Hydrogels greffés stimulables comme actionneurs microfluidiques

par Benjamin Chollet

Thèse de doctorat en Physico-Chimie des Matériaux

Sous la direction de Yvette Tran, Patrick Tabeling et de Dominique Hourdet.

Soutenue le 18-12-2015

à Paris 6 , dans le cadre de École doctorale Physique et chimie des matériaux (Paris) , en partenariat avec Laboratoire Matière Molle et Chimie (laboratoire) .

Le jury était composé de Damien Baigl, Jean-Christophe Baret, Laurent Billon, Anne-Marie Gué.


  • Résumé

    Nous développons une nouvelle approche des actuateurs microfluidiques à base d’hydrogels stimulables. Contrairement aux approches précédentes, les hydrogels sont synthétisés et greffés à la paroi inférieure du microcanal avant la fermeture du système. Nous utilisons une nouvelle stratégie de synthèse pour les films d’hydrogels stimulables par chimie click thiol-ène. Les films sont obtenus par dépôt, sur des surfaces fonctionnalisées avec des thiols, d’un mélange de chaînes polymères préformées et d’un réticulant dithiol. Le greffage et la réticulation s’obtiennent simultanément par une activation thermique ou par irradiation UV. Des films et des micro-motifs sont obtenus sur une large gamme d’épaisseur allant de la centaine de nanomètres à plusieurs microns. Nous intégrons les motifs d’hydrogels stimulables dans les microcanaux pour réaliser des actionneurs. Nous étudions des actionneurs thermosensibles réalisés avec des hydrogels de poly(N-isopropylacrylamide). Avec la température, les motifs d’hydrogels gonflent ou dégonflent en absorbant/expulsant l’eau de manière réversible. L’effet est rapide (inférieur à la seconde), la transition abrupte (quelques degrés autour de la LCST à 32°C) et l’amplitude de déformation est importante (gonflement de 400%). Les micro-vannes réalisées avec cette nouvelle approche présentent de très bonnes performances et une grande durabilité. Nous avons aussi réalisé de nouveaux actionneurs reconfigurables fonctionnant comme des pièges microfluidiques. Ces actionneurs microfluidiques innovants offrent de nombreuses perspectives de par la facilité de leur mise en œuvre, leurs performances et l’intégration sur des micro-puces à haute densité.

  • Titre traduit

    Grafted stimuli-repsonsive hydrogels as microfluidic actuators


  • Résumé

    We develop a new method to build microactuators using stimuli-responsive hydrogels. The hydrogel is synthesized with covalent attachment to the microchannel bottom walls prior to closing the microsystem, contrarily to previous approaches. We use a new stimuli-responsive hydrogel films synthesis pathway. This synthesis is based on thiol-ene click chemistry. The formation of films is achieved by adding bifunctional thiol molecules as cross-linkers to ene-functionalized preformed polymers on thiol-modified surfaces. The cross-linking and grafting are simultaneously performed either by thermal activation or UV-irradiation. Hydrogel films and micro-patterns are easily obtained in a wide range of thickness from hundred nanometers to several microns. We show that these responsive hydrogels patterns can be integrated into microfluidics channels to build microactuators. We focus on thermo-sensitive actuators made from poly(N-isopropylacrylamide). Under temperature, hydrogel patterns reversibly swell and collapse by absorbing/expulsing water. The phase transition is rapid (lower than 1 second), abrupt (a few degrees around the LCST at 32°C) and the deformation amplitude is high (400% swelling). Microvalves obtained by this approach exhibit high performances and durability. Moreover, we develop new reconfigurable actuators functioning as microfluidic traps. These new-concept microfluidic actuators offer wide possibilities because of their ease of fabrication, their performances and their ability to be integrated into high density.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.