Etude d'injections de Sobolev critiques dans les espaces d'Orlicz et applications

par Inès Ben Ayed

Thèse de doctorat en Mathématiques

Sous la direction de Hajer Bahouri.

Le président du jury était Hamdi Zorgati.

Le jury était composé de Rejeb Hadiji.

Les rapporteurs étaient Hajer Bahouri, Amel Atallah Baraket, Saïma Khenissi, Hatem Zaag.


  • Résumé

    Dans cette thèse, on s'est attaché d'une part à d'écrire le défaut de compacité de l'injection de Sobolev critique dans les différentes classes d'espaces d'Orlicz, et d'autre part à étudier l'équation de Klein-Gordon avec une non-linéarité exponentielle. Ce travail se divise en trois parties. L'objectif de la première partie est de caractériser le défaut de compacité de l'injection de Sobolev de $H^2_{rad}(R^4)$ dans l'espace d'Orlicz $mathcal{L}(R^4)$.Le but de la deuxième partie est double : tout d'abord, on a décrit le défaut de compacité de l'injection de Sobolev de $H^1(R^2)$ dans les différentes classes d'espaces d'Orlicz, ensuite on a étudié une famille d'équations de Klein-Gordon non linéaires à croissance exponentielle. Cette étude inclut à la fois les problèmes d'existence globale, de complétude asymptotique et d'étude qualitative pour le problème de Cauchy associé. La troisième partie est dédiée à l'analyse des solutions de l'équation de Klein-Gordon 2D issues d'une suite de données de Cauchy bornée dans $H^1_{rad}(R^2)times L^2_{rad}(R^2)$. Basée sur les décompositions en profils, cette analyse a été conduite dans le cadre de la norme d'Orlicz

  • Titre traduit

    Study of the critical embedding ofthe lack of Sobolev into the Orlicz spaces and applications


  • Résumé

    In this thesis, we focused on the one hand on the description of the lack of compactness of the critical Sobolev embedding into different classes of Orlicz spaces, and on the other hand on the study of the nonlinear Klein-Gordon equation with exponential nonlinearity. This work is divided into three parts. The aim of the first part is to characterize the lack of compactness of the Sobolev embedding of $H^2_{rad}(R^4)$ into the Orlicz space $mathcal{L}(R^4)$.The aim of the second part is twofold: firstly, we describe the lack of compactness of the Sobolev embedding of $H^1(R^2)$ into different classes of Orlicz spaces, secondly we investigate a family of nonlinear Klein-Gordon equations with exponential nonlinearity. This study includes both the global existence problem, the asymptotic completeness and the qualitative study for the associated Cauchy problem. The third part is dedicated to the analysis of the solutions to the 2D Klein-Gordon equation associated to a sequence of bounded Cauchy data in $H^1_{rad}(R^2)times L^2_{rad}(R^2)$. Based on the profile decompositions, this analysis was conducted in the framework of Orlicz norm

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Communautés d’Universités et d'Etablissements Université Paris-Est. Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.