Experimental design of a strong Magneto-Electric coupling system between a ferroelectric and a magnetic phase transition alloy : BaTiO3/FeRh, and theoretical study of the metamagnetic transition of FeRh

par Ryan Cherifi

Thèse de doctorat en Physique des matériaux

Sous la direction de Agnès Barthélémy et de Massimiliano Marangolo.

Soutenue le 25-06-2015

à Paris 6 , dans le cadre de École doctorale Physique et chimie des matériaux (Paris) .

Le jury était composé de Maurizio Sacchi, Jens Kreisel, Frédéric Nguyen Van Dau, Stéphane Mangin, Jean-François Bobo.

  • Titre traduit

    Réalisation expérimentale d'un système à fort couplage magneto-électrique entre un ferroelectrique et un alliage à transition de phase magnétique : BaTiO3/FeRh, et étude théorique des mécanismes de la transition méta-magnétique de FeRh


  • Résumé

    Aujourd'hui, la puissance de calcul des processeurs et la capacité de stockage des disques durs tels que conçus dans l'électronique moderne sont limités par la limite thermodynamique aux systèmes finis. Pour garder une vitesse de développement tel que prédit par la loi de Moore, il est donc nécessaire de considérer de nouveaux types d’architecture d’unité de calcul et stockage d’information. Un autre problème réside dans la gestion des pertes de courant par effet Joule, qui deviennent critiques dès lors que l’on atteint de très fortes densités de transistors et bits magnétiques. Notre étude s’inscrit dans ces problématiques, par la conception de nouveaux systèmes à fort couplage magnéto-électrique qui permettrait de contrôler l’information magnétique par l’injection de faibles courants électriques. Notre objectif a été de concevoir un système à fort couplage magnéto-électrique. Il existe des matériaux possédant un couplage entre ordre magnétique et ordre ferroélectrique de façon intrinsèque. Ce type de structures représente une bonne base d’analyse conceptuelle sur la nature d’hybridation des ordres férroiques. Cependant le couplage y est généralement faible, et ne permet pas l’intégration de ces matériaux dans l’électronique moderne.Une autre option consiste à artificiellement générer un couplage magnéto-électrique à travers l’interface entre deux matériaux possédant chacun un des ordres férroiques. Nous avons travaillé essentiellement sur ce type d’hétérostructure binaire, alliant un substrat ferroélectrique type, (BaTiO3) avec, dans un premier temps, un film ultra-mince ferromagnétique type (Fe, Co, FeNi). Nous avons montré la présence d’une signature d’un couplage magnéto-électrique faible à l’interface de ces systèmes. Nous avons ensuite proposé de remplacer le matériau ferromagnétique typique par un film mince de FeRh, un alliage qui possède une transition de phase magnétique d’antiferromagnétique à ferromagnétique juste au-dessus de la température ambiante, qui dépend à la fois de la température, de la pression et du champ magnétique.Nous avons alors réalisé une étude de croissance de FeRh en films ultra-minces. Nous avons pu montrer que l’alliage garde une température de transition bulk et une transition assez abrupte jusqu’à 5nm d’épaisseur. Nous avons ensuite étudié le couplage magnéto-électrique dans le système FeRh(22nm)/BaTiO3 par magnétométrie SQUID sous champ électrique. Nous avons démontré un très fort effet magnéto-électrique induit par contrainte mécanique, possédant une constante de couplage record, α = 1.6 x 10-5 s.m-1, un ordre de grandeur au-dessus des valeurs rapportées dans la littérature.Utilisant notre connaissance du système, nous avons montré l’intérêt conceptuel d’utiliser un matériau à transition de phase dans les architectures novatrices de mémoire, en proposant une description mathématique d’un comportement memristif dans le système FeRh/piézoélectrique.Finalement, l’utilisation pratique de FeRh nous a amené à étudier l’alliage par calculs Ab Initio sous contrainte mécanique et sous injection de charges, pour comprendre plus fondamentalement la nature et les mécanismes de la transition.


  • Résumé

    One of the most practical concept used in physics and engineering is the concept of triggeror switch, consisting of a means to start a controlled chain of energy transformation.A switch can lead to reversible or irreversible consequences. Technological developmentusually seeks to make use of the former because it allows for repetitive logical tasks. Suchtriggers exist via the coupling between two or more types of energetic transformations.It is formally described by the interaction between two or more distinct fields and theirexpression on a system. Amongst the most studied coupling in material physics, we findelectro-mechanical couplings such as piezoelectricity or ferroelectricity, electro-caloric ormagneto-caloric couplings such as pyroelectricity and pyro-magnetism, magneto-electric,etc. The fundamental and experimental domestication and understanding of these couplingsis usually followed (and very often motivated) by the design of practical applicationin electronics engineering technology.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.