Towards a modern floating-point environment

par Olga Kupriianova

Thèse de doctorat en Informatique

Sous la direction de Jean-Claude Bajard et de Christoph Quirin Lauter.

Soutenue le 11-12-2015

à Paris 6 , dans le cadre de École doctorale Informatique, télécommunications et électronique (Paris) , en partenariat avec Laboratoire d'informatique de Paris 6 / LIP6 (laboratoire) et de Performance et Qualité des Algorithmes Numériques (laboratoire) .

Le jury était composé de Sylvie Boldo, Laurent-Stéphane Didier, Florent De Dinechin, Jean-Marie Chesneaux, Philippe Langlois.

  • Titre traduit

    Vers l'environnement flottant moderne


  • Résumé

    Cette thèse fait une étude sur deux moyens d'enrichir l'environnement flottant courant : le premier est d'obtenir plusieurs versions d'implantation pour chaque fonction mathématique, le deuxième est de fournir des opérations de la norme IEEE754, qui permettent de mélanger les entrées et la sortie dans les bases différentes. Comme la quantité de versions différentes pour chaque fonction mathématique est énorme, ce travail se concentre sur la génération du code. Notre générateur de code adresse une large variété de fonctions: il produit les implantations paramétrées pour les fonctions définies par l'utilisateur. Il peut être vu comme un générateur de fonctions boîtes-noires. Ce travail inclut un nouvel algorithme pour le découpage de domaine et une tentative de remplacer les branchements pendant la reconstruction par un polynôme. Le nouveau découpage de domaines produit moins de sous-domaines et les degrés polynomiaux sur les sous-domaines adjacents ne varient pas beaucoup. Pour fournir les implantations vectorisables il faut éviter les branchements if-else pendant la reconstruction. Depuis la révision de la norme IEEE754 en 2008, il est devenu possible de mélanger des nombres de différentes précisions dans une opération. Par contre, il n'y a aucun mécanisme qui permettrait de mélanger les nombres dans des bases différentes dans une opération. La recherche dans l'arithmétique en base mixte a commencé par les pires cas pour le FMA. Un nouvel algorithme pour convertir une suite de caractères décimaux du longueur arbitraire en nombre flottant binaire est présenté. Il est indépendant du mode d'arrondi actuel et produit un résultat correctement arrondi.


  • Résumé

    This work investigates two ways of enlarging the current floating-point environment. The first is to support several implementation versions of each mathematical function (elementary such as $\exp$ or $\log$ and special such as $\erf$ or $\Gamma$), the second one is to provide IEEE754 operations that mix the inputs and the output of different \radixes. As the number of various implementations for each mathematical function is large, this work is focused on code generation. Our code generator supports the huge variety of functions: it generates parametrized implementations for the user-specified functions. So it may be considered as a black-box function generator. This work contains a novel algorithm for domain splitting and an approach to replace branching on reconstruction by a polynomial. This new domain splitting algorithm produces less subdomains and the polynomial degrees on adjacent subdomains do not change much. To produce vectorizable implementations, if-else statements on the reconstruction step have to be avoided. Since the revision of the IEEE754 Standard in 2008 it is possible to mix numbers of different precisions in one operation. However, there is no mechanism that allows users to mix numbers of different radices in one operation. This research starts an examination ofmixed-radix arithmetic with the worst cases search for FMA. A novel algorithm to convert a decimal character sequence of arbitrary length to a binary floating-point number is presented. It is independent of currently-set rounding mode and produces correctly-rounded results.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.