Validation croisée et pénalisation pour l'estimation de densité

par Nelo Magalhães (Molter Magalhães)

Thèse de doctorat en Mathématiques

Sous la direction de Lucien Birgé et de Pascal Massart.

Le président du jury était Yannick Baraud.

Le jury était composé de Lucien Birgé, Pascal Massart, Yannick Baraud, Vincent Rivoirard, Nicolas Vayatis, Guillaume Lecué.

Les rapporteurs étaient Vincent Rivoirard, Nicolas Vayatis.


  • Résumé

    Cette thèse s'inscrit dans le cadre de l'estimation d'une densité, considéré du point de vue non-paramétrique et non-asymptotique. Elle traite du problème de la sélection d'une méthode d'estimation à noyau. Celui-ci est une généralisation, entre autre, du problème de la sélection de modèle et de la sélection d'une fenêtre. Nous étudions des procédures classiques, par pénalisation et par rééchantillonnage (en particulier la validation croisée V-fold), qui évaluent la qualité d'une méthode en estimant son risque. Nous proposons, grâce à des inégalités de concentration, une méthode pour calibrer la pénalité de façon optimale pour sélectionner un estimateur linéaire et prouvons des inégalités d'oracle et des propriétés d'adaptation pour ces procédures. De plus, une nouvelle procédure rééchantillonnée, reposant sur la comparaison entre estimateurs par des tests robustes, est proposée comme alternative aux procédures basées sur le principe d'estimation sans biais du risque. Un second objectif est la comparaison de toutes ces procédures du point de vue théorique et l'analyse du rôle du paramètre V pour les pénalités V-fold. Nous validons les résultats théoriques par des études de simulations.

  • Titre traduit

    Cross-validation and penalization for density estimation


  • Résumé

    This thesis takes place in the density estimation setting from a nonparametric and nonasymptotic point of view. It concerns the statistical algorithm selection problem which generalizes, among others, the problem of model and bandwidth selection. We study classical procedures, such as penalization or resampling procedures (in particular V-fold cross-validation), which evaluate an algorithm by estimating its risk. We provide, thanks to concentration inequalities, an optimal penalty for selecting a linear estimator and we prove oracle inequalities and adaptative properties for resampling procedures. Moreover, new resampling procedure, based on estimator comparison by the mean of robust tests, is introduced as an alternative to procedures relying on the unbiased risk estimation principle. A second goal of this work is to compare these procedures from a theoretical point of view and to understand the role of V for V-fold penalization. We validate these theoretical results on empirical studies.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.