Nanoparticules d’oxydes de fer et de ferrites obtenues par nano-réplication : réactivité chimique et application en dépollution des eaux

par Nabil Tabaja

Thèse de doctorat en Chimie-Physique, Matériaux et Catalyse

Sous la direction de Anne Davidson et de Joumana Toufaily.

Soutenue le 08-07-2015

à Paris 6 en cotutelle avec l'Université Libanaise. Faculté des Sciences (Beyrouth, Liban) , dans le cadre de École doctorale Physique et chimie des matériaux (Paris) , en partenariat avec Laboratoire de Réactivité de Surface (laboratoire) .

Le jury était composé de Anne Davidson, Anne Bleuzen, Nancy Brodie-Linder, Sébastien Abramson, Tayssir Hamieh, Franck Launay, Antoine Gédéon.


  • Résumé

    Cette thèse a été réalisée dans le cadre d’une cotutelle de thèse (3 ans) Franco-Libanaise entre l’Université Pierre et Marie Curie de Paris et l’Université Libanaise de Beyrouth. Nabil Tabaja a été entièrement financé par le Groupe de Recherche MAPE (Nanosized Porous Materials, Preparation, Advanced Characterization and Environmental Applications) de Beyrouth que nous tenons à remercier. Le but de ce travail était de tester et de valoriser des catalyseurs à base d’oxydes de fer et de ferrites pour la dépollution des eaux par photocatalyse sous lumière visible puis solaire. Les catalyseurs étudiés ont été préparés en employant des silices poreuses en tant que gabarits pour obtenir majoritairement : soit des nanoparticules, NP, d’oxydes de fer ayant cristallisé à l’intérieur des pores des silices (INTERNES, répliquées), soit des nanoparticules ayant cristallisé à l’extérieur des grains de silice et formées lors des traitements d’activation thermiques (EXTERNES). Nous avons employées des techniques faciles à transférer pour obtenir les silices (Chapitre 1). Notre objectif à ce niveau était d’obtenir plus de 50g d’au moins six silices ayant des diamètres de mésopores différents. La variation de ces diamètres s’accompagne de modifications des connections entre les mésopores principaux et des propriétés des surfaces des silices. Différents sels précurseurs de fer (chlorure, nitrate) ou des mélanges de métaux ont été déposées sur les différentes silices obtenues par des techniques de dépôt de type deux solvants (2S). Les échantillons ont été traités thermiquement à 700°C sous air pour obtenir des nanoparticules d’oxydes (Chapitre 2). Nous montrons que, si le diamètre des NP nanorépliquées est en général proche du diamètre des pores des silices initiales, les formes et la dispersion des nanoparticules internes dans les grains de silice dépendent de différents facteurs expérimentaux, des sels précurseurs, des solvants et du type de silice sélectionnée. Nous montrons également que la formation des particules externes est associée au traitement thermique imposé et peut être favorisée en choisissant le bon solvant et le bon sel précurseur pour une silice déterminée. Des premiers tests ayant démontrés un taux de lixiviation important dans le cas de catalyseur au fer, nous avons testé des ferrites de différentes compositions (cations (II) de différentes électronégativités, Ni(II), Co(II), Cd(II), Zn(II) ; cation (III), Cr(III)). Afin de comparer la réactivité catalytique des catalyseurs, deux types de réactions sont introduites successivement. Le premier type de réaction, l’oxydation photocatalytique du méthanol et du formaldéhyde, a été employé à titre fondamental. Dans ce cas, notre objectif était d’étudier la sélectivité de la réaction et d’identifier de façon inambigue quelles nanoparticules présentes dans la formulation des catalyseurs permettent, partant d’une espèce à un seul carbone, d’obtenir des produits à 2 ou plus atomes de carbone (Chapitre III). La seconde réaction, l’oxydation photocatalytique d’un pesticide, a été employée pour démontrer que les catalyseurs peuvent être utiles à titre appliqué. Le pesticide sélectionné a été le carbendazime (Chapitre IV) dont nous avons suivi la décomposition. Ces études n’ont été possibles que grâce à l’emploi de techniques de caractérisation avancées, de type TOC et GC-MS. Les meilleures activités catalytiques ont été analysées en fonction de la présence d’une majorité de NP internes et/ou externes et d’autres espèces plus dispersées et non visibles par DRX.

  • Titre traduit

    Iron oxides and ferrites quantum-dots obtained by nano-replication, chemical reactivity and application for water depollution


  • Résumé

    This thesis was carried out as part of a Franco-Lebanese collaboration thesis (3 years) between the University of Pierre et Marie Curie in Paris and the Lebanese University in Beirut. Nabil Tabaja was fully funded by the Research Group MAPE (nanosized Porous Materials, Preparation, Advanced Characterization and Environmental Applications) Beirut that we thank.The purpose of this study was to test and develop catalysts based on iron oxides and ferrites for decontamination of water by photocatalysis under visible and sunlight. The catalysts studied were prepared by using porous silica as templates to obtain predominantly either nanoparticles, NP, iron oxides having crystallized within the pores of the silica (INTERNAL, replicated), or nanoparticles having crystallized outside the silica grains formed and during the thermal activation treatments (external). We employed techniques easily transferable to obtain silicas (Chapter 1). Our goal at this level was more than 50 grams of at least six silicas having different diameters of mesopores. The change in these diameters is accompanied by changes in connections between major mesoporous silicas and the properties of surfaces. Various iron precursor salts (chloride or nitrate) or metal mixtures were deposited on the various silicas obtained by the two solvents techniques (2S). The samples were calcined at 700 ° C in air to obtain oxide nanoparticles (Chapter 2). We show that, if the diameter of NP nanoreplicated is generally close to the pore diameter of the initial silicas, and forms the dispersion of nanoparticles in the inner silica grain depends on various experimental factors of the precursor salts, solvents and the type of the selected silica. We also show that the formation of particles is associated with the external heat treatment can be promoted and imposed by choosing the right solvent and the right precursor salt for a specific silica. Initial tests have demonstrated an important release rate in the case of iron catalyst, we tested different compositions ferrites ((II) cations of different electronegativities, Ni (II), Co (II), Cd (II), Zn (II) cation (III), Cr (III)). In order to compare the catalytic activity of the catalysts, two types of reactions are successively introduced. The first type of reaction, the photocatalytic oxidation of methanol and formaldehyde was employed as fundamental. In this case, our objective was to study the selectivity of the reaction and identify what way inambigue nanoparticles in the formulation of catalysts allow, starting from a species to a single carbon, to obtain products with 2 or more carbon atoms (Chapter III). The second reaction, the photocatalytic oxidation of a pesticide, was used to demonstrate that the catalysts may be useful as applied. The pesticide was selected carbendazim (Chapter IV) which we have followed the breakdown. These studies have been possible thanks to the use of advanced characterization techniques, type TOC and GC-MS. The best catalytic activities were analyzed according to the presence of a majority of internal and / or external NP and other species more dispersed and invisible by XRD.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?