Increasing the performance of superscalar processors through value prediction

par Arthur Perais

Thèse de doctorat en Informatique

Sous la direction de André Seznec.

Soutenue le 24-09-2015

à Rennes 1 , dans le cadre de École doctorale Mathématiques, informatique, signal, électronique et télécommunications (Rennes) , en partenariat avec Université européenne de Bretagne (PRES) , Institut de recherche en informatique et systèmes aléatoires (Rennes) (laboratoire) et de Inria Rennes – Bretagne Atlantique (laboratoire) .

  • Titre traduit

    La prédiction de valeurs comme moyen d'augmenter la performance des processeurs superscalaires


  • Résumé

    Bien que les processeurs actuels possèdent plus de 10 cœurs, de nombreux programmes restent purement séquentiels. Cela peut être dû à l'algorithme que le programme met en œuvre, au programme étant vieux et ayant été écrit durant l'ère des uni-processeurs, ou simplement à des contraintes temporelles, car écrire du code parallèle est notoirement long et difficile. De plus, même pour les programmes parallèles, la performance de la partie séquentielle de ces programmes devient rapidement le facteur limitant l'augmentation de la performance apportée par l'augmentation du nombre de cœurs disponibles, ce qui est exprimé par la loi d'Amdahl. Conséquemment, augmenter la performance séquentielle reste une approche valide même à l'ère des multi-cœurs.Malheureusement, la façon conventionnelle d'améliorer la performance (augmenter la taille de la fenêtre d'instructions) contribue à l'augmentation de la complexité et de la consommation du processeur. Dans ces travaux, nous revisitons une technique visant à améliorer la performance de façon orthogonale : La prédiction de valeurs. Au lieu d'augmenter les capacités du moteur d'exécution, la prédiction de valeurs améliore l'utilisation des ressources existantes en augmentant le parallélisme d'instructions disponible.En particulier, nous nous attaquons aux trois problèmes majeurs empêchant la prédiction de valeurs d'être mise en œuvre dans les processeurs modernes. Premièrement, nous proposons de déplacer la validation des prédictions depuis le moteur d'exécution vers l'étage de retirement des instructions. Deuxièmement, nous proposons un nouveau modèle d'exécution qui exécute certaines instructions dans l'ordre soit avant soit après le moteur d'exécution dans le désordre. Cela réduit la pression exercée sur ledit moteur et permet de réduire ses capacités. De cette manière, le nombre de ports requis sur le fichier de registre et la complexité générale diminuent. Troisièmement, nous présentons un mécanisme de prédiction imitant le mécanisme de récupération des instructions : La prédiction par blocs. Cela permet de prédire plusieurs instructions par cycle tout en effectuant une unique lecture dans le prédicteur. Ces trois propositions forment une mise en œuvre possible de la prédiction de valeurs qui est réaliste mais néanmoins performante.


  • Résumé

    Although currently available general purpose microprocessors feature more than 10 cores, many programs remain mostly sequential. This can either be due to an inherent property of the algorithm used by the program, to the program being old and written during the uni-processor era, or simply to time to market constraints, as writing and validating parallel code is known to be hard. Moreover, even for parallel programs, the performance of the sequential part quickly becomes the limiting improvement factor as more cores are made available to the application, as expressed by Amdahl's Law. Consequently, increasing sequential performance remains a valid approach in the multi-core era. Unfortunately, conventional means to do so - increasing the out-of-order window size and issue width - are major contributors to the complexity and power consumption of the chip. In this thesis, we revisit a previously proposed technique that aimed to improve performance in an orthogonal fashion: Value Prediction (VP). Instead of increasing the execution engine aggressiveness, VP improves the utilization of existing resources by increasing the available Instruction Level Parallelism. In particular, we address the three main issues preventing VP from being implemented. First, we propose to remove validation and recovery from the execution engine, and do it in-order at Commit. Second, we propose a new execution model that executes some instructions in-order either before or after the out-of-order engine. This reduces pressure on said engine and allows to reduce its aggressiveness. As a result, port requirement on the Physical Register File and overall complexity decrease. Third, we propose a prediction scheme that mimics the instruction fetch scheme: Block Based Prediction. This allows predicting several instructions per cycle with a single read, hence a single port on the predictor array. This three propositions form a possible implementation of Value Prediction that is both realistic and efficient.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Rennes I. Service commun de la documentation. Bibliothèque de ressources électroniques en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.