Représentation de Weil d'une paire duale de groupes de similitudes

par Alice Gaborieau

Thèse de doctorat en Mathématiques

Sous la direction de Pierre Torasso et de Guy Henniart.

Le président du jury était Jean Michel.

Le jury était composé de Pierre Torasso, Guy Henniart, Paul Broussous, Corinne Blondel.

Les rapporteurs étaient Jean Michel, David Soudry.


  • Résumé

    Soit F une extension finie du corps des nombres p-adiques, de corps résiduel Fq. Pour un groupe réductif G sur F, les conjectures de Langlands prédisent une classification des représentations lisses irréductibles de G(F) en termes du groupe dual G^. En particulier, la donnée d’un homomorphisme de groupes duaux de H^ vers G^ doit se traduire par un transfert des représentations de H(F) vers G(F). Pour H = SO2n+1, et G = GL2n, l’injection canonique de H^ vers G^ fournit un transfert des représentations de H(F) vers G(F) qui a été obtenu récemment (pour les représentations génériques) par Jiang et Soudry.Cependant, leurs méthodes utilisent des arguments globaux et l’objet de ce travail consiste à décrire explicitement ce transfert, dans le cas particulier où n = 2 (le cas n = 1 étant déjà connu), et pour des représentations génériques de niveau zéro, lesquelles proviennent essentiellement de représentations du groupe réductif fini SO5 sur le corps résiduel de F. Pour cela, l’isomorphisme entre SO5 et PGSp4 et l’isogénie entre GL4 et GSO6 suggèrent que l’on peut réaliser un transfert entre les représentations de SO5 et celles de GL4 au moyen d’une correspondance de Howe. Nous présentons ici une généralisation des travaux de Srinivasan, qui nous permet d’obtenir la projection uniforme de la représentation de Weil associée à une paire duale de groupes de similitudes lorsque q est assez grand.

  • Titre traduit

    Weil representation of dual pairs of similitude groups over a finite field


  • Résumé

    Let F be a p-adic field, and let k be its residue field. According to Langlands' conjectures, smooth irreducible representations of a reductive group G defined over F should be classified in terms of the dual groupe G^. In particular, given a homomorphism from H^ to G^, there should be a lift from the representations of H(F) to the representations of G(F). When H = SO2n+1 and G = GL2n, the canonical injection from H^ to G^ should induce a lift from representations of SO2n+1 to representations of GL2n, and this was studied by Jiang and Soudry.However, the arguments used by Jiang and Soudry are of global nature and the aim of this work is to describe explicitly this lift, when n = 2 (the case n = 1 is already known), for level zero generic representations, which are essentially determined by parameters over the finite residue field. Here the isomorphism between SO5 and PGSp4, as well as the isogeny between GL4 and GSO6 suggest that the lift could be realised by a sort of Howe correspondence.In this work, we generalize a result of Srinivasan and give the uniform projection of the Weil representation associated to a dual pair of similitude groups over Fq, when q is big enough.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?