Méthodes d'inférence statistique pour champs de Gibbs

par Julien Stoehr

Thèse de doctorat en Biostatistique

Sous la direction de Jean-Michel Marin et de Pierre Pudlo.

Le président du jury était Stéphane Robin.

Le jury était composé de Jean-Michel Marin, Pierre Pudlo, Stéphane Robin, Florence Forbes, Håvard Rue, Lionel Cucala, Stéphanie Allassonnière.

Les rapporteurs étaient Florence Forbes, Håvard Rue.


  • Résumé

    La constante de normalisation des champs de Markov se présente sous la forme d'une intégrale hautement multidimensionnelle et ne peut être calculée par des méthodes analytiques ou numériques standard. Cela constitue une difficulté majeure pour l'estimation des paramètres ou la sélection de modèle. Pour approcher la loi a posteriori des paramètres lorsque le champ de Markov est observé, nous remplaçons la vraisemblance par une vraisemblance composite, c'est à dire un produit de lois marginales ou conditionnelles du modèle, peu coûteuses à calculer. Nous proposons une correction de la vraisemblance composite basée sur une modification de la courbure au maximum afin de ne pas sous-estimer la variance de la loi a posteriori. Ensuite, nous proposons de choisir entre différents modèles de champs de Markov cachés avec des méthodes bayésiennes approchées (ABC, Approximate Bayesian Computation), qui comparent les données observées à de nombreuses simulations de Monte-Carlo au travers de statistiques résumées. Afin de pallier l'absence de statistiques exhaustives pour ce choix de modèle, des statistiques résumées basées sur les composantes connexes des graphes de dépendance des modèles en compétition sont introduites. Leur efficacité est étudiée à l'aide d'un taux d'erreur conditionnel original mesurant la puissance locale de ces statistiques à discriminer les modèles. Nous montrons alors que nous pouvons diminuer sensiblement le nombre de simulations requises tout en améliorant la qualité de décision, et utilisons cette erreur locale pour construire une procédure ABC qui adapte le vecteur de statistiques résumés aux données observées. Enfin, pour contourner le calcul impossible de la vraisemblance dans le critère BIC (Bayesian Information Criterion) de choix de modèle, nous étendons les approches champs moyens en substituant la vraisemblance par des produits de distributions de vecteurs aléatoires, à savoir des blocs du champ. Le critère BLIC (Block Likelihood Information Criterion), que nous en déduisons, permet de répondre à des questions de choix de modèle plus large que les méthodes ABC, en particulier le choix conjoint de la structure de dépendance et du nombre d'états latents. Nous étudions donc les performances de BLIC dans une optique de segmentation d'images.

  • Titre traduit

    Statistical inference methods for Gibbs random fields


  • Résumé

    Due to the Markovian dependence structure, the normalizing constant of Markov random fields cannot be computed with standard analytical or numerical methods. This forms a central issue in terms of parameter inference or model selection as the computation of the likelihood is an integral part of the procedure. When the Markov random field is directly observed, we propose to estimate the posterior distribution of model parameters by replacing the likelihood with a composite likelihood, that is a product of marginal or conditional distributions of the model easy to compute. Our first contribution is to correct the posterior distribution resulting from using a misspecified likelihood function by modifying the curvature at the mode in order to avoid overly precise posterior parameters.In a second part we suggest to perform model selection between hidden Markov random fields with approximate Bayesian computation (ABC) algorithms that compare the observed data and many Monte-Carlo simulations through summary statistics. To make up for the absence of sufficient statistics with regard to this model choice, we introduce summary statistics based on the connected components of the dependency graph of each model in competition. We assess their efficiency using a novel conditional misclassification rate that evaluates their local power to discriminate between models. We set up an efficient procedure that reduces the computational cost while improving the quality of decision and using this local error rate we build up an ABC procedure that adapts the summary statistics to the observed data.In a last part, in order to circumvent the computation of the intractable likelihood in the Bayesian Information Criterion (BIC), we extend the mean field approaches by replacing the likelihood with a product of distributions of random vectors, namely blocks of the lattice. On that basis, we derive BLIC (Block Likelihood Information Criterion) that answers model choice questions of a wider scope than ABC, such as the joint selection of the dependency structure and the number of latent states. We study the performances of BLIC in terms of image segmentation.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Bibliothèque interuniversitaire. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.