Modélisation conjointe des thématiques et des opinions : application à l'analyse des données textuelles issues du Web

par Mohamed Dermouche

Thèse de doctorat en Informatique

Sous la direction de Sabine Loudcher Rabaseda et de Julien Velcin.

Soutenue le 08-06-2015

à Lyon 2 , dans le cadre de École doctorale en Informatique et Mathématiques de Lyon , en partenariat avec Entrepôts, Représentation et Ingénierie des Connaissances (équipe de recherche) .

Le président du jury était Patrick Gallinari.

Le jury était composé de Sabine Loudcher Rabaseda, Julien Velcin, Mathieu Roche, Leila Khouas.

Les rapporteurs étaient Osmar R. Zaïane, Patrice Bellot.


  • Résumé

    Cette thèse se situe à la confluence des domaines de "la modélisation de thématiques" (topic modeling) et l'"analyse d'opinions" (opinion mining). Le problème que nous traitons est la modélisation conjointe et dynamique des thématiques (sujets) et des opinions (prises de position) sur le Web et les médias sociaux. En effet, dans la littérature, ce problème est souvent décomposé en sous-tâches qui sont menées séparément. Ceci ne permet pas de prendre en compte les associations et les interactions entre les opinions et les thématiques sur lesquelles portent ces opinions (cibles). Dans cette thèse, nous nous intéressons à la modélisation conjointe et dynamique qui permet d'intégrer trois dimensions du texte (thématiques, opinions et temps). Afin d'y parvenir, nous adoptons une approche statistique, plus précisément, une approche basée sur les modèles de thématiques probabilistes (topic models). Nos principales contributions peuvent être résumées en deux points : 1. Le modèle TS (Topic-Sentiment model) : un nouveau modèle probabiliste qui permet une modélisation conjointe des thématiques et des opinions. Ce modèle permet de caractériser les distributions d'opinion relativement aux thématiques. L'objectif est d'estimer, à partir d'une collection de documents, dans quelles proportions d'opinion les thématiques sont traitées. 2. Le modèle TTS (Time-aware Topic-Sentiment model) : un nouveau modèle probabiliste pour caractériser l'évolution temporelle des thématiques et des opinions. En s'appuyant sur l'information temporelle (date de création de documents), le modèle TTS permet de caractériser l'évolution des thématiques et des opinions quantitativement, c'est-à-dire en terme de la variation du volume de données à travers le temps. Par ailleurs, nous apportons deux autres contributions : une nouvelle mesure pour évaluer et comparer les méthodes d'extraction de thématiques, ainsi qu'une nouvelle méthode hybride pour le classement d'opinions basée sur une combinaison de l'apprentissage automatique supervisé et la connaissance a priori. Toutes les méthodes proposées sont testées sur des données réelles en utilisant des évaluations adaptées.

  • Titre traduit

    Joint topic-sentiment modeling : an application to Web data analysis


  • Résumé

    This work is located at the junction of two domains : topic modeling and sentiment analysis. The problem that we propose to tackle is the joint and dynamic modeling of topics (subjects) and sentiments (opinions) on the Web. In the literature, the task is usually divided into sub-tasks that are treated separately. The models that operate this way fail to capture the topic-sentiment interaction and association. In this work, we propose a joint modeling of topics and sentiments, by taking into account associations between them. We are also interested in the dynamics of topic-sentiment associations. To this end, we adopt a statistical approach based on the probabilistic topic models. Our main contributions can be summarized in two points : 1. TS (Topic-Sentiment model) : a new probabilistic topic model for the joint extraction of topics and sentiments. This model allows to characterize the extracted topics with distributions over the sentiment polarities. The goal is to discover the sentiment proportions specfic to each of theextracted topics. 2. TTS (Time-aware Topic-Sentiment model) : a new probabilistic model to caracterize the topic-sentiment dynamics. Relying on the document's time information, TTS allows to characterize the quantitative evolutionfor each of the extracted topic-sentiment pairs. We also present two other contributions : a new evaluation framework for measuring the performance of topic-extraction methods, and a new hybrid method for sentiment detection and classification from text. This method is based on combining supervised machine learning and prior knowledge. All of the proposed methods are tested on real-world data based on adapted evaluation frameworks.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.