ξ) if and only if there exists a local clique execution θ ∈ ΘLC such that
qF ∈ End(θ).

Given the abstract transition system T LC
P , in order to show that Reach[LC] is decid-

able, we then rely on the theory of well-structured transition systems [ACJT00, FS01].
Indeed, the natural order on abstract configurations is a well-quasi-order compatible
with the transition relation ⇒ of T LC

P (bigger abstract configurations simulate smaller
ones) and one can compute predecessors of upward-closed sets of configurations.

Formally, we define a natural order � on the set of abstract configurations Λ as
follows: (M, t) � (M′, t′) if and only if t = t′ and M(q,fl , b) ≤ M′(q,fl , b) for all
(q,fl , b).

Since the set Q× {m, s} × {!!ok, !!no} is finite and since the set {ε, !!} is also finite,
then Dickson’s lemma allows us to say that (Λ,�) is a well-quasi-order (wqo). From
this we know that for any infinite sequence (λi)i∈N ∈ ΛN, there exists i < j such that
λi � λj .

For a set S ⊆ Λ, we denote by ↑ S its upward-closure (with respect to �) defined
by ↑ S = {λ′ | ∃λ ∈ S s.t. λ � λ′}. A set S ⊆ Λ is said upward-closed if S = ↑ S. Since
(Λ,�) is a wqo, for each upward-closed set S ⊆ Λ there exists a finite basis {b0, . . . , bk} ⊆
S such that S = ↑ {b0, . . . , bk}. This provides a way to finitely represent infinite subsets
of Λ. We will now show that the abstract transition system T LC

P = (Λ,Λ0,⇒) equipped
with the wqo � is a well-structured transition system [ACJT00, FS01] and that one can
effectively compute the predecessors of upward-closed sets.

The following monotonicity lemma is immediate given the definition of the transition
relation ⇒.

Lemma 4.2 (Monotonicity lemma) Given λ1, λ2, λ
′
1 ∈ Λ such that λ1 ⇒ λ2 and

λ1 � λ′
1, there exists λ′

2 ∈ Λ such that λ′
1 ⇒ λ′

2 and λ2 � λ′
2.

Cliques and local strategies 171

Now we define an operator which allows to compute a finite basis for the set of
one-step predecessors of an upward-closed set. For a set S ⊆ Λ, we define Pre(S) =
{λ ∈ Λ | ∃λ′ ∈ S s.t. λ ⇒ λ′}. We will now see that given an abstract configuration
λ, we can compute (using the definition of ⇒) a finite basis of the set Pre(↑ {λ}). Let
λ = (M, t) be an abstract configuration in λ. We define p(λ) as follows:

• if t =!!, then p(λ) = {λ′ | λ′ ⇒ε λ}.

• if t = ε, then

p(λ) = {λ′ | λ′ ⇒!! λ} ∪
⋃

(q1,!!m,q2)∈∆
{λ′ | λ′ ⇒!! (M⊕ 〈(q2, s, !!ok)〉, ε)} ∪

⋃

(q1,!!m,q2),(q1,??m,q3)∈∆
{λ′ | λ′ ⇒!! (M⊕ 〈(q2, s, !!ok), (q3,m, !!ok)〉, ε)}

Let us explain the second part of this definition. Since our aim is to compute a basis
of Pre(↑ {λ}), in order to compute the predecessors of ↑ {λ}, we need to take into
account for the transition relation ⇒!!, that the element that witnesses the broadcast
might not be in λ but in a configuration belonging to its upward closure. This is the
reason why we include the sets

⋃

(q1,!!m,q2)∈∆
{λ′ | λ′ ⇒!! (M ⊕ 〈(q2, s, !!ok)〉, ε)} and

⋃

(q1,!!m,q2),(q1,??m,q3)∈∆
{λ′ | λ′ ⇒!! (M ⊕ 〈(q2, s, !!ok), (q3,m, !!ok)〉, ε)}. This kind of

assumptions to compute the predecessor basis of an upward closed set is similar to
the one proposed in [EFM99] to solve Reach[C]. Note however that, for the transition
relation ⇒ε, such trick is not necessary. Note also that given a configuration λ ∈ Λ, p(λ)
is finite since it contains abstract configurations, where the cardinality of the multiset is
at most the cardinal of the multiset of λ plus 2. Using the definition of ⇒, one obtains
the following lemma.

Lemma 4.3 For all λ ∈ Λ, p(λ) is finite, effectively computable and ↑ p(λ) = Pre(↑
{λ}).

We consider the following upward closed set: F =
⋃

(qF ,fl ,b) ↑ {(〈(qF ,fl , b)〉, ε)}∪ ↑
{(〈(qF ,fl , b)〉, !!)}. Using the methodology presented in [ACJT00, FS01], thanks to
Lemmas 4.3 and 4.2, we know it is possible to compute a finite basis for the set
Pre∗(F) = {λ ∈ Λ | ∃λ′ ∈ F s.t. λ ⇒∗ λ′}. Hence we can decide whether there
exists an abstract local clique execution ξ of P such that qF ∈ End(ξ): it suffices to test
whether λ0 ∈ pre∗(F). Applying Lemma 4.1, we conclude that Reach[LC] is decidable.

Theorem 4.2 The problem Reach[LC] restricted to complete protocols is decidable
and non-primitive recursive.

Proof We also show that Reach[LC] is non-primitive recursive thanks to a PTIME
reduction from Reach[C] (which is Ackermann-complete [SS13]) to Reach[LC]. We
exploit the fact that the only difference between the semantics C and LC is that in
the latter, processes with the same history take the same decision. We simulate this
in C with a gadget which assigns a different history to each individual process at the

172 Local strategies

q′0 q0

!!init

??init

!!start

??start

Figure 4.12: Initialization gadget.

beginning of the protocol, hence making the reachability problem for C equivalent to
the one with LC semantics.

Intuitively the only difference between the semantics C and LC is that within LC,
processes with the same history take the same decisions. However, with the simple
initialization gadget, represented in Fig. 4.12, one can assign a different history to each
individual process, before they actually start the protocol. Indeed, in a clique topology,
if a process performs a broadcast, it has a unique history forever. Hence to have k
processes in q0 with a different history, it suffices to perform k broadcasts of init and
then one broadcast of start making all the processes move to q0 thanks to the clique
topology.

This provides a PTIME reduction from Reach[C] to Reach[LC]. Note that this
reduction also works for the target problem. Let us formally define the construction
illustrated in Fig. 4.12. Given a protocol P = (Q, q0,Σ,∆) we let P ′ = (Q′, q′0,Σ

′,∆′)
with

• Q′ = Q ∪ {q′0};

• Σ′ = Σ ∪ {init, start};

• ∆′ = ∆ ∪ {(q′0, !!init, q
′
0), (q

′
0, ??init, q

′
0), (q

′
0, !!start, q0), (q

′
0, ??start, q0)}

We now show that reaching qF under clique semantics in P is equivalent to reaching qF
under local strategies and clique semantics in P ′. Formally, we prove that there exists
an execution θ ∈ ΘC [P] such that qF ∈ Reach(θ) if and only if there exists an execution
θ′ ∈ ΘLC[P

′] such that qF ∈ Reach(θ′).
(⇐) Let θ′ ∈ ΘLC[P

′] be a local clique execution of P ′ such that qf ∈ Reach(θ′).
From the definition of P ′, this execution must start with a series of broadcasts of
init followed by the broadcast of start. We define θ as the suffix of execution θ′ after
the broadcast of start. Notice that θ ∈ ΘC[P] is a clique execution of P, and that
qf ∈ Reach(θ′) = Reach(θ) ∪ {q′0}.

(⇒) Let θ ∈ ΘC [P] be a clique execution of P such that qf ∈ Reach(θ). In the local
clique semantics for protocol P ′ we define the following execution θ′. First, each process
broadcasts the message init in turn, then one process broadcasts start. Recall that, in
local clique executions, when a process performs a broadcast, its history becomes unique
forever. Therefore, at this stage, each of the processes has its own history. Moreover,
by definition of P ′, all the processes are in state q0. Hence, from then on, one can

Conclusion 173

reproduce execution θ. This execution θ′ is thus a local clique execution in P ′ such that
qf ∈ Reach(θ′). �

5 Conclusion

We investigated reconfigurable broadcast networks under the new hypothesis of local
strategies. The local strategies ensure that two processes with the same knowledge
perform the same actions. We have shown that the parameterized reachability question,
under the local strategy assumption, is NP-complete. The proof is based on a new tool,
strategy patterns, that allows to give finite representations of local strategies. We also
introduce admissible strategy patterns that are patterns with ordered nodes. If a node
is smaller than an other one, it means that the smaller node can be visited before
by an execution respecting a local strategy. Moreover, we have then shown that such
patterns can be reduced to polynomial size admissible patterns while keeping the same
set of reachable states. This yields a polynomial time algorithm for the parameterized
reachability question consisting in guessing a strategy pattern of polynomial size, and
checking whether it is admissible, and if it contains the target state. The NP-hardness
of this problem is shown by reduction of 3-SAT.

We also considered the parameterized synchronization problem in reconfigurable
broadcast networks under local strategies. Using again the idea of admissible strat-
egy patterns, we introduced co-admissible patterns which are equipped with a second
ordering on the nodes representing the order in which the nodes can be emptied in a
local execution. Strategy patterns with these two orders are called bi-admissible if they
are admissible and co-admissible. We were able to show that polynomial size witnesses
are sufficient for bi-admissible strategy patterns, yielding an NP algorithm. The syn-
chronization problem is in fact NP-complete, since it is harder than the reachability
problem.

In addition to these decidability results, the bound on the size of the admissible and
bi-admissible strategy patterns allowed us to derive polynomial bounds on the minimal
number of processes required to fulfill the reachability and synchronization problems.
Since all the runs of a reconfigurable networks can be simulated by a bigger network
by ignoring the additional processes, we therefore obtain a cut-off on the number of
processes required to fulfill the reachability and synchronization problems.

In addition to reconfigurable broadcast protocol networks, we also studied clique
networks in which the messages are received by all the processes. Interestingly, the
parameterized reachability problem which is decidable and non-primitive recursive in
clique protocols, becomes undecidable with the assumption of local strategies. This is
shown thanks to a reduction from the halting problem for 2-counter machines [Min67].
In this proof, we use the clique topology and the parametric number of processes to
implement the counters, but only that is not enough to implement a test to zero since
nothing can force a process to notify that the counter is not zero. However, relying
on non-deterministic guesses for zero tests that discard the processes if the value of
the counter was not zero, and using the locality assumption in order to run twice

174 Local strategies

the ‘same’ simulation of the 2-counter machine, we can force, by using only the non-
discarded process for the second run, the simulation to be correct. Thus, we proved
the undecidability of the parameterized reachability problem with locality assumption.
Notice that, when considering the synchronization problem, one can directly ensure that
the simulation is correct by forbidding discarded processes in the final configuration.
We thus obtain the undecidability of the synchronization problem in clique networks
already without the locality assumption.

However, notice that the trick of running twice the simulation is only possible if
some process can wait in a particular state without getting any new information, hence
without receiving any messages. We thus investigated a restriction on protocols to input
complete protocols, in which all messages can be received from any state. This way,
we cannot ensure to simulate twice the counter machine exactly in the same way. In
fact under this additional assumption, the parameterized reachability question becomes
decidable and non-primitive recursive. The decidability proof is based on well structured
transition systems for which the reachability problem can be solved by a backward
computation [ACJT96, AJ01, FS01].

We strongly believe that one could reuse the idea of strategy patterns in order
to check more difficult properties like repeated reachability. This could be done by
adding a loop at the end of the branches of the patterns. More generally, it would be
interesting to see if we can combine local strategies and the game networks presented in
the previous chapter (see Chapter IV). This is a promising way to tackle the probabilistic
parameterized problems restricted to local strategies.

Conclusion

Summary

In this thesis, we investigated the verification of networks in which the number of pro-
cesses is a parameter. We considered the parameterized reachability question asking
whether one can reach a configuration in which at least one process is in a given state,
and the parameterized synchronization problem, asking whether one can reach a con-
figuration where all processes are in a given set of states.

Chapter III In Chapter III, we gave a timed and probabilistic extension of broadcast
networks studied in [DSZ11a]. We have shown in Theorems 3.1 and 3.2 that some
reachability problems are decidable in clique networks of probabilistic timed protocols.
The proofs rely on a monotonicity result allowing to focus on a network of size one and
to the non-probabilistic case, which is known to be decidable. However, all the other
cases are undecidable, see Theorems 3.3, 3.4, and 3.5 for reachability and Theorem 3.6
for synchronization.

Then we considered dynamic networks, i.e. networks in which the number of pro-
cesses evolves along the computation according to probabilistic distributions. We have
shown that the qualitative problems are decidable for dynamic networks thanks to
four key properties: 1. one can abstract the time by an appropriate region abstrac-
tion (Proposition 4.2); 2. the region abstraction enjoys the finite attractor property
(Proposition 4.3); 3. there exists a well-quasi-order on region-configurations (Proposi-
tion 4.4); 4. the predecessor operator is effectively computable and preserves upward
closure (Proposition 4.5). With these properties, we can reuse techniques developed for
non-deterministic probabilistic lossy channel systems [BBS06b] to show the decidabil-
ity of the parameterized qualitative reachability and synchronization problems. Notice
that the termination of the decision procedure is obtained via the classical backward
computation on well-structured transition systems and is thus of high complexity. Yet,
we also provided a reduction from lossy channel systems to dynamic networks to show
that these problems are indeed non primitive recursive, see Theorem 4.7.

As future work it would be interesting to investigate the open problems left in this
chapter. In particular, the quantitative analysis in dynamic clique networks is still open.
There is hope for the decidability there since we have seen that the qualitative problems
are decidable, and even more that we can compute the set of all region-configurations
satisfying a qualitative property. In this direction, the only non-parameterized result

175

176 Conclusion

of this thesis is Theorem 4.5, giving an approximation procedure for the minimal prob-
ability to reach a state for a given fixed number of processes. This approximation is
computed thanks to an adaptation of the approximation scheme for fully probabilistic
lossy channel systems [IN97, Rab03, ABRS05]. This extension to non-determinism is
non trivial since we possibly have to deal with an unbounded number of schedulers,
whereas in the previous works the models were fully probabilistic. This approximation
result is interesting in itself since it relies only on general properties, such as the ef-
fectiveness of the predecessor operator, the effectiveness of computing the set of states
from where we can avoid the target with probability one, and the finite attractor. In
other words, it can a priori be generalized to a larger class of models, in particular to
probabilistic lossy channel systems with insertions.

The implementation, currently under work, of the algorithms given in this chapter
would allow to give to the parameterized reachability verification problem a practical
interest, in addition to a theoretical interest. Indeed, the complexity of this problem
is high, however since it allows to give guaranties for networks of all possible sizes, the
complexity is still better than the approach consisting of testing all possible sizes. More-
over, the high complexity is a worst case scenario, so most likely the implementation
would be faster, and case studies would be manageable.

Chapter IV In Chapter IV, we considered an other topology for the networks in
which the messages do not reach all the processes but only a subset of processes chosen
in a non-deterministic way. This model of selective broadcast networks of probabilistic
protocols are a probabilistic extension of the reconfigurable broadcast protocol studied
in [DSTZ12]. In this chapter, we restricted our investigation to qualitative reachability
problems.

As a first result, we showed in Theorem 4.1 that some parameterized reachability
problems in selective broadcast networks of probabilistic protocols are decidable. We
again use a key monotonicity result stating that adding processes in the network may
only increase the probability to reach a target state since, thanks to reconfigurations
one can always leave apart the additional processes and simulate a smaller network.
This result allows us to reduce to networks composed of a single process.

In order to solve the other problems, we introduced selective broadcast networks of
parity protocols which are parameterized distributed games. In these games, we proved
that player 2 has a counter-strategy for the parity or safety parity winning condition if
and only if there exists a really simple state-based counter-strategy, see Proposition 3.1.
The parameterized game problem thus boils down to checking whether there exist a
network size and a strategy for player 1 winning against all state-based strategies for
player 2. Moreover, we provided a reduction to parameterized VASS [KS88] allowing
us to, given a state-based strategy for player 2, decide in polynomial time whether
player 1 has a winning strategy. We thus obtained a co-NP algorithm (see Theorem 3.1)
consisting in guessing a counter state-based strategy for player 2 and checking whether
it is really a counter-strategy.

Finally we provided reductions of the parameterized probabilistic problems to pa-
rameterized game problems by modeling the probabilistic choices by choices of player 2.

Conclusion 177

We provided a polynomial reduction for each case, tuning the parity on the transition
in order to reflect the specificity of each case. For example, to solve the almost sure
reachability problem, the reduction consists in letting player 2 perform a finite number
of choices, by setting the parity of these transitions even, and then checking whether
player 1 has a strategy to reach the target by allowing him to perform the other choices
but with odd parity. We also proved the co-NP hardness of these problems thanks to
reduction of the unsatisfiability problem of conjunctive normal form formulas. These
hardness results also give the hardness of the game problem. We thus obtain that the
game problem as well as the reachability problems are co-NP-complete (Theorems 4.3,
4.4, and 4.5).

We believe that distributed games are an interesting approach for the many identical
process setting and it would be interesting to study them further. In particular, one
assumption made in this chapter is that there is no deadlock configuration. It would
be interesting to see if the decidability and complexity results still hold without this
assumption. Moreover, since in finite state systems the translation from probabilities
to parity allows to solve problems much harder than reachability, it would not be sur-
prising if that would be the case here. Our proof of decidability for the game problem
relies on the difference on the power of player 1 and player 2. Even though giving to
player 2 the possibility to perform broadcasts and choose processes will certainly lead
to undecidability, it would be interesting to see to what extent we can extend the power
of player 2 while keeping decidability.

For the probabilistic parameterized problems, we only considered qualitative prop-
erties. We are currently investigating the quantitative problems and it seems that, for
some cases, the monotonicity of the networks allows us to reduce the quantitative prob-
lems to the qualitative ones. We believe that this monotonicity may hold for the other
problems as well but for ‘large enough’ networks. In order to validate this intuition we
are implementing a tool in C that allows us to build networks and check the desired
properties thanks to the model checker Prism [KNP11].

Chapter V In Chapter V, we investigated reconfigurable broadcast networks under
the new hypothesis of local strategies. The local strategies ensure that two processes
with the same knowledge perform the same actions. We have shown that the parame-
terized reachability question, under the local strategy assumption, is NP-complete. The
proof is based on a new tool, admissible strategy patterns, that allows to give a finite
representation of local strategies. We have shown that such patterns can be reduced
to polynomial size admissible patterns while keeping the same set of reachable states
(see Proposition 3.2). This yields a polynomial algorithm for the parameterized reacha-
bility question consisting in guessing a witness strategy pattern of polynomial size and
checking whether it allows to reach the target state. The NP-hardness of this problem
is shown by reduction of 3-SAT (Theorem 3.2).

We also considered the parameterized synchronization problem in reconfigurable
broadcast networks. Using again the idea of admissible strategy patterns, we introduced
bi-admissible patterns. We were able to show that polynomial size witnesses are also
enough for bi-admissible strategy patterns to decide the synchronization problem, thus

178 Conclusion

yielding an NP algorithm. The synchronization problem is in fact NP-complete, since
it is harder than the reachability problem, see Theorem 3.3.

In addition to this decidability result, the bound on the size of the admissible and
bi-admissible strategy patterns allowed us to derive a polynomial bound on the minimal
number of processes required to fulfill the reachability and synchronization problems.
Moreover, since all the runs of a reconfigurable network can be simulated by a bigger
network by ignoring the additional processes, we obtain a cut-off on the number of
processes required to fulfill the reachability and synchronization problems.

In addition to reconfigurable broadcast protocol networks, we also studied clique
networks in which the messages are received by all the processes. Interestingly, the
parameterized reachability problem, which is decidable and NPR in clique protocols,
becomes undecidable with the assumption of local strategy, see Theorem 4.1. How-
ever, considering a restriction on protocols, namely input-completeness, requiring that
all messages can be received from any state, we show in Theorem 4.2 the parameter-
ized reachability problem to be decidable and non-primitive recursive. The proof of
decidability is based on a counting abstraction shown to be a well structured transition
system.

We strongly believe that one could reuse the idea of strategy patterns in order to
check more difficult properties like repeated reachability. This could be done by adding
a loop at the leaves of the patterns. More generally, it would be interesting to see if we
can combine local strategies and the game networks presented in Chapter IV. This is
a promising way to tackle the probabilistic parameterized problems restricted to local
strategies.

Future works

In addition to the possible future works already presented we propose here some leads
that may be of interest to continue this work.

Communication topology In this thesis, we studied selective broadcast networks
where the set of receivers of a message is chosen non-deterministically. It would be
interesting to study these networks under a new assumption stating for example that
once a link is used it stays active for some time. Such restrictions could be investigated
by, for example, modeling the topology by a graph and only allowing rewriting of the
graph topology according to fixed rules. An other possibility is to consider probabilistic
failures of the links, as well as probabilistic creations of the links modeling failures
and maintenance of the links. The shape of the topology is of major importance for
the decidability and complexity status of parameterized verification, see e.g. [DSZ11a].
It would be interesting to investigate other topologies than cliques and reconfigurable
broadcast with probabilistic protocols to see the computational power that probabilities
bring.

An other interesting extension would be to consider protocols with registers as it
was done in [DST13]. Indeed it is common for peer to peer applications to maintain a

Conclusion 179

table containing a subset of the other participants addresses. To verify such networks
it is thus useful to consider processes with identities and registers allowing to manip-
ulate those identities. In [DST13] it is shown that with two registers and two fields
in the messages allowing to transmit data, the parameterized reachability problem is
undecidable. Indeed, one can use the two fields in the messages to specify the sender
and receiver and thus link processes in an unbounded tape. However, limiting the field
in the messages to only one leads to decidability. An other possibility is to consider
communicating register automata [AAKR15] which are communicating automata with
a finite set of registers storing ids and allowed to create new processes. The processes
can communicate with processes whose ids they knows and the messages are stored
in unbounded FIFO buffers. In [AAKR15], the reachability problem was shown to be
undecidable. However, restricting to bounded FIFO buffers and considering that the
simple paths in the underlying comunication topology are bounded by a constant, one
can regain decidability with the assumption that any link can be disconnected non-
deterministically in any state. Instead of considering the disconnection of processes as
non-deterministic it would be interesting to see them as random failure of the registers,
and thus extend the model of communicating register automata with probabilities.

Fairness In this thesis, we always considered strategies that choose in a non-determin-
istic way the next process to perform an action. However, this leads to solutions where
some processes are totally left apart, which is not really realistic. An interesting work to
do in the future is to consider restrictions on the way the next process to play is chosen.
A first approach could be to look at fair schedulers where each process plays infinitely
often in all infinite executions. Note that fair strategies do not really make sense for
the problem we presented since we looked only at finite properties, however this would
be interesting for more elaborate properties such as repeated reachability. With the
same idea, since we looked at probabilistic models, it would be interesting to look at
probabilistic choices for the next process to play, and to investigate the decidability and
complexity status of the parameterized problems when considering that the processes
are picked uniformly at random. In multithreaded programs Round Robin schedulers,
where each process performs an action one after the other in a given order, are often used.
Such Round Robin schedulers would certainly lead to undecidability in a clique topology
since it would allow to implement a test to zero by using one round to check whether
there are some processes in a given state or not. However, it would be interesting to see
the decidability and complexity status of the parameterized problems in reconfigurable
networks under this assumption. Indeed, since processes are forced to play at each
round, the key monotonicity property would no longer hold.

Unifying model for parameterized networks The many identical processes field
has been studied under many different settings in the past years. There are works
considering different topologies such as clique bounded graphs [DSZ11a], trees [AAR13],
and different communication means such as broadcast communication [EFM99], token-
passing [CTTV04, AJKR14], message passing [BGS14] or shared memory [EGM13].
However, these works lack of an unifying model or at least meta model that could

180 Conclusion

subsume all the present works in order to have a clear view of the power of parameterized
systems with many identical processes. Indeed some of the proofs given for different
models share some similarities, as an example the proof of decidability of reachability for
shared memory processes and reconfigurable broadcast networks both rely on the fact
that once a state is reached it can be reached by any number of processes. This property
seems to be a key property for decidability and low complexity of the parameterized
verification. It would be nice to have an overview of such kind of properties that could
somehow unify the field. A first step was made by Esparza in its survey [Esp14] by
sorting models by whether they can produce a leader or not and whether every process
must listen or not. It would be interesting to have a broader classification including all
the existing parameterized networks.

Implementation and case studies An other need in the field is tool support. In-
deed, there are lots of different works on the theoretical part, however there is a lack of
actual case studies. This is partly due to the fact that currently the algorithms used in
distributed systems are proved by hand and thus are set in classes of models that are
too powerful for automatic verification. A way to tackle this problem is to consider ap-
proximations. However, the flaw of approximations is that you cannot give guarantees
on the behaviors of the systems.

Synthesis of distributed algorithm An other approach is to reverse the problem
and consider synthesis. Instead of trying to certify systems already implemented that
lead to complex models, the synthesis automatically builds algorithms that achieve
some given properties. Maybe an other way to approach the problem would be to
enumerate the possible models and check them for given properties until one is found
that satisfies the properties. Indeed, the tools available for developers and conceptors of
distributed algorithms lead to man readable solution but, most of the time, that cannot
be automatically verified. Maybe, enumeration of models would lead to less ‘human
friendly’, but automatically certified to be correct, solutions.

Bibliography

[AAKR15] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmet Kara, and Othmane
Rezine. Verification of buffered dynamic register automata. In NETYS
2015, May 11–13, Agadir, Morocco. Springer Berlin/Heidelberg, 2015.

[AaP] Aapal website. http://lit2.ulb.ac.be/aapal/.

[AAR13] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Othmane Rezine. Ver-
ification of directed acyclic ad hoc networks. In FMOODS/FORTE’13,
volume 7892 of LNCS, pages 193–208. Springer, 2013.

[ABRS05] Parosh Aziz Abdulla, Nathalie Bertrand, Alexander Rabinovich, and
Philippe Schnoebelen. Verification of probabilistic systems with faulty com-
munication. Information and Computation, 202(2):141–165, 2005.

[ACJT96] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay.
General decidability theorems for infinite-state systems. In LICS’96, pages
313–321. IEEE Computer Society, 1996.

[ACJT00] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay.
Algorithmic analysis of programs with well quasi-ordered domains. Inf.
Comput., 160(1-2):109–127, 2000.

[AD90] Rajeev Alur and David Dill. Automata for modeling real-time systems. In
Automata, languages and programming, pages 322–335. Springer, 1990.

[AD94] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

[AdFE15] Luca Aceto and David de Frutos Escrig. Verification of population proto-
cols. In 26th International Conference on Concurrency Theory (CONCUR
2015), volume 42, pages 470–482. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2015.

[ADM04] Parosh Aziz Abdulla, Johann Deneux, and Pritha Mahata. Multi-clock
timed networks. In Logic in Computer Science, 2004. Proceedings of the
19th Annual IEEE Symposium on, pages 345–354. IEEE, 2004.

181

http://lit2.ulb.ac.be/aapal/

182 Bibliography

[ADR+11] Parosh Aziz Abdulla, Giorgio Delzanno, Othmane Rezine, Arnaud Sang-
nier, and Riccardo Traverso. On the verification of timed ad hoc net-
works. In Formal Modeling and Analysis of Timed Systems, pages 256–270.
Springer, 2011.

[AHM07] Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr. Decisive
Markov chains. Logical Methods in Computer Science, 3(4), 2007.

[AHV93] Rajeev Alur, Thomas A Henzinger, and Moshe Y Vardi. Parametric real-
time reasoning. In Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, pages 592–601. ACM, 1993.

[AJ93] Parosh Abdulla and Bengt Jonsson. Verifying programs with unreliable
channels. In Logic in Computer Science, 1993. LICS’93., Proceedings of
Eighth Annual IEEE Symposium on, pages 160–170. IEEE, 1993.

[AJ01] Parosh Aziz Abdulla and Bengt Jonsson. Ensuring completeness of sym-
bolic verification methods for infinite-state systems. Theoretical Computer
Science, 256(1):145–167, 2001.

[AJ03] Parosh Aziz Abdulla and Bengt Jonsson. Model checking of systems with
many identical timed processes. Theoretical Computer Science, 290(1):241–
264, 2003.

[AJKR14] Benjamin Aminof, Swen Jacobs, Ayrat Khalimov, and Sasha Rubin. Param-
eterized model checking of token-passing systems. In VMCAI’14, volume
8318 of LNCS, pages 262–281, 2014.

[AK86] Krzysztof R Apt and Dexter C Kozen. Limits for automatic verification of
finite-state concurrent systems. Information Processing Letters, 22(6):307–
309, 1986.

[BBS06a] Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. A note on the
attractor-property of infinite-state Markov chains. Information Processing
Letters, 97(2):58–63, 2006.

[BBS06b] Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. Symbolic
verification of communicating systems with probabilistic message losses:
liveness and fairness. In Formal Techniques for Networked and Distributed
Systems-FORTE 2006, pages 212–227. Springer, 2006.

[BBS07] Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. Verifying
nondeterministic probabilistic channel systems against ω-regular linear-
time properties. ACM Transactions on Computational Logic, 9(1), 2007.

[BF13] Nathalie Bertrand and Paulin Fournier. Parameterized verification of many
identical probabilistic timed processes. In FSTTCS, volume 13, pages 501–
513, 2013.

Bibliography 183

[BFS14] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Playing with
probabilities in reconfigurable broadcast networks. In Foundations of Soft-
ware Science and Computation Structures, pages 134–148. Springer, 2014.

[BFS15] Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Distributed
local strategies in broadcast networks. In 26th International Conference on
Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015,
pages 44–57, 2015.

[BGS14] Benedikt Bollig, Paul Gastin, and Jana Schubert. Parameterized verifica-
tion of communicating automata under context bounds. In RP’14, volume
8762 of LNCS, pages 45–57, 2014.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[BKS05] Tomás Brázdil, Antonín Kucera, and Oldrich Strazovský. On the decid-
ability of temporal properties of probabilistic pushdown automata. In
STACS’05, volume 3404 of LNCS, pages 145–157. Springer, 2005.

[BS03] Nathalie Bertrand and Philippe Schnoebelen. Model checking lossy chan-
nels systems is probably decidable. In Foundations of Software Science and
Computation Structures, pages 120–135. Springer, 2003.

[BS13] Nathalie Bertrand and Philippe Schnoebelen. Computable fixpoints in well-
structured symbolic model checking. Formal Methods in System Design,
2013. To appear.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state ma-
chines. Journal of the ACM (JACM), 30(2):323–342, 1983.

[CD12] Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theoret-
ical Computer Science, 458:49–60, 2012.

[CdAFL09] Krishnendu Chatterjee, Luca de Alfaro, Marco Faella, and Axel Legay.
Qualitative logics and equivalences for probabilistic systems. Logical Meth-
ods in Computer Science, 5(2), 2009.

[CS08] Pierre Chambart and Philippe Schnoebelen. The ordinal recursive com-
plexity of lossy channel systems. In LICS, volume 8, pages 205–216, 2008.

[CTTV04] Edmund M. Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut Veith.
Verification by network decomposition. In CONCUR’04, volume 3170 of
LNCS, pages 276–291, 2004.

[Daw05] Conrado Daws. Symbolic and parametric model checking of discrete-time
markov chains. In Theoretical Aspects of Computing-ICTAC 2004, pages
280–294. Springer, 2005.

184 Bibliography

[DJJ+15] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius,
Matthias Volk, Harold Bruintjes, Joost-Pieter Katoen, and Erika Ábrahám.
Prophesy: A probabilistic parameter synthesis tool. In Computer Aided
Verification, pages 214–231. Springer, 2015.

[DST13] Giorgio Delzanno, Arnaud Sangnier, and Riccardo Traverso. Parameterized
verification of broadcast networks of register automata. In Reachability
Problems, pages 109–121. Springer, 2013.

[DSTZ12] Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Za-
vattaro. On the complexity of parameterized reachability in reconfigurable
broadcast networks. In FSTTCS’12, volume 18 of LIPIcs, pages 289–300.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[DSZ10] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parame-
terized verification of ad hoc networks. In CONCUR 2010-Concurrency
Theory, pages 313–327. Springer, 2010.

[DSZ11a] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. On the power
of cliques in the parameterized verification of ad hoc networks. In Proc. 14th
Int. Conference on Foundations of Software Science and Computational
Structures (FoSSaCS’11), volume 6604 of LNCS, pages 441–455. Springer,
2011.

[DSZ11b] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameter-
ized verification of safety properties in ad hoc network protocols. In Proc.
1st Int. Workshop on Process Algebra and Coordination (PACO’11), vol-
ume 60 of EPTCS, pages 56–65, 2011.

[DSZ12] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Verification
of ad hoc networks with node and communication failures. In Proc. joint
14th IFIP WG 6.1 Int. Conference and 32nd IFIP WG 6.1 Int. Conference
on Formal Techniques for Distributed Systems (FMOODS/FORTE’12), vol-
ume 7273 of LNCS, pages 235–250. Springer, 2012.

[EFM99] Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of
broadcast protocols. In LICS’99, pages 352–359. IEEE Computer Society,
1999.

[EGM13] Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized veri-
fication of asynchronous shared-memory systems. In CAV’13, volume 8044
of LNCS, pages 124–140, 2013.

[Esp14] Javier Esparza. Keeping a crowd safe: On the complexity of parameterized
verification (invited talk). In STACS’14, volume 25 of LIPIcs, pages 1–10.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

Bibliography 185

[EY05] Kousha Etessami and Mihalis Yannakakis. Recursive Markov decision pro-
cesses and recursive stochastic games. In ICALP’05, volume 3580 of LNCS,
pages 891–903. Springer, 2005.

[Fru06] Matthias Fruth. Probabilistic model checking of contention resolution in
the ieee 802.15. 4 low-rate wireless personal area network protocol. In
Leveraging Applications of Formal Methods, Verification and Validation,
2006. ISoLA 2006. Second International Symposium on, pages 290–297.
IEEE, 2006.

[FS01] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems
everywhere! Theor. Comput. Sci., 256(1-2):63–92, 2001.

[GS92] Steven M. German and A. Prasad Sistla. Reasoning about systems with
many processes. J. ACM, 39(3):675–735, 1992.

[Hag11] Matthew Hague. Parameterised pushdown systems with non-atomic writes.
arXiv preprint arXiv:1109.6264, 2011.

[HRSV02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits Vaandrager. Lin-
ear parametric model checking of timed automata. The Journal of Logic
and Algebraic Programming, 52:183–220, 2002.

[IN97] Purush Iyer and Murali Narasimha. Probabilistic lossy channel systems. In
TAPSOFT’97: Theory and Practice of Software Development, pages 667–
681. Springer, 1997.

[KNP11] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Veri-
fication of probabilistic real-time systems. In Computer aided verification,
pages 585–591. Springer, 2011.

[KNPS08] Marta Kwiatkowska, Gethin Norman, David Parker, and Jeremy Sproston.
Modeling and Verification of Real-Time Systems: Formalisms and Software
Tools, chapter Verification of Real-Time Probabilistic Systems, pages 249–
288. John Wiley & Sons, 2008.

[KS88] S. Rao Kosaraju and Gregory F. Sullivan. Detecting cycles in dynamic
graphs in polynomial time (preliminary version). In STOC’88, pages 398–
406. ACM, 1988.

[KSK66] John G Kemeny, J Laurie Snell, and Anthony W Knapp. Denumerable
markov chains. the university series in higher mathematics, 1966.

[LPY97] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. In-
ternational Journal on Software Tools for Technology Transfer (STTT),
1(1):134–152, 1997.

[Min67] Marvin Minsky. Computation: Finite and Infinite Machines. Prentice Hall
International, 1967.

186 Bibliography

[PR90] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to
synthesize. In FOCS’90, pages 746–757. IEEE Computer Society, 1990.

[Rab03] Alexander Rabinovich. Quantitative analysis of probabilistic lossy chan-
nel systems. In Automata, Languages and Programming, pages 1008–1021.
Springer, 2003.

[RL94] Michael O Rabin and Daniel Lehmann. The advantages of free choice: A
symmetric and fully distributed solution for the dining philosophers prob-
lem. In A classical mind, pages 333–352. Prentice Hall International (UK)
Ltd., 1994.

[Spe] ZigBee Specification. v1. 0: Zigbee specification (2005). San Ramon, CA,
USA: ZigBee Alliance.

[SS13] Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured
systems. In CONCUR’13, volume 8052 of LNCS, pages 5–24. Springer,
2013.

[Var85] Moshe Y Vardi. Automatic verification of probabilistic concurrent finite
state programs. In Foundations of Computer Science, 1985., 26th Annual
Symposium on, pages 327–338. IEEE, 1985.

List of Figures

2.1 A probabilistic timed protocol modeling mutual exclusion over two resources. 47
2.2 An execution of a clique network of 4 processes running the protocol represented in Figure 2.1
2.3 Graphical representation of a non-deterministic transition. 50
2.4 An execution of a dynamic clique network of (initially) three processes and a base all running
3.5 General framework of the reductions. 59
3.6 Reduction for REACH∃

=1(C). 62
3.7 Gadget to run P with probability p ∈]0, 1[. 63
3.8 Reduction for REACH∃

=0(C). 64
3.9 Reduction for REACH∀

>0(C). 65
4.10 Evolution of the fractional parts. 71
4.11 Graphical representation to show Pred(↑ C) ⊆ Pred(C). 78
4.12 Base protocol obtained from a LCS with two states q0 and q1 and three transitions t1 = (q0,
4.13 Protocol obtained from a LCS with two messages m and m ′. 89

2.1 Simple example of probabilistic protocol. 97
2.2 An execution of a selective broadcast network of 4 processes running the protocol represented
3.3 Simple example of a parity protocol. 102
3.4 Example of a play with 4 processes running the parity protocol given in Figure 3.3.103
3.5 Example of the parity protocol obtained when considering a local behavior on the protocol illustrated
3.6 Example of a VASS obtained with the construction. 112
4.7 Parity protocol for the probabilistic protocol from Figure 2.1. 117
4.8 Probabilistic protocol for the formula ϕ = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c).122
4.9 Parity protocol for the probabilistic protocol from Figure 2.1. 124
4.10 Parity protocol for the probabilistic protocol from Figure 2.1. 127

2.1 Example of a broadcast protocol. 135
3.2 A strategy pattern for the broadcast protocol depicted in Figure 2.1. . . 142
3.3 Encoding a 3-SAT formula into a broadcast protocol. 149
3.4 Illustration for the construction of θk from θk−1. 152
3.5 A T-coadmissible strategy pattern on the example protocol of Figure 2.1. 153
4.6 Initialization phase for Reach[LC]. 163
4.7 Encoding an increment L : ci := ci + 1; goto L′. 163
4.8 Encoding a test-to-zero L : if ci = 0 then goto L′ else ci := ci − 1; goto L′′.164
4.9 Encoding counter ci. 164

187

188 List of Figures

4.10 Ending phase for Reach[LC]. 164
4.11 Initialization phase for Synch[LC]. 166
4.12 Initialization gadget. 172

Résumé

Ce travail s’inscrit dans le cadre de la vérification formelle de programmes. La véri-
fication de modèle permet de s’assurer qu’une propriété est vérifiée par le modèle du
système. Cette thèse étudie la vérification paramétrée de réseaux composés d’un nom-
bre non borné de processus identiques où le nombre de processus est considéré comme
un paramètre.

• Concernant les réseaux de protocoles probabilistes temporisés nous montrons que
les problèmes de l’accessibilité et de synchronisation sont indécidables pour des
topologies de communication en cliques. Cependant, en considérant des pertes et
créations probabiliste de processus ces problèmes deviennent décidables.

• Pour ce qui est des réseaux dans lequel les messages n’atteignent qu’une sous
partie des composants choisie de manière non-déterministe, nous prouvons que le
problème de l’accessibilité paramétrée est décidable grâce à une réduction à un
nouveau modèle de jeux à deux joueurs distribué pour lequel nous montrons que
l’on peut décider de l’existence d’une stratégie gagnante en co-NP.

• Finalement, nous considérons des stratégies locales qui permettent d’assurer que
les processus effectuent leurs choix non-déterministes uniquement par rapport
a leur connaissance locale du système. Sous cette hypothèse de stratégies lo-
cales, nous prouvons que les problèmes de l’accessibilité et de synchronisation
paramétrées sont NP-complet.

Abstract

This thesis deals with formal verification of distributed systems. Model checking is a
technique for verifying that the model of a system under study fulfills a given property.
This PhD investigates the parameterized verification of networks composed of many
identical processes for which the number of processes is the parameter.

• Considering networks of probabilistic timed protocols, we show that the parame-
terized reachability and synchronization problems are undecidable when the com-
munication topology is a clique. However, assuming probabilistic creation and
deletion of processes, the problems become decidable.

• Regarding selective networks, where the messages only reach a subset of the com-
ponents, we show decidability of the parameterized reachability problem thanks
to reduction to a new model of distributed two-player games for which we prove
decidability in co-NP of the game problem.

• Finally, we consider local strategies that enforce all processes to resolve the non-
determinism only according to their own local knowledge. Under this assumption
of local strategy, we were able to show that the parameterized reachability and
synchronization problems are NP-complete.

	Table of contents
	Vérification paramétrée de réseaux composés d'une multitude de processus identiques
	Introduction
	Personal publications

	Preliminaries
	Basic definitions
	Timed automata
	Markov chains, Markov decision processes and games
	Markov chains
	Markov decision processes
	2-player games

	Infinite transition systems
	Well-structured transition systems
	Lossy channel systems
	Vector addition systems with states
	two-counter machines

	Parameterized verification
	Many identical processes
	Ad Hoc networks

	Clique networks of probabilistic timed protocols
	Introduction
	Modeling probabilistic networks
	Probabilistic timed protocols
	Static semantics for clique networks of probabilistic timed protocols
	Dynamic semantics for clique networks of probabilistic timed protocols
	Parameterized probabilistic verification problems

	Parameterized verification of static clique networks of probabilistic timed protocols
	Some decidability results using monotonicity
	Undecidability results
	Undecidability of synchronization

	Parameterized verification of dynamic networks of probabilistic timed protocols
	Region abstraction
	Deciding parameterized problems on the region MDP
	Solving reachabilty
	Approximation of minimal probability
	Synchronization analysis
	Complexity

	Conclusion

	Selective broadcast networks of probabilistic protocols
	Introduction
	Selective broadcast networks of probabilistic protocols
	Probabilistic protocols
	Semantics of selective broadcast networks
	Parameterized probabilistic verification problems

	Selective broadcast networks of parity protocols
	Parity protocols
	Semantics of selective broadcast game networks of parity protocols
	Resolution of the game
	Restricting the strategies of player 2
	Solving the game against state based strategies
	Existence of an infinite winning path
	Solving parity networks
	Restriction to urgent strategies

	Solving probabilities with games
	Decidability using monotonicity
	Decidability and complexity of REACH Exists =1 (S)
	Decidability and complexity of REACH Exists =0 (S)
	Decidability and complexity of REACH Exists <1(S)

	Conclusion

	Local strategies
	Introduction
	Networks of reconfigurable broadcast protocols
	Syntax and semantics
	Restricting executions to local strategies and clique executions
	Verification problems

	Solving verification problems for local executions
	Solving Reach[L]
	Representing strategies with trees
	Reasoning on strategy patterns
	Minimizing admissible strategy patterns

	Solving Synch[L]
	Link between biadmissibility and local executions
	Minimizing biadmissible strategy patterns

	Cliques and local strategies
	Undecidability of Reach[LC] and Synch[LC]
	Decidability of Reach[LC] for complete protocols

	Conclusion

	Conclusion
	Bibliographie
	Table des figures

