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Résumé

Analyses de complexité d’enveloppes convexes aléatoires

Dans cette thèse, nous donnons de nouveaux résultats sur la taille moyenne
(c’est à dire le nombre moyen de faces de toutes dimensions) d’enveloppes convexes
de points choisis dans un convexe. La taille moyenne de l’enveloppe convexe est
connue lorsque les points sont choisis uniformément (et indépendamment) dans un
polytope convexe, ou un convexe suffisamment «lisse»; ou encore lorsque les points
sont choisis indépendamment selon une loi normale centrée.

Dans la première partie de cette thèse, nous développons une technique nous
permettant de donner de nouveaux résultats lorsque les points sont choisis arbi-
trairement dans un convexe, puis «bruités» par une perturbation aléatoire. Ce
type d’analyse, appelée analyse lissée, a initialement été développée par Spiel-
man et Teng dans leur étude de l’algorithme du simplexe. Pour un ensemble
de points arbitraires dans une boule, nous obtenons une borne inférieure et une
borne supérieure de cette complexité lissée dans le cas de perturbations uniformes
dans une boule en dimension arbitraire , ainsi que dans le cas de perturbations
gaussiennes en dimension 2.

Le comportement asymptotique de la taille moyenne d’une enveloppe convexe
de points choisis uniformément dans un convexe est polynomial pour un convexe
«lisse» et polylogarithmique pour un polytope. Dans la deuxième partie, nous
montrons comment construire un convexe tel que la taille moyenne de l’enveloppe
convexe de points choisis uniformément dans ce convexe oscille entre ces deux
comportements lorsque le nombre de points augmente.

Dans la dernière partie, nous présentons un algorithme pour engendrer efficace-
ment une enveloppe convexe aléatoire de points choisis uniformément et indépen-
damment dans un disque, ainsi que l’analyse de sa complexité moyenne en temps et
en mémoire. Cet algorithme permet d’obtenir rapidement une enveloppe convexe
aléatoire sans avoir à engendrer explicitement tous les points. Il a été implémenté
en c++ et intégré dans la bibliothèque cgal.
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Abstract

Complexity analysis of random convex hulls

In this thesis, we give some new results about the average size (that is, the
expected number of faces of all dimensions) of convex hulls made of points chosen
in a convex body. The average size of the convex hull is known when the points
are chosen uniformly (and independently) in a convex polytope or in a "smooth"
enough convex body. This average size is also known if the points are independently
chosen according to a centered Gaussian distribution.

In the first part of this thesis, we introduce a technique that will give new
results when the points are chosen arbitrarily in a convex body, and then noised
by some random perturbations. This kind of analysis, called smoothed analysis,
has been initially developed by Spielman and Teng in their study of the simplex
algorithm. For an arbitrary set of point in a ball, we obtain a lower and an upper
bound for this smoothed complexity, in the case of uniform perturbation in a ball
(in arbitrary dimension) and in the case of Gaussian perturbations in dimension
2.

The asymptotic behavior of the expected size of the convex hull of uniformly
random points in a convex body is polynomial for a "smooth" body and polyloga-
rithmic for a polytope. In the second part, we construct a convex body so that the
expected size of the convex hull of points uniformly chosen in that body oscillates
between these two behaviors when the number of points increases.

In the last part, we present an algorithm to generate efficiently a random convex
hull made of points chosen uniformly and independently in a disk. We also compute
its average time and space complexity. This algorithm can generate a random
convex hull without explicitly generating all the points. It has been implemented
in c++ and integrated in the cgal library.
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Introduction

In computational geometry, an important interest is to evaluate the size complexity
of the geometric objects used by an algorithm. For a given structure, the worst-case
can be very pessimistic, making the structure complicated to deal with. However,
the worst-case, sometimes, does not reflect the behavior in practice. For example,
a realistic terrain of triangles usually have a linear visibility map complexity, even
if the worst-case is quadratic. The same problem appears when dealing with the
running time of algorithm: the worst-case of the simplex algorithm is known to
be exponential, even if it works well in practice. In these cases, the worst-case
complexity does not seem to be a good quality measure of the general behavior.

A first attempt to explain a good behavior in practice is the average case.
Suppose that the input data are randomly distributed, what is the expected com-
plexity? If the worst cases appears with small probability, you can hope that the
expected complexity becomes more optimistic. One of the most famous example
for every computer science student is the complexity of the quicksort algorithm:
the worst-case is quadratic (for example if the datas are already almost sorted),
however if the pivot is chosen uniformly at random, the expected complexity be-
comes quasilinear.

Even if the average case is sometimes more optimistic, it can still be a bad
quality measure, if the random hypothesis is not realistic. Especially, asking the
input data to be randomly and independently distributed1 can be too much to ask
when the data are supposed to come from the "real world".

A new notion of complexity, the smoothed complexity, has been introduced as an
intermediate notion between the worst-case complexity and the average complexity.
The main insight is to suppose that the input data are arbitrary (like in the
worst-case) but are slightly perturbed by a random noise. Now, computing the
smoothed complexity resumes to bound the expected complexity of the noisy data
(the expectation being taken according to the noise). It’s a kind of interpolation
between the worst-case and the average case: taking no perturbations corresponds
to the study of the worst-case, and taking a huge perturbation roughly corresponds
to the average case (the perturbation is so huge that the initial input value does
not play a role anymore). This kind of complexity analysis works well when the

1For quicksort, the randomness comes only from the choice of the pivot.
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2 INTRODUCTION

worst-case is really unstable: perturbing the data a little bit decreases the order of
magnitude of the complexity. As real data come from measures and are rounded to
be stored in a computer, they will be sligthly perturbed so it’s really unlikely that
the user get a bad input. We describe some results of the smoothed complexity in
Section 1.2.

In this thesis, we focus on the complexity analysis of convex hulls. This geo-
metric structure is fairly used in computational geometry, computer graphics, so
that’s an interesting question to get informations about its number of faces. The
worst-case is known and increases exponentially with the dimension, so this is a
very pessimistic bound.

Stochastic geometry gives several results on the average complexity of convex
hulls, under several random distributions in arbitrary dimension. We describe
some of their result in Section 1.1. In the case where the points are initially chosen
uniformly in an arbitrary convex set, the exact behavior is known only if the set
is a polytope or a smooth convex set. If the convex set is not in these categories,
then the expected size of the convex hull is, most of the time, unpredictable. In
Chapter 3, we construct such a bad convex set, where the expected size of a convex
hull of points uniformly chosen in oscillates asymptotically between two regimes.

We propose, in Chapter 4, an algorithm that generates a random convex hull,
made of random points in a disk. A trivial way to do it would be to generate
all the points in the disk, and then compute the convex hull. However, once
you generate a small number of points, you already know that every point falling
inside the convex hull of these first points will not be part of the final convex hull.
Our algorithm reduces the number of points to generate, by estimating how many
points will fall on a region where we already know that they will not be part of
the output.

The main results of the thesis are describe in Chapter 2, where we focus on the
smoothed complexity of convex hulls. These results, proved using the Witness &
Collector technique, give an upper and lower bound on the smoothed complexity
for two kind of random perturbations: the uniform distribution in a ball and the
Gaussian distribution. The uniform case will be considered in arbitrary dimension,
and the Gaussian case will be done in dimension 2. Since the Witness & Collec-
tor technique is defined with general settings, we can adapt it to obtain classic
stochastic geometry results, but with a very simpler proof.
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Chapter 1

State of the Art

In this chapter, we describe some results on stochastic geometry, computational
geometry and algorithmics, that are related to the presented work.

Section 1.1 presents some results in stochastic geometry, where we consider the
convex hull of points indentically distributed. In particular, we describe the tools
and intermediate results used to find the expected number of faces of these convex
hulls.

Section 1.2 and Section 1.3 describe the notion of smoothed analysis, and give
applications to several problems. We focus on the analysis of algorithms with bad
worst-case complexity, as well as the analysis of geometric structures. We also
outline the proof for each example.

Outline
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1.2 Smoothed Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Smoothed Analysis of the Simplex Algorithm . . . . . . . . 11

1.2.3 Smoothed Analysis of the Gaussian Elimination . . . . . . . 12

1.2.4 Smoothed Analysis of the k-means Algorithm . . . . . . . . 14

1.3 Smoothed Analysis of Geometric Structures . . . . . . . . . . . . . 15

1.3.1 Smoothed Analysis of Visibility Map of Realistic Terrains . . 15

1.3.2 Smoothed Analysis of the Number of Extremal Points . . . . 16
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1.1 Stochastic Geometry

1.1.1 Sylvester’s four-point problem

The Sylvester’s four-point problem is, maybe after the Buffon’s needle problem,
the first and most famous problem in stochastic geometry. In 1865, Sylvester [50]
asked the probability, for four points randomly chosen in the plane, to be in convex
position. Several answers have been sent with different results. Actually, the result
depends on the method chosen to "pick a random point in a plane", so the problem
is not well-defined.

Since then, numerous results have been proved, if we restrict the random points
to be chosen uniformly in a convex set, for example, so that the probability measure
is well defined. Blaschke [11] showed that for any convex set (with non-empty
interior) K ⊂ R2, the probability, for four points independently and uniformly
chosen in K, to be in convex position, is lower bounded by the case where K is a
triangle, and upper bounded by the case where K is a disk.

Valtr [52] found the explicit formula for the probability, for n points uniformly
chosen in a triangle, to be in convex position. Recently, Marckert [39] found a
recursive formula to compute the probability, for n points uniformly chosen in a
disk, to be in convex position. The formula is explicit only for n very small. This
result shows that even in very simple settings, the problem is still not completely
understood.

More generally, the Sylvester problem started the fertile research on the prop-
erties of the convex hull of n random points.

1.1.2 Random polytopes

Let X1, . . . , Xn be n points independently and identically chosen according to some
distribution function.
Let

Kn = CH(X1, . . . , Xn) (1.1)

be the convex hull of these random points.
We use the standard notation fℓ(Kn) to be the number of ℓ- dimensional faces of
Kn and vol (Kn) its d-dimensional volume.

Properties of such a polytope (e.g. its number of faces or its volume) have
been a well studied topic during the last decades and has several applications in
algorithmics, optimization, biology. . .
References for such applications can be find in the introduction of the survey of
Reitzner [43]. If several properties have been studied (e.g. central limit theorems),
in this section we only describe some results about the expected number of faces
of Kn.
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A random polytope defined as the convex hull of points uniformly chosen in a disk

Convex Hulls of Uniform Points. Let K a compact convex set of Rd with non-
empty interior (such a set is called a convex body). We choose the distribution of
the points X1, . . . , Xn to be uniform in K. The properties of Kn will (in general)
depend on the shape of K. However, a very useful formula, proved by Efron [31]
in 1965, transforms the computation of the expected number of vertices of Kn into
the computation of an expected volume for any arbitrary convex body K:

E [f0(Kn)] =
n

vol (K)
E [vol (K \Kn−1)] . (1.2)

The first result on the expected volume of Kn (and so on its number of vertices)
comes from Rényi and Sulanke in 1963 [44, 45]. They computed the asymptotic
behavior of E [vol (Kn)] when K is "smooth" and when K is a polygon, in dimension
2.

These results has been generalized for higher dimensions, the best estimation
being the one given by Reitzner [42]:

• If K is a smooth convex body, i.e K has a twice differentiable boundary with
positive Gaussian curvature, for any ℓ ∈ {0, . . . , d− 1},

E [fℓ(Kn)] = c1(d, ℓ,K)n
d−1
d+1 + o(n

d−1
d+1 ) (1.3)

• If K is a polytope, then

E [fℓ(Kn)] = c2(d, ℓ,K) lnd−1 n+ o(lnd−1 n) (1.4)

where c1(d, ℓ,K) and c2(d, ℓ,K) are positive constants depending only on d, ℓ and
on K. The dependence in K can be given explicitly: c1 depends on the curvature
of ∂K, while c2 depends on the combinatorial structure of K.
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Floating Bodies. A way to compute an asymptotical estimation of E [f0(Kn)] is
the notion of floating body. Let the function v : K 7→ R:

v(x) = min{vol (K ∩H) : H is a half-space and x ∈ H}

to be the function that, given a point of K, measures the minimum volume of a
cap containing the point. The floating body is the level set

K(v ≥ t) = {x ∈ K : v(x) ≥ t}

and the wet part is

K(t) = K(v ≤ t) = {x ∈ K : v(x) ≤ t}.

Imagine that K is, say, an inflated balloon containing a small quantity t of water.
Thanks to gravity, the part that contains the water will corresponds to some cap
K ∩H (where H is a half-space) with volume t. Then, if you turn the balloon on
all directions, the water will stand on every possible cap K∩H with volume t. The
union of these "wet" caps corresponds to K(t). The floating body corresponds to
the volume inside the balloon that is never wet, and so floats above the water.

Gravity

Gravity

Wet part

Floating body

Efron’s formula (1.2) allows to consider only the expected volume E [vol (K \Kn)]
in order to compute E [f0(Kn+1)]. Bárány and Larman [9], showed that K

(

1
n

)

and
E [vol (K \Kn)] are related, so computing E [f0(Kn)] becomes a pure geometrical
problem:

Theorem 1 (Bárány, Larman [9]). Let K ⊂ Rd be a convex body, vol (K) = 1.
There exist some constants c1, c2(d) and n1(d) such that for n ≥ n1(d),

c1 vol
(

K
(

1
n

))

≤ E [vol (K \Kn)] ≤ c2(d) vol
(

K
(

1
n

))

.

As a result, E [f0(Kn)] is Θ
(

n volK
(

1
n

))

, where the constants depend only on
the dimension.

Economic cap covering An important tool used in the proof of Theorem 1 is
the so-called economic cap covering. Bàràny and Larman [9] proved that we can
cover the wet part of K, without "over covering too much".
More formally:
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Theorem 2 (Bárány, Larman [9]). Let K be a convex body in Rd , vol (K) = 1,
and 0 < ε < (d2d)−1. There are caps C1, . . . , Cm and pairwise disjoint convex sets
C ′

1, . . . , C
′
m such that for each i, C ′

i ⊂ Ci and:

• ∪mi=1C
′
i ⊂ K (ε) ⊂ ∪mi=1Ci,

• vol (C ′
i) = Ω (ε) and vol (Ci) = O (ε),

• Every cap C of volume ε is contained in some Ci.

The caps Ci cover the wet part K(ε) economically in the sense that

K(ε) = Θ (mε) .

This technique appears to be, in some ways, similar to the Witness & Collector
technique developped in Section 2.2.

Estimation of the wet part In this paragraph we suppose vol (K) = 1 for sim-
plicity. The computation of the volume of the wet part has been done by Schütt
and Werner [47] if K is smooth, and by Schütt [48] if K is a polytope:

• If K is a smooth convex body, then for t ≥ 0,

vol (K (t)) = c3(d,K)t
2

d+1 (1 + o(1)),

• If K is a polytope, then for t ≥ 0,

vol (K (t)) = c4(d,K)t

(

ln
1

t

)d−1

(1 + o(1)).

These results, combined with Theorem 1, give the order of magnitude of E [f0(Kn)]
given in Equation (1.3) and (1.4). It appears that these two behaviors are extremal,
since for any convex body K, and for t small enough,

K(t) = Ω

(

t

(

ln
1

t

)d−1
)

and
K(t) = O

(

t
2

d+1

)

where the constants involved depends only on the dimension. This result has been
proved by Bàràny and Larman [9]. Actually, if K is neither a polytope nor a
smooth convex body, the behavior can be proved to be usually unpredictable. We
construct such a convex body in Chapter 3.
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Convex Hulls of Gaussian Points. Let’s now define X1, . . . , Xn as n random points
in Rd chosen according to the centered Gaussian distribution with variance - co-
variance matrix Id. Again we define Kn as the convex hull of these points. This
kind of polytopes are called Gaussian polytopes. The expected number of ℓ-faces
of Kn has been studied in arbitrary dimensions:

E [fℓ(Kn)] = c(d, ℓ) ln
d−1
2 n (1 + o(1)) (1.5)

where c(d, ℓ) is a constant depending only on d and ℓ that can be explicited. This
result comes from the work of Rényi and Sulanke [44, 45] and Raynaud [41].

1.2 Smoothed Analysis

1.2.1 Motivation

To understand and predict the practical behavior of an algorithm, a first step
is to analyze how the amount of resources it requires grows with the size of the
input. The basic building blocks of geometric algorithms are combinatorial struc-
tures induced by geometric data such as convex hulls or Voronoi diagrams of finite
point sets, lattices of polytopes obtained as intersections of half-spaces, intersection
graphs or nerves of families of balls... The size of these structures usually depends
not only on the number of geometric primitives (points, half-spaces, balls...), but
also on their relative position: for instance, the number of faces of the Voronoi
diagram of n points in Rd is Θ(n) if these points form a regular grid but Θ

(

n⌈d/2⌉)

if they lie on the moment curve. (We assume here a Real RAM model of compu-
tation, so the points have arbitrary real coordinates and the input size is simply
the number n of points.)

There are two traditional approaches to account for how the complexity of a
structure depends on the position of the points that induce it: the worst-case
complexity, which measures the maximum of the complexity function over the
input space, and the average-case analysis, which averages the complexity function
against a suitable probability distribution on the space of inputs. Unfortunately,
both approaches have shortcomings: the worst-case may be exceedingly pessimistic
when the maximum is achieved only by constructions that are so brittle that it
is unlikely they arise in practice,1 whereas the input distributions considered for
the average complexity are often unconvincing for lack of relevant and tractable
statistical models to work with.

The smoothed complexity model, proposed by Spielman and Teng [49] in the
early 2000’s, interpolates between the worst-case and the average case model.

1For instance, while Delaunay triangulations in R
3 have quadratic worst-case complexity, they appear to have

near-linear size for the point sets arising in practice in the context of reconstruction [14]; one should thus not
consider Delaunay-based reconstruction methods inefficient on the sole ground of worst-case analysis. The worst-
case analysis can sometimes be refined by introducing additional parameters such as fatness [19] or spread [32],
but realistic input models remain elusive in many contexts (eg. computer graphics scenes).
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Informally, it is defined as the maximum over the inputs of the expected com-
plexity over small perturbations of that input. Intuitively, this “local averag-
ing” mechanism disposes of configurations that vanish under small perturbation
and models more accurately the behavior on “real data”, which is usually given
with bounded precision and subject to measurement noise. In other words, the
smoothed complexity quantifies the stability of bad configurations.

If we are given a complexity measure C(x) for a given input x, and if Xn is the
set of possible inputs with size n, then the smoothed complexity function f(n, σ)
is

f(n, σ) = max
x∈Xn

Eg [C(x+ σg)]

where σg is a vector of random variables of mean 0 and standard deviation σ‖x‖;
‖x‖ being some measure of the magnitude of x. (This measure of magnitude
depends on the problem, and can sometimes be simply 1.) Taking σ = 0 gives
the worst-case complexity. On the other side, if we choose σ large enough (so that
the contribution of x is negligeable compared to σg), one would expect to obtain
the same behavior as the average-case. The smoothed complexity is said to be
polynomial if f(n, σ) is a polynomial in n and 1/σ.

1.2.2 Smoothed Analysis of the Simplex Algorithm

We consider the problem of solving linear programming problems in the form

max ztx
subject to Ax ≤ y

(1.6)

using the simplex algorithm, introduced in 1947 by Dantzig [18]. This algorithm
is known to work well in practice, even if its number of steps can be exponential in
the dimensions of the matrix A [37]. Spielman and Teng [49] investigate the case
of arbitrary data noised with small Gaussian noise.

The Simplex Algorithm. The basic idea of the simplex algorithm is to walk over
the vertices of the polytope defined by the constrains, so that the objective function
ztx is increasing at each step. If there is a solution to the linear problem, then
the algorithm will stop at one vertex of the polytope, which will be the optimal
solution for the objective function. At each step, the algorithm has to take a
decision in order to choose the next vertex. There are several methods to do that,
but the one considered in [49] is called the Shadow Vertex Method.

The Shadow Vertex Method. The Shadow Vertex Method consists on projecting
the polytope defined by the inequalities of Problem (1.6) onto a plane spanned by
the objective function z and another objective function t, such that we know a
vertex x of the polytope that optimizes t. This projection (which is a polygon) is
called the shadow.
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We start from the image of x on the shadow,
and we walk along the vertices of the shadow,
until we reach the vertex whose pre-image
vertex on the polytope optimizes the objec-
tive function z. As we are only walking on the
vertices that are the vertices of the shadow,
the running time of this method will depends
on the size of the shadow. Shadow of a polytope

Smoothed Complexity. Spielman and Teng computed the expected running time
of the simplex algorithm (with a shadow vertex pivot) for linear programing prob-
lems in the form

max ztx
subject to 〈(A+G)i, x〉 ≤ (y + h)i for 1 ≤ i ≤ n

(1.7)

with G and h be a matrix and a vector of independant Gaussian random variables
with mean 0 and standard deviation σmaxi ‖(yi, ai)‖.
Theorem 3 (Spielman, Teng [49]). Let n > d ≥ 3, σ > 0, A ∈ Rn×d and z ∈ Rd.
The expected number of steps for the simplex algorithm to solve the problem (1.7)
is at most polynomial in n, d and 1

σ
.

Thus, the Simplex algorithm has a polynomial smoothed complexity for Gaus-
sian perturbations.

Outline of the Proof. The first step of the proof is to show that if z and t are inde-
pendent (non random) vectors, then we can bound the expected size of the shadow
of the polytope defined by the noised inequalities of Problem (1.7), projected on
the plane spanned by z and t.

Note that in this case, z and t are fixed and do not depend on the data. For
the Shadow Vertex Method, this will not be the case, so the first step cannot be
applied straightforwardly. The second part of the proof consists of dealing with
this issue, using the first part as a black box.

1.2.3 Smoothed Analysis of the Gaussian Elimination

One of the first other result of smoothed analysis has been performed by Sankar,
Spielman and Teng [46]. Let Ā an n × n matrix, let A be a random Gaussian
perturbation of Ā.

They consider the problem of solving the linear system Ax = y by Gaussian
elimination with a final accuracy of b bits, and compute the expected number
of bits needed during the elimination. The worst-case is O(bn) bits of precision
[35], and we can construct examples that produce large entries [51]. However, in
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practice, the Gaussian elimination does not usually require more than a double
precision. For example, the lapack library uses only 64 bits of precision [4]. The
authors proved that the expected number of bits of precision to solve the perturbed
linear system Ax = y is only O(b+ lnn):

Theorem 4 (Sankar, Spielman, Teng [46]). For n > e4, let Ā be an n× n matrix
with ‖Ā‖2 ≤ 1. Let A = Ā+G with Gi,j ∼ N (0, σ2), with σ2 ≤ 1

4
.

Then, the expected number of bits of precision necessary to solve Ax = y to b
bits of accuracy using Gaussian elimination without pivoting is at most

b+
11

2
log2 n+ 3 log2

(

1

σ

)

+ log2(1 + 2
√
nσ) +

1

2
log2 log2 n+ 6.83

Outline of the Proof. The strategy is to use the result of Wilkinson [54], which
states that the number of necessary bits is

b+ log2(5nκ(A)ρU(A) + 3),

where:

• LU is the LU -decomposition of A obtained without pivoting,

• κ(A) is the condition number of A, κ(A) = ‖A‖2‖A−1‖2,

• ρU(A) is the growth factor of A in U :

ρU(A) =
‖U‖∞
‖A‖∞

,

• ρL(A) is the growth factor of A in L: ρ(L) = ‖L‖∞.

It remains to show that with high probability, the condition number and the growth
factors small when A is a perturbed matrix.

Application: A Robust Algorithm for Linear System. The above result can lead
to an algorithm that solves efficiently a linear system [1]. Given a matrix Ā, add
a Gaussian perturbation with a well chosen standard deviation. Then, solve the
perturbed linear system with a well chosen precision. Then, with probability as
close to 1 as you want, the perturbed solution will be a solution of the original
linear system with an accuracy of b bits:

Theorem 5 (Sankar, Spielman, Teng [1]). Let Ā be an n× n matrix and y ∈ Rn.
Let A be the perturbed version of Ā with Gaussian noise of standard deviation

δ
(

2b+3n
1
2κ(A)

)−1

. Let’s solve the perturbed system Ax = y using Gaussian elim-
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ination without pivoting, with

4b+ 10 lnn+ 3 lnκ(A) + 5 ln

(

1

δ

)

+ 7

bits of precision. Then, with probability at least 1 − δ, the obtained solution is a
solution of Āx = y accurate to b bits.

1.2.4 Smoothed Analysis of the k-means Algorithm

Let X be a set of n points in Rd. Given a parameter k, the k-clustering problem
consists of finding a partition of X into k clusters C1, . . . , Ck such that every point
is "close" to the centroid of its cluster. More formally, an optimal solution would
be to find the set of cluster Copt such that

Copt = argmin
C={C1,...,Ck}
∪k
i=1Ci=X

φ(C,X ), φ(C,X ) =
k
∑

i=1

∑

x∈X∩Ci

‖x− µi‖2 (1.8)

where µi is the centroid of the cluster Ci.
This problem is known to be NP-hard [2, 38], even
if k or d is fixed (but if both k and d are fixed, the
problem can be solved in polynomial time [36]).
The k-means algorithm is a well used iterative
heuristic algorithm to solve this problem, even if
the optimal solution is not guaranteed. This al-
gorithm is said to be efficient in practice, but the
number of iterations, in the worst-case, is expo-
nential in n [53]. Thus, this algorithm is a good
candidate for the smoothed analysis.

An example of clustering with k = 3

Algorithm. The basic idea of the algorithm is to start from an arbitrary clus-
tering, and then try to modify it so that it decreases the potential function φ of
Equation (1.8). Once the potential cannot be decreased anymore, the algorithm
stops.

1. Select k points c1, . . . , ck arbitrary in Rd.

2. x ∈ X is in Ci if for all j 6= i, ‖x− ci‖ < ‖x− cj‖
3. ci := 1

cardCi

∑

x∈Ci
x

4. If the ci’s or the clusters have changed, goto 2, otherwise return C1, . . . , Ck.

Smoothed Analysis. Arthur, Manthey and Röglin [5], performed a smoothed anal-
ysis on the k-means algorithm:
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Theorem 6 (Arthur, Manthey, Röglin [5]). If the set of point X is noised by
a Gaussian perturbation of mean 0 and standard deviation σ, then the expected
number of iterations of the k-means algorithm is bounded by a polynomial in n, d
and 1

σ
.

In other words, the smoothed complexity is polynomial.

Outline of the Proof. The idea of the proof is to have a look on how much the po-
tential function of Equation (1.8) decreases in every sequence of a few consecutive
iterations. The authors proved that the minimal improvement appears only with
a very small probability.

The main insight is to encode each possible iteration in a transition blueprint.
A transition blueprint is basically a graph2 where each vertex corresponds to a
cluster, and each oriented edge between two clusters corresponds to a point that
moves from a cluster to another one. Then, the transition blueprints are classified
with only six possible cases (a general case and five special cases that do not fit in
the general one), according to some of their combinatorial properties. The main
challenge is then, under these combinatorial assumptions, to bound the probability
of the smallest improvement to be small.

1.3 Smoothed Analysis of Geometric Structures

1.3.1 Smoothed Analysis of Visibility Map of Realistic Terrains

A terrain is a surface obtained by, given a triangulation in the plane, assigning
to each vertices an elevation. This geometric structure can be used to model
moutainous regions.

Let T be a terrain of n triangles, and p be a
viewing point. The visibility map of T from p
is the projection of the triangles of T , visible
from p, onto a plane. We define the com-
plexity of the visibility map as the number
of vertices of the visibility map from p (such
vertices can be vertices or edge intersection
in T ). In the worst case, this complexity is
known to be quadratic. However, in practice,
the complexity seems to be close to linear. Credits: GeoSolutions, Inc.

de Berg, Haverkort and Tsirogiannis [20] showed that the smoothed complexity of
visibility maps, under some random uniform perturbation of the vertices elevation:

2A blueprint keeps also informations about the cluster centers.
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Theorem 7 (de Berg, Haverkort, Tsirogiannis [20]). Let T be a terrain of n
triangles. Then, a visibility map of T under perspective projection has smoothed
complexity

O

((

tan θ

c
+

1

sinφ

)

σn

)

under the addition of noise to each vertex’s elevation that is uniformly distributed
in an interval [−c, c], where:

• The fatness φ > 0 is the smallest angle in the triangles of the underlying
triangulation;

• The steepness θ < π
2

is the largest dihedral angle between any triangle and the
horizontal plane,

• The scale factor σ ≥ 1 is the length of the longest edge divided by the length
of the shortest edge of the triangulation;

• The constant c is a fixed constant fraction of the minimum edge length of the
triangulation.

If we assume the fatness, the steepness and the scale factor to be constant in
n, the smoothed complexity of visibility maps is linear. These assumptions on
the terrain are used in several contexts and seem to be experimentally realistic.
However, they are not sufficient, alone, to explain the linear behavior in practice,
since the worst-case of visibility maps of realistic terrains is still Θ(n

√
n).

Outline of the Proof. The number of terrain vertices is already O(n), so it remains
to compute the expected number of visible edge-intersections. Take two edges e
and f of T that do not share a vertex (otherwise these edges cannot intersect).
A first step is to bound the probability, by perturbing e, that e creates a visible
intersection with f . This probability can be bounded by some local geometric
constants. Then, the authors deduced that the expected number of visible in-
tersections with e can be bounded as well. Summing up and bounding the local
constants by the global ones θ, σ and φ give the result.

1.3.2 Smoothed Analysis of the Number of Extremal Points

Let p∗1, . . . , p
∗
n be n points chosen in a d-dimensional hypercube. Let p1, . . . , pn be

the noisy version of the point set under some random distribution and compute
the expected size of the convex hull of the noisy points. The problem seems to
be similar to Section 1.1.2, however in this case the points are not identically
distributed: the mean value of pi is p∗i . In other words, this corresponds to the
smoothed complexity of the convex hulls.

In the worst case, the number of vertices of a convex hull of n points in Rd is

Θ
(

n⌈ d
2
⌉
)

, and the average-case corresponds to Section 1.1.2. Damerow and Sohler
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[17] computed an upper-bound of the expected number of vertices of the convex
hull (called extremal points) for Gaussian perturbations and uniform perturbations
in a cube. They proceed by bounding the expected number of maximal points (a
point is maximal if each of its orthants contains no points). Since every extremal
point is maximal, their bound is also valid for the expected number of extremal
points.

Theorem 8 (Damerow, Sohler [17]). Let P ∗ = {p∗1, . . . , p∗n} be a set of n points of
Rd for fixed dimension d, in the d-dimensional unit hypercube. Let P = {p1, . . . , pn}
its noisy version under some noise distribution ∆.

• if ∆ is the d-dimensional Gaussian distribution with standard deviation σ,
then the expected number maximal points is

O

(

1

σd
ln3/2·d−1 n

)

,

• if ∆ is the uniform distribution in a hypercube of side length ε, then the
expected number of maximal points is

O

(

(

n lnn

ε

) d
d+1

)

.

Outline of the Proof. First, the authors compute the average number of maximal
points if the points are chosen according to the distribution ∆. Under some as-
sumption on ∆ (which are valid for the one considered in the final theorem), they
proved that the average complexity is O

(

lnd−1 n
)

. Now, fix a parameter δ, and
split the unit hypercube into 1

δd
smaller hypercubes of size δ. For each small hyper-

cube Cj, we consider the points (p∗i )Cj
that are in Cj, and compute the expected

number of maximal points of (pj)Cj

δ

For each cell Cj , we consider the initial points in Cj (in black) and their noisy version (in red).

The main idea is that if δ is small enough, then the points (pi)Cj
will behave

almost like in the average-case. Summing up the maximal points of all the Cj gives
an upper bound of the total number of maximal points. This idea, summerized in
a lemma, can be applied for the two considered distributions.
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Smoothed Complexity of Convex Hulls
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Let P ∗ be a finite set of points in Rd and consider a random perturbation
P = {p∗ + η(p∗) : p∗ ∈ P ∗} where each point p∗ is moved by some random
vector η(p∗), typically chosen independently. We are interested in the asymptotic
behavior of the expected number of faces (of all dimensions) of the convex hull of
P , as a function of the number n of points and some parameter that describes the
amplitude of the perturbations.

Formally, the smoothed complexity of convex hulls relative to a probability dis-
tribution µ on Rd is defined as

S(n, µ) = max
p∗1,p

∗
2,...,p

∗
n∈Rd

diam{p∗1,p
∗
2,...,p

∗
n}≤1

E [cardCH ({p∗1 + η1, p
∗
2 + η2, . . . , p

∗
n + ηn})]

where diam denotes the diameter, cardS denotes the cardinality of a set S, CH(X)
denotes the set of faces, of all dimensions, of the convex hull of X, and η1, η2, . . . , ηn

19
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are random variables chosen independently from the distribution µ.We present
upper and lower bounds on S(n,UδB), where UδB is the uniform distribution on the
ball of radius δ centered in the origin in Rd, and S(n,N (0, σ2I2)), where N (0, σ2I2)
is the Gaussian distribution centered in the origin and with covariance matrix σ2I2.

2.1.1 New Results

Our main results are a technique to analyze random geometric hypergraphs, which
we call the witness-collector technique, as well as its application to the analysis of
the smoothed complexity of convex hulls. Before we spell them out we need to
clarify some terminology.

Random Geometric Hypergraphs. Let X be a set, (X ,R) a range space (i.e. R is
a family of subsets (ranges) of X ) and P a finite set of random elements of X . The
random geometric hypergraph induced by (X ,R) on P is the set H = {P ∩ r : r ∈
R}; that is, a subset Q ⊂ P is a hyperedge of H if and only if there exists r ∈ R
such that r ∩ P = Q. Our analyses of random convex hulls proceed by analyzing
random geometric hypergraphs where X = Rd, R is the set of all half-spaces of Rd,
and the elements of P are chosen independently (but not identically distributed!).
Any face of the convex hull of P is a hyperedge of H, but the converse is not true.
It turns out, however, that the average size of H is close enough to that of CH(P )
that our technique yields meaningful upper and lower bounds on the smoothed
complexity of convex hulls (cf. Section 2.2.3).

Notations for Orders of Magnitude. Our goal is to understand how the order of
magnitude of the smoothed complexity depends on the number n of points and
the amplitude δ or σ of the perturbation. For the sake of the presentation, we do
not keep track in our analyses of additive or multiplicative constants depending
on fixed quantities such as the dimension of the space. Throughout the chapter,
we therefore write a = O(b), a = Ω(b) and a = Θ(b) to mean that there exist
positive reals c and c′ such that, respectively, a ≤ cb, a ≥ cb and cb ≤ a ≤ c′b;
we also use Θ(b) (and similarly for O() and Ω()) as a shorthand for a quantity x
for which x = Θ(b) holds. These notations do not carry any asymptotic meaning
(since several variables may assume large and unrelated values); when used without
stating any condition on n, σ or δ, these notations mean inequalities that hold for
any n ≥ d+ 1, δ > 0 and σ > 0.

The Witness-Collector Technique. Let (X ,R) denote a range space. Our analyses
are based on the following notion:

Definition 9. A system of witnesses and collectors for a covering R1∪R2∪. . .∪Rm

of R is a family {(W j
i , C

j
i )}1≤i≤m

1≤j≤ℓ
of pairs of subsets of X such that
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(a) for all i, j, any r ∈ Ri contains W j
i or is contained in Cj

i ,
(b) for all i, W 1

i ⊆ W 2
i ⊆ . . . ⊆ W ℓ

i ,

(c) for all i, j, W j
i ⊆ Cj

i .

We denote by H(k) the set of hyperedges of cardinality k of a hypergraph H. Our
analyses are based on the following theorem, which we prove in Section 2.2:

Theorem 10. Let (X ,R) be a range space, let P be a set of n random elements
of X chosen independently and let H denote the hypergraph induced by R on P .

(i) If {(W j
i , C

j
i )}1≤i≤m

1≤j≤ln2 n

is a system of witnesses and collectors for a covering

R1 ∪R2 ∪ . . .∪Rm of R such that W j
i ∩P and Cj

i ∩P have average size Ω(j)
and O(j) respectively then E

[

cardH(k)
]

= O(m).

(ii) If every element of H(1) is in at least one element of H(k), and {W 1
i }1≤i≤m is

a family of disjoint subsets of X such that E
[

card
(

W 1
i ∩H(1)

)]

= Ω(1) then

E
[

cardH(k)
]

= Ω(m).

In several of our applications we first construct a system {(W j
i , C

j
i )} of witnesses

and collectors satisfying the assumptions of Theorem 10 (i), then use a subfamily
of the W 1

i ’s that are disjoint to apply Theorem 10 (ii).

Applications. We present, in Sections 2.3 and 2.4, two designs of systems of wit-
nesses and collectors suited to study the smoothed complexity of convex hulls
relative to Euclidean and Gaussian perturbations with the following results (cf.
Figures 2.1 and 2.2):

Smoothed Complexity. We obtain upper bounds on the smoothed complexity
of convex hulls relative to Euclidean and Gaussian perturbations; in the Eu-
clidean case we obtain sharper bounds for the smoothed number of vertices.
We also analyze the convex hull of perturbations of points in convex position
and delineate the main regimes in terms of the number of points and the
amplitude of the perturbation; this provides lower-bounds on the Euclidean
and Gaussian smoothed complexities of convex hulls.

Large Perturbations. We show that for δ = Ω
(

n
2

d+1

)

the smoothed complex-

ity of convex hulls relative to UδB is of the same order of magnitude as the
expected complexity of the convex hull of random points chosen i.i.d. from
UδB, the classical model of random polytope. Our smoothed complexity upper
bound also implies a similar result for Gaussian perturbation with σ = Ω(1).

Simple Analysis of Classical Random Polytopes. The classical model of
random polytopes corresponds to the case where all points of p∗i coincide.
There, our systems of witnesses and collectors yield the order of magnitude
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of the expected number of faces with considerably less effort than earlier
analyses.

A Surprising Phenomenon. We observed experimentally (Figure 2.2c) that the
expected size of the convex hull of perturbations of points in convex posi-
tion consistently decreases with the amplitude of the noise in the Gaussian
model, whereas some non-monotonicity appears in the Euclidean model. Our
analyses of perturbations of points in convex position provide a theoretical
confirmation of this difference in behaviours (see Figures 2.1b and 2.2a).

As evidence that the witness-collector technique is relevant for the study of other
geometric hypergraphs, we outline a design of witnesses and collectors that yields
the order of magnitude of the number of faces in the Delaunay triangulations
of a set of random points chosen uniformly and independently from the unit ball
(Theorem 22); again, this is a well-known result but the proof (only sketched here)
is considerably shorter than the original one.

2.1.2 Related Works

The results presented here appeared in preliminary form in research reports [6,
22] and proceedings of conferences [23, 28]. Note that the shift from static to
adaptative witness-collectors in Section 2.2.2 is based on an idea which we learned
from [33] and systematize here. We briefly position our results with respect to
prominent related previous work.

Smoothed Number of Maximal Points. The only previous bound on the smoothed
complexity of convex hulls is due to Damerow and Sohler [17], see Section 1.3.2.
They study the number of maximal points under Gaussian and ℓ∞ perturbations
(we included the results for the Gaussian case in Figures 2.1d and 2.2b). Their
technique requires that the perturbation acts independently on each coordinate
(thus restricting possible perturbations) so that the analysis of point dominance
reduces to considerations on independent random permutations. The number of
maximal points bounds from above the number of extreme points, but in proba-
bilistic setting these two quantities typically have different orders of magnitude.
As a consequence, the upper bounds are not sharp and there is no lower bound.

One may expect that when the magnitude of the perturbations is sufficiently
large compared to the scale of the initial input, the initial position of the points
does not matter and smoothed complexity is subsumed by some average-case anal-
ysis (up to constant multiplicative factors). The main insight of Damerow and
Sohler [17] is a quantitative version of this claim. Specifically, they show that if n
points from a region of diameter r are perturbed by a Gaussian noise of standard
deviation Ω(r

√
lnn) or a ℓ∞ noise of amplitude Ω(r 3

√

n/ lnn) then the expected
number of maximal points is the same as in the average-case analysis. A smoothed
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any d
Range of δ

[

0, n
2

d+1
− 1

d−1 ⌊ d

2 ⌋
] [

n
2

d+1
− 1

d−1 ⌊ d

2 ⌋, 1
]

[

1, 3n
2

d+1

] [

3n
2

d+1 ,+∞
)

S(n,UδB) O
(

n⌊ d

2 ⌋
)

O

(

n
2 d−1

d+1 δ−(d−1)

)

O

(

n
2 d−1

d+1

)

Θ

(

n
d−1
d+1

)

any d E
[

cardH(1)
]

= O

(

n
d−1
d+1 + δ

− 2d
d+1 n

1+2 d−1

(d+1)2

)

d = 2
Range of δ [0, 1√

n
] [ 1√

n
, 1] [1, n5/12] [n5/12, n2/3] [n2/3,+∞]

S(n,UδB) O(n) O

(

δ−
2
3 n

2
3

)

O
(

n2/3
)

O
(

δ−
4
3 n

11
9

)

O
(

n1/3
)

(a) Upper bounds on the smoothed complexity relative to Euclidean perturbations (Theo-
rem 13 and Corollary 14).

Range of δ 0 ≤ δ ≤ n
2

1−d n
2

1−d ≤ δ ≤ 1 1 ≤ δ ≤ n
2

d+1 n
2

d+1 ≤ δ

E [cardCH(P )] Θ(n) Θ

(

n
d−1
2d δ

1−d
2

4d

)

Θ

(

n
d−1
2d δ

(1−d)2

4d

)

Θ

(

n
d−1
d+1

)

(b) Expected complexity of a Euclidean perturbation P of a regular sample of the unit sphere in R
d

(Theorem 15). This gives a lower bound on the smoothed complexity for Euclidean perturbation.

any d d = 2

δ ≥ δ0⇒ average-case behavior δ0 = O
(

n
2

d+1

)

δ0 = O
(

n2/3
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(c) Amplitude of a Euclidean perturbation for which the smoothed complexity behaves as the average-
case complexity (Lemma 2.3.8).

Our bounds (d = 2) Previous bound [17]a
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√
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lnn+ σ−2 ln2 n
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(d) Upper bounds for Gaussian perturbations (Theorem 18).

aThis bound applies to maximal point, cf. the comparison to earlier work.
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√

σ)√
σ

)

Θ

(

4
√

ln(n
√

σ)√
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(e) Expected complexity of a Gaussian perturbation P of a regular n-gon in R
2 (Theorem 19 and Theo-

rem 20). The lower bound gives a lower bound on the smoothed complexity for Gaussian perturbation.

Figure 2.1: Summary of our bounds.
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(a) A comparison of our smoothed complexity bound for Euclidean perturbation (Theorem 13 and
Corollary 14) and two lower bounds, where the initial points are placed respectively at the vertices of a
unit-size n-gon (Theorem 15) and in the origin. A data point with coordinates (x, y) means that for a
perturbation with δ of magnitude nx the expected size of the convex hull grows as ny, subpolynomial
terms being ignored. The worst-case bound is given as a reference. The constants in the O() and Ω()
have been ignored as their influence vanishes as n → ∞ in this coordinate system.
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(b) Comparison of the smoothed bounds for Gaussian perturbation in dimension 2 (Theorem 18 and
[17]) and the lower bound perturbing the regular n-gon (Theorem 19). A data point with coordinates
(x, y) means that for a perturbation of magnitude σ = lnx n the expected size of the convex hull grows
as lny n.
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(c) Experimental results for the complexity of the convex hull of a perturbation of the regular n-gon
inscribed in the unit circle. Left: Gaussian perturbation of variance σ2. Right: Euclidean perturbation
of amplitude δ. Each data point corresponds to an average over 1000 experiments.

Figure 2.2: Plots summarizing the main results.
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complexity bound then follows by a simple rescaling argument: split the input do-
main into cells of size r = O(σ/

√
lnn), assume that each cell contains all of the

initial point set, and charge each of them with the average-case bound.
Our technique yields a similar subsuming of the smoothed complexity analysis

by the average-case analysis for the number of faces (Lemma 2.4.5) with the same
threshold, thus extending Damerow and Sohler’s main insight; we also obtain a
similar statement in the Euclidean model (Lemma 2.3.8). The smoothed com-
plexity bound we obtain by the rescaling argument (Corollary 17) is better than
the one of Damerow and Sohler because the average number of extreme points is
asymptotically smaller than the number of maximal points. It should be noted
that the rescaling argument only applies to bound the number of vertices of the
convex hull since faces of higher dimension may come from more than one cell; in
any case, we further improve the bound obtained from the rescaling argument by a
more direct analysis that accounts for faces of arbitrary dimension (Theorem 18).

Smoothed Complexity of a Simplex Algorithm. A substantial literature in the
analysis of algorithms was devoted to explain the very good practical performance
of the simplex algorithm, given that most of the pivoting rules had exponential
worst-case complexity. This motivated the study of various models of random
polytopes, and eventually the introduction of the smoothed complexity analysis
model by Spielman and Teng [49]. We encourage the interested reader to consult
their discussion of earlier literature, and simply compare our work to the smoothed
complexity bound for convex hulls that is at the core of their analysis of the shadow-
vertex pivot rule. As seen on Section 1.2.2, they estimate the expected number
of vertices of an arbitrary two-dimensional projection of a polytope given as an
intersection of n halfspaces in d dimensions and perturbed by a Gaussian noise of
standard deviation σ using techniques quite different from ours, see [49, Th 4.1].
Neither n nor d are fixed, so the number of vertices may be exponential in the
input; their analysis shows that it is polynomial in n, d and 1

σ
. The question we

consider is therefore, from the point of view of the model, of a rather different
nature: we consider the dimension to be fixed rather than variable, specify the
polytope as a convex hull of vertices rather than intersection of half-spaces, and
estimate the number of faces rather than the two-dimensional silhouettes. More
importantly, our intent is to understand a transition within the polynomial domain
rather than identify a polynomial behavior in place of an exponential worst-case
bound.

Floating Bodies and Economic Cap Coverings. As seen on Section 1.1.2, Bárány
and Larman [9] established that the expected number of faces of the convex hull
of n random points chosen uniformly from a convex body K is Θ

(

nK
(

1
n

))

, where
K(t) denotes the volume of the wet part of K with parameter t: the union of the
intersections of K with a half-space that intersects it with volume at most t. This
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connection allowed them to transfer to the study of random polytopes various re-
sults from convex geometry, for which wet parts, or their complements the floating
bodies, are classical objects.

When the ranges are half-spaces in Rd, our systems of witnesses and collectors
are essentially equivalent to the economic cap covers on which Bárány and Lar-
man’s proof is based (Bárány and Vu [10, § 5] also use the same idea in the proving
of a central limit theorems for Gaussian polytopes). A first difference is that the
analogue of our Condition (a) for economic cap covers is formulated in terms of wet
parts, so the role of the range space is implicit. This has little effect as far as the
ranges are half-spaces, but we note that the analogue of wet parts for other range
spaces is not straightforward to define and study, whereas our presentation natu-
rally extends to other range spaces (as the case of Delaunay triangulation sketched
in Section 2.5 demonstrates). We also note that the constructions of systems of
witnesses and collectors differ from the constructions of economic cap covers, but
believe that this is a less essential distinction.
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2.2 Witnesses and Collectors

In this section we first explain the idea behind Theorem 10 in a simpler setting in
Section 2.2.1, then prove Theorem 10 in Section 2.2.2, then clarify its use for the
analysis of convex hulls of random point sets in Section 2.2.3.

2.2.1 Principle: Static Witnesses and Collectors . . . . . . . . . . 28
2.2.2 Proof of Theorem 10: Adaptative Witnesses and Collectors . 29
2.2.3 The Special Case of Convex Hulls . . . . . . . . . . . . . . . 31
2.2.4 Proofs of Lemmas 2.2.1 and 2.2.2 . . . . . . . . . . . . . . . 32

2.2.1 Principle: Static Witnesses and Collectors

Let (X ,R) be a range space, P a random set of n elements of X chosen indepen-
dently, H the hypergraph induced by R on P , and k ∈ N. Let R1 ∪R2 ∪ . . .∪Rm

be a covering of R and {(W 1
i , C

1
i )}1≤i≤m a system of witnesses and collectors for

that covering. Since ℓ = 1, we shorten W 1
i into Wi and C1

i into Ci and note that
Condition (b) is trivial.

Conditioning on Loaded Witnesses. If card (Wi ∩ P ) is at least k then Condi-
tion (a) ensures that every hyperedge of size k in {r ∩ P : r ∈ Ri} is contained in

Ci, so there are at most E

[

card (Ci ∩ P )k
]

such hyperedges; otherwise we can use

the trivial upper bound
(

n
k

)

. Conditioning on the event that card (Wi ∩ P ) is at
least k for all i we therefore get

E
[

cardH(k)
]

≤ P [∃i, card (Wi ∩ P ) < k]

(

n

k

)

+P [∀i, card (Wi ∩ P ) ≥ k] ·
m
∑

i=1

E

[

card (Ci ∩ P )k
]

so if the witnesses are chosen so that card (Wi ∩ P ) ≥ k with probability 1 −
O(n−k),

E
[

cardH(k)
]

= O

((

m
∑

i=1

P [card (Wi ∩ P ) < k]

)

·
(

n

k

)

+P [∀i, card (Wi ∩ P ) ≥ k] ·
m
∑

i=1

E

[

card (Ci ∩ P )k
]

)

= O

(

m+
m
∑

i=1

E

[

card (Ci ∩ P )k
]

)

. (2.1)
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Role of Wi ∩P and Ci ∩P. Chernoff’s multiplicative bound implies that if Wi ∩P
has average size Ω(k lnn) then indeed card (Wi ∩ P ) ≥ k with probability 1 −
O(n−k). More generally:

Lemma 2.2.1. Let P be a set of random elements of X chosen independently and
W a subset of X .
(a) P [W ∩ P = ∅] ≤ e−E[card(W∩P )].
(b) If E [card (W ∩ P )] ≥ k + 1 then P [card (W ∩ P ) < k] ≤ e−Ω(E[card(W∩P )]).

(We defer the proof to Section 2.2.4.) The bound in Equation (2.1) is expressed

in terms of the E

[

card (Ci ∩ P )k
]

but can be controlled by E [card (Ci ∩ P )] since

the elements of P are chosen independently:

Lemma 2.2.2. If V =
∑n

i=1 Vi, where the Vi are independently distributed random

variables with value in {0, 1} and E [V ] ≥ 1 then E
[

V k
]

= O
(

E [V ]k
)

.

(Again, the proof is postponed to Section 2.2.4.) In the situations we consider,
one can construct witnesses and collectors such that Wi ∩ P and Ci ∩ P both
have expected size Θ(k lnn); see [23] for several examples. Equation (2.1) and
Lemma 2.2.2 then yield that E

[

cardH(k)
]

is of order m up to some logarithmic
factors.

Shaving Log Factors. The use of a Chernoff bound to control the probability that
witnesses contain fewer than k elements increases the expected size of the Wi∩P so
that all of them are large for most realizations of P . By Condition (c), Wi ⊆ Ci, so
this also overloads the collectors, resulting in the extra log factors. The idea that
leads to the sharper bounds of Theorem 10, which we learned from [33], is to make
Wi and Ci random variables depending on P . By adapting the witness-collector
pairs used in the analysis to each realization of P , very few collectors will need to
be large, and their contribution to the total will remain negligible.

It is perhaps worth pointing out that the above analysis holds for several of
our constructions when only the first layer (j = 1) of witnesses and collectors is
considered. Our proofs can therefore be further simplified should one not care
about some extra logarithmic factors.

2.2.2 Proof of Theorem 10: Adaptative Witnesses and Collectors

We first prove the upper bound, in a format that will allow slightly more flexibility.

Lemma 2.2.3. Let (X ,R) be a range space, let P be a set of n random elements
of X chosen independently and let H denote the hypergraph induced by R on P .
If R1 ∪ R2 ∪ . . . ∪ Rm is a covering of R and {(W j

i , C
j
i )}1≤i≤m

1≤j≤ln2 n

is a system of
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witnesses and collectors for that covering with

P
[

card
(

W j
i ∩ P

)

< k
]

= O
(

e−Ω(j)
)

and E
[

card
(

Cj
i ∩ P

)]

= O(j)

then E
[

cardH(k)
]

is O(m).

Proof. Let i ∈ {1, 2, . . . ,m}. We let di denote the smallest j such that W j
i contains

at least k points and Ci = Cdi
i , or, if no such W j

i exists, di = ∞ and Ci = X .
(So di and Ci are random variables depending on P .) By Condition (a) and the
definition of di, every hyperedge of H of size k induced by Ri is contained in Ci

so:

E
[

cardH(k)
]

≤
m
∑

i=1

E

[

card (Ci ∩ P )k
]

. (2.2)

Moreover, by Condition (b) we have

P [di ≥ j] = P
[

card
(

W j
i ∩ P

)

< k
]

= O
(

e−Ω(j)
)

.

We claim that

E
[

card
(

Cj
i ∩ P

)

| di ≥ j
]

≤ E
[

card
(

Cj
i ∩ P

)]

+ k = O(j). (2.3)

Indeed, working with the complement C̄j
i of Cj

i ,

E
[

card
(

C̄j
i ∩ P

)]

=
∑

p∈P
P
[

p /∈ Cj
i

]

.

For any T ⊂ P we have

E
[

card
(

C̄j
i ∩ P

)

| W j
i ∩ P = T

]

=
∑

p∈P\T
P
[

p /∈ Cj
i | p /∈ W j

i

]

≥
∑

p∈P\T
P
[

p /∈ Cj
i

]

,

the last inequality following from Condition (c). Thus,

E
[

card
(

C̄j
i ∩ P

)]

≤ E
[

card
(

C̄j
i ∩ P

)

| W j
i ∩ P = T

]

+ cardT.

By Condition (b), di ≥ j if and only if card
(

W j−1
i ∩ P

)

< k. Total probabilities
let us decompose this event:

E[ card
(

C̄j
i ∩ P

)

| di ≥ j]

=
∑

T :cardT<k

E
[

card
(

C̄j
i ∩ P

)

| W j−1
i ∩ P = T

]

P
[

W j−1
i ∩ P = T | card

(

W j−1
i ∩ P

)

< k
]

≥
(

E
[

card
(

C̄j
i ∩ P

)]

− k
)

∑

T :cardT<k

P
[

W j−1
i ∩ P = T | card

(

W j−1
i ∩ P

)

< k
]

=E
[

card
(

C̄j
i ∩ P

)]

− k
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Moving back to the complement yields Inequation (2.3). Now, since P has n points
in total, conditioning on the value of di we obtain

E [card (Ci ∩ P )] =
ln2n
∑

j=1

E
[

card
(

Cj
i ∩ P

)

· 1di=j

]

+E [n · 1di=∞]

≤
ln2n
∑

j=1

E
[

card
(

Cj
i ∩ P

)

· 1di≥j

]

+E [n · 1di=∞]

=
ln2n
∑

j=1

E
[

card
(

Cj
i ∩ P

)

| di ≥ j
]

P [di ≥ j] +n · P [di =∞]

=
ln2n
∑

j=1

O
(

je−Ω(j)
)

+O
(

ne−Ω(ln2 n)
)

so each collector Ci contains on average a constant number of elements of P .
Lemma 2.2.2 and Equation (2.2) imply that E

[

cardH(k)
]

= O(m).

We now wrap-up the proof of our witness-collector theorem.

Proof of Theorem 10. Since E
[

card
(

W j
i ∩ P

)]

= Ω(j), there exists some con-
stant c > 0 such that E

[

card
(

W j
i ∩ P

)]

≥ cj. For j ≥ k+1
c

, the Chernoff
bound of Lemma 2.2.1 (b) thus ensures that P

[

card
(

W j
i ∩ P

)

< k
]

is at most
e−Ω(j). Bounding that probability from above by 1 in the cases j < k+1

c
we get

that P
[

card
(

W j
i ∩ P

)

< k
]

is O
(

e−Ω(j)
)

. Statement (i) then follows readily from
Lemma 2.2.3.

Now consider Statement (ii). We can charge each element of H(1) to an element
of H(k) that contains it. Since each element of H(k) is charged at most k times, we
have cardH(k) ≥ 1

k
cardH(1). The assumptions ensure that each W 1

i contains on
average Ω(1) elements of H(1) and that these elements are distinct. It follows that
E
[

cardH(1)
]

and E
[

cardH(k)
]

are Ω(m).

2.2.3 The Special Case of Convex Hulls

Unless indicated otherwise, in the remainder of this chapter the range space (X ,R)
considered is that of half-spaces in Rd, where d is a constant. Every element of
H(1) belongs to some element of H(k), so the first condition of Theorem 10 (ii)
holds for this range space.

In this setting, the elements of H(k) are also called the k-sets of the point set
P . The bounds that we establish are expressed with O(), Ω() and Θ() in which
the multiplicative constants depend on k; they are therefore valid for any fixed k.



32 CHAPTER 2. SMOOTHED COMPLEXITY OF CONVEX HULLS

For k ≤ d, any (k−1)-dimensional face of CH(P ) is a k-set, so the
upper bound of Theorem 10 (i) applies to the size of the convex
hull. The reverse is not true (cf. the figure on the right) but
we remark that H(1) is exactly the set of vertices of CH(P ) and
that every element ofH(1) belongs to an actual (k−1)-dimensional
face of CH(P ); the proof of Statement (ii) of Theorem 10 therefore
provides, mutatis mutandis, a lower bound on the number of
(k − 1)-dimensional faces of CH(P ). In the rest of the chapter, we will navigate
without further justification between the convex hull of a random point set P and
the associated random geometric hypergraph.

2.2.4 Proofs of Lemmas 2.2.1 and 2.2.2

Proof of Lemma 2.2.1. Let Vi be the indicator function of the event that the ith

point from P belongs to W . We write V = V1 + . . . + Vn and let t = E [V ].
Chernoff’s bound for lower tails yields that for any δ ∈ (0, 1)

P [V < (1− δ)t] ≤
(

e−δ

(1− δ)1−δ

)t

= e−t(1−(1−δ)(1−ln(1−δ))). (2.4)

In particular,

P [V = 0] ≤ lim
δ→1

P [V < (1− δ)t] = lim
δ→1

e−t(1−(1−δ)(1−ln(1−δ))) = e−t

which proves Statement (a). Moreover, for 1 − δ = k
t
, Equation (2.4) specializes

into
P [V < k] < e−t(1− k

t (1−ln k
t ))

Since x 7→ x(1− ln x) is increasing on (0, 1), for t ≥ k + 1 we have

1− k

t

(

1− ln
k

t

)

≥ 1− k

k + 1

(

1− ln
k

k + 1

)

> 0

and Statement (b) follows.

Proof of Lemma 2.2.2. The statement is a special case of a classical inequality for
sums of random variables [40, Th 2.12]; we give a simple, elementary, proof.

Expanding V k = (
∑n

i=1 Vi)
k we obtain

E
[

V k
]

=
∑

1≤i1,i2...ik≤n

E [Vi1 · Vi2 . . . Vik ]

=
k
∑

ℓ=1

∑

1≤i1,i2...ik≤n

|{i1,i2...ik}|=ℓ

E [Vi1 · Vi2 . . . Vik ] .
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Since the Vi’s have values in {0, 1}, for any positive integers a1, a2, . . . at and
i1, i2, . . . it

E
[

V a1
i1
· V a2

i2
. . . V at

it

]

= E [Vi1 · Vi2 . . . Vit ] .

Letting p(ℓ, k) denote the number of partition of {1, 2, . . . , k} in ℓ subsets, we can
thus write

E
[

V k
]

=
k
∑

ℓ=1

∑

1≤i1,i2...iℓ≤n

ia 6=ib if a 6=b

p(ℓ, k)E [Vi1 · Vi2 . . . Viℓ ] .

Since Vi and Vj are independent if i 6= j the previous identity rewrites as

E
[

V k
]

=
k
∑

ℓ=1









p(ℓ, k)
∑

1≤i1,i2...iℓ≤n

ia 6=ib if a 6=b

E [Vi1 ] · E [Vi2 ] . . .E [Viℓ ]









.

Thus,

E
[

V k
]

≤
k
∑

ℓ=1

(

p(ℓ, k)
∑

1≤i1,i2...iℓ≤n

E [Vi1 ] · E [Vi2 ] . . .E [Viℓ ]

)

and since

∑

1≤j1,j2,...,jℓ≤n

E [Vj1 ] · E [Vj2 ] . . .E [Vjℓ ] =

(

n
∑

i=1

E [Vi]

)ℓ

= E [V ]ℓ

we finally obtain that

E
[

V k
]

≤
k
∑

ℓ=1

p(ℓ, k)E [V ]ℓ ≤
(

k
∑

ℓ=1

p(ℓ, k)

)

E [V ]k

the last inequality following from the fact that E [V ] ≥ 1.
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2.3 Euclidean Perturbation

We first consider the complexity of convex hulls of points perturbed under Eu-
clidean perturbations.

2.3.1 Preliminaries: Ball/Half-space Intersection . . . . . . . . . . 34
2.3.2 Witness-Collector Construction . . . . . . . . . . . . . . . . 35
2.3.3 Warm-up: Average-Case Analysis Made Easy . . . . . . . . 37
2.3.4 Upper Bounds on the Smoothed Complexity . . . . . . . . . 37
2.3.5 Lower Bound: Points in Convex Position . . . . . . . . . . . 41

Terminology and Notations. Let d ≥ 2 be a constant. We denote by ρB the ball
of radius ρ centered at the origin of Rd. Given X ⊂ Rd we denote by volk(X) its
k-dimensional volume and by ∂X its boundary. We say that two half-spaces are
parallel if they have the same inner normal. The intersection depth of a half-space
W and a ball p + δB is δ − d̄(p,W ), where d̄(p,W ) is the signed distance of p to
∂W (positive if and only if p /∈ W ).

2.3.1 Preliminaries: Ball/Half-space Intersection

We denote by f(t, δ) the volume of the intersection of p+δB with
a half-space that intersects it with depth t. Note that t 7→ f(t, δ)
is increasing on [0, 2δ] for any fixed δ.

Claim 2.3.1. For any λ ≥ 1 and any t ≥ 0, f(λt, δ) ≤
λ

d+1
2 f(t, δ).

t

δ

Wf(t, δ)

p

Proof. First assume that λt ≤ 2δ. Let νd−1 denote the volume of a (d − 1)-
dimensional ball of radius 1. By integrating along the direction of the inner normal
to the half-space, we find

f(λt, δ) = νd−1

λt
∫

0

(

2xδ − x2
)

d−1
2 dx = νd−1

t
∫

0

λ
d−1
2

(

2xδ − λx2
)

d−1
2 λdx

≤ νd−1

t
∫

0

λ
d+1
2

(

2xδ − x2
)

d−1
2 dx = λ

d+1
2 f(t, δ)

which proves the claim. The case λt > 2δ then follows easily:

f(λt, δ) = vold (δB) = f

(

2δ

t
t, δ

)

≤
(

2δ

t

)
d+1
2

f(t, δ) ≤ λ
d+1
2 f(t, δ).
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Claim 2.3.2. For t ∈ [0, δ], f(t, δ) = Θ
(

t
d+1
2 δ

d−1
2

)

.

ν

t cone

cylinder

δB

W

Proof. Let W be a half-space that intersects δB with depth t and
let ν = (∂W ) ∩ δB. The region W ∩ δB is sandwiched between
a cone and a right cylinder with heights t and bases ν, with
respective volumes t vold−1(ν)/d and t vold−1(ν). Since ν is a
ball of radius r, with r2 = δ2− (δ− t)2 = 2tδ− t2, it has (d− 1)-

dimensional volume Θ
(

(tδ)
d−1
2

)

and the claim follows.

2.3.2 Witness-Collector Construction

Our systems of witnesses and collectors for Euclidean perturbations are based on
the construction summarized in the following figure.

h1

h4

h2

∂ρB

W
2
1

H2

ρB

C
j
i

Hi

W
j
i

H3

ranges in Ri

normals to H1

W 1
1

W
4
1

W
3
1

Definition. Our construction is parameterized by a radius ρ, usually chosen so
that the perturbed point set remains inside ρB, and a sequence of positive reals
h1 < h2 < . . . < hℓ. We let H1, H2, . . . Hm be an inclusion-minimal cover of ∂(ρB)
by half-spaces of intersection depth h1 with ρB.

Claim 2.3.3. m = Θ
(

(ρ/h1)
d−1
2

)

.

Proof. If h1 ≥ ρ then m ≤ 2 so assume h1 < ρ. The intersection Hi ∩ ∂(ρB) is
a spherical cap with radius r = Θ

(√
h1ρ
)

. Since the Hi form a minimal cover of
∂(ρB),

m = Θ

(

vold−1(∂(ρB))

vold−1(∂(ρB) ∩Hi)

)
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The statement then follows from the fact that vold−1(∂(ρB)) and vold−1(∂(ρB) ∩
W 1

i ) are, respectively, proportional to ρd−1 and rd−1.

We then define the range Ri as the set of half-spaces whose inner normal is parallel
to a vector from the origin to a point of Hi∩∂(ρB). We define W j

i as the intersection
of ρB with the half-space parallel to Hi and with intersection depth hj with ρB.
We define Cj

i as the union of the half-spaces of Ri that do not contain W j
i .

Lemma 2.3.4. R1 ∪R2 ∪ . . . ∪Rm covers the set of half-spaces in Rd and
{(W j

i , C
j
i )}1≤i≤m

1≤j≤ℓ
is a system of witnesses and collectors for that covering. More-

over, a constant fraction of the W 1
i are pairwise disjoint.

Proof. The definition readily ensures that the union of the Ri is the set of all
half-spaces and that Condition (a) holds. The monotonicity of the hi implies that
Condition (b) is also satisfied. Let x ∈ W j

i .If x 6∈ ∂Hi, then let H denote the
half-space parallel to Hi with x on its boundary. If x ∈ ∂Hi, we have to tilt the
plane slightly: let H be a half space in Ri with x on its boundary but not parallel
to H. In both cases H is in Ri and does not contain W j

i and thus x ∈ H ⊂ W j
i

and Condition (c) holds. As the cover of ∂ρB by {Hi}i=1,2,...,m is inclusion-minimal,
we can extract a family I ⊆ {1, 2, . . . ,m} of size Ω(m) such that the {W 1

i }i∈I are
pairwise disjoint.

In our analysis we will need some control over the intersection of Cj
i with ρB:

Claim 2.3.5. Cj
i ∩ ρB is contained in a half-space parallel to Hi with intersection

depth at most 9hj with ρB.

Proof. For any half-space H, the region H ∩ ρB is the convex hull of H ∩ ∂ρB. It
follows that H ∈ Ri does not contain W j

i if and only if H ∩ ∂ρB does not contain
W j

i ∩∂ρB. This implies that for any H ∈ Ri the spherical cap H∩∂ρB is contained
in a cap with same center as W j

i ∩ ∂ρB and three times its radius. A half-space

cutting out a cap of radius rx in ∂ρB intersects ρB with depth hx = Θ
(

r2x
ρ

)

.

Tripling the radius of a cap thus multiplies the depth of intersection by 9, and the
statement follows.

Claim 2.3.6. If E [card (W 1
i ∩ P )] = Ω(1) then E

[

card
(

W 1
i ∩H(1)

)]

= Ω(1)

Proof. If W 1
i ∩P is non-empty then W 1

i contains the point of P extreme in direction
~ui and W 1

i ∩H(1) is therefore non-empty. We thus have

E
[

card
(

W 1
i ∩H(1)

)]

≥ P
[

W j
i ∩H(1) 6= ∅

]

≥ P
[

W 1
i ∩ P 6= ∅

]

≥ 1− e−E[card(W 1
i ∩P)] = Ω(1),

the last inequality following from the Chernoff bound of Lemma 2.2.1 (a).
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2.3.3 Warm-up: Average-Case Analysis Made Easy

As a first example, let us use a system of witnesses and collectors to give a short1

proof of a classical result of Raynaud.

Theorem 11 (Raynaud [41]). Let d ≥ 2 be a constant and P = {p1, p2, . . . , pn}
be a set of random points uniformly and independently distributed in a ball of Rd.
For any fixed k, the expected number of k−dimensional faces of the convex hull of

P is Θ
(

n
d−1
d+1

)

.

Proof. The problem is invariant under scaling, so we can choose the ball to be B.
We use our construction of Section 2.3.2 with ρ = 1. Using Claim 2.3.2, we find
that setting hj = (j/n)

2
d+1 yields

E
[

card
(

W j
i ∩ P

)]

= n
f(hj, 1)

vol (B)
= Θ(j).

Claim 2.3.3 gives m = Θ
(

(ρ/h1)
d−1
2

)

= Θ
(

n
d−1
d+1

)

. With Claims 2.3.1 and 2.3.5

this implies

E
[

card
(

Cj
i ∩ P

)]

≤ n O

(

f(hj, 1)

vol (B)

)

= O(j)

so E [cardCH(P )] = O
(

n
d−1
d+1

)

by Theorem 10 (i). Moreover, a constant fraction of

the W 1
i are pairwise disjoint, and Claim 2.3.6 ensures that E

[

card
(

W 1
i ∩H(1)

)]

=

Ω(1); Theorem 10 (ii) thus implies that E [cardCH(P )] = Ω
(

n
d−1
d+1

)

.

2.3.4 Upper Bounds on the Smoothed Complexity

We now bound from above S (n,UδB), using various arguments whose effectiveness
vary with the value of δ.

Charging Argument. Our first smoothed complexity bound relies on a charging
argument between the witness and the collector that form a pair. Let P ∗ be some
point set of diameter at most 1 in Rd. Without loss of generality we assume that
P ∗ is contained in B, and use a system of witnesses and collectors similar to the
one presented in Section 2.3.2 with ρ = 1 + δ.

We make an important change, though: the depth of intersection of each witness
W j

i depends on i, and is adapted to P ∗. We start with an inclusion-minimal
covering H1, H2, . . . , Hm of ∂(ρB) by half-spaces whose intersection depth with ρB

is Θ
(

(

r
1+δ

)2
)

. Each cuts out a spherical caps of radius r = δn− 2
d+1 on ∂(ρB),

1Raynaud’s original argument was more than 7 pages long, still leaving substantial computations to the reader.
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and m = O
(

n2− 4
d+1

(

1 + 1
δ

)d−1
)

by Claim 2.3.3. For i = 1, 2, . . . ,m and j =

1, 2, . . . , ⌈ln2 n⌉ we define:

• Ri as the set of half-spaces whose inner normal is parallel to a vector from
the origin to a point of Hi ∩ ∂(ρB),
• W j

i as the intersection of ρB with a half-space parallel to Hi positioned so
that E

[

W j
i ∩ P

]

= j,
• Cj

i as the union of the half-spaces of Ri that do not contain W j
i .

The proof of Lemma 2.3.4 readily implies that {(W j
i , C

j
i )}1≤i≤m

1≤j≤ℓ
is a system of

witnesses and collectors for the covering of the set of half-spaces in Rd by R1 ∪
R2∪ . . .∪Rm. To apply Theorem 10 (i) it remains to control the expected number
of points of P in the collectors.

Claim 2.3.7. For any perturbed point p ∈ P , with cardP ≥ 2
d+1
2 ,

P
[

p ∈ Cj
i

]

= O

(

1

n
+ P

[

p ∈ W j
i

]

)

.

Proof. Let p∗ ∈ P ∗ and p its perturbed copy. We fix some indices 1 ≤ i ≤ m and
1 ≤ j ≤ ⌈ln2 n⌉ and write w = P

[

p ∈ W j
i

]

and c = P
[

p ∈ Cj
i

]

.

p∗

~ui

h
W j

i

~̂ui~ui+1

r

~̂ui~ui+1

r

≤ 2+2δ
≤ 2rh

1+δ

C̃j
i

(1 + δ)B

hw

Sci

Refer to the figure above and let C̃j
i be the halfspace with normal ~ui containing

Cj
i ∩ (1+ δ)B and with minimal intersection depth with (1+ δ)B. Let h denote the

difference of the intersection depth of the half space cutting out W j
i and C̃j

i with
(1 + δ)B and hw denote the intersection depth at which W j

i intersects B(p∗, δ).
Observe that C̃j

i intersects B(p∗, δ) with depth at most hw+h. Since the diameter
of C̃j

i ∩ P is at most 2 + 2δ, considerations on similar triangles show that h ≤ 2r.
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If hw ≤ 2r then we obtain the first part of the announced bound on c:

c ≤ f(2r + h, δ)

f(2δ, δ)
≤ f(4δn− 2

d+1 , δ)

f(2δ, δ)
=

f(4n− 2
d+1 , 1)

f(2, 1)
=

1

f(2, 1)

4n
− 2

d+1
∫

0

(

2x− x2
)

d−1
2 dx

≤ 1

f(2, 1)

4n
− 2

d+1
∫

0

(2x)
d−1
2 dx

= O

(

1

n

)

.

If hw > 2r then we can assume that c > 2w, as otherwise the claim holds trivially.
In particular hw ≤ δ. Since h ≤ 2r = 2n− 2

d+1 , the hypothesis n ≥ 2
d+1
2 ensures

h < δ and the depths of intersection of both W j
i and C̃j

i are in the interval [0, 2δ].
We then have

c ≤ f(hw + h, δ)

f(2δ, δ)
=

f
((

1 + h
hw

)

hw, δ
)

f(2δ, δ)
≤
(

1 +
h

hw

)
d+1
2

w ≤ 2
d+1
2 w,

the last inequality coming from hw > 2r ≥ h.

Claim 2.3.7 implies that, for n bigger than the constant 2
d+1
2 ,

E
[

card
(

Cj
i ∩ P

)]

= O
(

1 + E
[

card
(

W j
i ∩ P

)])

= O(j)

and Theorem 10 (i) provides the following bound:

Proposition 12. S (n,UδB) = O
(

n2 d−1
d+1 + n2 d−1

d+1 δ−(d−1)
)

.

Large Perturbations. As δ → ∞ the bound of Proposition 12 does not tend to

Θ
(

n
d−1
d+1

)

, the average-case complexity bound. We thus complement it by a vari-

ation on the same system of witnesses and collectors better suited for the analysis
of large perturbations.

Lemma 2.3.8. For δ ≥ 3n
2

d+1 we have S(n,UδB) = Θ
(

n
d−1
d+1

)

.

Proof. We again assume, without loss of generality, that P ∗ is contained in B and

use the construction of Section 2.3.2 with ρ = 1 + δ and hj = (1 + δ)
(

j
n

)
2

d+1 . By
Claim 2.3.3 we have
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m = Θ((1 + δ)/h1)
d−1
2 = Θ

(

n
d−1
d+1

)

.

For any point p∗ in B, we have

f(hj − 2, δ)

vol (δB)
≤ P

[

p ∈ W j
i

]

≤ f(hj, δ)

vol (δB)

r

δ

hj

hj − 2r

Since hj ≥ 3, Claims 2.3.1 and 2.3.2 imply that P
[

p ∈ W j
i

]

= Θ( j
n
). By Claims 2.3.1

and 2.3.5 we get P
[

p ∈ Cj
i

]

= Θ( j
n
) as well, so Theorem 10 (i) applies. A constant

fraction of the W 1
i are pairwise disjoint, by Lemma 2.3.4, and E [card (W 1

i ∩ P )] =
Ω(1). Using Claim 2.3.6, it follows that Theorem 10 (ii) also applies, and

E
[

cardH(k)
]

= Θ(m) = Θ
(

n
d−1
d+1

)

.

Smoothed Number of Faces. Combining Proposition 12 and Lemma 2.3.8 we ob-
tain the following upper bound on the smoothed number of faces of any dimension:

Theorem 13. Let d ≥ 2 be a constant. Then, we have:

Range of δ
[

0, n
2

d+1
− 1

d−1⌊ d2⌋
] [

n
2

d+1
− 1

d−1⌊ d2⌋, 1
] [

1, 3n
2

d+1

] [

3n
2

d+1 ,+∞
)

S(n,UδB) O
(

n⌊ d2⌋
)

O
(

n2 d−1
d+1 δ−(d−1)

)

O
(

n2 d−1
d+1

)

Θ
(

n
d−1
d+1

)

In dimension 2, a Euclidean noise of amplitude above n−1/3 suffices to guarantee an
expected sub-linear complexity. In dimension 3, the second bound is uninteresting
as it exceeds the worst-case bound. In dimension d, a Euclidean noise of amplitude
above n−4/(d2−1) suffices to guarantee an expected sub-quadratic complexity.

Smoothed Number of Vertices. The bounds of Theorem 13 may be improved by
a rescaling argument like the one used by Damerow and Sohler [17]: splitting the
input into small cells and accounting separately for the contribution of each cell
using a scaled version of Lemma 2.3.8. This only applies to the number of vertices,
as a face of dimension 1 or more may involve perturbation of points coming from
more than one cell.

Corollary 14. For any constant d ≥ 2, E
[

cardH(1)
]

= O
(

n
d−1
d+1 + δ−

2d
d+1n

1+2 d−1

(d+1)2

)

,

and for d = 2 we have:

Range of δ [0, 1√
n
] [ 1√

n
, 1] [1, n5/12] [n5/12, n2/3] [n2/3,+∞]

S(n,UδB) O(n) O

(

δ−
2
3n

2
3

)

O
(

n2/3
)

O
(

δ−
4
3n

11
9

)

O
(

n1/3
)
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Proof. We continue to assume that P ∗ ⊂ B and we cover B with m′ = Θ(1 + r−d)

disjoint cells of size r = 1
3
δn− 2

d+1 . We partition P ∗ into P ∗
1 ∪P ∗

2 ∪. . .∪P ∗
m′ by taking

its intersection with each of the covering cells; we let Pi denote the perturbation
of P ∗

i and ni = cardPi. Every vertex of CH(P ) is a vertex of some CH(Pi), and
we can apply Lemma 2.3.8 to bound the number of vertices of CH(Pi) from above

by ni

d−1
d+1 . If m′ > 1, the sum is maximized with ∀i, ni =

n
m′ which bounds from

above the number of vertices of CH(P ) by

m′O
(

(

n
m′

)
d−1
d+1

)

= O

(

(

(

δn− 2
d+1

)−d
) 2

d+1

n
d−1
d+1

)

= O
(

δ−
2d
d+1n

4d
(d+1)2

+ d−1
d+1

)

= O
(

δ−
2d
d+1n

1+2 d−1

(d+1)2

)

.

This proves the first statement. For the second statement, in two dimensions, we
proceed differently in each regime:

δ ≤ 1√
n
. In this case, the worst-case bound is used.

1 ≤ δ ≤ n5/12. This case is solved using Proposition 12.

n2/3 ≤ δ. Here, Lemma 2.3.8 yields the result.

n5/12 ≤ δ ≤ n2/3. This case is handled through the first statement of the present
corollary.

1√
n
≤ δ ≤ 1. For the remaining case, we apply the same partitioning idea, but
using Proposition 12 instead of Lemma 2.3.8 as an upper bound for one cell.
Namely, considering a partitioning induced by covering cells of size δ, we get

sets P ∗
i whose convex hull has size n

2
3
i . Summing on the 1

δ2
cells and using

the concavity of x 7→ x
2
3 , we have

O(δ−2)
∑

i=1

n
2
3
i = O

(

δ−2(δ2n)
2
3

)

= O

(

(n
δ
)
2
3

)

2.3.5 Lower Bound: Points in Convex Position

We finally analyze the expected complexity of Euclidean perturbations of some
particular point configuration: points in convex position that are “nicely spread
out”; more precisely, we take P ∗ to be an (ε, κ)-sample of a sphere with fixed
radius, ie. a sample such that any ball of radius ε centered on the sphere contains
between 1 and κ points of the sample.

Our motivation for studying this class of configurations is that they are natural
candidates to realize the smoothed complexity of convex hulls in 2 and 3 dimensions
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and therefore provide an interesting lower bound. In light of Theorem 10 (ii),
setting up the witnesses W 1

i is enough to obtain a lower bound on the expected
size of the convex hull; we give a complete analysis since at this stage it comes
easily and makes it clear that the lower bound obtained by our choice of W 1

i is
sharp for these configurations.

Theorem 15. Let d ≥ 2 be a constant and P ∗ = {p∗i : 1 ≤ i ≤ n} be an
(

Θ
(

n
1

1−d

)

,Θ(1)
)

-sample of the unit sphere in Rd and let P = {pi = p∗i + ηi}
where η1, η2, . . . , ηn are random variables chosen independently from UδB. For any
fixed k, E

[

cardH(k)
]

is

Range of δ [0, n
2

1−d ] [n
2

1−d , 1] [1, n
2

d+1 ] [n
2

d+1 ,+∞)

E
[

cardH(k)
]

Θ(n) Θ
(

n
d−1
2d δ

1−d2

4d

)

Θ
(

n
d−1
2d δ

(1−d)2

4d

)

Θ
(

n
d−1
d+1

)

The last bound corresponds to the average-case behavior which applies for δ
sufficiently large, as follows from Lemma 2.3.8. We thus only have to analyze the
range δ ≤ n

2
d+1 . Note that the first bound merely reflects that a point remains ex-

treme when the noise is small compared to the distance to the nearest hyperplane
spanned by points in its vicinity, and that the bounds reveal that as the ampli-
tude of the perturbation increases, the expected size of the convex hull does not
vary monotonically (see Figures 2.2a and 2.2c): the lowest expected complexity
is achieved by applying a noise of amplitude roughly the diameter of the initial
configuration.

The following claim will be useful to position the witnesses and control the
collectors.

Claim 2.3.9. Under the assumptions of Theorem 15, let j ≤ ln2 n, let H be a half-
space such that E [card (H ∩ P )] = Θ(j) and let h denote its depth of intersection
with (1 + δ)B.

(i) If δ = O
(

j
n

)
2

d−1 then h = Θ
(

(

j
n

)
2

d−1

)

and if Ω
(

j
n

)
2

d−1 ≤ δ ≤ O
(

n
2

d+1

)

then h = Θ
(

(

j
n

)
1
d δ

d+1
2d

)

.

(ii) If H ′ is a half-space that intersects (1 + δ)B with depth 9h then

E [card (H ′ ∩ P )] = O(E [card (H ∩ P )]).

Proof. The region S ⊆ ∂B in which we can center a ball of radius δ that intersects
H is the intersection of ∂B with a half-space parallel to H and that intersects it

with depth h; S is thus a spherical cap of B of radius
√
2h− h2 = Θ

(√
h
)

and

(d− 1)-dimensional area Θ
(

h
d−1
2

)

. By the sampling condition in the definition of

P ∗, each ball of radius n
1

1−d centered on ∂B contains Θ(1) points of P ∗. In total

there are thus Θ
(

nh
d−1
2

)

points p∗ ∈ P ∗ such that (p∗+ δB)∩H 6= ∅. For the rest
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of this proof call these points relevant. How much a relevant point contributes to
E [cardH ∩ P ] depends on how h compares to δ.

If h ≤ δ then H intersects any ball p∗+δB with depth at most δ, and Claim 2.3.2
bounds the contribution of any relevant point p∗ to E [cardH ∩ P ] by

vol (H ∩ (p∗ + δB))

vol (δB)
≤ f(h, δ)

f(2δ, δ)
= O

(

h
d+1
2 δ

d−1
2

δd

)

= O

(

(

h

δ

)
d+1
2

)

.

Shrinking h by a factor two, we obtain that a constant fraction (depending only

on d) of the relevant points contribute for at least f(h/2,δ)
f(2δ,δ)

= Ω
(

(

h
δ

)
d+1
2

)

to

E [card (H ∩ P )], hence

Θ(j) = E [card (H ∩ P )] = Θ

(

nh
d−1
2

(

h

δ

)
d+1
2

)

= Θ
(

nδ−
d+1
2 hd

)

and h = Θ
(

(

j
n

)
1
d δ

d+1
2d

)

. The condition h ≤ δ thus amounts to δ = Ω
(

(

j
n

)
2

d−1

)

,

giving the second regime.

If h > δ then a constant fraction of the relevant points p∗ are such that H
intersects p∗ + δB with depth at least δ/2, thus containing a constant fraction of
each of these balls (and the rest of the relevant points contribute less). It follows

that Θ(j) = Θ
(

nh
d−1
2

)

and h = Θ
(

(

j
n

)
2

d−1

)

. The condition h > δ amounts to

δ = O
(

(

j
n

)
2

d−1

)

, giving the first regime.

Observe that in either case, the number of points in H∩P depends polynomially
on h. Thus, multiplying the depth by 9 multiplies the expected number of points
by a constant (depending only on d) and statement (ii) follows.

Proof of Theorem 15. We use our construction of Section 2.3.2 with ρ = 1 + δ.
We fix hj such that each W j

i contains Θ(j) points of P ; the values of hj are given
by Claim 2.3.9(i). By Claim 2.3.5, Cj

i is contained in a half-space that intersects
(1 + δ)B with depth at most 9hj. Claim 2.3.9(ii) thus ensures that

E
[

card
(

Cj
i ∩ P

)]

= O
(

E
[

card
(

W j
i ∩ P

)])

= O(j)

and we can apply Theorem 10 (i). Lemma 2.3.4 and Claim 2.3.6 further guarantee

that we can apply Theorem 10 (ii). By Claim 2.3.3, m = Θ

(

(

1+δ
h1

)
d−1
2

)

and we

have three regimes.
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If δ = O
(

1
n

) 2
d−1 then Claim 2.3.9(i) yields h1 = Θ

(

(

1
n

) 2
d−1

)

and

m = Θ

(

(

1 + δ

h1

)
d−1
2

)

= Θ











1
(

1
n

) 2
d−1





d−1
2






= Θ(n) .

If Ω
(

j
n

)
2

d−1 ≤ δ ≤ O
(

n
2

d+1

)

then Claim 2.3.9(i) yields h1 = Θ
(

(

1
n

) 1
d δ

d+1
2d

)

. If

δ ≤ 1 then

m = Θ

(

(

1 + δ

h1

)
d−1
2

)

= Θ











1
(

1
n

) 1
d δ

d+1
2d





d−1
2






= Θ

(

n
d−1
2d δ

1−d2

4d

)

and if δ ≥ 1 then

m = Θ

(

(

1 + δ

h1

)
d−1
2

)

= Θ











δ
(

1
n

) 1
d δ

d+1
2d





d−1
2






= Θ

(

n
d−1
2d δ

(1−d)2

4d

)

Up to multiplicative constants, the boundaries between the regimes can be set as
in the statement of the Theorem.
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2.4 Gaussian Perturbation

The Gaussian model raises two difficulties compared to the Euclidean model: the
computations are more technical and the fact that the perturbations have non-
compact support requires to adapt the witness-collector construction. We expect
some of the results to extend to arbitrary dimension mutatis mutandis, but for the
sake of the presentation only spell out the analysis in the two-dimensional case.

2.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.2 Witness-Collector Construction . . . . . . . . . . . . . . . . 47
2.4.3 Warm-up: Gaussian Polygons Made Easy . . . . . . . . . . . 49
2.4.4 Upper Bound on the Smoothed Complexity . . . . . . . . . 51
2.4.5 Lower Bound on Smoothed Complexity: Points in Convex

Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.6 Gaussian Perturbation of a Regular Polygon: An Upper Bound 65

2.4.1 Preliminaries

Recall that if X ∼ N (µ, σ2) then for any t ≥ 0 we have P [X ≥ µ+ tσ] = Q(t),
where Q is the tail probability of the standard Gaussian distribution:

Q(x)

x0

1
2

1

∀x ∈ R, Q(x) =
1√
2π

∫ ∞

x

e−
t2

2 dt.

The solution to the functional equation

f(x)ef(x) = x

is called the Lambert function W0 [15, Equa-
tion (3.1)]. For x ≥ 0 the definition of W0 (x)
is non-ambiguous and satisfies

∀x ≥ 1.01, W0 (x) = Θ (ln x) . (2.5)

This essentially follows from [15, Equations (4.6) and (4.9)]; note that the constant
1.01 is arbitrary and any constant strictly larger than 1 would do (the constants
in the Θ() would change but we do not care). The following inequalities will be
useful:

Lemma 2.4.1.

(i) For x > 0,
e−

x2

2

x+ 1
x

<
√
2πQ(x) <

e−
x2

2

x
.

(ii) For x > 1/4, Q

(

x+
1

x

)

= Θ(Q(x)).
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(iii)

(a)
n
∑

i=0

e−i2x = O

(

1 +
1√
x

)

(b) For any constant γ > 0, for x > γ
n2 ,

n
∑

i=0

e−i2x = Ω

(

1√
x

)

(c) For any constant γ > 0, for x < γ
n2 ,

n
∑

i=0

e−i2x = Ω(n)

Proof. The upper bound of statement (i) comes from

Q(x) =

∫ ∞

x

1√
2π

e−
t2

2 dt <

∫ ∞

x

t√
2πx

e−
t2

2 dt =

∫ ∞

x2

2

e−t

x
√
2π

dt =
1√
2πx

e−
x2

2

and the lower bound comes from the fact that
(

1 +
1

x2

)

Q(x) =

∫ ∞

x

(

1 +
1

x2

)

1√
2π

e−
t2

2 dt

>

∫ ∞

x

(

1 +
1

t2

)

1√
2π

e−
t2

2 dt =
e−

x2

2

x
√
2π

.

Now, for statement (ii), we have Q(x) ≥ Q(x + 1
x
) since Q is a decreasing

function. Moreover, from statement (i) we have

√
2πQ(x+ 1

x
) >

x+ 1
x

1 +
(

x+ 1
x

)2 e
−(

x+ 1
x)

2

2

=

(

x4 + x2

x4 + 3x2 + 1
e−1− 1

2x2

)

(

e−
x2

2

x

)

>

(

x4 + x2

x4 + 3x2 + 1
e−1− 1

2x2

)√
2πQ(x)

Statement (ii) then follows from noting that the image of [1/4,+∞) under the
function x 7→ x4+x2

x4+3x2+1
e−1− 1

2x2 is contained in some closed interval of (0,+∞).

The proof of Statements (iii-a) and (iii-b) follows from a standard comparison
between series and integrals:
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if x > γ
n2 ,

n
∑

i=0

e−i2x ≥
∫ n+1

0

e−t2xdt ≥
∫ n

√
x

0

e−u2 du√
x

≥
∫

√
γ

0
e−u2

du√
x

≥ Ω

(

1√
x

)

and for any x > 0,

e−
t
2

10

0

1

1 2 3 4 5 6

n
∑

i=0

e−i2x ≤ 1 +

∫ n

0

e−t2xdt ≤ 1 +

∫ n
√
x

0

e−u2 du√
x
≤ 1 +

∫ ∞

0

e−u2 du√
x

= O

(

1 +
1√
x

)

.

Statement (iii-c) is trivial since, when x < γ
n2 ,
∑n

i=0 e
−i2x ≥ n · e−γ = Ω(n).

2.4.2 Witness-Collector Construction

One Witness-Collector Pair. The pairs witness-collectors that we use to analyze
Gaussian perturbations are based on the following basic construction. Let w, h
and α be positive reals and ~u some vector in the plane.
- We define R(~u, α) as the set of half-

planes whose inner normal makes an an-
gle at most α

2
with ~u.

- We define W (w, h, ~u) as the semi-
infinite half strip with axis of symmetry
O + R~u, with width w and distance h
to the origin. To save breath we define
the height of a semi-infinite half strip as
its distance to the origin – so W (w, h, ~u)
has height h.

- We define C(w, h, ~u, α) as the union of
the half-planes in R(~u, α) that do not
contain W (w, h, ~u).

C(w, h, ~u, α)

α

~u

h

W (w, h, ~u)

w

H+ H−

O

The following more explicit description of C(w, h, ~u, α) will be convenient:

Claim 2.4.2. C(w, h, ~u, α) = H− ∪ H+ where H− and H+ are the half-planes
whose inner normals make an angle of ±α

2
with ~u, that contain W (w, h, ~u) and

have one of the corners of W (w, h, ~u) on their boundary.
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Proof. This follows from observing that any halfplane through ∂H+ ∩ ∂H− and
contained in C(w, h, ~u, α) also contains W (w, h, ~u).

This construction has the following properties:
(a’) Any halfplane whose inner normal makes an angle at most α

2
with ~u contains

W (w, h, ~u) or is contained in C(w, h, ~u, α).
(b’) If hj > hj+1 and wj < wj+1 then W (wj, hj, ~u) ⊆ W (wj+1, hj+1, ~u).
(c’) W (w, h, ~u) ⊆ C(w, h, ~u, α).
Families of pairs (W (w, h, ~u), C(w, h, ~u, α)) therefore combine easily into systems
of witnesses and collectors. We will control the expected number of points in a
witness by setting w and h adequately and tune α accordingly thanks to the next
fact. We say that a point p∗ is in the slab of W (w, h, ~u) if the ray p∗ + R+~u
intersects W (w, h, ~u).

Claim 2.4.3. Let ~u be arbitrary and let ~v denote a unit vector orthogonal to ~u. If
p∗ ∈ R2 is in the slab of W (w, h, ~u) and outside the interior of C(w, h, ~u, α) then

d(p∗, C(w, h, ~u, α)) = d(p∗,W (w, h, ~u)) cos
α

2
−
(w

2
+ |−−→Op∗ · ~v|

)

sin
α

2
.

Proof. Let H denote the half-plane contained in C(w, h, ~u, α) and whose distance
to p∗ is minimal. Let q∗ and r∗ denote respectively the orthogonal projections of
p∗ on W (w, h, ~u) and C(w, h, ~u, α). Let s∗ denote the intersection of p∗q∗ with the
boundary of H.

p∗

α
2

α
2

H

W (w, h, ~u)
w
2

q∗

r∗ s∗

~u

~v
O

The assumptions ensure that

|p∗q∗| = d(p∗,W (w, h, ~u))

and

|p∗r∗| = d(p∗, C(w, h, ~u, α)).

With ~v ∈ S1, ~v ⊥ ~u, we have

|q∗s∗| =
(w

2
+ |−−→Op∗ · ~v|

)

tan
α

2
and |p∗r∗| = |p∗s∗| cos α

2
= (|p∗q∗|−|q∗s∗|) cos α

2

and the statement follows.

System of Witnesses and Collectors. Our construction is parameterized by some
positive real α and two sequences of positive reals h1 > h2 > · · · > hℓ and
w1 ≤ w2 ≤ · · · ≤ wℓ. We choose an inclusion-minimal cover of ∂B by half-
planes H1, H2, . . . , Hm each intersecting ∂B in a circular arc of angle α; we let ~ui

denote the center of Hi ∩ ∂B and note that m = Θ
(

1
α

)

. We define Ri as the set of
half-planes whose inner normal is parallel to a vector from the origin to a point of
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Hi ∩ ∂B and let

W j
i = W (wj, hj, ~ui) and Cj

i = C(wj, hj, ~ui, α).

Lemma 2.4.4. R1∪R2∪. . .∪Rm covers the set of half-planes and {(W j
i , C

j
i )}1≤i≤m

1≤j≤ℓ

is a system of witnesses and collectors for that covering. Moreover, some Ω
(

h1

w1

)

of the W 1
i are pairwise disjoint.

Proof. The definition readily ensures that the union of the Ri is the set of all
half-planes and that Condition (a) holds. The monotonicity of the hi and the wi

implies that Condition (b) is also satisfied. Claim 2.4.2 implies that each W j
i is

contained in the corresponding Cj
i , so Condition (c) holds. Each W 1

i is contained

in a wedge with apex the origin and opening angle Θ
(

w1

h1

)

. Some Ω
(

h1

w1

)

of these

wedges are disjoint (except in the origin), so the corresponding W 1
i ’s are pairwise

disjoint.

2.4.3 Warm-up: Gaussian Polygons Made Easy

To illustrate our construction, we revisit the classical problem of computing the
expected number of faces of the convex hull from a Gaussian distribution:

Theorem 16 (Rényi and Sulanke [44]). Let P = {p1, p2, . . . , pn} be a set of random
points chosen independently from N (0, I2). The expected number of vertices of the

convex hull of P is Θ
(√

lnn
)

.

Proof. We use the construction of Section 2.4.2 with ℓ = ln2 n and the values of α,
wj and hj

set as specified on the right. Lemma 2.4.4 ensures that
we obtain a system of witnesses and collectors, so it only
remains to analyze the expected number of points in W j

i

and Cj
i . We complete each vector ~ui into a direct, or-

thonormal frame (O,~vi, ~ui); in that frame, the coordinates
of any point p ∈ P write (xi, yi) where xi, yi are indepen-
dent random variables chosen from N (0, 1).

α = 1
h1

= Θ
(

1√
lnn

)

wj = 2

hj =

√

W0

(

n2

j2

)

The probability for p to be in W j
i therefore writes

P
[

p ∈ W j
i

]

= P [yi > hj]P [|xi| < 1] = Θ (Q(hj)) .
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Lemma 2.4.1 (i) yields Q(x) = Θ
(

1
x
e−

x2

2

)

for x > 1 so, since j ≤ ln2 n,

Q(hj) = Θ









e
− 1

2
W0

(

n2

j2

)

√

W0

(

n2

j2

)









= Θ









1
√

W0

(

n2

j2

)

e
W0

(

n2

j2

)









= Θ

(

j

n

)

(2.6)

and E
[

card
(

W j
i ∩ P

)]

= nΘ(Q(hj)) = Θ(j). Since for n ≥ 3, α < 1√
W0(32)

< π
4
,

tan α
2
< 0.5 and 2hj

wj
≥ 2hℓ

wj
=
√

W0

(

n2

ln4 n

)

≥ 1. This means that tan α
2
<

2hj

wj
, so

the origin is not in Cj
i . By Claims 2.4.2 and 2.4.3, Cj

i is contained in the union of
two half-planes with height h̃j = hj cos

α
2
− sin α

2
= hj −O (α). Thus,

E
[

card
(

Cj
i ∩ P

)]

≤ 2nQ
(

h̃j

)

= 2 (nQ (hj))





Q
(

h̃j

)

Q (hj)





We already observed that nQ (hj) = Θ(j). By Lemma 2.4.1 (i) we have

Q
(

h̃j

)

Q (hj)
=

e
− 1

2

(

h̃j
2−h2

j

)

hj

h̃j

=
hj

h̃j

eO(hjα+α2)

and with Equation (2.5) we finally obtain

E
[

card
(

Cj
i ∩ P

)]

= O
(

jeO(hjα)
)

= O

(

je
O
(√

1− ln j
lnn

)

)

= O(j),

and Property (b’) holds. Theorem 10 (i) then yields that

E
[

cardH(1)
]

= O(m) = O(
√
lnn).

Let Hi denote the halfplane with same height and inner normal as W 1
i and p~ui

be the point of P extremal in direction ~ui. By construction p~ui
belongs to H(1),

thus

E
[

card
(

W 1
i ∩H(1)

)]

≥ P
[

p~ui
∈ W 1

i

]

= P [p~ui
∈ Hi]P

[

p~ui
∈ W 1

i | p~ui
∈ Hi

]

We have

P [p~ui
∈ Hi] = P [P ∩Hi 6= ∅] ≥ P

[

P ∩W 1
i 6= ∅

]

≥ 1− 1
e
>

1

2

by Lemma 2.2.1 (a). Gaussian noise perturbs points independently in directions
x and y of frame (O,~vi, ~ui). The choice of p~ui

in P depends only on the y pertur-
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bation, thus knowing that p~ui
∈ Hi, deciding if it is in W 1

i or in Hi \W 1
i depends

only on the coordinate along direction vi, thus

P
[

p~ui
∈ W 1

i | p~ui
∈ Hi

]

=
∑

p∈Hi∩P
P
[

p ∈ W 1
i | p~ui

= p
]

P [p~ui
= p | p~ui

∈ Hi]

=
∑

p∈Hi∩P
P [|xp| ≤ 1]P [p~ui

= p | p~ui
∈ Hi]

= P [|xp1 | ≤ 1]
∑

p∈Hi∩P
P [p~ui

= p | p~ui
∈ Hi]

= P [|xp1 | ≤ 1] = 1− 2Q(1) >
1

2
(2.7)

Together we get that Lemma 2.4.4 ensures that we can also apply Theorem 10 (ii)
and get that E

[

cardH(1)
]

= Ω(
√
lnn) as well.

2.4.4 Upper Bound on the Smoothed Complexity

As in the Euclidean case, for large Gaussian perturbation the smooth complexity
is identical to the i.i.d. case. It is possible, as done in Section 2.4.4.1, to obtain
a Gaussian analogue of Lemma 2.3.8 and apply the rescaling argument to get a
smoothws complexity for any scale of perturbation. This bound is, however, worse
than what we can obtain by a charging argument in the spirit of Claim 2.3.7 and
Proposition 12, and is presented in Section 2.4.4.2.

2.4.4.1 Large Perturbation and Rescaling for Gaussian perturbation

Lemma 2.4.5. Let P ∗ = {p∗1, p∗2 . . . , p∗n} be a set of points in R2 with diameter
2r. Let P be the set of pi = p∗i + ηi, where ηi ∼ N (0, σ2I2) are independent, for

σ ≥ 3r
√
lnn. Then, the expected number of vertices of the convex hull of P is

O
(√

lnn
)

.

Proof. We can suppose that P ∗ is included in rB. We set up the Gaussian witness-
collector construction of Section 2.4.2, with ℓ = ln2 n and the values of α, wj and
hj set as specified on the right.
Every point p ∈ P writes p = xi~vi + yi~ui

with xi, yi ∼ N (0, σ2) and ~ui, ~vi ∈ S1, ~vi ⊥ ~ui.
Thus, the probability for p to be in W j

i is upper-
bounded by P [yi > hj] and is lower-bounded by
P [yi > hj]P

[

|xi| ≤ w−r
2

]

.

α = σ
h1−r

= Θ
(

1√
lnn

)

wj = w = 7
2
σ

hj = r + σ

√

W0

(

n2

j2

)

It’s easy to see that P
[

|xi| ≤ w−r
2

]

is lower-bounded from below by P
[

|xi| ≤ 5w
14

]

(since r ≤ σ = 2w
7

), which is a constant.
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Now, P [yi > hj] ∈
[

Q
(

hj+r

σ

)

, Q
(

hj−r

σ

)]

so

P [yi > hj] < Q

(
√

W0

(

n2

j2

)

)

= Θ

(

j

n

)

.

As

σ ≥ 3r
√
lnn ≥ 2r

√

ln(n2)

≥ 2r
√

W0 (n2) ≥ 2r

√

W0

(

n2

j2

)

,

we get
2r

σ
≤ 1
√

W0

(

n2

j2

)

=
σ

hj − r

and

Q

(

hj + r

σ

)

= Q

(

hj − r

σ
+

2r

σ

)

≥ Q

(

hj − r

σ
+

σ

hj − r

)

.

Now, using Lemma 2.4.1 (ii) , as long as hj−r

σ
> 1

4
(which is true for n ≥ 3 and

j ≤ ln2 n) we get that

Q

(

hj − r

σ
+

σ

hj − r

)

= Ω

(

Q

(

hj − r

σ

))

= Ω

(

j

n

)

using Equation (2.6).

We obtain that for any p∗ ∈ P ∗, P
[

p ∈ W j
i

]

= Θ
(

j
n

)

, and so

E
[

card
(

P ∩W j
i

)]

= Θ(j) .

Condition (a’) therefore holds. Since n ≥ 3, α < 1√
W0(32)

< π
4
, tan α

2
< 0.5 and

2hj

w
≥ 2

hℓ − r

w
=

4

7

√

W0

(

n2

ln4 n

)

≥ 0.5.

Thus, tan α
2
<

2hj

w
, so the origin is not in Cj

i . Using Claim 2.4.3 with p∗ at the
origin, the collector Cj

i is included in the union of two half-spaces with height
h̃j = hj cos

α
2
− w

2
sin α

2
≥ hj cos

α
2
− 7

8
ασ, since sin(x) < x for x > 0.
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Now,

hj cos
α
2
= hj + (cos α

2
− 1)hj

≥ hj −
1

2

(

α
2

)2
hj = hj −

1

8
ασ

(

hj

h1 − r

)

≥ hj −
1

8
ασ

(

hj

hj − r

)

≥ hj −
1

8
ασ

since cosx− 1 ≥ −1
2
x2. Thus, we obtain h̃j ≥ hj − ασ.

Note that Q
(

hj−r

σ

)

≥ Q
(

h̃j−r

σ
+ α

)

= Q
(

h̃j−r

σ
+ σ

h1−r

)

.

Since h̃j ≤ h1, σ
h1−r

≤ σ
˜hj−r

and

Q

(

hj − r

σ

)

> Q

(

h̃j − r

σ
+

σ

h1 − r

)

> Q

(

h̃j − r

σ
+

σ

h̃j − r

)

= Ω

(

Q

(

h̃j − r

σ

))

using Lemma 2.4.1 (ii) (we have h̃j−r

σ
> 1

4
for n ≥ 3 and j ≤ ln2 n), we get

Q
(

h̃j−r

σ

)

= O
(

j
n

)

by Equation (2.6).

Thus, E
[

card
(

P ∩ Cj
i

)]

= O(j), Theorem 10 (i) can be applied and we obtain

E
[

cardH(1)
]

= E [cardCH(P )] = O
(

1
α

)

= O
(√

lnn
)

.

Corollary 17.

S
(

n,N (0, σ2)
)

= O

(

ln(n)

σ2

√

ln (nσ2) +
√
lnn

)

.

Proof. Let P ∗ be some point of diameter at most 1. Without loss of generality,
we assume that P ∗ ⊂ B. We cover B with m′′ = Θ

(

1 + 1
r2

)

disjoint cells of size
r = σ

3
√
lnn

We break down P ∗ into P ∗
1 ∪ P ∗

2 ∪ · · · ∪ P ∗
m′′ by taking its intersection

with each covering cells; we let Pi denote the perturbation of P ∗
i and ni = cardPi.

Every vertex of CH(P ) is a vertex of some CH(Pi), and we can apply Lemma 2.4.5
to bound the number of vertices of CH(Pi) from above by

√
lnni. If m′′ > 1,
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the sum is maximized with ∀i, ni =
n
m′′ , which bounds from above the number of

vertices of CH(P ) by

m′′O

(

√

ln
(

n
m′′

)

)

= O
(

1
r2

√

ln (nr2)
)

= O

(

ln(n)

σ2

√

ln (nσ2)

)

using Equality (2.5).

2.4.4.2 A Better Smoothed Upper Bound for Gaussian Perturbation

Theorem 18. S(n,N (0, σ2I2)) = O
(√

lnn
σ

+
√
lnn
)

.

Let P ∗ be some point set of diameter at most 1 in the plane and, without loss of
generality, assume that P ∗ is contained in B. We use a system of witnesses and
collectors similar to the one presented in Section 2.4.2 with ℓ = ln2 n. As in the
Euclidean case, a key difference is that the depth of intersection of each witness
W j

i depends on i, and is adapted to P ∗. Specifically, we set w and α to the values

on the right, choose the ~ui regularly
spaced on S1 with ~̂ui~ui+1 = Θ(α).
We then define Ri = R(~ui, α), W

j
i =

W (hj
i , w, ~ui) and Cj

i = C(hj
i , w, ~ui, α)

where hj
i depends on P ∗ and is

tuned so that the expected number
of points in the witnesses are what
they should be.

w = 2(1 + σ)

α =

√

(2+σ)2+ 2
√
2σ√

lnn
+2

√
2σ2−(2+σ)

(1+σ
√
lnn)

hj
i s. t. E

[

card
(

P ∩W (hj
i , w, ~ui)

)]

= j

We first relate the distances from a point p∗ of P ∗ to a witness W j
i and a

collector Cj
i :

Claim 2.4.6. If p∗ ∈ R2 is in the slab of W j
i and outside the interior of Cj

i , then

d(p∗,W j
i )− d(p∗, Cj

i ) ≤
σ√
2 lnn

.

Proof. Let h(p∗) and h̃(p∗) denote, respectively, d(p∗,W j
i ) and d(p∗, Cj

i ). By
Claim 2.4.3,
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h̃(p∗) = h(p∗) cos
α

2
−
(w

2
+ |−−→Op∗ · ~vi|

)

sin
α

2

and with 1 − cos x ≤ x2

2
, sin |x| < |x|,

w
2
= 1+σ, and |−−→Op∗ ·~vi| ≤ 1, this becomes

h(p∗)− h̃(p∗)

≤ h(p∗)− h(p∗) cos
α

2
+ (2 + σ) sin

α

2

≤ h(p∗)
α2

8
+ (2 + σ)

α

2

α
2

Cj
i

W j
i

h(p∗)
h̃(p
∗) ~ui

wj

2

p∗
B

O

The distance from p∗ to W j
i = W (hj

i , w, ~ui) is maximized when p∗ is located
at the point of ∂B with outer normal −~ui and all other points of P ∗ are at the
symmetric position, at the point of ∂B with normal ~ui. The same argument as in
Equation (2.6) and the observation that ln(x) >W0 (x) for x ≥ 3 yield the upper
bound

h(p∗) ≤ 2 + σ
√

W0 (n2) ≤ 2
(

1 + σ
√
lnn
)

.

Injecting this in the above inequality we get

h(p∗)− h̃(p∗) ≤
(

1 + σ
√
lnn
) α2

4
+ (2 + σ)

α

2

The polynomial

P (α) =

(

(

1 + σ
√
lnn
) α2

4
+ (2 + σ)

α

2
− σ√

2 lnn

)

can be checked to be negative for

0 ≤ α ≤

√

(2 + σ)2 + 2
√
2σ√

lnn
+ 2
√
2σ2 − (2 + σ)

(1 + σ
√
lnn)

,

and that concludes the proof.

The distance from a point p∗ to W j
i and Cj

i determines the probability that the
perturbation of p∗ belongs to either of these sets.

Claim 2.4.7. P
[

p ∈ W j
i

]

= Θ
(

Q
(

d(p∗,W j
i )

σ

))

and P
[

p ∈ Cj
i

]

= O
(

Q
(

d(p∗,Cj
i )

σ

))

.

Proof. A perturbed point p is in W j
i if it satisfies two conditions: (α) its displace-

ment from p∗ along ~ui should be greater than d(p∗,W j
i ), and (β) its displacement

in the orthogonal direction is in the slab of width wj. The conditions are inde-

pendent, (α) is true with probability Q
(

d(p∗,W j
i )

σ

)

and (β) is true with constant
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probability since w = 2 + 2σ ensures that the allowed orthogonal displacement
for p∗ is larger than σ. The statement for W j

i follows. As for the collectors, the
probability that a perturbed point p is in Cj

i is bounded from above by the sum

of the probabilities to be in H+ and to be in H−, which are both Q
(

d(p∗,Cj
i )

σ

)

.

Combining the two previous claims we now get that witness and collector get,
on average, essentially the same number of points.

Claim 2.4.8. For any p∗ ∈ P ∗, we have P
[

p ∈ Cj
i

]

= O
(

1
n
+ P

[

p ∈ W j
i

])

.

Proof. Let h(p∗) and h̃(p∗) denote, respectively, d(p∗,W j
i ) and d(p∗, Cj

i ). Since
w ≥ 2 any point in P ∗ is in the slab of W j

i .
First assume that p∗ is not in Cj

i . Claim 2.4.6 then ensures that h̃(p∗) ≥
h(p∗)− σ√

2 lnn
. If h(p∗) > σ

√
2 lnn+ σ√

2 lnn
then by Claim 2.4.7, Lemma 2.4.1 (i),

and the fact that Q is decreasing, we have

P
[

p ∈ Cj
i

]

= O

(

Q

(

h̃(p∗)

σ

))

= O

(

Q

(

h(p∗)

σ
− 1√

2 lnn

))

= O

(

Q

(√
2 lnn+

1√
2 lnn

− 1√
2 lnn

))

= O
(

Q
(√

2 lnn
))

= O

(

1

n

)

and the statement follows. If h(p∗) ≤ σ
√
2 lnn+ σ√

2 lnn
then we have

P
[

p ∈ Cj
i

]

= O

(

Q

(

h̃(p∗)

σ

))

= O

(

Q

(

h(p∗)

σ
− 1√

2 lnn

))

If h(p∗) ≤ σ
4
+ σ√

2 lnn
≤ σ

(

1
4
+ 1√

2 ln 3

)

then h(p∗) is bounded from above by 2σ

and
P
[

p ∈ W j
i

]

= Ω(Q (2)) = Ω(1).

Then, P
[

p ∈ Cj
i

]

≤ 1 = O
(

P
[

p ∈ W j
i

])

and the statement also holds. Thus, we
can suppose that h(p∗) ≥ σ

4
+ σ√

2 lnn
and use Lemma 2.4.1 (ii) to get:

P
[

p ∈ Cj
i

]

= O

(

Q

(

h(p∗)

σ
− 1√

2 lnn
+

1
h(p∗)
σ
− 1√

2 lnn

))

.

Since
1

h(p∗)
σ
− 1√

2 lnn

≥ 1√
2 lnn+ 1√

2 lnn
− 1√

2 lnn

=
1√
2 lnn
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we get

P
[

p ∈ Cj
i

]

= O

(

Q

(

h(p∗)

σ

))

= O
(

P
[

p ∈ W j
i

])

and the statement also holds.
Finally assume that p∗ ∈ Cj

i . In such a case Claims 2.4.3 and 2.4.6 do not apply
directly, but we have 1

2
≤ P

[

p ∈ Cj
i

]

≤ 1 so we have to argue that P
[

p ∈ W j
i

]

=
Ω(1). Let us move from p∗ in the direction −~ui until we reach some point p̄∗

on the boundary of Cj
i ; observe that P

[

p̄∗ + η ∈ Cj
i

]

≥ 1
2

where η ∼ N (0, σ2I2).
Now p̄∗ satisfies the hypotheses of Claim 2.4.6 and the above analysis implies
that P

[

p̄∗ + η ∈ W j
i

]

= Ω
(

P
[

p̄∗ + η ∈ Cj
i

])

= Ω(1). Moving from p∗ to p̄∗ only
increased the distance to W j

i , so we also have P
[

p ∈ W j
i

]

≥ P
[

p̄∗ + η ∈ W j
i

]

=
Ω(1).

We now have all the ingredients to prove our upper bound on the smoothed
complexity under Gaussian noise.

Proof of Theorem 18. We set up our witnesses and collectors as described above.
Since the parameter w is fixed and each sequence {hj

i}j is decreasing, Lemma 2.4.4
yields that {(W j

i , C
j
i )}1≤i≤m

1≤j≤ℓ
is a system of witnesses and collectors for the covering

R1 ∪ R2 ∪ . . . ∪ Rm of the set of half-planes. Each parameter hj
i is set so that

E
[

card
(

W j
i ∩ P

)]

= j and Claim 2.4.8 implies that E
[

card
(

Cj
i ∩ P

)]

= O(j).
Theorem 10 (i) thus implies that

S(n,N (0, σ2I2)) = O

(

1

α

)

= O











(

1 + σ
√
lnn
)

(2 + σ)

(√

1 + 2
√
2

(2+σ)2

(

σ2 + σ√
lnn

)

− 1

)











.

(2.8)
If σ ≤ 1√

lnn
then Equation (2.8) simplifies into

S(n,N (0, σ2I2)) = O









1
√

1 + 1
(1+σ)2

(

σ2 + σ√
lnn

)

− 1









.

Notice that in this case, 1
(1+σ)2

(

σ2 + σ√
lnn

)

is bounded by some constant C and

since for 0 < x < C,
√
1 + x− 1 = Θ(x),

S(n,N (0, σ2I2)) = O





1

1
(1+σ)2

(

σ2 + σ√
lnn

)



 = O

(√
lnn

σ

)

.
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If 1√
lnn
≤ σ ≤ 1 then Equation (2.8) simplifies into

S(n,N (0, σ2I2)) = O

(

σ
√
lnn

√

1 + Θ(σ2)− 1

)

= O

(

σ
√
lnn

σ2

)

= O

(√
lnn

σ

)

If 1 ≤ σ then Equation (2.8) simplifies into

S(n,N (0, σ2I2)) = O

(

σ
√
lnn

σΘ(1)

)

= O(
√
lnn).

In each case we therefore have S(n,N (0, σ2I2)) = O
(√

lnn
σ

+
√
lnn
)

.

2.4.5 Lower Bound on Smoothed Complexity: Points in Convex Posi-
tion

We finally investigate lower bounds on the smoothed complexity by analyzing the
size of the convex hull of a Gaussian perturbation of points in convex position, as
in Section 2.3.5.

Theorem 19. Let P ∗ = {p∗i , 1 ≤ i ≤ n} be the set of vertices of a regular n-gon
of radius 1 in R2. Let P = {pi = p∗i + ηi} where η1, η2, . . . , ηn are random vectors
in R2 chosen independently from N (0, σ2I2). The expected number of vertices of
the convex hull of P is

Range of σ
[

0, 1
n2

]

[

1
n2 ,

1√
lnn

] [

1√
lnn

,+∞
)

E
[

cardH(1)
]

Ω(n) Ω

(

4
√

ln(n
√
σ)√

σ

)

Ω
(√

lnn
)

We use the witness-collector construction presented in Section 2.4.2. We only care
about the lower-bound, so, shortening W 1

i into Wi, we need only define one level
of witnesses {Wi}1≤i≤m to apply Theorem 10 (ii).

Parameters Setting. We set h1 and w1 depending on σ and n as summarized below.
We let ~u1, ~u2, . . . , ~um denote a family of vectors in S1 such that ~ui is aligned with
p∗⌊

2πi
m

⌋, so these vectors are more or less equally spaced on S1. The witnesses

are defined as Wi = W (w1, h1, ~ui). We choose m maximal so that the {Wi} are

pairwise disjoint; Lemma 2.4.4 ensures that we can set m = Ω
(

min
(

n, h1

w1

))

.
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0 ≤ σ < 2
n2

2
n2 ≤ σ < 1

4

√

W0

(

n2

4

)

1
4

√

W0

(

n2

4

)

≤ σ

w1 2σ 2σ + 2
√
σ
(

3
2
W0

(

2
3
(n
√
σ)

4
3

))−1/4

2σ + 2

h1 1 1 + σ

√

3
2
W0

(

2
3
(n
√
σ)

4
3

)

1 + σ
√

W0

(

n2

4

)

Preparation. Let i ∈ {1, 2 . . . ,m}. As in Section 2.4.3, we let (O,~vi, ~ui) denote
some orthonormal frame and let Hi be the halfplane supporting Wi with inner
normal ~ui. We renumber the points of P ∗ with indices in {−n−1

2
, . . . , n−1

2
} so that

p∗0 is the point in direction ~ui. For the sake of the presentation we assume that n
is odd (the case of even n follows with trivial modifications). We write (xi, yi) for
the coordinates of pi in (O,~vi, ~ui) and denote by p~ui

∈ H(1) the point of P extremal
in direction ~ui. Our goal is to prove that E

[

card
(

Wi ∩H(1)
)]

is Ω(1) in order to
apply Theorem 10 (ii); in the light of

E
[

card
(

Wi ∩H(1)
)]

≥ P [p~ui
∈ Wi]

we set out to bound from below the probability that p~ui
lies in Wi. We write zt

for the distance from p∗t to Hi and note that

z0 = h1 − 1 and zt = h1 − 1 + 1− cos
2πt

n

For x ∈ [−1
2
, 1
2
] we have 8x2 ≤ 1− cos(2πx) ≤ 20x2, hence

h1 − 1 + 8
t2

n2
≤ zt ≤ h1 − 1 + 20

t2

n2

8t2

n2
≤ zt − z0 ≤

20t2

n2
. (2.9)

Analysis for Small σ. We start with the case σ < 2
n2 , where the analysis is simpler

but already uses the main ingredients of the general case. Since h1 = 1, we have
z0 = 0 and therefore p∗0 lies on the boundary of Hi. We condition on the event
{p0 ∈ Hi and p~ui

= p0} and obtain:

P [p~ui
∈ Wi] ≥ P [p0 ∈ Wi | p0 ∈ Hi and p~ui

= p0]P [p0 ∈ Hi and p~ui
= p0] (2.10)

We bound each of these terms in turn.

Claim 2.4.9. When σ < 2
n2 , P [p0 ∈ Hi and p~ui

= p0] = Ω(1).
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Proof. Using the independence of the random variables {yt}t we write

P [p0 ∈ Hi and p~ui
= p0] ≥ P [y0 ≥ h1 and ∀t 6= 0, yt ≤ h1]

= P [y0 ≥ h1]
∏

t 6=0

P [yt ≤ h1]

As p∗0 ∈ Hi, the point p0 has probability at least 1
2

of remaining in the half-plane Hi

after a Gaussian perturbation, so P [y0 ≥ h1] ≥ 1
2
. Moreover, yt ∼ N (h1 − zt, σ

2)
so Lemma 2.4.1 (i) and the bounds on zt and σ lead to:

P [yt ≥ h1] = P [yt − E [yt] ≥ zt] = Q
(

zt
σ

)

≤ Q

(

8t2

n2σ

)

≤ Q
(

4t2
)

≤ e−2t2 ,

and P [yt ≤ h1] ≥ 1− e−2t2 . Taking the logarithm we obtain

lnP [p0 ∈ Hi and p~ui
= p0] = lnP [y0 ≥ h1] + 2

n−1
2
∑

t=1

lnP [yt ≤ h1]

≥ ln 1
2
+ 2

n−1
2
∑

t=1

ln
(

1− e−2t2
)

Then, using that for x ∈ (0, 1
2
] we have ln(1 − x) > −2x and Lemma 2.4.1 (iii-a)

we get

− lnP [p0 ∈ Hi and p~ui
= p0] ≤ ln 2− 2

n−1
2
∑

t=1

−2e−2t2 ≤ ln 2 + 4

n−1
2
∑

t=0

e−2t2 = O(1),

and
P [p~ui

= p0] = e−O(1) = Ω(1).

Equation (2.10) finally implies that P [p~ui
∈ Wi] is Ω(1), so E

[

card
(

Wi ∩H(1)
)]

is
indeed Ω(1) for this range of σ.

Relevant Points. The contribution of the tth point to E [card (Hi ∩ P )] is Q
(

zt
σ

)

.
The gist of our analysis for larger σ is to split the points into two parts, the
relevant points where Q

(

zt
σ

)

= Θ
(

Q
(

z0
σ

))

and the irrelevant ones. The expected
number of points in Hi is (up to a constant multiplicative factor) at least the
number of relevant points times Q

(

z0
σ

)

; fine tuning z0 so that this product is Ω(1)
then amounts to solving some functional equation. Specifically, we call a point pt

relevant if |t| ≤ tm = min
(⌊

nσ√
z0

⌋

, n−1
2

)

. We denote by Pr the relevant points.
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The same conditioning as in Equation (2.10) yields

P [p~ui
∈ Wi] ≥ P [p~ui

∈ Wi | p~ui
∈ Hi ∩ Pr]P [p~ui

∈ Hi ∩ Pr] . (2.11)

One of the terms can be bounded as easily as for small σ.

Claim 2.4.10. When σ ≥ 2
n2 , P [p~ui

∈ Wi | p~ui
∈ Hi ∩ Pr] ≥ 1

2
.

Proof. First, note that the parameter w1 is set so that in the orthogonal projection
on the ~vi-axis, the image of the witness contains the image of the ball B(pt, σ)
whenever pt is relevant. This ensures that

P [p~ui
∈ Wi | p~ui

∈ Hi and p~ui
is relevant] ≥ 1− 2Q(1) ≥ 1

2
.

Counting Relevant Points in Hi. Bounding the remaining probability requires dif-
ferent quantitative analysis depending on the range of σ but are based on the same
principle: counting the expected number of relevant points in Hi. Since Hi has
inner normal ~ui, we have

P [p~ui
∈ Hi | p~ui

∈ Pr] = P [Hi ∩ Pr 6= ∅] .

Thus, by the Chernoff bound of Lemma 2.2.1 (a), to show that the right-hand
term is Ω(1) it suffices to show that Hi contains on average Ω(1) relevant points.
Notice that

P [pt ∈ Hi] = P [yt − E [yt] > zt] = Ω
(

Q
(zt
σ

))

,

so the expected number of relevant points in Hi writes

Ω

(

tm
∑

t=−tm

Q
(zt
σ

)

)

= Ω

(

Q
(z0
σ

)

tm
∑

t=0

1
zt
σ
+ σ

zt

z0
σ
e−

1
2σ2 (z

2
t−z20)

)

. (2.12)

Recall that zt = z0 + Θ
(

t2

n2

)

. How we evaluate Equation (2.12) depends on the

range of σ.

Large σ. When σ ≥ 1
4

√

W0

(

n2

4

)

, every point is relevant, ie. tm = n−1
2

, since

z0 = σ

√

W0

(

n2

4

)

implies
nσ√
z0

= n

√

√

√

√

σ
√

W0

(

n2

4

)

≥ n

2
.

Claim 2.4.11. When σ ≥ 1
4

√

W0

(

n2

4

)

, P [p~ui
∈ Hi ∩ Pr] = Ω(1).
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Proof. Since every point is relevant, this probability equals the probability that
Hi ∩ P is non-empty. Computations similar to that of Equation (2.6) yield that

Q
(

z0
σ

)

= Θ
(

1
n

)

. Moreover, zt ≥ σ
2

so 1
zt
σ
+ σ

zt

= Θ
(

σ
zt

)

. Also, zt = Θ(z0) and

z2t − z20 = Θ
(

t2z0
n2

)

. Injecting these three relations in Equation (2.12) we obtain

that the expected number of (relevant) points in Hi writes

E [card (Hi ∩ P )] = Ω





1

n

n−1
2
∑

t=0

z0
zt
e−t2Θ( z0

n2σ2 )



 = Ω





1

n

n−1
2
∑

t=0

e−j2Θ( z0
n2σ2 )





Since z0
n2σ2 < 4

n2 , Lemma 2.4.1 (iii-c) implies that

n−1
2
∑

t=0

e−t2Θ( z0
n2σ2 ) = Ω(n),

so we finally get that Hi contains Ω(1) (relevant) points on average. The Chernoff
bound of Lemma 2.2.1 (a) yields that P [Hi ∩ P 6= ∅] is Ω(1), and so is

P [p~ui
∈ Hi ∩ Pr] = Ω(1).

Intermediate σ. When 2
n2 ≤ σ < 1

4

√

W0

(

n2

4

)

we have z0 = σ

√

3
2
W0

(

2
3
(n
√
σ)

4
3

)

.

The function x 7→ x
√

3
2
W0

(

2
3(n

√
x)

4
3

)

is increasing. Let us define σ0 as the solution

of

σ0 =
1

4

√

3

2
W0

(

2

3
(n
√
σ0)

4
3

)

Using that W0 is the solution to f(x)ef(x) = x, we obtain that

σ0 =
1

4

√

W0

(

n2

4

)

.

Then, for σ < 1
4

√

W0

(

n2

4

)

we have

nσ√
z0
≤ n

√

√

√

√

√

σ
√

3
2
W0

(

2
3
(n
√
σ)

4
3

)

< n

√

√

√

√

√

σ0
√

3
2
W0

(

2
3

(

n
√
σ0

) 4
3

)

=
n

2
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and tm =
⌊

nσ√
z0

⌋

. Notice that

P [p~ui
∈ Hi ∩ Pr] ≥ P [Hi ∩ Pr 6= ∅]P [Hi ∩ (P \ Pr) = ∅] .

The two quantities on the right-hand side are independent.

Claim 2.4.12. When 2
n2 ≤ σ < 1

4

√

W0

(

n2

4

)

, P [Pr ∩Hi 6= ∅] = Ω(1).

Proof. Note that z0 is set so that Q
(

z0
σ

)

= Θ
(

1
tm

)

= Θ
(√

z0
nσ

)

. Indeed, using

Lemma 2.4.1 (i) and the fact that z0 = Ω(σ), Q
(

z0
σ

)

= Θ

(

e
− z20

2σ2

z0
σ

)

. The choice

for z0 comes from the resolution of the equation 1
x
e−

x2

2 =
√
x

n
√
σ

using the definition
of the function W0.

Moreover, for |t| ≤ tm we have zt = Θ(z0) and z2t − z20 = Θ
(

t2z0
n2

)

. Indeed,

σ ≥ 2
n2 implies that z0 = Ω(σ) and zt < z0 + O

(

t2m
n2

)

= O
(

z20+σ2

z0

)

= O(z0) and

zt = z0 + Θ
(

t2

n2

)

= Ω(z0). Also, zt = Ω(σ) so 1
zt
σ
+ σ

zt

= Ω
(

σ
zt

)

. Injecting these

relations into Equation (2.12) we obtain that the expected number of relevant
points in Hi is

Ω

(

1

tm

tm
∑

t=−tm

1
zt
σ
+ σ

zt

z0
σ
e−

1
2σ2 (z

2
t−z20)

)

= Ω

(

1

tm

tm
∑

t=0

e−t2Θ( z0
n2σ2 )

)

.

Again, Lemma 2.4.1 (iii-b) ensures that

tm
∑

t=0

e−t2Θ( z0
n2σ2 ) = Ω

(

nσ√
z0

)

and the expected number of relevant points in Hi is Ω(1). The Chernoff bound of
Lemma 2.2.1 (a) yields that P [Hi ∩ P 6= ∅] is Ω(1).

It remains to bound the third quantity:

Claim 2.4.13. When 2
n2 ≤ σ < 1

4

√

W0

(

n2

4

)

, P [Hi ∩ (P \ Pr) = ∅] = Ω(1).

Proof. Every irrelevant point pt belongs to Hi with probability Q
(

zt
σ

)

. The prob-
ability that Hi contains no irrelevant point is therefore at least





n−1
2
∏

t=tm+1

1−Q
(zt
σ

)





2
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Lemma 2.4.1 (i) and the fact that zt = z0 +Θ
(

t2

n2

)

ensure that

1−Q
(zt
σ

)

≥ 1−Q
(z0
σ

)

e−
1

2σ2 (z
2
t−z20) = 1−Q

(z0
σ

)

e−t2Θ( z0
n2σ2 )

so the probability that Hi contains no irrelevant point is at least

γ =





n−1
2
∏

t=tm+1

1− 1

tm
e
−t2Θ

(

1

t2m

)





2

.

Taking the logarithm, and using ln(1− x) ≥ −2x for x ∈ [0, 1], we get

− ln γ = −2
n−1
2
∑

t=tm+1

ln

(

1− 1

tm
e
−t2Θ

(

1

t2m

)
)

≤ 4

tm

n−1
2
∑

t=tm+1

e
−t2Θ

(

1

t2m

)

≤ 4

tm

n−1
2
∑

t=0

e
−t2Θ

(

1

t2m

)

and Lemma 2.4.1 (iii-a) yields 0 ≤ − ln γ ≤ O(1). It follows that the probability
that Hi contains no irrelevant point is at least e−O(1) = Ω(1).

Wrapping Up. We can now obtain our lower bound.

Proof of Theorem 19. Lemma 2.4.4 and the preceding analysis ensure that the
assumptions of Theorem 10 (ii) are satisfied, and we thus have E [cardCH(P )] =
Ω (min (n, h1/w1)). We treat separately the three regimes.

If σ < 2
n2 then

E [cardCH(P )] = Ω

(

min

(

n,

(

1

O
(

1
n2

)

)))

= Ω(n)

which is the first regime announced in Theorem 19. (Note that the boundaries
between the regimes can be set up to a multiplicative constant.)

If 2
n2 ≤ σ < 1

4

√

W0

(

n2

4

)

then

E [cardCH(P )] = Ω











1 + σ
√

ln (n
√
σ)

√
σ

(√
σ + 1

4
√

ln (n
√
σ)

)










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We simplify this expression by comparing σ and 1
√

ln (n
√
σ)

. Specifically, if σ ≤ 1√
lnn

then

σ = O

(

1
√

ln (n
√
σ)

)

and E [cardCH(P )] = Ω

(

4
√

ln (n
√
σ)√

σ

)

which is the second regime announced in Theorem 19.

If 1√
lnn
≤ σ < 1

4

√

W0

(

n2

4

)

= O
(√

lnn
)

then 1
√

ln (n
√
σ)

= O(σ) and

E [cardCH(P )] = Ω

(

σ
√

ln (n
√
σ)

σ

)

= Ω

(

√

ln
(

n
√
σ
)

)

= Ω
(√

lnn
)

If σ ≥ 1
4

√

W0

(

n2

4

)

= Ω
(√

lnn
)

then

E [cardCH(P )] = Ω





1 + σ
√

W0

(

n2

4

)

σ + 1



 = Ω
(√

lnn
)

The lower bound is the same as in the case 1√
lnn
≤ σ < 1

4

√

W0

(

n2

4

)

. Merging the
two conditions we obtain that

σ ≥ 1√
lnn
⇒ E [cardCH(P )] = Ω

(√
lnn
)

which is the third regime announced in Theorem 19.

2.4.6 Gaussian Perturbation of a Regular Polygon: An Upper Bound

In Section 2.4.3, we proved a lower bound on the smoothed complexity of convex
hull with Gaussian perturbations, see Theorem 19. In this section, we prove that
this lower bound is almost tight for this specific configuration of points (a regular
polygon). By almost, we mean that the lower bound is tight up to some small
intervals of σ. We believe that theses gaps are just a technical issue due to our
technique.

Theorem 20. Let P ∗ = {p∗i , 1 ≤ i ≤ n} be the set of vertices of a regular n-gon
of radius 1 in R2. Let P = {pi = p∗i + ηi} where η1, η2, . . . , ηn are random vectors
in R2 chosen independently from N (0, σ2I2). The expected number of vertices of
the convex hull of P is
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Range of σ
[

0, 2 ln
4 n

n2

] [

2 ln4 n
n2 , 1√

lnn

] [

1√
lnn

,+∞
)

E
[

cardH(1)
]

O(n) O

(

4
√

ln(n
√
σ)√

σ

)

O
(√

lnn
)

Using Theorem 19 and Theorem 20 we get the following estimation:

Range of σ
[

0, 1
n2

]

[

1
n2 ,

2 ln4 n
n2

] [

2 ln4 n
n2 , 1√

lnn

] [

1√
lnn

,+∞
)

E
[

cardH(1)
]

Θ(n) O(n), Ω

(

4
√

ln(n
√
σ)√

σ

)

Θ

(

4
√

ln(n
√
σ)√

σ

)

Θ
(√

lnn
)

Note that we can suppose σ > 2 ln4 n
n2 since otherwise the upper bound is trivial.

The chosen parameters are similar to Section 2.4.3 (and so are some arguments
in the proof), but in this case we need to define ℓ = ln2 n levels of witnesses and
collectors.

Parameter Setting. We set hj and wj depending on σ and n as summurized below.
We let ~u1, ~u2, . . . , ~um denote a family of vectors in S1 such that ~ui is aligned with
p∗⌊ 2πi

m
⌋, so these vectors are more or less equally spaced on S1. The witnesses are de-

fined as W j
i = W (wi, hi, ~ui) and the collectors are defined as Cj

i = C(wj, hj, ~ui, α).

2 ln4 n
n2 ≤ σ < 1

4

√

W0

(

n2

4j2

)

1
4

√

W0

(

n2

4j2

)

≤ σ

wj 2σ + 2
√
σ

(

3
2
W0

(

2
3

(

n
j

√
σ
) 4

3

))−1/4

2σ + 2

hj 1 + σ

√

3
2
W0

(

2
3

(

n
j

√
σ
) 4

3

)

1 + σ

√

W0

(

n2

4j2

)

α Θ
(

σ
h0−1+

√
h0−1

)

Θ
(

σ
h0−1+

√
h0−1

)

Preparation. Let i ∈ {1, . . . ,m}. As in Section 2.4.3, we let (O,~vi, ~ui) denote some
orthonormal frame and let Hj

i the halfplane supporting W j
i , with inner normal ~ui.

We renumber the points of P ∗ with indices in {−n−1
2
, . . . , n−1

2
} so that p∗0 is the

point in direction ~ui. For the sake of presentation, we assume that n is odd
(the case of even n follows from trivial modification). Our goal is to show that
E
[

card
(

W j
i ∩ P

)]

= Θ(j) and that E
[

card
(

Cj
i ∩ P

)]

= O(j).

Let j ∈ {1, . . . , ℓ}. We write zt for the distance from p∗t to Hj
i and note that

z0 = hj − 1 and zt = hj − 1 + 1− cos
2πt

n
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Same argument as Equation 2.9 gives zt − z0 = Θ
(

t2

n2

)

.

Relevants Points. The contribution of the t-th point to E
[

card
(

Hj
i ∩ P

)]

is Q
(

zt
σ

)

.
The gist of our analysis for larger σ is to split the points into two parts, the rel-
evant points where Q

(

zt
σ

)

= Θ
(

Q
(

z0
σ

))

and the irrelevant ones. The expected
number of points in Hj

i is (up to a constant multiplicative factor) at least the
number of relevant points times Q

(

z0
σ

)

; fine tuning z0 so that this product is Ω(1)
then amounts to solving some functional equation. Also, we need to show that the
contribution of the irrelevant points are negligeable. Specifically, we call a point pt
relevant if |t| ≤ tm = min

(⌊

nσ√
z0

⌋

, n−1
2

)

. A relevant point in Hj
i is in W j

i with con-

stant probability, since the width of the witness is chosen to enclose B(p∗, σ) in ~vi
direction, when p is relevant. Thus, E

[

card
(

W j
i ∩ P

)]

= Ω
(

E
[

card
(

W j
i ∩ P

)])

.
Since W j

i ⊂ Hj
i , we get E

[

card
(

W j
i ∩ P

)]

= Θ
(

E
[

card
(

Hj
i ∩ P

)])

.

Counting points in H
j
i . A first step to compute the expected number of points in

W j
i is to compute the expected number of points in Hj

i . The expected number of
points in Hj

i writes

E
[

card
(

Hj
i ∩ P

)]

=

n−1
2
∑

t=−n−1
2

Q
(zt
σ

)

= Θ





n−1
2
∑

t=0

1
zt
σ
+ σ

zt

z0
σ
e−

1
2σ2 (z

2
t−z20)



 (2.13)

Intermediate σ When 2 ln4 n
n2 ≤ σ < 1

4

√

W0

(

n2

4j2

)

we have

z0 = σ

√

√

√

√

3

2
W0

(

2

3

(

n

j

√
σ

) 4
3

)

.

The function x 7→ x
√

3
2
W0

(

2
3(

n
j

√
x)

4
3

)

is increasing. Let us define σ0 as the solution

of

σ0 =
1

4

√

√

√

√

3

2
W0

(

2

3

(

n

j

√
σ0

) 4
3

)

Using that W0 is the solution to f(x)ef(x) = x, we obtain that

σ0 =
1

4

√

W0

(

n2

4j2

)

.
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Then, for σ < 1
4

√

W0

(

n2

4j2

)

we have

nσ√
z0
≤ n

√

√

√

√

√

√

σ
√

3
2
W0

(

2
3

(

n
j

√
σ
) 4

3

)

< n

√

√

√

√

√

√

σ0
√

3
2
W0

(

2
3

(

n
j

√
σ0

) 4
3

)

=
n

2

and tm =
⌊

nσ√
z0

⌋

.

Claim 2.4.14. When 2 ln4 n
n2 < σ < 1

4

√

W0

(

n2

4j2

)

, E
[

card
(

Hj
i ∩ P

)]

= Θ(j).

Proof. Note that z0 is set so that Q
(

z0
σ

)

= Θ
(

j
tm

)

= Θ
(

j
√
z0

nσ

)

. Indeed, using

Lemma 2.4.1 (i) and the fact that z0 = Ω(σ), Q
(

z0
σ

)

= Θ

(

e
− z20

2σ2

z0
σ

)

. The choice

for z0 comes from the resolution of the equation 1
x
e−

x2

2 =
√
x

n
√
σ

using the definition
of the function W0.

Moreover, for |t| ≤ tm we have zt = Θ(z0) and z2t − z20 = Θ
(

t2z0
n2

)

. Indeed,

σ ≥ 2 ln4 n
n2 ≥ 2j2

n2 implies that z0 = Ω(σ) and zt < z0+O
(

t2m
n2

)

= O
(

z20+σ2

z0

)

= O(z0)

and zt = z0+Θ
(

t2

n2

)

= Ω(z0). Also, zt = Ω(σ) so 1
zt
σ
+ σ

zt

= Θ
(

σ
zt

)

. Injecting these

relations into Equation (2.13) we obtain that the expected number of relevant
points in Hj

i is

Ω

(

j

tm

tm
∑

t=0

1
zt
σ
+ σ

zt

z0
σ
e−

1
2σ2 (z

2
t−z20)

)

= Ω

(

j

tm

tm
∑

t=0

e−t2Θ( z0
n2σ2 )

)

.

Again, Lemma 2.4.1 (iii-b) ensures that

tm
∑

t=0

e−t2Θ( z0
n2σ2 ) = Ω

(

nσ√
z0

)

and the expected number of relevant points in Hj
i is Ω(j). Same arguments yields

the upper bound

E
[

card
(

Hj
i ∩ P

)]

= O

(

j

tm

n
∑

t=0

e−t2Θ( z0
n2σ2 )

)

= O

(

j

tm

(

1 +
nσ√
z0

))

= O(j)

using Lemma 2.4.1 (iii-a), since z0 = Ω(σ2).
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Large σ When σ ≥ 1
4

√

W0

(

n2

4j2

)

, every point is relevant, ie. tm = n−1
2

, since

z0 = σ

√

W0

(

n2

4j2

)

implies
nσ√
z0

= n

√

√

√

√

√

σ
√

W0

(

n2

4j2

)

≥ n

2
.

Claim 2.4.15. When σ ≥ 1
4

√

W0

(

n2

4j2

)

, E
[

card
(

Hj
i ∩ P

)]

= Θ(j).

Proof. Computations similar to that of Equation (2.6) yield that Q
(

z0
σ

)

= Θ
(

j
n

)

.

Moreover, zt ≥ σ
2

so 1
zj
σ
+ σ

zj

= Θ
(

σ
zj

)

. Also, zt = Θ(z0) and z2t − z20 = Θ
(

t2z0
n2

)

.

Injecting these three relations in Equation (2.12) we obtain that the expected
number of (relevant) points in Hi writes

E
[

card
(

Hj
i ∩ P

)]

= Θ





j

n

n−1
2
∑

t=0

z0
zt
e−t2Θ( z0

n2σ2 )



 = Θ





j

n

n−1
2
∑

t=0

e−t2Θ( z0
n2σ2 )





Since z0
n2σ2 < 4

n2 , Lemma 2.4.1 (iii-c) implies that

n−1
2
∑

j=0

e−j2Θ( z0
n2σ2 ) = Ω(n),

so we finally get that Hi contains Ω(j) (relevant) points on average. The upper

bound comes trivially since e−j2Θ( z0
n2σ2 ) = O(1).

We then conclude that for σ > 2 ln4 n
n2 , E

[

card
(

W j
i ∩ P

)]

= Θ(j). It remains to
control the expected number of points in the collector.

Couting points in C
j
i .

Claim 2.4.16. Let σ > 2 ln4 n
n2 . Then, E

[

card
(

Cj
i ∩ P

)]

= O(j).

Proof. The collector Cj
i is the union of two halfplanes of height h̃j. The contri-

bution of a halfplane depends only on its height and to compute the contribution
to the collector, we compute the contribution to a halfplane H̃j

i parallel to Hj
i of

height h̃j. This contribution will be computed separately for relevant and irrelevant
points.

As above zt denote the distance of p∗t to Hj
i and we denote z̃t its distance to H̃.

Let’s first consider the contribution of the relevant points. We suppose without
loss of generality that H̃j

i corresponds to the half-plane on the left of ~ui, and we
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consider only the relevant points on the left side {p0, . . . , ptm}. The contribution of
the relevants points on the right side will be trivially bounded by the contribution
of the left-sided relevant points.

Using Claim 2.4.3, we get that for 0 ≤ t ≤ tm,

z̃t = zt cos
α

2
− sin

(α

2

) wj+Θ( t
n
)

2
.

In the large σ settings, wj > 1 so tm
nwj

< 1. For the intermediate σ settings,
tm
n

= σ√
z0

and tm
nwj

= σ

2σ
√
z0

(

1+ 1√
z0

) ≤ 1
1+

√
z0

< 1, since wj = 2σ
(

1 + 1√
z0

)

.

Thus,

zt ≤ z̃t + zt

(

1− cos
α

2

)

+
α(wj + C1

tm
n
)

4

≤ z̃t +
αwj

4

(

1 +
(C1

tm
n
)

wj

+
ztα

2wj

)

≤ z̃t +
αwj

4
(C1 + 2)

if we choose α ≤ σ
C(h0−1))(1+ 1√

h0−1
)

with C > ztm
z0

(remember that ztm = Θ(z0)) and

C1 > 0 some constants.

In particular, since wj < 4σ
(

1 + 1√
z0

)

we have

zt
σ
≤ z̃t

σ
+ α(C1 + 2)

(

1 +
1√
z0

)

.

We choose α = σ
C2(h0−1)(1+ 1√

h0−1
)

with C2 = C(C1 + 2).

Since z̃t ≤ z̃tm < ztm < Cz0 ≤ C(h0 − 1),

Q
(zt
σ

)

≥ Q

(

z̃t
σ
+ (C1 + 2)α

(

1 +
1√
z0

))

≥ Q

(

z̃t
σ
+

σ

C(h0 − 1)(1 + 1√
h0−1

)

(

1 +
1√
z0

)

)

≥ Q





z̃t
σ
+

σ

Cz0

(

1 + 1√
z0

)

(

1 +
1√
z0

)





= Q

(

z̃t
σ
+

σ

Cz0

)

and since z̃t ≥ 1
4
σ we conclude by
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Q

(

z̃t
σ
+

σ

Cz0

)

≥ Q

(

z̃t
σ
+

σ

z̃t

)

= Ω

(

Q

(

z̃t
σ

))

using Lemma 2.4.1 (ii).
Thus,

Q

(

z̃t
σ

)

= O
(

Q
(zt
σ

))

and the contribution of relevant points to the collector is bounded, up to a constant,
by the contribution of relevant points to the witness.

Taking the above formula with t = tm gives that Q
(

z̃tm
σ

)

= O
(

Q
(

ztm
σ

))

. Since

we chose tm so that Q
(

ztm
σ

)

= Θ
(

Q
(

z0
σ

))

, we obtain Q
(

z̃tm
σ

)

= O
(

Q
(

z0
σ

))

.

Basic circle geometry gives that z̃im+j − z̃im > zj − z0 and thus the contribution of
irrelevant points to H̃j

i is bounded by the contribution of all points to Hj
i which

is O(j).

Wrapping up. With the chosen parameter, Theorem 10 (i) applies and E
[

H(1)
]

=

E [cardCH(P )] = O
(

1
α

)

. Notice that for 1√
lnn

< σ < 1
4

√

W0

(

n2

4j2

)

, 1
α
= O

(

h0

σ

)

=

O
(√

lnn
)

, which is the same behavior as the case where σ > 1
4

√

W0

(

n2

4j2

)

. Thus,

for σ > 1√
lnn

, we get 1
α
= O

(

1√
lnn

)

. For 2 ln4 n
n2 < σ < 1√

lnn
, 1

α
= O

(√
h0

σ

)

=

O

(

4
√

ln(n
√
σ)

σ

)

. This finishes the proof of Theorem 20.
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2.5.1 Poisson Distribution

Theorem 10 is established for a set of n independent elements. Except for some
technicalities in the presentation, nothing prevents making n a random variable to
prove eg. analogs of Theorems 11 and 16 for Poisson distributions. (As this was
not required for our application to smoothed complexity analysis, we opted for a
simpler presentation where n is fixed.)

2.5.2 Silhouette of Polytopes

Glisse, Lazard, Michel and Pouget [33] used the witness and collector approach to
study the expected size of the silhouette of a 3D random convex polytope defined
as the convex hull of a Poisson point process of intensity n on the unit sphere.
The silhouette of the polytope from a given viewpoint is the two dimensional
convex hull of the projection of the points, thus the problem reduces to the size of
the convex hull of i.i.d. points in a disk for the distribution corresponding to the
projection of a Poisson point process. Glisse et al. analyzed the size of that convex
hull using a system of witnesses and collectors adapted to that distribution and
proved that the worst point of view yields a silhouette of expected size Θ(

√
n).

2.5.3 ℓ∞ Perturbation and Snap-Rounding

Systems of witnesses and collectors can be designed for perturbations that are
uniform in the ball for other metrics. In [6], denoting � the unit square in 2D, we
prove the following theorem:

Theorem 21. Let P ∗ = {p∗i : 1 ≤ i ≤ n} be an (Θ (n) ,Θ(1))-sample of the unit
circle in R2 and let P = {pi = p∗i + ηi} where η1, η2, . . . , ηn are random variables
chosen independently from Uδ�. For any fixed k, and δ ∈ [n−2, 1]

E
[

cardH(k)
]

= Θ
(

n
1
5 δ−

2
5

)

As in the Euclidean case, the witnesses and collectors are parallel half planes,
but the partition of ranges must be adapted to cope with the lack of rotational
symmetry. The angle αi of the set of directions covered by Ri is no longer constant
and is much smaller when the ranges are almost horizontal or vertical than when
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they are oblique. The bound of Theorem 21 is confirmed experimentally (cf. the
slopes of −2

5
in the plots of Figure 2.3a). Theorem 21 implies that for δ ∈ [n−2, 1],

S(n,Uδ�) is Ω
(

n
1
5 δ−

2
5

)

. It is also known to be O
(

(

n lnn
δ

)
2
3

)

, for all ranges of δ,

by the upper bound obtained by Damerow and Sohler for maximal points under
ℓ∞ noise [17].

Snap Rounding. Given a grid whose pixel have size δ, rounding points with real
coordinates at the center of their pixel have some similarity with ℓ∞ noise. Actu-
ally, for a single point, and if the origin of the grid is random, the two processus
are identical, but when several points are involved things are different: clearly
rounding creates collisions while noising separates identical points. However for
the regular n-gon, provided that δ < 1

n
the two processes give convex hulls of

similar size as confirmed by Figure 2.3b.

2.5.4 Delaunay Triangulation

Systems of witnesses and collectors can also be used to prove the following well
known result of Dwyer [30]:

Theorem 22 (Dwyer [30]). The expected complexity of the Delaunay triangulation
of n random points uniformly distributed in the unit ball B of dimension d is Θ(n).

In [23], Devillers et al. gave a proof, considerably simpler than Dwyer’s, of this
result up to logarithmic factors; these factors can be removed thanks to Theorem 10
using a system of witnesses and collectors that we now outline.

The faces of dimension k of the Delaunay triangulation are hyperedges of size
k + 1 in the hypergraph where the ranges are balls in Rd. More precisely, given a
set P of n points in general position, k + 1 points define a face of the Delaunay
triangulation DT (P ) iff there exists a ball with the k + 1 points on its boundary
and no other points inside. Thus the hypergraph define using the balls as ranges
may be a strict superset of the Delaunay faces. The proof splits the ranges in three
subsets and builds a system of witnesses and collectors for each these subsets.

Balls Centered Deep Inside B. Let rj = O
(

(

j
n

)
1
d

)

denote the radius of a ball

completely contained in B and expected to contain j points. We use a minimal
covering of B with balls of radius r1 and keep the balls centered inside (1−r1 ln2 n)B
to define our first level witnesses W 1

i . We define W j
i as the ball concentric with

W 1
i with radius rj, and Cj

i as the ball concentric with W j
i with radius rj + 2r1.

We finally let Ri be the set of balls centered in W 1
i . This system of witnesses and

collectors verifies the hypotheses of Theorem 10 (i), and a constant fraction of the
first layer {(W 1

i , C
1
i )}i verifies the hypotheses of Theorem 10 (ii). Altogether, they

allow to conclude that the number of Delaunay balls centered in (1− r1 ln
2 n)B is

Θ(n).
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(a) Experimental results for the complexity of the convex hull of a ℓ∞ perturbation of amplitude δ of
the regular n-gon inscribed in the unit circle. Each data point corresponds to an average over 1000
experiments.
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(b) Experimental results for the complexity of the convex hull of a rounding of the regular n-gon inscribed
in the unit circle on a grid of pixel size δ.

Figure 2.3: Experimental results for the ℓ∞ perturbation and rounding.
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Balls Centered Near ∂B. The Delaunay balls centered in an annulus of width
2r1 ln

2 n around ∂B can be counted easily since their number is sublinear. To this
aim we can cover the above annulus by collectors of diameter O(r1 ln

2 n) and use
associated empty witnesses.

Balls Centered outside B. Balls centered outside B are a bit more delicate, since
they can have a large radius but, possibly, a small probability to be empty. A first
remark is that ball of infinite radius are half-plane and are counted by Theorem 11.
Actually, the construction of Theorem 11 can be adapted to count all balls of radii
between α and 2α by using balls of radius α to define the witnesses and balls of
radii 2α for the collectors. Then it is possible to sum on various values of α to
cover all the possible radii. As a side result we get the expected size of the α-shape
of points uniformly distributed in B.



76 CHAPTER 2. SMOOTHED COMPLEXITY OF CONVEX HULLS



Chapter 3

A Chaotic Random Convex Hull
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3.1 Introduction

Consider a sequence of points in a convex body in dimension d whose convex hull
is dynamically maintained when the points are inserted one by one, the convex
hull size may increase, decrease, or remain constant when a new point is added.
Studying the expected size of the convex hull when the points are evenly distributed
in the convex is a classical problem of probabilistic geometry that yields some
surprising facts. For example, although it seems quite natural to think that the
expected size of the convex hull is increasing with n the number of points, this fact
is only formally proved for n large enough [24]. The asymptotic behavior of the
expected size is known to be polylogarithmic for a polytopal body and polynomial
for a smooth one. If for a polytope or a smooth body, the asymptotic behavior
is somehow "nice", for "most" convex bodies the behavior is unpredictable [7,
corollary 3]. It is possible to construct strange convex objects that have no such
nice behaviors and this note exhibits a convex body, such that the behavior of the
expected size of a random polytope oscillates between the polytopal and smooth
behaviors when n increases.

More formally, let K be a convex body in Rd and (x1, . . . , xn) a sample of n
points chosen uniformly and independently at random in K. Let Kn be the convex
hull of these points and f0(Kn) the number of vertices of Kn.

77
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It is well known [8, 43] that if P is a polytope, then

E [f0(Pn)] = cd,P lnd−1 n+ o(logd−1 n) (3.1)

and if K is a smooth convex body (i.e with C2 boundary with a positive Gaussian
curvature), then

E [f0(Kn)] = cd,Kn
d−1
d+1 + o(n

d−1
d+1 ) (3.2)

where cd,P and cd,K are constants depending only on d and on the convex body.
These are the two extreme behaviors : every random polytope of a convex body
in Rd has a behavior between (3.1) and (3.2) for n large enough [7, corollary 3].
For general convex bodies, we cannot expect such a beautiful formula.

Theorem 23 (Bàràny-Larman [7]). For any function G(n) →n→∞ ∞ and for
most (in the Baire category sense) convex bodies K in Rd,

G(n) lnd−1 n > E [f0(Kn)]

for infinitely many n and

G(n)−1n
d−1
d+1 < E [f0(Kn)]

for infinitely many n.

Note that this "most" does not contain convex polytopes and smooth convex
bodies, which are the most used in practice.

In this chapter, we present an explicit example of a convex body which has this
chaotic behavior.

Notations. Let’s introduce some notations used in this chapter:

• K ⊕ L will denote the Minkowski sum of K and L, defined as

J ⊕K = {x+ y |x ∈ J, y ∈ K};

• dH(J,K) will denote the Hausdorff distance of the convex bodies K and L,
defined as

dH(J,K) = min{r ∈ R
+ |J ⊂ K ⊕ B, K ⊂ J ⊕ rB}

where B is the Euclidean unit ball in Rd.

3.2 Approximations of Convex Bodies

In this section, we present an intermediate lemma about random polytopes of close
(in terms of Hausdorff distance) convex bodies. Let K be a convex body in Rd and
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Kn be a random polytope in K. We want to show that if L is an approximation
of K with small Hausdorff distance, Ln is approximating the asymptotic behavior
of Kn for some value of n.
Let’s assume that the expected size of Kn is in cd,Kg(n, d) + o(g(n, d)), where cd,K
is a constant and g some function.

Then, for every close-enough compact set
L containing K, Ln has an expected size
as close as we want from cd,Kg(n, d) for
values of n as big as we want.
The idea of this lemma is very simple:
if L is very close to K, the volume in
L \ K is small, and points chosen uni-
formly in L are very unlikely to be in
L \K. Then, even if asymptotically the
expected size of Ln is different from the
size of Kn, there exists some n where the
expected size of Ln is as close as we want
to cd,Kg(n, d).

K ⊕ αB
L

K

α

Lemma 3.2.1. Let K be a convex body in Rd such that

E [f0(Kn)] = cd,Kg(n, d) + o(g(n, d)). (3.3)

Let ε > 0 and N ∈ N.
Then, there exist p > N and α > 0 such that for any compact set L containing K
with dH(K,L) < α,

E [f0(Lp)]

cd,Kg(p, d)
∈ [1− ε, 1 + ε].

Proof. First, for all n ∈ N∗

E [f0(Ln)] = P [Ln ⊂ K]E [f0(Ln)|Ln ⊂ K] + P [Ln 6⊂ K]E [f0(LN)|Ln 6⊂ K] .

As the points are uniformly distributed, E [f0(Ln)|Ln ⊂ K] = E [f0(Kn)].
Using (3.3), let’s choose p such that

E [f0(Kp)]

cd,Kg(p, d)
∈
[

1− ε

2
, 1 +

ε

2

]

, (3.4)

then
P [Lp ⊂ K]E [f0(Lp)| Lp ⊂ K]

cd,Kg(p, d)
≤ 1 +

ε

2
.
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As

P [Lp 6⊂ K] = 1− P [Lp ⊂ K] = 1−
(

vol (K)

vol (L)

)p

we get

P [Lp 6⊂ K]E [f0(Lp)| Lp 6⊂ K] ≤
(

1−
(

vol (K)

vol (L)

)p)

p.

Now, as 1 ≥ vol(K)
vol(L)

≥ vol(K)
vol(K⊕Bα)

→α→0 1 we can choose α such that

(

vol (K)

vol (L)

)p

≥ max

(

1− cd,K
g(p, d)

p

ε

2
, 1− ε

2

)

. (3.5)

Finally,

E [f0(Lp)] ≤ cd,Kg(p, d)
(

1 +
ε

2

)

+ cd,Kg(p, d)
ε

2
= cd,Kg(p, d)(1 + ε). (3.6)

For the lower bound, using Inequalities (3.4) and (3.5) we get

E [f0(Lp)] ≥ P [Lp ⊂ K]E [f0(Ln)| Ln ⊂ K]

≥ cd,Kg(p, d)

[(

vol (K)

vol (L)

)p

(1− ε

2
)

]

≥ cd,Kg(p, d)

[(

vol (K)

vol (L)

)p

− ε

2

]

≥ cd,Kg(p, d)
(

1− ε

2
− ε

2

)

= cd,Kg(p, d)(1− ε). (3.7)

Inequalities (3.7) and (3.6) prove the lemma.

3.3 Construction of the Convex Body

Given an increasing function G, we want to construct a convex body in Rd where
the size of a convex hull of random points has a chaotic behavior between lnd−1 n

and n
d−1
d+1 on some values arbitrarily big. More formally,

Theorem 24. Let G : N∗ → R∗
+ an increasing function such that G(n)→n→∞ ∞.

We can construct a convex body K such that:
For all N ∈ N∗, there exist M1,M2 > N , where

E [f0(KM1)] < G(M1) ln
d−1 M1

and

E [f0(KM2)] > G(M2)
−1 M

d−1
d+1

2 .
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K(0) K(0) ⊕Bβ0 K(1)

K(1) ⊕Bβ1 K(2)

Figure 3.1: Iterations are made of polygonal and smooth approximations

Proof. The main idea of the proof is, starting from a convex body K(0), to iterate
smooth and polytopal approximations. Lemma 3.2.1 will give us some number of
points where the behavior of the random convex body will be very close to n

d−1
d+1

(which is the behavior for smooth convex bodies) or very close to lnd−1 n (which
is the behavior for polytopes).

Iterations. We create an increasing sequence of convex bodies starting from the
unit ball, made of polytopal and smooth approximations.

Let’s define K(0) as the unit ball. For all n ∈ N∗, K(n) is an approximation of
K(n−1) where dH(K

(n−1), K(n)) < βn−1, with (βi)i∈N some decreasing sequence, as
shown in Figure 3.1.

• If n is odd, K(n−1) is a smooth convex body, so K(n) is a convex polytope.
Let’s choose qn > n, such that

E

[

f0(K
(n−1)
qn )

]

q
d−1
d+1
n

>
2

G(qn)
.

We define

εn = 1− 2

cd,K(n−1)G(qn)
. (3.8)

Using Lemma 3.2.1,with ε = εn, there exist αn−1 and pn > qn such that for
every compact set L containing K(n−1) with dH(K

(n−1), L) < αn−1,

E [f0(Lpn)] > cd,K(n−1)pn
d−1
d+1 (1− εn).

(3.9)
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Therefore,

E [f0(Lpn)] > cd,K(n−1)pn
d−1
d+1 (1− εn)

> pn
d−1
d+1G(qn)

−1

> pn
d−1
d+1G(pn)

−1. (3.10)

Now let’s define βn−1 = min(αn−1

2
, βn−2

2
) if n > 1 and β0 = α0

2
. We define

K(n) as a convex polytope with dH(K
(n−1), K(n)) < βn−1, so (3.10) works for

L = K(n).

• If n is even, K(n−1) is a convex polytope, so K(n) is a smooth approximation.

Let’s choose qn such that

E

[

f0(K
(n−1)
qn )

]

lnd−1 qn
<

G(qn)

2

and define

εn =
G(qn)

2cd,K(n−1)

− 1.

Using Lemma 3.2.1 with ε = εn, there exist αn−1 and pn > qn such that for
every compact set with dH(K

(n−1), L) < αn−1,

E [f0(Lpn)] < cd,K(n−1) lnd−1(pn)(1 + εn).

Finally,

E [f0(Lpn)] < G(qn) ln
d−1(pn)

< G(pn) ln
d−1(pn). (3.11)

Again, we define βn−1 = min(αn−1

2
, βn−2

2
). We define K(n) as a smooth ap-

proximation of K(n−1) such that dH(K
(n−1), K(n)) < βn−1, so (3.11) works

for L = K(n).

Note that for all m > n ∈ N,

dH(K
(n), K(m)) ≤

m−1
∑

k=n

dH(K
(k), K(k+1)) <

m−1
∑

k=n

βk

≤
m−n−1
∑

k=0

βn

2k
≤ 2βn ≤ αn.
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That means for all m > n, the property (3.10) or (3.11) (depending on the evenness
of n) are also true for K(m).

Now, defining K = ∪∞i=0K
(i), the property (3.10) and (3.11) are true for arbi-

trary n ∈ N with L = K, by considering K(n) and K(n+1).
As we can choose qn as big as we want for any n (it will just decrease αn−1), we can
choose this sequence to be increasing. As a result, E [f0(Kn)] will have a chaotic

behavior within n
d−1
d+1 /G(n) and G(n) lnd−1 n, as shown in Figure 3.2.

n

E [f0(Kn)]
n

d−1
d+1

n
d−1
d+1

G(n)

G(n) lnd−1 n

lnd−1 n

p4

E

[

f0(K
(3)
p4 )
]

E

[

f0(K
(4)
p5 )
]

p5

Figure 3.2: The expected size of the random polytope of K.

3.4 Concluding remarks

We have constructed a convex body K such that the expected size of the convex
hull of a random polytope in K has a chaotic behavior. This construction is the
limit of a sequence of bodies (K(i)) that alternate polytopes and smooth shapes so
it is difficult to provide an explicit description of K, in this note we just show that
constructing such a sequence is possible by a repeated application of Lemma 3.2.1



84 CHAPTER 3. A CHAOTIC RANDOM CONVEX HULL

but there is no obstacle, except long and painful computations, to a more con-
structive version with explicit description of the sequence. Notice that in such a
case the complexity of K(i) will be increasing quite rapidly. Actually, since K(i)

is constrained in a slab of width βi around K(i−1), the size of K(i) can be lower

bounded for polytopes, see [12]: |K(i)| = Ω
(

β
− d−1

2
i

)

and since βi <
α0

2i
we get, at

least, an exponential behavior for the size of K(i). Even with a constructive de-
scription of the K(i), the description of K as the limit of the K(i) will remain quite
abstract, but will allow to develop a membership test, given a point p, p ∈ int(K)
can be decided by computing the sequence K(i) up to an index where p ∈ K(i) or
p 6∈ K(i) ⊕ βiB.
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4.1 Introduction

Let D be a disk in R2 with radius R centered at o, and X1, . . . , Xn be a sample of
n points uniformly and independently distributed in D. Let’s define the polygon
Kn as the convex hull of X1, . . . , Xn, and f0(Kn) its number of vertices. This kind
of polygon has been well studied, and using [13, 43] one can easily check that

E [f0(Kn)] = c n
1
3 + o(n

1
3 ) (4.1)

where c = 2
4
33−

1
3Γ(5

3
)π

5
3 ≈ 3.383228964 and Γ denotes the usual Gamma function.

To generate such a polygon, one can explicitly generate n points uniformly in
D and compute the convex hull. For a very large number of points, it could
be interesting to generate fewer points to get the same polygon, for example to
evaluate the constant that are not explicitly known for the asymptotic distribution
of the perimeter, or other parameters such as the higher moments of the extremal
points.

In this chapter, we propose an algorithm that generates far fewer points at
random in order to get Kn, so that the time and the memory needed is reduced
for n large.
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4.2 Algorithm

We start with random polygon Ki in D where i is very small, and we increase the
number of points until we get Kn .
The idea is that given the convex hull of small number of points, the number of
points generated in D that are deeply inside (and so will not change the convex
hull) is a random variable that we can easily simulate, so that we need to generate
only the small number of points that are close to the convex hull.
The outline of the algorithm is the following:

• Generate a small number of points in D and compute its convex hull;

• Compute the radius of the largest disk centered at o inscribed in the convex
hull;

• Choose a number of points to simulate at this step;

• Simulate the number of points that fall in this inscribed disk at this step;

• Generate the rest of the random points in the annulus defined by these two
discs and update the convex hull.

• continue this process until the sum of the simulated and generated points is
equal to n.

To simplify the notations, we assume D to have radius 1.

Notations.

• n is the total number of points simulated and mi is the total number of points
from step 1 to step i;

• ki is the number of generated points at step i, and k =
∑

i ki is the total
number of generated points;

• hi is size of the convex hull at step i, and h is the size of the final convex hull.

• pi is the probability to fall in the annulus at step i.

Initialization. First, we have to generate a random polytope Ki with a small
number of points in D such that o is inside the random polytope. This is not too
much to ask, as (see [3])

P [o 6∈ Ki] = 2−(i−1)i (4.2)

We initialize the random polygon by generating 100 points in the disk. As the
probability that o 6∈ K100 is lower than 1.6 × 10−28, it’s very unlikely that this is
not enough. Otherwise, we add another sample of 100 points, until 0 ∈ P100.j for
some j.
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Di

D

o

Figure 4.1: At step i, we simulate the number of points that falls in Di and we generate points

uniformly in the yellow annulus

Simulation of Points. At the beginning of each step i of the loop, we are given
a polygon Kmi

, which is the convex hull of mi points. Let si the number of new
points simulated at step i. We choose si = mi if mi < n ln−2 n, and si = n ln−2 n
otherwise. Let Di be the largest inscribed disk in Kmi

centered in o, and ri its
radius.
Using a simulation of a binomial variable of parameter si and 1 − r2i , we can
evaluate the number of points that falls in D \ Di. As the points in Di will not
change the convex hull, we do not need to generate them. Then, we generate the
rest of the points uniformly in the annulus D \Di, and we update the convex hull
using a Graham scan.

Generation of Random Points. To generate random points in an annulus with
radii ri and 1, one need to generate the polar angles uniformly in [−π, π) and the
squared radii uniformly in [r2i , 1).
As we want to perform a Graham scan in linear time, the points have to be sorted
by their polar angles. This can be done in expected linear time and size, using a
bucket sort, as the angles are uniformly chosen, see [16].
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Full Algorithm.

Data: integer n
Result: Convex hull of n uniformly chosen points in the disk D
Simulated_Points ← 0 ;
do

Generate min(100,n− Simulated_Points) points in the disk of radius 1;
Simulated_Points ← Simulated_Points+min(100,n− Simulated_Points);

while o is not in the convex hull and Simulated_Points < n;

while Simulated_Points< n do
Compute inscribed_radius ;
p← inscribed_radius2;
if Simulated_Points < n ln−2 n then

k ← Simulated_Points;
else

k ← min(⌊n ln−2 n⌋,n− Simulated_points);
end
X ← Simulation of Binomial variable with parameters k, 1− p;
Generate X points uniformly and sorted in the annulus of radii
inscribed_radius, 1;
Simulated_Points ← Simulated_Points + k ;
Merge the list of the convex hull and the new points;
Update the convex hull with a Graham scan on the list;

end
return Convex hull

Algorithm 1: Algorithm of the Generator of Random Polygon in a disk

4.3 Complexity

Clearly the size complexity is maxi(hi+ki) and the time complexity is
∑

i(hi+ki)
since the Graham scan and the points generation are linear in the number of
points [34].

For the initialization, as the probability that 0 6∈ Kn decreases exponentially,
it is very unlikely that more than one loop is necessary. Let’s call p the minimal
number of points such that o ∈ Kp.
Using formula (4.2), the expectation of p is very small :
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E [p] =
∞
∑

j=1

j P [p = j] =
∞
∑

j=1

P [p ≥ j]

=
3
∑

i=1

P [p ≥ j] +
∞
∑

j=4

P [o 6∈ Kj−1]

= 3 +
∞
∑

j=3

P [o 6∈ Kj]

= 3 +
∞
∑

j=3

j2−(j−1) = 3 + 2 = 5. (4.3)

Thus, the expected size and time complexity of the initialization is O(1).
For i large enough, we have [7]:

E [dH (Kmi
,D)] = Θ

(

lnmi

mi

) 2
3

(4.4)

where dH , the Hausdorff distance, is the maximal distance between a point in Ki

and the boundary of D.
Recall that Di is the annulus with radii ri = 1 − dH(Kmi

,D) and 1 and let pi be
the probability that a random point in D falls in Di.

Using (4.4), there exist a constant c0 > 0 such that, for i large ,

E [pi] = 1− r2i < 2(1− ri) < c0

(

lnmi

mi

) 2
3

.

Let’ s call iτ the last step i where mi <
n

ln2 n
.

At each step i ≤ iτ , ki is a binomial variable with parameter pi and mi <
n

ln2 n
.

Thus, for i large enough,

E [ki] = E [ E [ki | pi ]]
= mi E [pi]

= O(m
1
3
i log

2
3 (mi))

= O

(

(

n

log2 n

) 1
3

log
2
3 n

)

= O(n
1
3 ). (4.5)

As we choose mi+1 = 2mi, iτ is bounded by log2(n).
For i > iτ , ki is a binomial variable with parameter pi and n

ln2 n
, so using Equa-

tion (4.5) and the fact that mi >
n

ln2 n
, we get E [ki] = O(n

1
3 ).
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As we simulate at each step i > iτ at least n
ln2(n)

, the number of step after iτ is

bounded by ln2(n).
Now,

E [k] =
iτ
∑

i=1

E [ki] +
∑

i>iτ

E [ki]

≤ O

(

ln
2
3 n

(

log2 n
∑

i=1

m
1
3
i

))

+ ln2 n O(n
1
3 )

≤ O

(

ln
2
3 n

(

log2 n
∑

i=1

(2i)
1
3

))

+O(n
1
3 ln2 n) = O(n

1
3 ln2 n) (4.6)

At each step i, the expected size of the convex hull is O(m
1
3
i ) = O(n

1
3 ), and

E [ki] = O(n
1
3 ). Thus, using Chernoff bound, the expected size of the largest list,

that is the expected size complexity, is O(n
1
3 ).

As our points are sorted according to their polar angle, computing the convex
hull with a Graham scan is done in linear time (O(n

1
3 ln2 n)), the generation of the

k points and the computation of the largest annulus as well (O(n
1
3 )). Thus, the

expected time complexity is O(n
1
3 log2 n).

4.4 Experiments

This algorithm has been implemented in c++ and integrated into the cgal li-
brary.

As expected, the distribution of E [f0(Kn)] is asymptotically the same as the
theoretical one, see Equation (4.1), with the same constant, see Figure 4.2. This
estimation has been done on 1000 experiments for each value of n.

Complexities. To evaluate the expected size complexity, we estimate the average
size of the largest list of points used in the loop, see Figure 4.3. The time com-
plexity can be evaluated by estimating the total number of points generated, see
Figure 4.4.

As a first application, we can estimate the distribution of the smallest and the
largest edge of a random polygon, see Figure 4.5 and Figure 4.6. The average have
been done on 100 experiments for each value of n. The expected minimal edge

seems to be O(n− 1
3 ), and the maximal O

(

ln2 n
n

) 1
3
.
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4.5 Conclusion

We propose an algorithm that generates random polygons given by the convex
hull of random points, without generating all the points. There is no theoretical
obstacle to generalize to higher dimension. The theoretical results used for the
evaluation of the complexity are known in arbitrary dimension [7, 43], so the
analysis can be done as well.

We can reduce the expected time complexity by a logarithmic factor if we
allow to increase the expected size complexity by a logarithmic factor. Instead
of bounding the simulated points at step i by n

ln2 n
when mi becomes bigger than

n
ln2 n

, we can choose to always simulate mi points. In this case,

E [ki] = O(m
1
3
i ln

2
3 mi) = O(n

1
3 ln

2
3 n) (4.7)

so the expected size complexity becomes O(n
1
3 ln

2
3 n). On the other hand, the

expected time complexity is reduced to O(n
1
3 ln

2
3 n), as

E [k] =
∑

i

E [ki]

= O

(

ln
2
3 n

(

log2 n
∑

i=1

m
1
3
i

))

= O
(

n
1
3 ln

2
3 n
)

.
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Conclusion & Perspectives

We give new results on the complexity analysis of random convex hull. The Wit-
ness & Collector technique allows to capture the order of magnitude of the ex-
pected number of faces of a convex hull made of random points. These random
points might be identically distributed: in this case we give an easier proof of
classic results. They can also be a noisy version of an arbitrary set of points: this
corresponds to the smoothed complexity.

We performed the smoothed analysis for two kind of perturbations. The first
perturbation distribution is the uniform noise in a ball. This first analysis is new,
and given in arbitrary dimension. The second one is the Gaussian perturbation:
in this case we improve the results of the state of the art in dimension 2; we believe
that this result can be generalized in higher dimensions.

For these two results, we provide an upper and a lower bound for the smoothed
complexity. In the two cases, the lower bound does not match with the upper
bound. The problem of having tight bounds is still open; however the case of large
perturbations is tight, since it corresponds to the average-case magnitude.

The Witness & Collector technique can be applied for other structures based on
hypergraphs; taking the ranges as balls of Rd, the Delaunay triangulation average
size can be estimated. An interesting question would be to bound the smoothed
complexity under a given noise, for an arbitrary initial set of points. The technique
works for a bad initial point set: if the points are on the moment curve t 7→
(t, t2, t3), it’s possible to compute the noisy complexity under a uniform Euclidean
noise. Is it possible to deal with an arbitrary initial set of points? If not, can we, at
least, show that under large perturbations, the smoothed complexity corresponds
to the average complexity?

Other geometric structures can be interesting to investigate. One example is the
visibility complex of a set of n triangles in R3. The visibility complex encodes all
the visibility informations of a 3D scene. In the worst case, its size is Θ(n4), which
makes the structure unusable. The worst-case seems, however, to be too pessimistic
in practice; in particular for uniformly distributed unit balls the expected size is
linear and for polygons or polyhedra of bounded aspect ratio [21]. This would
justify a smoothed analysis.

93
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The asymptotic expected average number of vertices of a random polytope is
known with high precision when the points are uniformly and independently chosen
on a well shaped convex body. If the convex body is badly shaped, then it can
be as unpredictable as we want. Actually, most of the convex bodies are badly
shaped, however this notion of most does not include the convex bodies used and
studied in practice. We give a construction of such a set, where the magnitude of
the expected size oscillates between two regimes. This is an illustration of the fact
that we cannot hope a good asymptotic formula for every arbitrary convex body.

We also propose an algorithm generating efficiently a random convex hull in
a disk. We reduced the number of points to be generated, using the observation
that, after generating a small number of points, a large region of the disk will
not contain any of the extreme points. Generating efficiently random geometric
objects can be interesting to study limit behaviors. It can also provide test case
for algorithms, if the average-case analysis of the algorithm is not known. An open
question, for example, would be to generate efficiently the convex hull of n points
uniformly chosen, given the fact that the n points are in convex position. Since
this event happens with a very small probability, a simple rejection algorithm is
inneficient so generating such a structure when n is large is challenging.

These problems can be seen as special cases of the problem of sampling an
object efficiently according to a given distribution µ. Several algorithms using
Markov chains can solve (at least approximately) this kind of problem. However,
computing the mixing time (that is, the number of steps before reaching the steady
state distribution) can be difficult, and several interesting cases are still open.
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