Equations différentielles stochastiques rétrogrades ergodiques et applications aux EDP

par Pierre-Yves Madec

Thèse de doctorat en Mathématiques et applications

Sous la direction de Ying Hu.

Soutenue le 30-06-2015

à Rennes 1 , dans le cadre de École doctorale Mathématiques, informatique, signal, électronique et télécommunications (Rennes) , en partenariat avec Institut de recherche mathématique (Rennes) (laboratoire) , Université européenne de Bretagne (PRES) et de Institut de Recherche Mathématique de Rennes (laboratoire) .


  • Résumé

    Cette thèse s'intéresse à l'étude des EDSR ergodiques et à leurs applications à l'étude du comportement en temps long des solutions d'EDP paraboliques semi-linéaires. Dans un premier temps, nous établissons des résultats d'existence et d'unicité d'une EDSR ergodique avec conditions de Neumann au bord dans un convexe non borné et dans un environnement faiblement dissipatif. Nous étudions ensuite leur lien avec les EDP avec conditions de Neumann au bord et nous donnons un exemple d'application à un problème de contrôle optimal stochastique. La deuxième partie est constituée de deux sous-parties. Tout d'abord, nous étudions le comportement en temps long des solutions mild d'une EDP parabolique semi-linéaire en dimension infinie par des méthodes probabilistes. Cette méthode probabiliste repose sur une application d'un résultat nommé "Basic coupling estimate" qui nous permet d'obtenir une vitesse de convergence exponentielle de la solution vers sons asymptote. Au passage notons que cette asymptote est entièrement déterminée par la solution de l'EDP ergodique semi-linéaire associée à l'EDP parabolique semi-linéaire initiale. Puis, nous adaptons cette méthode à l'étude du comportement en temps long des solutions de viscosité d'une EDP parabolique semi-linéaire avec condition de Neumann au bord dans un convexe borné en dimension finie. Par des méthodes de régularisation et de pénalisation des coefficients et en utilisant un résultat de stabilité pour les EDSR, nous obtenons des résultats analogues à ceux obtenus dans le contexte mild, avec notamment une vitesse exponentielle de convergence de la solution vers son asymptote.

  • Titre traduit

    Ergodic backward stochastic differential equations and their applications to PDE


  • Résumé

    This thesis deals with the study of ergodic BSDE and their applications to the study of the large time behaviour of solutions to semilinear parabolic PDE. In a first time, we establish some existence and uniqueness results to an ergodic BSDE with Neumann boundary conditions in an unbounded convex set in a weakly dissipative environment. Then we study their link with PDE with Neumann boundary condition and we give an application to an ergodic stochastic control problem. The second part consists of two sections. In the first one, we study the large time bahaviour of mild solutions to semilinear parabolic PDE in infinite dimension by a probabilistic method. This probabilistic method relies on a Basic coupling estimate result which gives us an exponential rate of convergence of the solution toward its asymptote. Let us mention that that this asymptote is fully determined by the solution of the ergodic semilinear PDE associated to the parabolic semilinear PDE. Then, we adapt this method to the sudy of the large time behaviour of viscosity solutions of semilinear parabolic PDE with Neumann boundary condition in a convex and bounded set in finite dimension. By regularization and penalization procedures, we obtain similar results as those obtained in the mild context, especially with an exponential rate of convergence for the solution toward its asymptote.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Rennes I. Service commun de la documentation. Bibliothèque de ressources électroniques en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.