Image matching using rotating filters

par Darshan Venkatrayappa

Thèse de doctorat en Informatique

Sous la direction de Philippe Montesinos.

Soutenue le 04-12-2015

à Montpellier , dans le cadre de I2S - Information, Structures, Systèmes , en partenariat avec Laboratoire de génie informatique et d'ingénierie de production (Nîmes) (laboratoire) .

Le président du jury était William Puech.

Le jury était composé de Philippe Montesinos, William Puech, Daniel Diep, Atilla Baskurt.

Les rapporteurs étaient Jenny Benois Pineau, Frédéric Jurie.

  • Titre traduit

    Mise en correspondance d'images avec des filtres tournants


  • Résumé

    De nos jours les algorithmes de vision par ordinateur abondent dans les applications de vidéo-surveillance, de reconstruction 3D, de véhicules autonomes, d'imagerie médicale, etc… La détection et la mise en correspondance d'objets dans les images constitue une étape clé dans ces algorithmes.Les méthodes les plus communes pour la mise en correspondance d'objets ou d'images sont basées sur des descripteurs locaux, avec tout d'abord la détection de points d'intérêt, puis l'extraction de caractéristiques de voisinages des points d'intérêt, et enfin la construction des descripteurs d'image.Dans cette thèse, nous présentons des contributions au domaine de la mise en correspondance d'images par l'utilisation de demi filtres tournants. Nous suivons ici trois approches : la première présente un nouveau descripteur à faible débit et une stratégie de mise en correspondance intégrés à une plateforme vidéo. Deuxièmement, nous construisons un nouveau descripteur local en intégrant la réponse de demi filtres tournant dans un histogramme de gradient orienté (HOG) ; enfin nous proposons une nouvelle approche pour la construction d'un descripteur utilisant des statistiques du second ordre. Toutes ces trois approches apportent des résultats intéressants et prometteurs.Mots-clés : Demi filtres tournants, descripteur local d'image, mise en correspondance, histogramme de gradient orienté (HOG), Différence de gaussiennes.


  • Résumé

    Nowadays computer vision algorithms can be found abundantly in applications relatedto video surveillance, 3D reconstruction, autonomous vehicles, medical imaging etc. Image/object matching and detection forms an integral step in many of these algorithms.The most common methods for Image/object matching and detection are based on localimage descriptors, where interest points in the image are initially detected, followed byextracting the image features from the neighbourhood of the interest point and finally,constructing the image descriptor. In this thesis, contributions to the field of the imagefeature matching using rotating half filters are presented. Here we follow three approaches:first, by presenting a new low bit-rate descriptor and a cascade matching strategy whichare integrated on a video platform. Secondly, we construct a new local image patch descriptorby embedding the response of rotating half filters in the Histogram of Orientedgradient (HoG) framework and finally by proposing a new approach for descriptor constructionby using second order image statistics. All the three approaches provides aninteresting and promising results by outperforming the state of art descriptors.Key-words: Rotating half filters, local image descriptor, image matching, Histogram of Orientated Gradients (HoG), Difference of Gaussian (DoG).


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Bibliothèque interuniversitaire. Section Sciences.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.