REDD1 contribue au dialogue entre le métabolisme énergétique et la masse musculaire

par Florian Britto

Thèse de doctorat en Biologie Santé

Sous la direction de Vincent Ollendorff et de François Favier.

Le président du jury était Stefan Matecki.

Le jury était composé de Vincent Ollendorff, François Favier, Stefan Matecki, Benoît Viollet, Marc Francaux, Sophie Giorgetti-Peraldi.

Les rapporteurs étaient Benoît Viollet, Marc Francaux.


  • Résumé

    REDD1 contribue au dialogue entre le métabolisme énergétique et la masse musculaire.REDD1 est une protéine ubiquitaire et conservée qui est exprimée en réponse à de nombreux stress et pathologies associés à une atrophie du muscle squelettique, un paramètre corrélé à la mortalité des patients. REDD1 est connue pour inhiber la voie Akt/mTORC1 qui contrôle la synthèse des protéines (composants majoritaires du muscle), mais également d'autres macromolécules tels les ribosomes, les nucléotides ou le glycogène. Nos travaux montrent, grâce à un modèle murin, que REDD1 est capable d'une part d'inhiber la synthèse protéique ce qui conduit à l'atrophie du muscle, et d'autre part de réduire le stockage du glycogène musculaire. Cependant, sa délétion est responsable d'une augmentation du métabolisme basal, d'une réduction de la capacité d'exercice et d'une aggravation de l'atrophie musculaire en situation d'hypoxie. Ces altérations du métabolisme ne sont pas liées à un dysfonctionnement mitochondrial, mais associées à une moindre inhibition de la signalisation d'Akt et/ou mTORC1, tous deux responsables de l'activation de processus anaboliques couteux en énergie. Pris ensembles, ces résultats suggèrent que REDD1 agit comme modérateur de la dépense en ATP dans des situations de stress énergétique.

  • Titre traduit

    REDD1 contributes to the crosstalk between energetic metabolism and skeletal muscle mass


  • Résumé

    REDD1 contributes to the crosstalk between energetic metabolism and skeletal muscle mass. REDD1 is a ubiquitous and conserved protein, which is expressed in response to numerous stresses and pathologies responsible of muscle atrophy, a parameter correlated with patient mortality. REDD1 is known to inhibit Akt/mTORC1 pathway which controls synthesis of proteins (the major component of muscle) and other macromolecules such as ribosome, nucleotide or glycogen. Our work shows on a mice model that REDD1 inhibits protein synthesis, leading to skeletal muscle atrophy, and reduces muscle glycogen storage. However, REDD1 deletion is responsible of an increase in basal metabolism, a reduction of exercise capacity and an exacerbation of hypoxia-induced skeletal muscle atrophy. These metabolic alterations are not associated with a mitochondrial dysfunction but rather with an hyper activation of the Akt/mTORC1 pathway which is responsible for the stimulation of energy demanding processes. Altogether, these results strongly suggest that REDD1 acts for moderating ATP demand in energetic stress conditions

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque interuniversitaire. Section Médecine-Unité pédagogique médicale.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.