A Bayesian Network framework for probabilistic identification of model parameters from normal and accelerated tests : application to chloride ingress into conrete 

par Thanh Binh Tran

Thèse de doctorat en Sciences de l’ingénieur – Génie civil

  • Titre traduit

    Un cadre basé en réseaux bayésiens pour l'identification probabiliste des paramètres du modèle à partir d'essais normaux et accélérés: application à la pénétration des chlorures dans le béton


  • Résumé

    La pénétration des chlorures dans le béton est l'une des causes principales de dégradation des ouvrages en béton armé. Sous l’attaque des chlorures des dégradations importantes auront lieu après 10 à 20 ans. Par conséquent, ces ouvrages devraient être périodiquement inspectés et réparés afin d’assurer des niveaux optimaux de capacité de service et de sécurité pendant leur durée de vie. Des paramètres matériels et environnementaux pertinents peuvent être déterminés à partir des données d’inspection. En raison de la cinétique longue des mécanismes de pénétration de chlorures et des difficultés pour mettre en place des techniques d'inspection, il est difficile d'obtenir des données d'inspection suffisantes pour caractériser le comportement à moyen et à long-terme de ce phénomène. L'objectif principal de cette thèse est de développer une méthodologie basée sur la mise à jour du réseau bayésien pour améliorer l'identification des incertitudes liées aux paramètres matériels et environnementaux des modèles en cas de quantité limitée de mesures. Le processus d'identification est appuyé sur des résultats provenant de tests normaux et accélérées effectués en laboratoire qui simulent les conditions de marée. Sur la base de ces données, plusieurs procédures sont proposées pour : (1) identifier des variables aléatoires d'entrée à partir de tests normaux ou naturels; (2) déterminer un temps équivalent d'exposition (et un facteur d'échelle) pour les tests accélérés; et (3) caractériser les paramètres en dépendants du temps. Les résultats indiquent que le cadre proposé peut être un outil utile pour identifier les paramètres du modèle, même à partir d’une base de données limitée.


  • Résumé

    Chloride ingress into concrete is one of the major causes leading to the degradation of reinforced concrete (RC) structures. Under chloride attack important damages are generated after 10 to 20 years. Consequently, they should be periodically inspected and repaired to ensure an optimal level of serviceability and safety during its lifecycle. Relevant material and environmental parameters for reliability analysis could be determined from inspection data. In natural conditions, chloride ingress involves a large number of uncertainties related to material properties and exposure conditions. However, due to the slow process of chloride ingress and the difficulties for implementing the inspection techniques, it is difficult to obtain sufficient inspection data to characterise the mid- and long-term behaviour of this phenomenon. The main objective of this thesis is to develop a framework based on Bayesian Network updating for improving the identification of uncertainties related to material and environmental model parameters in case of limited amount of measurements in time and space. The identification process is based on results coming from in-lab normal and accelerated tests that simulate tidal conditions. Based on these data, several procedures are proposed to: (1) identify input random variables from normal or natural tests; (2) determine an equivalent exposure time (and a scale factor) for accelerated tests; and (3) characterise time-dependent parameters combining information from normal and accelerated tests. The results indicate that the proposed framework could be a useful tool to identify model parameters even from limited.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (178 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p.171-178

Où se trouve cette thèse ?

  • Bibliothèque : Université de Nantes. Service commun de la documentation. BU Sciences.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.