All-Optical Helicity dependent switching effect in magnetic thin films

par Charles-Henri Lambert

Thèse de doctorat en Physique

Sous la direction de Stéphane Mangin.

Le président du jury était Martin Aeschlimann.

Le jury était composé de Manfred Albrecht, Eric Fullerton, Bert Koopmans.

Les rapporteurs étaient Éric Beaurepaire, Jan Lüning.

  • Titre traduit

    Étude du retournement optique dépendant de l’hélicité dans des couches minces magnétiques


  • Résumé

    Depuis une quinzaine d’années, de nombreuses solutions différentes ont été proposés afin de modifier l’aimantations de matériaux sans aucun champ magnétique extérieur appliqué. La manipulation d’aimantation à moindre coût énergétique, de préférence à des échelles de temps ultracourtes, est devenu un enjeu fondamental avec des implications pour les technologies d’enregistrement magnétique et de nouvelles sortes de stockage. Sur ce chemin, le type d’interaction découverte par Stanciu et al. ouvre la voie à l’utilisation de la lumière comme moyen d’exciter et de sonder directement les matériaux magnétiques. La description des théories et modèles existants dans ce domaine permet de nous rendre attentif sur les différents paramètres impliqués par l’interaction des lasers ultrarapides et matériaux magnétiques. L’entrelacement spécifique des impulsions de chaleur et de moment angulaire propre aux lasers ultrarapides est mise en avant afin de discuter de leur rôle dans les phénomènes observés. Le délai des interactions responsables de l’état final de l’aimantation est abordé et notamment la manière dont celle-ci ont un impact sur la façon dont le système se stabilise après une excitation laser. En outre, nous nous sommes intéressés à la relation entre les paramètres matériels et l’état final de l’aimantation obtenue avec un laser ultrarapide. Grâce aux nombreuses classes de matériaux magnétiques existantes les paramètres magnétiques peuvent être ajustés dans une grande gamme de valeurs et de manière entièrement contrôlés. Notre installation d’imagerie magnétique est alors capable de sonder les caractéristiques optiques et la stabilité des domaines après l’excitation. Nous avons finalement démontré que le retournement optique dépendent de l’hélicité peut être observée non seulement dans un grand nombre de couches minces d’alliages de terre rare-métaux de transition (RE-TM) mais aussi dans une variété beaucoup plus large de matériaux, y compris les multicouches et hétérostructures de RE-TM. Nous montrons en outre que les hétérostructures ferrimagnétiques dépourvues de terres rares présentent également un retournement optique. Nous avons en plus développé le contrôle optique de multicouches ferromagnétiques dont des films granulaires actuellement explorés pour l’enregistrement magnétique ultra-haute densité de demain. Notre découverte montre que la manipulation de l’aimantation dans des matériaux magnétiques est un phénomène beaucoup plus général que précédemment suspecté et peut avoir un impact majeur sur l’enregistrement magnétique et le stockage de l’information grâce à l’intégration nouvelle de ce type de contrôle optique dans des bits ferromagnétiques


  • Résumé

    The possibilities of modifying magnetization without applied magnetic fields have attracted growing attention over the past fifteen years. The low-power manipulation of magnetization, preferably at ultrashort timescales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. In particular the interplay of laser and magnetism recently discovered by Stanciu et al. opens up new way for light to be used as an excitation and a probe of magnetic materials. A description of the current models and frameworks developed in the field requires a careful look at the different parameters involved through the interaction of ultrafast lasers and magnetic materials. The specific and complex interplay between heat and angular momentum transfer is highlighted in order to discuss the role of each of them in the phenomena observed. The timescales of the different interactions responsible for the final state of magnetization are presented and will impact the way the system recovery after a laser excitation. Besides we were interested in exploring the relation between the material parameters such as anisotropy, ordering temperature and exchange coupling on the final state of magnetization obtained with a laser. Indeed thanks to the many different magnetism classes existing the magnetic parameters can be tuned widely and in a controlled manner. Our imaging setup then is able to probe the optical characteristics and domain stability after the laser excitation. We finally demonstrated that all-optical helicity-dependent switching (AO-HDS) can be observed not only in selected rare earth-transition metal (RE-TM) alloy films but also in a much broader variety of materials, including RE-TM alloys, multilayers and heterostructures. We further show that RE-free Co-Ir-based synthetic ferrimagnetic heterostructures designed to mimic the magnetic properties of RE-TM alloys also exhibit AO-HDS. We further developed the optical control of ferromagnetic materials ranging from magnetic thin films to multilayers and even granular films being explored for ultra-high-density magnetic recording. Our finding shows that optical control of magnetic materials is a much more general phenomenon than previously assumed and may have a major impact on data memory and storage industries through the integration of optical control of ferromagnetic bits


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.