Etude du rôle des cytokinines végétales et fongiques dans l'interaction riz-Magnaporthe oryzae

par Emilie Chanclud

Thèse de doctorat en Biologie intégrative des plantes

Sous la direction de Jean-Benoît Morel.


  • Résumé

    Magnaporthe oryzae est un champignon filamenteux responsable de la principale maladie du riz, la pyriculariose. Ce pathosystème est très étudié, notamment dans le but de contribuer à l’identification de facteurs pouvant permettre le développement de résistances efficaces. Si certaines hormones végétales, comme l’acide salycilique, sont requises pour la mise en place des défenses de la plante, d’autres sont impliquées dans des processus développementaux. Parmi elles, les cytokinines (CKs) sont des dérivés d’adénine décrites pour participer à la croissance et la différenciation de l’appareil aérien et racinaire. Elles contribuent à la répartition des nutriments et impactent également la viabilité des cellules, en retardant la senescence ou en induisant la mort cellulaire. Des études précédentes ont montré que les CKs pouvaient perturber la résistance de la plante hôte dans différents pathosystèmes. Chez le riz, les CKs agissent en synergie avec l’acide salicylique pour induire l’expression des gènes marqueurs des défenses. Cependant aucun phénotype de résistance associé aux CKs n’a été observé in planta. Mes travaux montrent qu’un apport exogène de CKs (kinétine, BAP) affecte la résistance du riz à Magnaporthe avant infection, de manière dose dépendante. Le phénotype de résistance observé est corrélé avec une plus forte expression des défenses pendant infection, limitant la pénétration et l’invasion du champignon. Des plantes de riz mutées pour une probable cytokinine UDP-glucosyl transferase (CK-UGT) ont été obtenues. Ces mutants ck-ugt sont affectés dans le métabolisme des CKs et sont également plus résistants à M. oryzae. Hors infection, une plus forte expression des gènes de défense a été mesurée chez les plantes mutantes, confirmant que les CKs endogènes affectent directement ou indirectement les défenses de l’hôte. En parallèle de ces analyses sur la plante, mes travaux ont aussi porté sur le rôle des CKs produites par M.oryzae. En effet, leur rôle dans l’interaction ainsi que la voie de leur biosynthèse chez le champignon n’était pas caractérisé. Conservées au sein des différents organismes, les tRNA-IPT (isopentenyl transferase) sont décrites pour participer à la biosynthèse de CKs. Un seul gène homologue a été identifié chez M. oryzae et nommé CKS1 car sa délétion abolit la production de CKs. Le mutant de Magnaporthe cks1 est moins virulent (pénétration et invasion in planta réduites) que la souche témoin complémentée. Il induit une plus forte accumulation des espèces actives de l’oxygène et une plus forte expression des défenses chez la plante. Les dosages des acides aminés et des sucres pendant infection ont montré que les concentrations de ces nutriments étaient différemment perturbées par la souche déficiente en CKs. Ces résultats suggèrent que les CKs fongiques pourraient être requises pour affecter la répartition des acides aminés et contribuer une accumulation progressive de sucres au cours de l’infection. Ainsi, chez un champignon qui n’induit pas de tumeurs, les CKs pourraient agir comme des effecteurs qui auraient une double fonction d’inhibition des défenses et de drainage des nutriments. Chez les champignons, ces hormones induisent également des réponses physiologiques comme la résistance à certains stress, les processus de nutrition et la reproduction sexuée. Ces effets ont été étudiés chez Magnaporthe dans différentes conditions de croissance in vitro plus ou moins stressantes. Les résultats indiquent que les CKs augmentent la tolérance au stress osmotique et oxydatif et suggèrent qu’elles affecteraient aussi l’absorption des nutriments ainsi que la reproduction sexuée. Comme le gène CKS1 est conservé, cette mutation peut être caractérisée chez d’autres organismes fongiques présentant des modes de vie différents de manière à mieux comprendre le rôle de ces hormones dans les interactions plante-microorganisme mais également au sein des interactions microbiennes.

  • Titre traduit

    Study of the role of plant and fungal cytokinins in the pathosystem rice-Magnaporthe oryzae


  • Résumé

    The blast disease caused by Magnaporthe oryzae is one of the most devastating diseases on rice leading to important yield loss. Plant hormones, like salicylic acid, play a central role in plant resistance establishment. Among these hormones, cytokinins (CKs) are adenine derivatives well described to modulate root/shoot growth and differentiation, cell viability and nutrient distribution. Previous studies have shown that these hormonal compounds can also affect plant host resistance in different pathosystems involving monocot or dicot host plants and microbes (bacteria, oomycetes or fungi). In rice, CKs were described to act synergistically with the salicylic acid pathway to induce defense marker genes expression. However, no resistance phenotype associated with CKs was observed and the way that CKs could act in planta during infection is still unknown. In this work, a resistance phenotype induced by exogenous application of the CK kinetin was characterized and the role of endogenous CKs in rice resistance was investigated by phenotyping plant CK mutants. An exogenous supply of kinetin before infection led to a higher induction of defense marker genes that was associated with limited fungal penetration and invasion, suggesting. However the way CKs affected resistance or susceptibility (or virulence see below) depended on the timing at which they were applied (before or after inoculation). Rice lines mutated for a putative cytokinin- UDP-glycosyl transferase (CK-UGT) were produced. The ck-ugt mutants were more resistant, suggesting that endogenous CKs can also contribute to resistance. Defense marker genes were expressed higher in the absence of infection in the ck-ugt rice mutants, compared to the WT plants. In parallel of these analyses of CK on the plant side, we studied the possible role of CK produced by Magnaporthe. Indeed M.oryzae produces and secretes CKs. However, the way fungal CKs are involved in the rice blast disease development as well as the biosynthesis pathway in M.oryzae were not established. A putative tRNA-IPT (isopentenyl transferase) conserved across organisms was identified in M.oryzae. Mutant analysis of this gene confirmed that this enzyme, thus named CKS1, is required for CK production. Knock-out cks1 fungal mutants were less virulent on rice, affected in penetration and invasion compared to the control complemented strain. They triggered a stronger accumulation of reactive oxygen species and a higher expression of defense marker genes. Aspartate and glutamate, two amino acids important for M.oryzae growth, were differently affected at and around the infected zone by cks1 strain suggesting that fungal CKs could contribute to drain/consume nutrients during infection. Similarly, sugar accumulation was also differently disturbed, indicating that fungal-derived CKs may be required for maintaining a progressive sugar production during host invasion, probably by affecting photosynthesis process. Our results show that fungal CKs, in a non-gall forming fungal pathogen, could act as dual effectors by inhibiting defense and modifying nutrient fluxes. Furthermore, CKs are known to affect some physiological processes in fungi, like stress resistance, nutrition or sexual reproduction. In order to test whether CKs modulate Magnaporthe stress tolerance, the effect of CKs on the mycelial growth in different stressful conditions in vitro was tested. The results indicate that CKs increased osmotic and oxidative stress tolerance and suggest that they also affected nutrient acquisition as well as sexual reproduction. Since the CKS1 gene is highly conserved, the effect of the cks1 mutation could be studied in other fungi showing different lifestyles for improving our knowledge on the role these hormonal compounds play among microbes or in plant-microbe interactions.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.