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Abstract

The connection between amenability of a locally compact group G and injectivity

of its group von Neumann algebra L(G) has been studied by many of the world’s

leading operator algebraists for decades. In this work we clarify this connection by

showing the equivalence between amenability of G and 1-injectivity of L(G) as an

operator module of the Fourier algebra A(G). In fact, we prove a corresponding re-

sult for all locally compact quantum groups G, establishing at the same time new

homological manifestations of quantum group duality, and a novel tool for the devel-

opment of abstract harmonic analysis on locally compact quantum groups. We give

several applications of our general duality result, including a proof that closed quan-

tum subgroups of amenable quantum groups are amenable, and a simplified proof

that co-amenability and amenability of the dual are equivalent for compact quan-

tum groups which avoids the use of modular theory, suggesting a potential avenue

for generalization beyond the compact setting. We also introduce a notion of inner

amenability for locally compact quantum groups and study its connection to rela-

tive injectivity, establishing further homological manifestations of duality which not

only help to elucidate previously known results, but provide new approaches to open

problems concerning the operator homology of A(G).

Key words : abstract harmonic analysis, locally compact quantum groups, amenabil-

ity, operator algebras, operator modules.
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Résumé

La connexion entre moyennabilité d’un groupe localement compact G et l’injectivité

de son algèbre de von Neumann L(G) a été étudié depuis des décennies, et représente

l’une des connexions les plus importantes entre l’analyse harmonique et les algèbres

d’opérateurs. Dans ce travail, nous clarifions cette connexion en montrant l’équivalence

de moyennabilité de G et l’injectivité de L(G) en tant que module d’opéateur sur

l’algèbre de Fourier A(G). En fait, nous établissons le résultat correspondant au

niveau des groupes quantiques localement compacts G, fournissant à la fois des nou-

velles manifestations de la dualité des groupes quantiques, et un nouvel outil pour le

développement de l’analyse harmonique abstraite sur les groupes quantiques locale-

ment compacts. En appliquant le résultat principal, nous montrons qu’un sous-groupe

quantique fermer d’un groupe quantique moyennable est moyennable, et nous prou-

vons un théorème de décomposition pour les applications de module complètement

bornées.

Un des plus grands problèmes ouverts dans l’analyse harmonique abstraite sur

les groupes quantiques localement compacts est la dualité entre moyennabilité et co-

moyennabilité. Le résultat le plus général jusqu’à présent est dans le cadre compact,

disant qu’un groupe quantique compact G est co-moyennable si et seulement si son

dual Ĝ est moyennable. La preuve est extrêmement technique, utilisant la théorie

modulaire des algèbres de von Neumann d’une manière essentielle [104]. Pour notre

application finale du résultat principal, nous donnons une preuve simplifiée de cette

théorème qui évite la théorie modulaire, suggérant une technique potentielle pour la
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généralisation au-delà du cadre compact.

Nous introduisons également une notion de moyennabilité intérieure pour les

groupes quantiques localement compacts et nous étudions sa connexion à l’injectivité

relative. En général, moyennabilité intérieure de G entrâıne l’injectivité relative

de L∞(Ĝ) en tant que module d’opérateur sur L1(Ĝ), et l’inverse est vrai dans le

cadre d’un groupe, c’est-à-dire, un groupe localement compact G est intérieurement

moyennable si et seulement si L(G) est relativement injective sur l’algèbre de Fourier

A(G). La démonstration utilise une nouvelle caractérisation des groupes moyennables

intérieures, qui, incidemment, répond à une question de Lau et Paterson [67]. Nos

techniques nous permettent également de résoudre partiellement une question de For-

rest, Lee et Samei concernant la projectivité relative d’opérateur de A(G) [33, §4],

ainsi que le problème ouverte du platitude relative d’opérateur de A(G) [2]. Nous

terminons en montrant l’auto dualité de platitude des algèbres de convolution des

groupes quantiques localement compacts.

Mots clés : analyse harmonique abstraite, groupes quantiques localement compacts,

moyennabilité, algèbres d’opérateurs, modules d’opérateurs.
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Chapter 1

Introduction

One of the primary objectives of abstract harmonic analysis is to study the intrinsic

structure of locally compact groups through their manifestations at the level of Ba-

nach and operator algebras. In fact, the rapidly developing field of abstract harmonic

analysis on locally compact quantum groups has been evolving precisely in this spirit.

Moreover, this correspondence has produced many of the historical examples of op-

erator algebras over the years, and has been an indispensable tool in studying their

underlying structure. One of the most important connections in this context is the

equivalence of amenability of a discrete group G and injectivity of its von Neumann

algebra L(G) [15, 28, 65].

More generally, amenability of a locally compact group G always entails the in-

jectivity of L(G) [39]. The converse is not true in general, however. Indeed, a result

of Connes’ [15, Corollary 7], attributed to Dixmier, states that L(G) is injective for

any separable connected locally compact group, e.g., G = SL(n,R) for n ≥ 2. In

order to find a strengthening of injectivity which would be equivalent to amenabil-

ity, there have been two main approaches: in terms of additional properties of the

underlying group, or of the associated conditional expectations. In the spirit of the

first approach, Lau and Paterson showed that G is amenable if and only if L(G) is

injective and G is inner amenable [66, Corollary 3.2]. Following the second approach,

1
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So ltan and Viselter recently proved, in the more general setting of locally compact

quantum groups G, that amenability is equivalent to the existence of a conditional

expectation E : B(L2(G)) → L∞(Ĝ) which maps L∞(G) into the center of L∞(Ĝ)

[95, Theorem 3], where Ĝ denotes the dual of G. In this thesis we provide a homolog-

ical perspective of this connection at the level of locally compact quantum groups by

presenting new characterizations of amenability using the L1(Ĝ)-module structure of

L∞(Ĝ) and the T (L2(G))-module structure of B(L2(G)), leading us to the concept

of covariant injectivity. This new perspective not only clarifies the above connection

between amenability and injectivity of locally compact groups, it generates important

homological manifestations of quantum group duality and provides a novel tool for

the development of abstract harmonic analysis on locally compact quantum groups –

an extremely active field of research.

The thesis is structured as follows. We begin in chapter 2 with a review of the

mathematical essentials from abstract harmonic analysis, operator algebras, operator

spaces and the homology of operator modules. Chapter 3 is devoted to a brief in-

troduction to locally compact quantum groups in the sense of Kustermans and Vaes

[64]. We present the main constructions and results concerning fundamental unitaries,

non-abelian Pontrjagin duality and completely bounded multipliers.

Chapter 4 contains the main results of the thesis, a portion of which has been ac-

cepted for publication in the Transactions of the American Mathematical Society [17].

We begin with an overview of the various Banach algebra structures on T (L2(G)), in-

troduced and studied in [74, 49]. In particular, we highlight the duality of the products

arising from G and its dual Ĝ [56], which is of fundamental importance for the thesis.

We then study the existence of conditional expectations E : B(L2(G)) → L∞(Ĝ)

which commute with the various T (L2(G))-module structures on B(L2(G)). This

yields new characterizations of amenability, co-commutativity, compactness and in-

jectivity.

In the section on injective quantum group modules we establish the equivalence
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of amenability of G and 1-injectivity of L∞(Ĝ) in the category of operator L1(Ĝ)-

modules. In the group setting, the dual of the commutative quantum group L∞(G)

is L(G), and our result entails that a locally compact group G is amenable if and

only if L(G) is 1-injective as an operator A(G)-module. We dedicate an entire section

to applications of our general result, where we prove that closed quantum subgroups

(in the sense of Vaes) of amenable quantum groups are amenable, and provide a

decomposition result in the spirit of Haagerup [42] for completely bounded L1(Ĝ)-

module maps on L∞(Ĝ).

Arguably the biggest open problem in abstract harmonic analysis on locally com-

pact quantum groups is the duality of amenability and co-amenability. In the group

setting, this is Leptin’s theorem [68], which states that a locally compact group G is

amenable if and only if its Fourier algebra A(G) has a bounded approximate identity.

In the quantum group setting, many partial results have been obtained over the years.

In 1996, Ruan showed that a compact Kac algebra G is co-amenable if and only if its

discrete dual Ĝ is amenable [90, Theorem 4.5]. Ten years later, Tomatsu generalized

this equivalence to arbitrary compact quantum groups [104, Theorem 3.8]. Tomatsu’s

argument relies on the specific modular theory of discrete quantum groups in order

to apply the Powers–Størmer inequality in a crucial step. As a final application of

our main result, we give a considerably simplified proof of Tomatsu’s theorem which

avoids the use of modular theory and the Powers–Størmer inequality, suggesting that

it may be amenable to generalization beyond the compact setting.

In chapter 5 we introduce a notion of inner amenability for locally compact quan-

tum groups and study its connection to relative injectivity of L∞(Ĝ) as an operator

L1(Ĝ)-module. We show that, in general, inner amenability of G implies relative

1-injectivity of L∞(Ĝ), and the converse holds in the group setting. That is, a locally

compact group G is inner amenable if and only if L(G) is relatively 1-injective as an

operator A(G)-module. Hence, 1-injectivity of L(G) is to relative 1-injecivity of L(G)

what amenability is to inner amenability.
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In his memoir [52], Johnson showed that the group algebra L1(G) of a locally com-

pact group G is (operator) amenable if and only if G is amenable. In the breakthrough

paper [89], Ruan established the dual result, showing that the Fourier algebra A(G)

of a locally compact group G is operator amenable precisely when G is amenable. In

the language of biflatness, one may interpret their combined results as the equivalence

L1(G) is operator 1-biflat ⇔ A(G) is operator 1-biflat.

We generalize the above equivalence to arbitrary locally compact quantum groups.

In addition to the above, the thesis contains the solutions to the following open

problems:

• Inclusion of completely bounded T (L2(G))-module maps, posed by Hu, Neufang

and Ruan [49, Remark 7.4(ii)].

• Equivalence of amenability and topological amenability, posed by Bédos and

Tuset [6, §3].

• G-amenability of L(G), posed by Lau and Paterson [67, Example 5].

Moreover, we partially resolve the following open problems:

• Relative operator projectivity of A(G), posed by Forrest, Lee and Samei

[33, §4].

• Relative operator biflatness of A(G), posed by Runde [92, Problem 33].

The ideas and results in this thesis suggest several new avenues of future research

which we summarize in the final section.



Chapter 2

Preliminaries

In 1925, our view of the quantum world drastically changed with the advent of Heisen-

berg’s matrix mechanics. He showed that we may accurately describe quantum phe-

nomena by interpreting time dependent variables as infinite matrices, or linear oper-

ators, rather than functions. This “quantization” of functions led to the development

of operator algebras through the pioneering work of Murray and von Neumann, which

in turn motivated mathematicians to quantize other areas of mathematics. One such

quantization, mainly developed by Effros–Ruan and Blecher–Paulsen, is the theory

of operator spaces, which may be viewed as a quantization of Banach space theory.

Another important example is the quantization of abstract harmonic analysis. This

procedure, culminating in theory of locally compact quantum groups, took over 40

years to be completed and includes the work of several prominent mathematicians

such as Enock, Eymard, Kac, Krein, Kustermans, Schwartz, Takesaki, Tannaka, Vaes

and Vainerman. The resulting theory lies at the confluence of Banach algebras and

abstract harmonic analysis, operator algebras and operator spaces.

We therefore begin the thesis with a review of the necessary background from the

latter fields, assuming the reader is familiar with general functional analysis.

5



CHAPTER 2. PRELIMINARIES 6

2.1 Locally Compact Groups

Definition 2.1.1. A topological group is a set G that has the structure of a group

and of a Hausdorff topological space such that the group operations (s, t) 7→ st and

s 7→ s−1 are continuous (where the topology on G×G is the product topology). If G

is locally compact, it is called a locally compact group.

Definition 2.1.2. Let G be a topological group. A left (respectively, right) Haar

measure on G is a nonzero regular Borel measure µ that satisfies µ(sA) = µ(A)

(respectively, µ(As) = µ(A)) for every Borel set A ⊆ G and every s ∈ G.

Although there are important examples of non-locally compact groups – e.g.,

infinite-dimensional Banach spaces under addition, and unitary groups of infinite-

dimensional von Neumann algebras (cf. §2.4) – throughout the thesis we will almost

solely be concerned with locally compact groups for the following reason.

Theorem 2.1.3. Every locally compact group possesses a left and a right Haar mea-

sure which are unique up to positive multiplicative constants.

Given a left Haar measure µG on a locally compact group G, for each t ∈ G

the formula µt(A) = µG(At) defines a regular Borel measure on G. By translational

invariance of µG, we have µt(sA) = µG(sAt) = µG(At) = µt(A) for every Borel subset

A and every s ∈ G. Then µt is a left Haar measure, so there exists a positive number

∆(t) such that µt = ∆(t)µG. The function ∆ : G → R defined in this way is called

the modular function of G. It is easily seen that ∆ is determined by the group and

does not depend on a particular Haar measure.

Let L∞(G) be the space of essentially bounded complex-valued Haar measurable

functions on a locally compact group G. A bounded linear functional m : L∞(G)→ C

is called a left invariant mean if

〈m, 1〉 = ‖m‖ = 1 and m(f · s) = m(f)
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for all s ∈ G and f ∈ L∞(G), where f · s(t) = f(st). A locally compact group G is

amenable if there is a left invariant mean on L∞(G). By the Markov–Kakutani fixed

point theorem, any abelian locally compact group is amenable. Compact groups are

also amenable as the finite (left=right) Haar measure defines a left invariant mean

via integration. The canonical example of a non-amenable group is F2, the free

group on two generators. As closed subgroups of amenable groups are amenable (see

[92, Theorem 1.2.7] for example), any locally compact group G containing F2 as a

closed subgroup is not amenable. For example, the general linear group GL(n,R) of

invertible n × n matrices and the special linear group SL(n,R) = {s ∈ GL(n,R) |

det(s) = 1} are not amenable for n ≥ 2.

Definition 2.1.4. Let G be a locally compact abelian group and let T denote the

group of complex numbers of modulus one. A character on G is a continuous homo-

morphism χ : G→ T.

The set of characters on a locally compact abelian group G, denoted Ĝ, forms

an abelian group under pointwise multiplication, and is called the dual group of G.

Given the topology of compact convergence, the dual group becomes a locally compact

abelian group such that each s ∈ G induces a character Φ(s) on Ĝ via Φ(s)(χ) = χ(s).

In fact, these are all the characters.

Theorem 2.1.5 (Pontrjagin Duality Theorem). Let G be a locally compact abelian

group. The mapping G 3 s 7→ Φ(s) ∈ ̂̂G is a homeomorphism of topological groups.

If X is a locally compact Hausdorff space, we denote by C0(X) the space of con-

tinuous functions on X vanishing at infinity. We also denote by L1(G), the Lebesgue

space of integrable functions with respect to a fixed left Haar measure ds := dµG(s) on

a locally compact group G. When G is abelian, the Fourier transform is the mapping

F : L1(G)→ C0(Ĝ) given by

F(f)(χ) =

∫
G

χ(s)f(s)ds, f ∈ L1(G), χ ∈ Ĝ. (2.1)
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2.2 Banach Algebras and Banach Modules

Definition 2.2.1. A Banach algebra is an algebraA over the field of complex numbers

equipped with a norm with respect to which it is a Banach space and which satisfies

‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. The Banach algebra A is said to

• be unital if it contains a multiplicative identity, which we denote by e;

• have a bounded right approximate identity if there exists a bounded net (eα)α∈A

in A satisfying

lim
α
aeα = a, a ∈ A.

There are analogous notions of bounded left (respectively, two-sided) approximate

identities.

Remark 2.2.2. In what follows, if A is a unital Banach algebra, a unital subalgebra

of A will mean a subalgebra B ⊆ A containing the identity of A.

Given a Banach algebra A, its unitization is the unital Banach algebra A+ :=

A⊕1 C with norm and multiplication given by

‖(a, α)‖ = ‖a‖+ |α| and (a, α)(b, β) = (ab+βa+αb, αβ), a, b ∈ A, α, β ∈ C.

Definition 2.2.3. Let A be a Banach algebra. A Banach space X is a right Banach

A-module if it is a right A-module for which ‖x · a‖ ≤ ‖x‖‖a‖, for all a ∈ A and

x ∈ X. In other words, the multiplication map mX : X ⊗γ A → X is contractive

for the Banach space projective tensor product ⊗γ. We denote by 〈X · A〉 the closed

linear span of X · A := {x · a | x ∈ X, a ∈ A}. Left Banach A-modules and Banach

A-bimodules are defined analogously.

When A has a bounded right approximate identity, then Cohen’s factorization

theorem asserts the following: for any right Banach A-module X, and any x ∈ 〈X ·A〉,
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there exists an a ∈ A and y ∈ 〈X · A〉 such that x = y · a. Similar statements hold

for left Banach A-modules and Banach A-bimodules.

Given a Banach algebra A, there is a canonical A-bimodule structure on A∗ given

by

〈a · ϕ, b〉 = 〈ϕ, ba〉 and 〈ϕ · a, b〉 = 〈ϕ, ab〉, ϕ ∈ A∗, a, b ∈ A.

There are also left and right Arens products on the bidual A∗∗, denoted � and 3,

respectively, defined by

〈m�n, ϕ〉 = 〈m,n�ϕ〉 and 〈m3n, ϕ〉 = 〈n, ϕ3m〉 m,n ∈ A∗∗, ϕ ∈ A∗,

where n�ϕ and ϕ3m are the elements in A∗ given by

〈n�ϕ, a〉 = 〈n, ϕ · a〉 and 〈ϕ3m, a〉 = 〈m, a · ϕ〉, a ∈ A.

It follows that (A∗∗,�) and (A∗∗,3) are Banach algebras extending the product in

A. When the left and right Arens products on A∗∗ coincide, A is said to be Arens

regular . For example, any C∗-algebra (see below) is Arens regular.

Definition 2.2.4. An involution on an algebra A is a map ∗ : A → A that satisfies

(a+ b)∗ = a∗ + b∗, (λa)∗ = λa∗, (ab)∗ = b∗a∗, a∗∗ = a

for all a, b ∈ A, λ ∈ C. An algebra equipped with an involution is called an involutive

algebra.

• An involutive Banach algebra whose *-operation is an isometry is called a Ba-

nach *-algebra.

• An involutive Banach algebra A that satisfies

‖a∗a‖ = ‖a‖2, a ∈ A,
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is called a C∗-algebra.

The prototypical example of a C∗-algebra is B(H), the space of bounded linear

operators on a Hilbert space, with the operator norm and involution given by the

adjoint operation. The space B(H) is the dual of the Banach space of trace-class

operators, denoted T (H), where an element ρ ∈ B(H) is called trace-class if tr|ρ| <

∞, with tr denoting the canonical trace of an operator with respect to an orthonormal

basis of H. The duality between B(H) and T (H) is given by

〈T, ρ〉 = tr(ρT ), ρ ∈ T (H), T ∈ B(H).

Given vectors ξ, η ∈ H, we denote the corresponding rank-1 operator β 7→ 〈β, η〉ξ,

β ∈ H, by |ξ〉〈η|. The closed linear span of all rank-1 operators in B(H) forms the

C∗-algebra subalgebra K(H) of compact operators on H. As a Banach space, it is

the predual of T (H), where the duality is given as above by

〈ρ, y〉 = tr(ρy), ρ ∈ T (H), y ∈ K(H).

We remark that the dualitiesK(H) = T (H)∗ and T (H)∗ = B(H) are non-commutative

analogues of the well-known dualities c∗0 = `1 and (`1)∗ = `∞.

Much of abstract harmonic analysis concerns the study of Banach algebras asso-

ciated to a locally compact group. Here we discuss the main examples that will be

important throughout the thesis, with G denoting a locally compact group with fixed

left Haar measure dt.

The space C0(G) with the uniform norm, pointwise multiplication and involution

given by complex conjugation, forms a commutative C∗-algebra. In fact, every com-

mutative C∗-algebra is of the form C0(X) for a locally compact Hausdorff space X

[100, Theorem 4.4], suggesting that C∗-algebras play the role of “non-commutative

topological spaces”.

By the Riesz representation theorem, the Banach space dual C0(G)∗ is isometri-
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cally isomorphic to M(G), the space of finite complex regular Borel measures on G

with total variation norm. The duality is given by

〈µ, f〉 =

∫
G

f(s)dµ(s), µ ∈M(G), f ∈ C0(G).

The space M(G) becomes a Banach algebra when equipped with the convolution

product, defined by

〈µ ∗ ν, f〉 =

∫
G

∫
G

f(st)dµ(s)dν(t), µ, ν ∈M(G), f ∈ C0(G).

The resulting algebra is called the measure algebra of G, and is commutative if and

only if G is abelian. With the involution µ∗(A) = µ(A−1), A ⊆ G Borel, M(G)

becomes a Banach *-algebra.

We may identify L1(G) with a norm closed ideal in M(G) consisting of those

measures that are absolutely continuous with respect to the Haar measure. With this

identification, the convolution of f and g in L1(G) is the function

f ∗ g(s) =

∫
G

f(t)g(t−1s)dt, s ∈ G.

The restricted involution on L1(G) takes the form f o(s) = ∆(s−1)f(s−1), s ∈ G. Un-

der the convolution product and the above involution, L1(G) also becomes a Banach

*-algebra, called the group algebra of G. The associated bimodule actions on its dual

L∞(G) are given by

f ∗ h(s) =

∫
G

h(st)f(t)dt and h ∗ f(s) =

∫
G

h(ts)f(t)dt,

where f ∈ L1(G) and h ∈ L∞(G). Let Cb(G) denote the space of bounded continuous

functions on G. Given any such h ∈ L∞(G) and f ∈ L1(G), it turns out that

g := h ∗ f ∈ Cb(G) is always left uniformly continuous , meaning that the map

G 3 s 7→ g · s ∈ Cb(G) is continuous with respect to the supremum norm. The space



CHAPTER 2. PRELIMINARIES 12

of such functions is denoted LUC(G) and is a C∗-subalgebra Cb(G). Moreover, we

have the following equalities:

LUC(G) = 〈L∞(G) ∗ L1(G)〉 = L∞(G) ∗ L1(G),

where the last equality follows from Cohen’s factorization theorem as L1(G) always

has a bounded approximate identity (see [32, Proposition 2.42], for instance). Anal-

ogously, the space of right uniformly continuous functions is denoted RUC(G) and

satisfies

RUC(G) = 〈L1(G) ∗ L∞(G)〉 = L1(G) ∗ L∞(G).

Definition 2.2.5. An element a in a Banach *-algebra A said to be positive, denoted

a ≥ 0, if a = b∗b for some b ∈ A. We denote the set of positive elements by A≥0.

A linear map ϕ : A → B between Banach *-algebras is said to be positive if

ϕ(A≥0) ⊆ B≥0. In the special case where B = C, we say that ϕ is a positive linear

functional. The collection of positive linear functionals of norm one, denoted S(A),

is called the state space of A. When A is a C∗-algebra, S(A) forms a convex subset

of the closed unit ball of A∗ [86, Proposition 2.3.7]. Its extreme points are called pure

states . We say that a state ϕ ∈ S(A) is tracial if ϕ(ab) = ϕ(ba) for all a, b ∈ A, and

faithful if ϕ(a) = 0 implies a = 0 for all a ∈ A≥0.

Remark 2.2.6. If A is a unital Banach *-algebra, then a positive linear functional

ϕ is a state if and only if ϕ(1) = 1 [100, Lemma 9.9]. In this case, S(A) is a weak*

closed subset of the closed unit ball of A∗, and is therefore compact by Alaoglu’s

theorem.

Positive linear functionals on C∗-algebras are necessarily bounded, and similar to

the Jordan decomposition of signed measures on locally compact spaces, any bounded

linear functional on a C∗-algebra can be uniquely decomposed into a sum of four

positive linear functionals [100].
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Definition 2.2.7. A *-representation of a Banach *-algebra A is a *-homomorphism

π : A → B(Hπ), where Hπ is a Hilbert space. We say that π is:

• spatially nondegenerate, or s.nd. for short, if π(A)Hπ := {π(a)ξ : a ∈ A, ξ ∈

Hπ} is dense in Hπ;

• *-representation!cyclic if there is a vector ξ ∈ Hπ such that π(A)ξ is dense in

Hπ;

• irreducible if there are no non-trivial proper invariant subspaces of Hπ under

π(A);

• faithful if π is injective.

Two *-representations π1 and π2 are said to be unitarily equivalent if there exists a

unitary U : Hπ1 → Hπ2 such that π2(a) = Uπ1(a)U∗ for all a ∈ A.

Any *-representation of a C∗-algebra is bounded [86, Proposition 2.3.17].

For f ∈ L1(G), define

‖f‖∗ = sup{‖π(f)‖ | π : L1(G)→ B(Hπ) is a s.nd. *-representation}.

It is easily seen that ‖·‖∗ is a norm on L1(G) satisfying ‖·‖∗ ≤ ‖·‖1, whose completion

becomes a C∗-algebra, denoted C∗(G), called the universal group C∗-algebra of G.

Given a *-representation π : A → B(H) of a Banach *-algebra and a vector

ξ ∈ Hπ, the function ϕ(x) = 〈π(x)ξ, ξ〉, x ∈ A, defines a positive linear functional on

A. The converse of this result is known as the GNS construction.

Theorem 2.2.8. If ϕ is a positive linear functional on a Banach *-algebra A, and

A has a bounded approximate identity, there is a unique cyclic *-representation (π, ξ)

of A on a Hilbert space Hϕ (up to unitary equivalence) such that ϕ(x) = 〈π(x)ξ, ξ〉

for all x ∈ A. Moreover, if ϕ ∈ S(A), then ϕ is pure if and only if π is irreducible.



CHAPTER 2. PRELIMINARIES 14

Given two C∗-algebras A and B, acting on Hilbert spaces H and K, respectively,

the algebraic tensor product A⊗B acts naturally on the Hilbert space tensor product

H ⊗2 K, and the norm closure of A⊗B inside B(H ⊗2 K) is a C∗-algebra called the

minimal C∗-tensor product of A and B, denoted A⊗min B. It can be shown that this

definition is independent of the Hilbert space representation [86, §3.2]. Furthermore,

denoting the identity map by id, if ϕ ∈ A∗, then the right slice map ϕ⊗id : A⊗B → B

defined on elementary tensors by

(ϕ⊗ id)(a⊗ b) = ϕ(a)b, a ∈ A, b ∈ B,

extends uniquely to a bounded linear map (still denoted) ϕ⊗ id : A⊗min B → B [86,

§3.2].

2.3 von Neumann Algebras

Definition 2.3.1. A von Neumann algebra M acting on a Hilbert space H is a unital

C∗-subalgebra of B(H) that is closed under the strong operator topology. The unit

in a von Neumann algebra M will be denoted by 1.

Let (X,Σ, µ) be a localizable measure space (e.g., a locally compact group). Un-

der pointwise multiplication, the space of (complex-valued) essentially bounded µ-

measurable functions L∞(X,µ) becomes a commutative von Neumann algebra when

viewed as the algebra of multiplication operators on L2(X,µ). In fact, every com-

mutative von Neumann algebra arises in this fashion for a localizable measure space

(X,Σ, µ) [86, Theorem 5.3.4], suggesting that von Neumann algebras play the role of

“non-commutative measure spaces”.

For a subset S of B(H), the commutant of S, denoted S ′, is the set of operators

in B(H) that commute with every element of S, that is

S ′ = {T ∈ B(H) : TS = ST for all S ∈ S}.
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The double commutant or bicommutant of S is defined by S ′′ = (S ′)′. von Neu-

mann’s celebrated bicommutant theorem relates this purely algebraic concept with

the topological structure of von Neumann algebras.

Theorem 2.3.2. If M is a self-adjoint unital subalgebra of B(H), then the weak*,

weak and strong operator closures of M coincide with M ′′.

A von Neumann algebra M ⊆ B(H) is said to be a factor if Z(M) := M ∩M ′ =

C1. Factors are the basic building blocks of von Neumann algebras [100, §IV.8]. We

say that M is a factor of type II1 if it has a unique normal faithful tracial state.

A distinguishing feature of a von Neumann algebra M ⊆ B(H) amongst C∗-

algebras is that it is isometrically isomorphic to the dual of a unique Banach space

M∗, called the predual of M . As the predual M∗ sits isometrically in M∗, it inherits

a canonical Banach M -bimodule structure via

〈x · ω, y〉 = 〈ω, yx〉 and 〈ω · x, y〉 = 〈ω, xy〉, ω ∈M∗, x, y ∈M.

Definition 2.3.3. If M and N are von Neumann algebras, then a linear map Φ :

M → N is said to be normal if it is weak*-weak* continuous.

If M ⊆ B(H), observe that for ξ, η ∈ H, the linear functional ωξ,η : M → C

defined by 〈ωξ,η, x〉 = 〈xξ, η〉, x ∈M , is normal. For simplicity, we denote ωξ,ξ by ωξ.

If G is a locally compact group, then L∞(G) is a von Neumann algebra with

predual L1(G) [32, §2.3]. For the remainder of the thesis, elements of L∞(G) will be

viewed as functions and/or multiplication operators when convenient. We will denote

functions by f and their corresponding multiplication operators by Mf .

Many important von Neumann algebras in abstract harmonic analysis arise from

strongly continuous unitary representations of a locally compact group G, the two

main examples being the left and right regular representations , given, respectively, by
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λ : G→ B(L2(G)) and ρ : G→ B(L2(G)), where

λ(s)ξ(t) = ξ(s−1t) and ρ(s)ξ(t) = ∆(s)1/2ξ(ts)

for ξ ∈ L2(G), s, t ∈ G. It follows that

L(G) := span{λ(s) : s ∈ G}
SOT

and R(G) := span{ρ(s) : s ∈ G}
SOT

are von Neumann algebras in B(L2(G)), called the left and right group von Neumann

algebras, respectively. Furthermore, they satisfy the following commutation relations:

L(G)′ = R(G) and R(G)′ = L(G).

Remark 2.3.4. By lifting the left regular representation to λ : L1(G) → B(L2(G))

via:

〈λ(f), ω〉 =

∫
G

f(s)〈λ(s), ω〉ds, f ∈ L1(G), ω ∈ T (L2(G)),

it follows that

L(G) = span{λ(f) : f ∈ L1(G)}
SOT

. (2.2)

If instead we take the norm closure in equation (2.2), then we obtain a C∗-algebra,

denoted C∗λ(G), known as the left reduced C∗-algebra. Similarly, we have the corre-

sponding result for the right regular representation.

The set of coefficient functions of the left regular representation,

A(G) = {ψ : G→ C : ψ(s) = 〈λ(s)ξ, η〉, ξ, η ∈ L2(G), s ∈ G},

is called the Fourier algebra of G. It was shown by Eymard that, endowed with the

norm

‖ψ‖ = inf{‖ξ‖‖η‖ : ψ(·) = 〈λ(·)ξ, η〉},
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A(G) is a Banach algebra under pointwise multiplication [31, Proposition 3.4]. Fur-

thermore, it is the predual of the left group von Neumann algebra L(G), where the

duality is given by

〈ψ, λ(s)〉 = ψ(s), ψ ∈ A(G), s ∈ G.

Eymard also showed that the space of functions ϕ : G → C for which there exists a

strongly continuous unitary representation π : G → B(Hπ) and ξ, η ∈ Hπ such that

ϕ(s) = 〈π(s)ξ, η〉, s ∈ G, is a unital Banach algebra (with pointwise multiplication)

under the norm

‖ϕ‖ = sup
f∈L1(G), ‖f‖∗≤1

∣∣∣∣ ∫
G

f(s)ϕ(s)ds

∣∣∣∣,
called the Fourier-Stieltjes algebra of G [31, Proposition 2.16], denoted by B(G). This

algebra coincides with the Banach space dual of the group C∗-algebra C∗(G).

When G is abelian with dual group Ĝ, the algebra A(Ĝ) is simply the image of

the Fourier transform F : L1(G) → C0(Ĝ). The dual mapping F∗ : L(Ĝ) → L∞(G)

therefore provides a von Neumann algebraic isomorphism. In this sense, L∞(G) and

L(G) are “dual” to one another, and it was precisely this correspondence that set

the stage for the quantization of abstract harmonic analysis to non-abelian groups;

a theory which utilizes non-commutative integration in an essential way. For details

we refer the reader to [101].

Definition 2.3.5. A weight on a von Neumann algebra M is a function ϕ : M≥0 →

[0,∞] satisfying:

1. ϕ(x+ y) = ϕ(x) + ϕ(y) for all x, y ∈M≥0;

2. ϕ(rx) = rϕ(x) for all r ∈ R≥0, x ∈M≥0.

The fact that weights may be viewed as non-commutative integrals is justified by

the following canonical example.
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Example 2.3.6. If (X,Σ, µ) is a σ-finite measure space, then the function

ϕ(f) =

∫
X

f(s)dµ(s), 0 ≤ f ∈ L∞(X,µ),

is a weight on the commutative von Neumann algebra L∞(X,µ).

Given a weight ϕ on a von Neumann algebra M , we adopt the following standard

notations:

• M+
ϕ = {x ∈M≥0 : ϕ(x) <∞};

• Nϕ = {x ∈M : ϕ(x∗x) <∞};

• Mϕ = span{x∗y : x, y ∈ Nϕ}.

It follows that Nϕ is a left ideal in M , and that Mϕ = spanM+
ϕ is a *-subalgebra of

M [101, Lemma VII.1.2]. We may therefore extend ϕ linearly toMϕ, which will also

be denoted by ϕ.

In the classical setting of Example 2.3.6, Mϕ and Nϕ correspond to L∞(X,µ) ∩

L1(X,µ) and L∞(X,µ) ∩ L2(X,µ), respectively. In general, we say that the weight

ϕ is:

• semi-finite if Mϕ is weak* dense in M ;

• faithful if ϕ(x) = 0 implies x = 0 for all x ∈M≥0;

• normal if ϕ(supα xα) = supα ϕ(xα) for every bounded increasing net (xα)α∈A in

M≥0.

If ϕ is a normal semi-finite faithful (n.s.f.) weight on a von Neumann algebra M ,

we may define an inner product on Nϕ by

〈x, y〉 = ϕ(y∗x), x, y ∈ Nϕ.
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Denoting by Hϕ the Hilbert space completion of Nϕ, we obtain the canonical embed-

ding Λϕ : Nϕ → Hϕ and a *-representation πϕ : M → B(Hϕ) of M given by

πϕ(x)(Λϕ(a)) = Λϕ(xa), x ∈M, a ∈ Nϕ.

The triple (Hϕ, πϕ,Λϕ) is called the GNS-construction for ϕ, and we may identity

M ∼= πϕ(M) as von Neumann algebras. At the level of the Hilbert space Hϕ, the

adjoint operation in M generates a closable operator Λϕ(x) 7→ Λϕ(x∗), x ∈ Nϕ, whose

closure Sϕ has polar decomposition Jϕ∆ϕ, where Jϕ : Hϕ → Hϕ is a conjugate linear

isometry and ∆ϕ is the modular operator. It follows that ∆it
ϕM∆−itϕ = M for all

t ∈ R, which gives rise to the modular automorphism group (σϕt )t∈R of ϕ, defined by

σϕt (x) = ∆it
ϕx∆−itϕ , for x ∈M .

An element x ∈ M is said to be analytic with respect to ϕ if the function R 3

t 7→ σϕt (x) ∈ M has an extension to an analytic function C 3 z 7→ σϕz (x) ∈ M , that

is, for every ω ∈M∗, the function C 3 z 7→ 〈σϕz (x), ω〉 ∈ C is analytic. We denote by

Tϕ the set of analytic elements. When ϕ is tracial, that is, ϕ(x∗x) = ϕ(xx∗), x ∈ Nϕ,

it follows that σϕt = idM for all t ∈ R, the operator Sϕ = Jϕ is an isometry, and the

modular operator ∆ϕ = 1.

In general, the conjugate linear isometry Jϕ obeys the formula

JϕΛϕ(x) = Λϕ(σϕi/2(x)∗), x ∈ Nϕ ∩ D(σϕi/2),

where D(σϕi/2) denotes the domain of σϕi/2. Letting Pϕ = {Λϕ(x)JϕΛϕ(x) | x ∈ Nϕ} ⊆

Hϕ, it follows that Pϕ is a self-dual cone and that the quadruple (πϕ(M), Hϕ, Jϕ,Pϕ)

has the following properties:

1. Jϕπϕ(M)Jϕ = πϕ(M)′;

2. JϕzJϕ = z∗ for all z ∈ Z(πϕ(M));

3. Jϕξ = ξ for all ξ ∈ Pϕ;
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4. xJϕxJϕ(Pϕ) ⊆ Pϕ for all x ∈ πϕ(M).

In general, a quadruple (N,H, J,P) consisting of a von Neumann algebra N on a

Hilbert space H, a conjugate linear isometry J : H → H, and a self-dual cone P in

H is called a standard form if the above conditions (1) − (4) are satisfied. In this

case, we simply say that N is standardly represented on H. An important property

of standard representations is that every normal state ω ∈ N∗ is the restriction of

the vector state ωξ to N for a unique vector ξ ∈ P [40, Lemma 2.10]. For details on

standard representations of von Neumann algebras we refer the reader to [40].

2.4 Operator Spaces

If X is a linear space, for m,n ∈ N we let Mm,n(X) denote the space of m×n matrices

with entries in X. If m = n, we simply denote Mm,n(X) by Mn(X).

A matrix norm on a linear space X is a sequence of norms (‖·‖n)n∈N where ‖·‖n
is defined on Mn(X) for every n ∈ N. An abstract operator space is a linear space X

together with a matrix norm such that each ‖·‖n is complete and satisfies

• R1 ‖x⊕ y‖m+n = max{‖x‖m, ‖y‖n},

• R2 ‖αxβ‖n ≤ ‖α‖‖x‖m‖β‖,

for all m,n ∈ N, x ∈Mm(X), y ∈Mn(X), α ∈Mn,m(C), β ∈Mm,n(C). Such a matrix

norm is called an operator space matrix norm.

Given abstract operator spaces X, Y and a linear mapping Φ : X → Y , for each

n ∈ N there is a corresponding linear map Φn : Mn(X)→Mn(Y ) given by

Φn(x) = [Φ(xij)]

for all x = [xij] ∈Mn(X), called the nth amplification of Φ.

Definition 2.4.1. Let X and Y be abstract operator spaces. A linear map Φ : X →

Y is called:
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• completely bounded if ‖Φ‖cb := sup{‖Φn‖ : n ∈ N} <∞;

• completely contractive if ‖Φ‖cb ≤ 1;

• a complete isometry if Φn is an isometry for all n ∈ N;

• a complete quotient map if Φn is a quotient map for all n ∈ N.

• an exact complete quotient map if Φn is an exact quotient map for all n ∈ N.

The prototypical example of an abstract operator space is a closed subspace X of

B(H) for some Hilbert space H. The matrix norms are defined by the identification

Mn(X) ⊆Mn(B(H)) ∼= B(Hn), where Hn is the n-fold Hilbert space direct sum and

n ∈ N. These are known as concrete operator spaces, and in fact, there is a bijective

correspondence.

Theorem 2.4.2 (Ruan’s Theorem). [87] Every abstract operator space is completely

isometrically isomorphic to a concrete operator space.

In what follows, we will therefore omit the adjectives abstract and concrete and

simply use the term operator space. Also, we denote by M∞, K∞ and T∞ the space

of all bounded, compact and trace-class operators on a separable Hilbert space, re-

spectively.

Let H and K be a Hilbert spaces and let X and Y be self-adjoint unital subspaces

of B(H) and B(K), respectively. Then Mn(X) and Mn(Y ) are self-adjoint subspaces

of Mn(B(H)) and Mn(B(K)) for n ≥ 1. A linear map Φ : X → Y is completely

positive if Φn is positive for all n ∈ N, where positivity is taken with respect to

the natural positive cones in Mn(B(H)) and Mn(B(K)), respectively. In this case,

it follows that Φ is automatically completely bounded with ‖Φ‖cb = ‖Φ‖ = ‖Φ(1)‖

[80, Proposition 3.6]. We denote the set of completely positive maps from X to Y

by CP(X, Y ). If X = A and Y = B are C∗-algebras, then there is a convenient

characterization of complete positivity [100, Corollary 3.4].
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Proposition 2.4.3. Let A and B be C∗-algebras. Then a linear map Φ : A → B is

completely positive if and only if

n∑
i,j=1

b∗iΦ(a∗i aj)bj ≥ 0

for all a1, ..., an ∈ A, b1, ..., bn ∈ B and n ∈ N.

Another important fact that we will use is that a unital complete contraction

Φ : A → B between unital C∗-algebras is automatically completely positive [80,

Proposition 2.12]. Moreover, in this case, the multiplicative domain of Φ, defined as

MDΦ = {a ∈ A | Φ(a∗a) = Φ(a)∗Φ(a) and Φ(aa∗) = Φ(a)Φ(a)∗},

is a C∗-subalgebra ofA such that Φ is anMDΦ-bimodule map [12], that is, Φ(a1aa2) =

Φ(a1)Φ(a)Φ(a2) for a1, a2 ∈MDΦ and a ∈ A.

Given operator spaces X and Y , we denote the set of completely bounded map-

pings from X to Y by CB(X, Y ). Note that each Φ ∈Mn(CB(X, Y )) may be identified

with an element of CB(X,Mn(Y )), for n ∈ N. By defining

‖Φ‖Mn(CB(X,Y )) := ‖Φ‖CB(X,Mn(Y )),

it follows that ‖·‖Mn(CB(X,Y )) is an operator space matrix norm, turning CB(X, Y )

into an operator space in its own right. As is customary, if X = Y we simply write

CB(X) for CB(X,X). When M and N are von Neumann algebras, the space of

normal completely bounded maps from M to N will be denoted CBσ(M,N). If X is

subspace of M , and A is a subalgebra of M , we denote by CBσ,XA (M) the algebra of

normal completely bounded A-bimodule maps on M that leave X globally invariant,

that is, those completely bounded maps Φ : M → M that satisfy Φ(axb) = aΦ(x)b,

for x ∈M , a, b ∈ A and Φ(X) ⊆ X.

Since every bounded linear functional ϕ : X → C is completely bounded with
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‖ϕ‖cb = ‖ϕ‖ [80, Proposition 3.8], we have X∗ = CB(X,C), isometrically, and the

identification Mn(X∗) = CB(X,Mn(C)), n ∈ N, turns X∗ into an operator space. In

particular, norm closed subspaces of X∗ are operator spaces.

Let (Xi)i∈I be a collection of operator spaces. The direct sum ⊕i∈IXi becomes an

operator space under the matrix norm

‖x‖Mn(⊕i∈IXi) = sup
i∈I
‖xi‖Mn(Xi), x = ⊕i∈Ixi ∈Mn(⊕i∈IXi), n ∈ N.

There is an associated operator space structure on the predual (⊕i∈IX∗i )∗ which will

be denoted ⊕1{Xi | i ∈ I}.

In general, we have the following duality relations for a linear map Φ : X → Y

(see [29, Theorem 4.1.8]):

• Φ is a complete quotient map ⇔ Φ∗ is a complete isometry;

• Φ is a complete isometry ⇔ Φ∗ is a complete quotient map ⇔ Φ∗ is an exact

complete quotient map.

If X and Y are operator spaces, given u ∈Mn(X ⊗ Y ), we define

‖u‖∧ = inf{‖α‖‖x‖‖y‖‖β‖ : u = α(x⊗ y)β}

where the infimum is taken over all possible decompositions with x ∈ Mp(X), y ∈

Mq(Y ), α ∈Mn,pq(C), β ∈Mpq,n(C) and p, q ∈ N. One may verify that this is indeed

an operator space matrix norm. The completion of the algebraic tensor product

X ⊗ Y under this matrix norm becomes an operator space, called the operator space

projective tensor product, denoted by X⊗̂Y . Analogously to the Banach space setting,

we have the following completely isometric isomorphisms

CB(X, Y ∗) ∼= (X⊗̂Y )∗ ∼= CB(Y,X∗), (2.3)

via the identification 〈Φ, x⊗y〉 := 〈Φ(x), y〉 for all Φ ∈ CB(X, Y ∗), x ∈ X and y ∈ Y ,
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and similarly for Φ ∈ CB(Y,X∗).

Given operator spaces Xi and Yi for i = 1, 2 and completely bounded maps Φ :

X1 → X2 and Ψ : Y1 → Y2, the map Φ⊗Ψ : X1 ⊗ Y1 → X2 ⊗ Y2 extends uniquely to

a completely bounded map (still denoted) Φ⊗Ψ : X1⊗̂Y1 → X2⊗̂Y2 with ‖Φ⊗Ψ‖ ≤

‖Φ‖cb‖Ψ‖cb [29, Corollary 7.1.3].

If M and N are von Neumann algebras acting on Hilbert spaces H and K, re-

spectively, then the algebraic tensor product M ⊗N acts naturally on H ⊗2 K, and

its weak* closure in B(H ⊗2 K) is a von Neumann algebra, called the von Neumann

algebraic tensor product of M and N , denoted M⊗N . It can be shown that this

definition is independent of the choice of Hilbert spaces [100, §4.5]. At the level

of preduals, there is a fundamental relationship with the operator space projective

tensor product [29, Theorem 7.2.4]:

(M⊗N)∗ ∼= M∗⊗̂N∗, (2.4)

completely isometrically.

If Mi and Ni are von Neumann algebras for i = 1, 2 and Φ : M1 → M2 and

Ψ : N1 → N2 are normal completely bounded maps, then the map Φ ⊗ Ψ : M1 ⊗

N1 →M2⊗N2 extends uniquely to a normal completely bounded map from M1⊗N1

to M2⊗N2. In particular, if N1 = N2 = N and Ψ = id is the identity on N ,

then Φ ⊗ id : M1 ⊗ N → M2 ⊗ N extends uniquely to an element (still denoted)

Φ⊗ id ∈ CBσ(M1⊗N,M2⊗N). More generally, if Φ ∈ CB(M1,M2) is not necessarily

normal, there exists an amplification to an element Φ ⊗ id ∈ CB(M1⊗N,M2⊗N)

which is defined by

〈(Φ⊗ id)(X), τ ⊗ ω〉 = 〈Φ((id⊗ ω)(X)), τ〉, X ∈M1⊗N, τ ∈ (M2)∗, ω ∈ N∗.

For details on this amplification procedure we refer the reader to [75]. An important

property that we shall use frequently without comment is the following commutation
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relation (see [75, Theorem 5.1]): if Φ ∈ CB(M1,M2) and Ψ ∈ CBσ(N1, N2), then

(Φ⊗ idN2) ◦ (idM1 ⊗Ψ) = (idM2 ⊗Ψ) ◦ (Φ⊗ idN1) ∈ CB(M1⊗N1,M2⊗N2). (2.5)

If M ⊆ B(H) is a von Neumann algebra, then M is said to be injective if there

exists a projection of norm one E : B(H) → M . By a classical result of Tomiyama

[105], any such projection is automatically a completely positive M -bimodule map,

and is therefore called a conditional expectation. The definition of injectivity is in-

dependent of the faithfully representing Hilbert space, and moreover, it is equivalent

to 1-injectivity in the category of operator spaces and completely bounded maps

(see §2.5). One of the major results in operator algebras relates injectivity with the

following approximation property for C∗-algebras.

Definition 2.4.4. A C∗-algebra A is nuclear if there exist nets of completely positive

contractions Φi : A → Mni(C) and Ψi : Mni(C) → A such that Ψi ◦ Φi converges to

idA in the point-norm topology, that is,

‖Ψi ◦ Φi(x)− x‖ → 0, x ∈ A.

For any C∗-algebra A, it is well-known that its second dual A∗∗ is a von Neumann

algebra under the left (= right) Arens product [86, Theorem 2.11.2]. In fact, A∗∗ is

the universal enveloping von Neumann algebra of A [100, Theorem III.2.4]. Through

the ground-breaking work of Connes [15], Choi–Effros [13], and Effros–Lance [28], it

was shown that A is nuclear if and only if A∗∗ is injective.

2.5 Operator Modules and Homology

Definition 2.5.1. Let A be an operator space which has the structure of a Banach

algebra. Then A is a completely contractive Banach algebra if the multiplication map

extends to a complete contraction mA : A⊗̂A → A. We say that an operator space
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X a right operator A-module if it is a right Banach A-module such that the module

map mX : X⊗̂A → X is completely contractive. This is equivalent to the following

condition:

‖[xij · akl]‖mn ≤ ‖[xij]‖m‖[akl]‖n

for all [xij] ∈Mm(X), [akl] ∈Mn(A) and m,n ∈ N. We say that X is

• essential if 〈X · A〉 = X, where 〈·〉 denotes the closed linear span;

• faithful if for every non-zero x ∈ X, there is a ∈ A such that x · a 6= 0.

We denote by mod − A the category of right operator A-modules with morphisms

given by completely bounded module homomorphisms. If X ∈ mod − A is a dual

operator space such that the action of a is weak* continuous for all a ∈ A, then we

say that X is a dual operator A-module. We let nmod − A denote the category

of dual right operator A-modules with morphisms given by weak*-weak* continuous

completely bounded module homomorphisms (the n standing for normal, as usual).

Left operator A-modules and operator A-bimodules are defined similarly, along

with the analogous notions of essentiality and faithfulness. We denote the respective

categories by A−mod and A−mod−A. Throughout this section we will mainly

restrict ourselves to right operator modules and leave the corresponding notions and

results for left/bimodules to the reader.

Remark 2.5.2. Regarding terminology, in what follows we will often omit the term

“operator” when discussing homological properties of operator modules as we will be

working exclusively in the operator space category.

Let A be a completely contractive Banach algebra, X ∈ mod − A and Y ∈

A−mod. The A-module tensor product of X and Y is the quotient space X⊗̂AY :=

X⊗̂Y/N , where

N = 〈x · a⊗ y − x⊗ a · y | x ∈ X, y ∈ Y, a ∈ A〉.
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Analogously to the isomorphism (2.3), it follows that

CBA(X, Y ∗) ∼= N⊥ ∼= (X⊗̂AY )∗,

where CBA(X, Y ∗) denotes the space of completely bounded right A-module maps

Φ : X → Y ∗. If Y = A, then clearly N ⊆ Ker(mX) where mX : X⊗̂A → X is the

module map. If the induced mapping m̃X : X⊗̂AA → X is a completely isometric

isomorphism we say that X is an induced right A-module. A similar definition applies

for left modules. In particular, we say that a completely contractive Banach algebra

A is self-induced if m̃A : A⊗̂AA ∼= A, completely isometrically.

Let A be a completely contractive Banach algebra and X ∈ mod − A. The

identification A+ = A ⊕1 C turns the unitization of A into a unital completely

contractive Banach algebra, and it follows that X becomes a right operator A+-

module via the extended action

x · (a+ λe) = x · a+ λx, a ∈ A+, λ ∈ C, x ∈ X.

Let C ≥ 1. We say that X is relatively C-projective if there exists a morphism

Φ : X → X⊗̂A+ satisfying ‖Φ‖cb ≤ C which is a right inverse to the extended

multiplication map m+
X : X⊗̂A+ → X. We say that X is C-projective if for every

Y, Z ∈ mod − A, every complete quotient morphism Φ : Y � Z, every morphism

Ψ : X → Z, and every ε > 0, there exists a morphism Ψ̃ε : X → Y such that

‖Ψ̃ε‖cb < C‖Ψ‖cb + ε and Φ ◦ Ψ̃ε = Ψ, that is, the following diagram commutes:

Y

X Z

Φ
Ψ̃ε

Ψ

For example, any unital completely contractive Banach algebraA is ‖e‖-projective

over itself, as in the above situation one simply defines Ψ̃ε(a) = yε · a, a ∈ A, where

yε ∈ Y satisfies Φ(yε) = Ψ(e) and ‖yε‖ < ‖Ψ(e)‖ + ε. When A = C, the definition
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of C-projectivity coincides with that of a C-projective operator space [8, Definition

3.3].

The dual notion of projectivity, which arises by reversing the arrows in the above

diagram, is injectivity, and is a central concept in this thesis. If X, Y ∈mod−A, an

injective morphism Φ : X → Y is said to be admissible if there exists a completely

bounded map (not necessarily a morphism) Φ−1 : Y → X such that Φ−1 ◦ Φ =

idX . For C ≥ 1, we say that X is C-injective (respectively, relatively C-injective)

if for every Y, Z ∈ mod − A, every completely isometric (respectively, completely

isometric admissible) morphism Φ : Y ↪→ Z, and every morphism Ψ : Y → X, there

exists a morphism Ψ̃ : Z → X such that ‖Ψ̃‖cb ≤ C‖Ψ‖cb (respectively, ‖Ψ̃‖cb ≤

C‖Ψ‖cb‖Φ−1‖cb) and Ψ̃ ◦ Φ = Ψ, i.e., the following diagram commutes:

Z

Y X

Ψ̃
Φ

Ψ

For example, the dual X∗ of any X ∈ mod − A has a canonical left A-module

structure, and X∗ is C-injective in A−mod whenever X is C-projective in mod−A

by the module version of [8, Theorem 3.5]. Also, X ∈ mod − A is relatively C-

projective if and only if X∗ is relatively C-injective in A − nmod (see Proposition

4.3.3), where, naturally, the notion of admissibility in A − nmod is with respect to

weak* continuous inverses.

The celebrated Arveson–Wittstock extension theorem says that B(H) is 1-injective

in mod − C for any Hilbert space H [3, 115], that is, 1-injective in the category of

operator spaces and completely bounded maps.

In Chapter 4 we will need a predual characterization of 1-injectivity for dual

operator modules. With this in mind, let A be a completely contractive Banach

algebra and let X ∈ A − mod. We say that X is a 1-flat in A − mod if X∗ is

1-injective in mod−A. It is easily seen that 1-injectivity of X∗ is equivalent to the
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following condition: for every 1-exact sequence of right A-modules

0→ Y ↪→ Z � Z/Y → 0

the induced sequence

0→ CBA(Z/Y,X∗) ↪→ CBA(Z,X∗) � CBA(Y,X∗)→ 0

is 1-exact, where 1-exactness refers to an exact sequence such that the injection (↪→)

is a complete isometry and the surjection (�) is a complete quotient map. Taking

the pre-adjoint of the above sequence we obtain the following sequence

0→ Y ⊗̂AX ↪→ Z⊗̂AX � Z/Y ⊗̂AX → 0.

Since a short sequence is 1-exact if and only if its dual sequence is 1-exact, it follows

that X is 1-flat if and only if the functor (·)⊗̂AX is 1-exact, i.e., it maps 1-exact

sequences of right A-modules to 1-exact sequences of operator spaces. Naturally,

there are notions of C-flatness but we will only be concerned with C = 1 (see [114]

for details).

Remark 2.5.3. Our notions of projectivity and injectivity are closer in spirit to

the approach taken in operator space theory (cf. [8]) and the recent approach of

Helemskii (cf. [44]) rather than Banach algebra homology, where the related notions

are usually studied solely from the relative perspective, and allow for liftings (re-

spectively, extensions) via admissible morphisms that are not necessarily complete

quotients (respectively, complete isometries).



Chapter 3

Locally Compact Quantum Groups

The quantization of abstract harmonic analysis was established over half a century

culminating in the early seventies with the theory of Kac algebras [30]. This wider

category contains that of locally compact groups and provides the general framework

necessary to establish Pontrjagin duality.

Shortly afterwards, similar structures were appearing in algebra and mathematical

physics, and the concept of a “quantum group” emerged. This resulted in many

different axiomatic approaches, but from a harmonic analysis perspective, the most

natural are the von Neumann algebraic locally compact quantum groups, as developed

by Kustermans and Vaes [63, 64]. This chapter is devoted to a brief introduction to

this theory. We refer the reader to [63, 64, 106] for details and proofs.

3.1 von Neumann Algebraic Quantum Groups

Definition 3.1.1. A Hopf–von Neumann algebra is a pair (M,Γ) where M is a von

Neumann algebra and Γ : M →M⊗M is a normal, unital, injective *-homomorphism

satisfying the co-associativity condition (id⊗ Γ)Γ = (Γ⊗ id)Γ, that is, the following

30
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diagram commutes.

M
Γ−−−→ M⊗M

Γ

y yΓ⊗id

M⊗M id⊗Γ−−−→ M⊗M⊗M
Γ is then called a co-multiplication.

Given a Hopf–von Neumann algebra (M,Γ), the preadjoint Γ∗ : M∗⊗̂M∗ → M∗

of the co-multiplication induces an associative completely contractive multiplication

on M∗, turning it into a completely contractive Banach algebra.

Definition 3.1.2. A locally compact quantum group G is a quadruple G = (M,Γ, ϕ, ψ)

where:

1. (M,Γ) is a Hopf–von Neumann algebra;

2. ϕ is an n.s.f. weight on M , called the left Haar weight , satisfying:

ϕ((ω ⊗ id)Γ(x)) = ω(1)ϕ(x), x ∈Mϕ, ω ∈M∗;

3. ψ is an n.s.f. weight on M , called the right Haar weight , satisfying:

ψ((id⊗ ω)Γ(x)) = ω(1)ψ(x), x ∈Mψ, ω ∈M∗.

If G = (M,Γ, ϕ, ψ) is a locally compact quantum group, we say that G is commu-

tative if M is commutative, and co-commutative if Γ is symmetric, that is, Σ ◦Γ = Γ

where Σ : M⊗M →M⊗M is the flip map given by Σ(x⊗ y) = y⊗x, x, y ∈M . Two

quantum groups G1 and G2 are isomorphic if there exists a von Neumann algebraic

isomorphism α : M1 →M2 such that Γ2 ◦ α = (α⊗ α) ◦ Γ1.

Example 3.1.3. Let G be a locally compact group, and define Γa : L∞(G) →

L∞(G)⊗L∞(G) ∼= L∞(G×G) by

Γa(h)(s, t) = h(st), h ∈ L∞(G), s, t ∈ G.
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Then Γa is a co-multiplication which turns (L∞(G),Γa) into a Hopf–von Neumann

algebra. If ϕa is the weight defined by the left Haar measure dt, then for f ∈ L1(G) =

L∞(G)∗ and h ∈ L∞(G) ∩ L1(G) =Mϕa , we have

ϕa((f ⊗ id)Γa(h)) =

∫
G

(f ⊗ id)Γa(h)(t)dt

=

∫
G

∫
G

f(s)h(st)dsdt.

Since h ∈Mϕa , we may apply Fubini’s theorem to obtain:

ϕa((f ⊗ id)Γa(h)) =

∫
G

f(s)

∫
G

h(st)dtds

=

∫
G

f(s)

∫
G

h(t)dtds

= 〈f, 1〉ϕa(h).

Thus, ϕa is a left Haar weight on L∞(G). Similarly, the weight ψa given by the right

Haar measure is a right Haar weight, and Ga = (L∞(G),Γa, ϕa, ψa) is a commutative

locally compact quantum group. The co-multiplication Γa is the dual of convolution

in L1(G), viewed as a map ∗ : L1(G)⊗̂L1(G)→ L1(G).

As expected, we see that every locally compact group G generates a “classical”

locally compact quantum group given by the commutative von Neumann algebra

L∞(G). In fact, these are all such quantum groups.

Theorem 3.1.4. [109, §2] Let G = (M,Γ, ϕ, ψ) be a commutative locally compact

quantum group. Then there exists a unique locally compact group G for which G ∼=

Ga = (L∞(G),Γa, ϕa, ψa).

Example 3.1.5. Let G be a locally compact group. The map Γs given on generators

of L(G) by

Γs(λ(t)) = λ(t)⊗ λ(t), t ∈ G,

can be extended to a symmetric co-multiplication Γs : L(G) → L(G)⊗L(G). It
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follows that there exists an n.s.f. weight ϕs on L(G) (unique up to a positive scalar),

namely Haagerup’s Plancherel weight, which is both a left and a right Haar weight

with respect to Γs ([100], §VII.3). Thus, Gs = (L(G),Γs, ϕs) is a co-commutative

locally compact quantum group. The co-multiplication Γs is the dual of pointwise

multiplication in A(G), viewed as a map · : A(G)⊗̂A(G)→ A(G).

Locally compact quantum groups therefore provide a sufficient framework for

studying the duality of non-abelian groups, that is, the duality between L∞(G) and

L(G). Consequently, there is a dual version of Theorem 3.1.4. The proof can be

established using theory we will encounter in §3.3, along with [109, §2].

Theorem 3.1.6. Let G = (M,Γ, ϕ, ψ) be a co-commutative locally compact quantum

group. Then there exists a unique locally compact group G for which G ∼= Gs =

(L(G),Γs, ϕs).

Motivated by the above examples, we may generalize various concepts from ab-

stract harmonic analysis to the setting of locally compact quantum groups. Firstly,

note that the existence of Haar weights is assumed in the definition of a locally com-

pact quantum group. To find an axiomatization which yields the existence is a major

open problem in quantum group theory. Despite this fact, assuming existence is

enough to guarantee uniqueness.

Theorem 3.1.7. [106, §1.10] The left and right Haar weights on a locally compact

quantum group are unique up to positive scalars.

Remark 3.1.8. Under the GNS construction of the left (respectively, right) Haar

weight, we may identify M with a subalgebra in B(Hϕ) (respectively, B(Hψ)) and we

will do so without comment throughout the thesis.

For notational symmetry, given a locally compact quantum group G = (M,Γ, ϕ, ψ),

we write L∞(G) := M and L1(G) := M∗. In the commutative (respectively, co-

commutative) setting we simply have L∞(Ga) = L∞(G) and L1(Ga) = L1(G) (re-

spectively, L∞(Gs) = L(G) and L1(Gs) = A(G)) for a locally compact group G. For
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the remainder of the thesis we will refrain from writing the quadruple notation for a

locally compact quantum group and simply write G, where the usual notations for

the co-multiplication and Haar weights will be understood.

Analogously to the group setting, a locally compact quantum group G is said to

be discrete if L1(G) is a unital Banach algebra and compact if ϕ is finite.

If X is an operator system in L∞(G) that is also a right L1(G)-submodule, then

a left invariant mean on X is a state m ∈ X∗ satisfying

〈m,x ? f〉 = 〈f, 1〉〈m,x〉 x ∈ X, f ∈ L1(G). (3.1)

Right and two-sided invariant means are defined similarly. A locally compact quan-

tum group G is said to be amenable if there exists a left invariant mean on L∞(G). It

is known that G is amenable if and only if there exists a right (equivalently, two-sided)

invariant mean on L∞(G) (cf. [26, Proposition 3]). We say that G is co-amenable if

L1(G) has a bounded left (equivalently, right or two-sided) approximate identity (cf.

[6, Theorem 3.1]). Commutative quantum groups Ga are always co-amenable and are

amenable precisely when the underlying group is amenable. Dually, co-commutative

quantum groups Gs are always amenable [85, Theorem 4], and are co-amenable if and

only if the underlying is amenable, by Leptin’s classical theorem [68]. In Example

3.6.1 we will encounter examples of amenable and co-amenable quantum groups not

arising from groups. We also mention that there is a general procedure for construct-

ing non-commutative and non-co-commutative examples of locally compact quantum

groups with desirable properties, such as amenability, known as the bi-crossed product

construction [70, 109].

An important fact that we will use several times throughout the thesis is that

L1(G) is always self-induced. The proof follows from a simple application of [107,

Theorem 2.7], but we provide the details for the convenience of the reader.

Proposition 3.1.9. Let G be a locally compact quantum group. Then L1(G) is a

self-induced completely contractive Banach algebra.
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Proof. Let m̃ : L1(G)⊗̂L1(G)L
1(G)→ L1(G) be the induced multiplication map. Then

m̃∗ : L∞(G) → (L1(G)⊗̂L1(G)L
1(G))∗ is nothing but the co-multiplication Γ. Since

(L1(G)⊗̂L1(G)L
1(G))∗ ∼= N⊥, where N ⊆ L1(G)⊗̂L1(G) is the closed linear span

of {f ? g ⊗ h − f ⊗ g ? h | f, g, h ∈ L1(G)}, given X ∈ (L1(G)⊗̂L1(G)L
1(G))∗ ⊆

L∞(G)⊗L∞(G), it follows that (Γ⊗ id)(X) = (id⊗Γ)(X). Hence, X ∈ Γ(L∞(G)) by

[107, Theorem 2.7], and m̃∗ is surjective. Since m̃∗ = Γ is also a complete isometry,

the result follows.

3.2 The Fundamental Unitary

Given a locally compact group G, there is a fundamental unitary operator Wa :

L2(G×G)→ L2(G×G) given by

Waξ(s, t) = ξ(s, s−1t), s, t ∈ G, (3.2)

for all ξ ∈ L2(G×G) ∼= L2(G)⊗2 L
2(G). We use the adjective “fundamental” as this

unitary carries nearly all the information of G along with its corresponding quantum

group Ga in the following sense:

1. Γa(Mh) = W ∗
a (1⊗Mh)Wa, h ∈ L∞(G);

2. Wa ∈ L∞(G)⊗L(G) = L∞(G)⊗R(G)′;

3. L∞(G) = {(id⊗ ψ)Wa : ψ ∈ A(G)}
w∗

;

4. C0(G) = {(id⊗ ψ)Wa : ψ ∈ A(G)}
‖·‖

;

5. λ(f) = (f ⊗ id)(Wa), f ∈ L1(G);

6. L(G) = {(f ⊗ id)Wa : f ∈ L1(G)}
w∗

;

7. C∗λ(G) = {(f ⊗ id)Wa : f ∈ L1(G)}
‖·‖

.
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In general, given a locally compact quantum group G, there exists a unitary

operator W : Hϕ ⊗2 Hϕ → Hϕ ⊗2 Hϕ satisfying

W ∗(Λϕ(x)⊗ Λϕ(y)) = (Λϕ ⊗ Λϕ)(Γ(y)(x⊗ 1)), x, y ∈ Nϕ. (3.3)

This operator satisfies the pentagonal relation, that is

W12W13W23 = W23W12,

where W12 = W ⊗ 1, W23 = 1⊗W , W13 = (σ⊗ 1)W23(σ⊗ 1) and σ is the flip map on

Hϕ ⊗2 Hϕ. The map W is therefore called a multiplicative unitary, and similarly to

the classical case above, it carries nearly all the information about G. In particular,

the co-multiplication on L∞(G) may be written as

Γ(x) = W ∗(1⊗ x)W, x ∈ L∞(G).

The operator W is called the left fundamental unitary of G.

Definition 3.2.1. The left regular representation λ : L1(G)→ B(Hϕ) of G is defined

by

λ(f) = (f ⊗ id)(W ), f ∈ L1(G).

Using the properties of W , it can be shown that λ is an injective completely contrac-

tive homomorphism.

In a similar fashion, there is a right fundamental unitary operator V : Hψ⊗2Hψ →

Hψ ⊗2 Hψ defined by

V (Λψ(x)⊗ Λψ(y)) = (Λψ ⊗ Λψ)(Γ(x)(1⊗ y)), x, y,∈ Nψ.
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It can be shown that V also satisfies the pentagonal relation:

V12V13V23 = V23V12 (3.4)

and that the co-multiplication on L∞(G) may be written as

Γ(x) = V (x⊗ 1)V ∗, x ∈ L∞(G).

We also obtain the right regular representation ρ : L1(G)→ B(Hψ), given by

ρ(f) = (id⊗ f)(V ), f ∈ L1(G).

3.3 Duality

One of the many triumphs of Fourier analysis on locally compact abelian groups

provided the following isomorphisms:

L∞(G) ∼= L(Ĝ), L1(G) ∼= A(Ĝ), and L2(G) ∼= L2(Ĝ).

In order to achieve a successful generalization, we must therefore ensure the duality

of Ga = (L∞(G),Γa, ϕa, ψa) and Gs = (L(G),Γs, ϕs) for all locally compact groups.

This may be done with the aid of the fundamental unitaries introduced above.

Theorem 3.3.1 (The Dual Quantum Group). [106, §1.11] Let G be a locally compact

quantum group with left fundamental unitary W . Define L∞(Ĝ) = {λ(f) : f ∈

L1(G)}′′. Then Γ̂ : L∞(Ĝ)→ L∞(Ĝ)⊗L∞(Ĝ) given by

Γ̂(x̂) = Ŵ ∗(1⊗ x̂)Ŵ , x̂ ∈ L∞(Ĝ),

where Ŵ = σW ∗σ, is a co-multiplication on L∞(Ĝ). Furthermore, there exist a left

Haar weight ϕ̂ and a right Haar weight ψ̂ on L∞(Ĝ) such that Ĝ = (L∞(Ĝ), Γ̂, ϕ̂, ψ̂)
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is a locally compact quantum group.

As a consequence, it follows that W ∈ L∞(G)⊗L∞(Ĝ) and Hϕ
∼= Hϕ̂. Hence the

dual (left) regular representation

λ̂ : L1(Ĝ) 3 f̂ 7→ (f̂ ⊗ id)(Ŵ ) = (id⊗ f̂)(W ∗) ∈ L∞(G)

generates a von Neumann subalgebra L∞(
̂̂G) := {λ̂(f̂) : f̂ ∈ L1(Ĝ)}′′ of L∞(G). In

fact, we have a perfect duality.

Theorem 3.3.2 (Quantum Pontrjagin Duality). [106, §1.11] Let G be a locally com-

pact quantum group. Then ̂̂G ∼= G.

By considering the right regular representation, we obtain the corresponding dual

quantum group Ĝ′ = (L∞(Ĝ′), Γ̂′, ϕ̂′, ψ̂′), where the co-multiplication Γ̂′ is defined by

Γ̂′(x̂′) = V̂ ′(x̂′ ⊗ 1)V̂ ′∗, x̂′ ∈ L∞(Ĝ′),

and V̂ ′ = σV ∗σ. In this case (by considering the duality between G and Ĝ′), we

obtain V̂ ′ ∈ L∞(G)⊗L∞(Ĝ′) and therefore V ∈ L∞(Ĝ′)⊗L∞(G).

As noted above, the Hilbert spaces in the GNS-constructions of the left Haar

weights on G and Ĝ may be identified. The analogous result holds for the right Haar

weights, and it follows that Hϕ
∼= Hϕ̂

∼= Hψ
∼= Hψ̂. We will therefore denote this

common Hilbert space by L2(G). By modular theory, there exists conjugate linear

isometries J, Ĵ : L2(G)→ L2(G) satisfying

JL∞(G)J = L∞(G)′ and ĴL∞(Ĝ)Ĵ = L∞(Ĝ′).

Moreover, the unitary U := ĴJ intertwines the left and right regular representations

via ρ(f) = Uλ(f)U∗, f ∈ L1(G). At the level of the fundamental unitaries, this
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relation becomes

V = σ(1⊗ U)W (1⊗ U∗)σ. (3.5)

We also record the adjoint formulas (Ĵ ⊗J)W (Ĵ ⊗J)W ∗ and (J ⊗ Ĵ)V (J ⊗ Ĵ) = V ∗.

By analogy with the classical setting, we define

C0(G) := λ̂(L1(Ĝ))
‖·‖

Then C0(G) is a weak* dense C∗-subalgebra of L∞(G), called the reduced quantum

group associated to G. We define M(G) to be the operator dual C0(G)∗. Then we

have C0(Ga) = C0(G) and M(Ga) = M(G).

Example 3.3.3. If G is a locally compact group, Ga = (L∞(G),Γa, ϕa, ψa) and Gs =

(L(G),Γs, ϕs) are dual objects in the category of locally compact quantum groups,

therefore establishing Pontrjagin duality for non-abelian locally compact groups.

An important consequence of this duality is given by the following proposition,

known as Heisenberg’s theorem.

Proposition 3.3.4. Let G be a locally compact group. Then

L∞(G) ∩ L(G) = L∞(G) ∩R(G) = C1.

Equivalently, L∞(G) ∨ L(G) = L∞(G) ∨ R(G) = B(L2(G)), where L∞(G) ∨ L(G)

denotes the von Neumann algebra generated by L∞(G) and L(G).

The following two propositions constitute the generalization of Heisenberg’s the-

orem to the non-commutative setting. Here, the notation 〈L∞(G)L∞(Ĝ)〉
w∗

refers to

the weak* closed linear span of L∞(G)L∞(Ĝ) = {xx̂ : x ∈ L∞(G), x̂ ∈ L∞(Ĝ)}.
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Proposition 3.3.5. [112, Proposition 3.4] Let G be a locally compact quantum group.

Then

L∞(G) ∩ L∞(Ĝ) = L∞(G)′ ∩ L∞(Ĝ) =

= L∞(G) ∩ L∞(Ĝ′) = L∞(G)′ ∩ L∞(Ĝ′) = C1.

Proposition 3.3.6. [110, Proposition 2.5] Let G be a locally compact quantum group.

Then

〈L∞(Ĝ′)L∞(Ĝ)〉
w∗

= 〈L∞(Ĝ)L∞(G)′〉
w∗

=

= 〈L∞(G)L∞(Ĝ)〉
w∗

= 〈L∞(G)′L∞(Ĝ′)〉
w∗

= B(L2(G)).

3.4 The Antipode

The antipode is the quantum analogue of group inversion. By way of motivation, let

us consider the commutative case.

If G is a locally compact group, define S : L∞(G)→ L∞(G) by S(f)(s) = f(s−1),

s ∈ G. We may also define a corresponding right Haar weight ψ on L∞(G) by

ψ(f) =

∫
G

f(s−1)ds, f ∈ L∞(G),

where ds denotes a fixed left Haar measure on G. In terms of the co-multiplication

on L∞(G), it follows that

S((ψ ⊗ id)((f ⊗ 1)Γa(g))) = (ψ ⊗ id)(Γa(f)(g ⊗ 1)), f, g ∈ L∞(G).
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Indeed,

S((ψ ⊗ id)((f ⊗ 1)Γa(g)))(s) = (ψ ⊗ id)((f ⊗ 1)Γa(g))(s−1)

=

∫
G

(f ⊗ 1)Γa(g)(t−1, s−1)dt

=

∫
G

f(t−1)g(t−1s−1)dt

=

∫
G

f(t−1s)g(t−1)dt

= (ψ ⊗ id)(Γa(f)(g ⊗ 1))(s).

In order to obtain a similar formula for general G, we begin at the level of the

Hilbert space L2(G) on which it acts.

Proposition 3.4.1. [106, Proposition 1.14.3] For every x, y ∈ N ∗ϕNψ, we have

(ψ ⊗ id)(Γ(x∗)(y ⊗ 1)) ∈ Nϕ. If we define

GΛϕ((ψ ⊗ id)(Γ(x∗)(y ⊗ 1))) = Λϕ((ψ ⊗ id)(Γ(y∗)(x⊗ 1))),

then G is a closed densely defined anti-linear operator on L2(G). Furthermore, if

IN
1
2 is its polar decomposition, then

1. I = I∗;

2. I2 = 1;

3. INI = N−1.

Defining the operators

R : L∞(G) 3 x 7→ Ix∗I ∈ L∞(G);

τt : L∞(G) 3 x 7→ N−itxN it ∈ L∞(G), t ∈ R,

it follows that R is a *-anti-automorphism on L∞(G) such that R2 = 1, and (τt)t∈R

is a strongly continuous one-parameter group of automorphisms on L∞(G). We call
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R the unitary antipode of G, and (τt)t∈R the scaling group of G. Note that τtR = Rτt

for all t ∈ R since INI = N−1. It follows that R(x) = Ĵx∗Ĵ , for x ∈ L∞(G) [64,

Proposition 2.1].

Definition 3.4.2. The antipode of G is defined as S = Rτ− i
2
, where τ− i

2
is the

analytic extension of (τt)t∈R at z = − i
2
∈ C. We let D(S) denote its domain.

Theorem 3.4.3. [106, §1.4] The antipode S has the following properties:

1. S is densely defined and has dense range;

2. S is injective and S−1 = Rτ i
2

= τ i
2
R;

3. S is anti-multiplicative, that is, for all x, y ∈ D(S), xy ∈ D(S) and S(xy) =

S(y)S(x);

4. for all x ∈ D(S), S(x)∗ ∈ D(S) and S(S(x)∗)∗ = x;

5. for every x, y ∈ Nψ, we have (ψ ⊗ id)((x∗ ⊗ 1)Γ(y)) ∈ D(S) and

S((ψ ⊗ id)((x∗ ⊗ 1)Γ(y))) = (ψ ⊗ id)(Γ(x∗)(y ⊗ 1));

6. D(S) contains (id⊗ f̂)(W ) for all f̂ ∈ L1(Ĝ), and

S((id⊗ f̂)(W )) = (id⊗ f̂)(W ∗). (3.6)

.

Let G be a locally compact quantum group such that the antipode S is bounded.

Then the scaling group is trivial and S = R, the unitary antipode. If, in addition,

the left Haar weight ϕ satisfies

(id⊗ ϕ)((1⊗ y∗)Γ(x)) = R((id⊗ ϕ)(Γ(y∗)(1⊗ x))), x, y ∈ Nϕ
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and R ◦ σϕt = σϕ−t ◦ R for all t ∈ R, where σϕt is the modular automorphism group

of ϕ, then we say that G is Kac algebra. Historically, these were the first examples

of locally compact quantum groups. Indeed, all commutative and co-commutative

quantum groups are Kac algebras. The reader is referred to [30] for details.

3.5 Quantum Groups in the Universal Setting

In the classical setting one uses the antipode S to define an involution on L1(G) =

L1(Ĝs), whose enveloping C∗-algebra C∗(G) plays an important role in abstract har-

monic analysis. For general locally compact quantum groups, one would like an

analogue of the group C∗-algebra. Unfortunately, the straightforward generalization

to define an involution on L1(Ĝ) respected by the left regular representation is not

possible as the antipode S may be unbounded. Instead, one defines an involution on

a dense subalgebra of L1(Ĝ), then passes to its enveloping C∗-algebra in the same

manner as in the classical case. The resulting object is known as the universal quan-

tum group associated to G, and we outline its construction below; for details, see

[61].

Let G be a locally compact quantum group with dual Ĝ, and let L1
∗(Ĝ) be the

subspace of L1(Ĝ) defined by

L1
∗(Ĝ) = {f̂ ∈ L1(Ĝ) : ∃ ĝ ∈ L1(Ĝ) s.t. ĝ(x̂) = f̂ ∗ ◦ Ŝ(x̂) ∀x̂ ∈ D(Ŝ)},

where f̂ ∗(x̂) = f̂(x̂∗), x̂ ∈ L∞(Ĝ). It is known from [106, §1.13] that L1
∗(Ĝ) is a dense

subalgebra of L1(Ĝ). There is an involution on L1
∗(Ĝ) given by f̂ o = f̂ ∗ ◦ Ŝ, such that

L1
∗(Ĝ) becomes a Banach *-algebra under the norm

‖f̂‖∗ = max{‖f̂‖, ‖f̂ o‖}.

Moreover, the restricted left regular representation λ̂ : L1
∗(Ĝ) → C0(G) becomes a
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*-homomorphism. Indeed, by Theorem 3.4.3, the domain of Ŝ contains (id⊗ f)(Ŵ ),

f ∈ L1(G), and since Ŝ((id⊗ f)(Ŵ )) = (id⊗ f)(Ŵ ∗), we have

〈λ̂(f̂ o), f〉 = 〈(f̂ o ⊗ id)(Ŵ ), f〉

= 〈f̂ o, (id⊗ f)(Ŵ )〉

= 〈f̂ ∗, (id⊗ f)(Ŵ ∗)〉

= 〈(f̂ ∗ ⊗ id)(Ŵ ∗), f〉

= 〈[(f̂ ⊗ id)(Ŵ )]∗, f〉

= 〈λ̂(f̂)∗, f〉,

where in the second last step we have used the normality of the linear functional

(f̂ ∗ ⊗ id) : L∞(Ĝ)⊗L∞(G) → L∞(G), together with the weak* continuity of the

adjoint.

Next, define the enveloping C∗-algebra by introducing the following norm for all

f̂ ∈ L1
∗(Ĝ),

‖f̂‖u = sup{‖π(f̂)‖ | π : L1
∗(Ĝ)→ B(H) is a s.nd. *-representation}.

Taking the completion, we obtain the universal quantum group C∗-algebra of G, de-

noted Cu(G). Writing λ̂u for the embedding of L1
∗(Ĝ) into Cu(G), the pair (Cu(G), λ̂u)

is determined (up to *-isomorphism) by the following universal property: if A is a

C∗-algebra and π : L1
∗(Ĝ) → A is a *-representation, then there exists a unique

*-representation πu : Cu(G)→ A such that πu ◦ λ̂u = π.

For commutative quantum groups Ga, we have Cu(Ga) = C0(G) and for co-

commutative quantum groups Gs, we obtain Cu(Gs) = C∗(G), the full group C∗-

algebra of G, thereby making Cu(G) the appropriate generalization to the quantum

group setting.
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Definition 3.5.1. Let A be a C∗-algebra. The idealizer of A in (A∗∗,�), denoted

M(A), is defined by

{x ∈ A∗∗ : x�a, a�x ∈ A for all a ∈ A},

and is called the multiplier algebra of A.

Note that M(A) is a C∗-subalgebra of A∗∗, containing A as a norm-closed two

sided ideal, and A is unital if and only if M(A) = A. Moreover, if A is a C∗-

subalgebra of B(H) for a Hilbert space H, then M(A) ⊆ B(H) [86, Proposition

2.12.9]. For instance, if A = K(H), the C∗-algebra of compact operators H, then

M(A) = B(H). For details on multiplier algebras, see [86, §2.12].

Definition 3.5.2. Let A and B be C∗-algebras. For every a ∈ A, define a semi-norm

on M(A) by

‖x‖a = ‖x�a‖+ ‖a�x‖, x ∈M(A).

The weak topology generated by the semi-norms {‖·‖a : a ∈ A} is called the strict

topology in M(A). We say that a linear map π : A → M(B) is strict if it is norm

bounded and strictly continuous on bounded sets.

One can show that if π : A → M(B) is strict, then it has a unique bounded

linear extension π̃ : M(A) → M(B) which is strictly continuous on bounded sets

[62, §7]. Three examples of importance are bounded linear functionals ϕ ∈ A∗, their

associated slice maps

ϕ⊗ id : A⊗min B →M(B) and id⊗ ϕ : B ⊗min A →M(B),

and nondegenerate *-representations π : A →M(B), meaning

B = {π(a)�b : a ∈ A, b ∈ B}
‖·‖
.
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In what follows, we will refrain from writing π̃ for the extensions of strict linear

mappings, and simply write π.

The multiplier algebra of C0(G) plays a prominent role in the C∗-algebraic for-

mulation of locally compact quantum groups. For instance, Γ|C0(G) : C0(G) →

M(C0(G)⊗min C0(G)) is the co-multiplication on the reduced quantum group C0(G)

[4]. This allows one to construct a multiplication on M(G) via

〈µ ? ν, x〉 = 〈µ⊗ ν,Γ(x)〉, x ∈ C0(G), µ, ν ∈M(G),

where µ⊗ ν ∈M(C0(G)⊗min C0(G))∗ is understood as the composition µ ◦ (id⊗ ν).

Under ?, the spaceM(G) becomes a completely contractive Banach algebra containing

L1(G) as a norm closed two-sided ideal via the map L∞(G)∗ ⊇ L1(G) 3 f 7→ f |C0(G) ∈

M(G).

Since λ̂ : L1
∗(Ĝ) → C0(G) is a *-homomorphism, by the universal property of

Cu(G), there exists a unique surjective *-homomorphism π : Cu(G) → C0(G) such

that π ◦ λ̂u(f̂) = λ̂(f̂) for all f̂ ∈ L1
∗(Ĝ). Furthermore, there is a non-degenerate

co-associative *-homomorphism Γu : Cu(G)→M(Cu(G)⊗min Cu(G)) satisfying

(π ⊗ π) ◦ Γu = Γ ◦ π;

see [61, Proposition 6.2]. The space Cu(G)∗ then has the structure of a unital com-

pletely contractive Banach algebra via

〈µ ?u ν, x〉 = 〈µ⊗ ν,Γu(x)〉, x ∈ Cu(G), µ, ν ∈ Cu(G)∗.

Under this multiplication, the map i : L1(G) → Cu(G)∗ given by the composition

of the inclusion L1(G) ⊆ M(G) and π∗ : M(G) → Cu(G)∗ is a completely isometric

homomorphism. It follows that i(L1(G)) is a norm closed two-sided ideal in Cu(G)∗

[61, Proposition 8.3].
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3.6 Compact Quantum Groups

Recall that a locally compact quantum group G = (L∞(G),Γ, ϕ, ψ) is compact if ϕ is

finite. In this case, ϕ is both left and right invariant, and we normalize by ϕ(1) = 1.

A unitary co-representation of G is a unitary U ∈ L∞(G)⊗B(H) which satisfies

(Γ ⊗ id)(U) = U13U23. The co-representation U then defines a homomorphism πU :

L1(G)→ B(H) via

πU(f) = (f ⊗ id)(U), f ∈ L1(G).

We say that U is irreducible if the corresponding representation πU is irreducible.

We have the following facts about G: every irreducible co-representation uα is

finite-dimensional and is unitarily equivalent to a sub-representation of W , and every

unitary co-representation of G can be decomposed into a direct sum of irreducible

representations. We let Irr(G) := {uα} denote a complete set of representatives of

irreducible co-representations of G which are pairwise in-equivalent (cf. [118]). Slicing

by vector functionals ωij = ωej ,ei relative to an orthonormal basis of Hα, we obtain

elements uαij = (id⊗ ωij)(uα) ∈ L∞(G) satisfying

Γ(uαij) =
nα∑
k=1

uαik ⊗ uαkj

for all 1 ≤ i, j ≤ nα. The linear space A := span{uαij | α ∈ Irr(G), 1 ≤ i, j ≤ nα}

forms unital Hopf *-algebra which is linearly dense in C(G) := C0(G) [118]. On A,

the antipode and Haar weight are given respectively by

S(uαij) = (uαji)
∗ and ϕ(uαij) = δα,α0 , 1 ≤ i, j ≤ nα, α ∈ Irr(G),

where α0 is the trivial representation, satisfying uα0 = 1.

In this case, the dual quantum group Ĝ is discrete and has underlying von Neu-
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mann algebra

`∞(Ĝ) =
⊕

α∈Irr(G)

Mnα(C).

For every α ∈ Irr(G) there exists a positive invertible matrix Fα ∈Mnα(C) such that

the corresponding “F–matrices” implement the left Haar weight of the dual Ĝ in the

sense that

ϕ̂(x) =
∑

α∈Irr(G)

tr(Fα) tr(Fαx), x ∈Mϕ̂ .

Without loss of generality, we may assume that Fα = diag(λα1 , · · · , λαnα) [19, Propo-

sition 2.1]. Since tr(Fα) = tr(Fα)−1, it follows that

nα∑
i=1

λαi =
nα∑
i=1

1

λαi
= tr(Fα) =: dα,

where dα is the quantum dimension of uα. If G is a Kac algebra, then dα = nα and

Fα = 1nα for all α ∈ Irr(G).

For a concrete example of a compact quantum group, we present an instance of

the Van Daele–Wang construction of universal quantum groups [111].

Example 3.6.1. Let N ≥ 2 be an integer and let F ∈ GL(N,C) be such that

FF = λIN for some λ ∈ R. We let Ao(F ) be the universal C∗-algebra generated by

N2 elements uij such that the matrix u = [uij] is unitary and FuF−1 = u, where

u = [u∗ij]. Define Γu : Ao(F )→ Ao(F )⊗min Ao(F ) on the generators by

Γu(uij) =
N∑
k=1

uik ⊗ ukj, 1 ≤ i, j ≤ N.

It follows that there exists a unique Haar state ϕ on Ao(F ) satisfying (id⊗ϕ)Γu(x) =

(ϕ ⊗ id)Γu(x) = ϕ(x)1, x ∈ Ao(F ) [118]. The GNS construction (πϕ, ξϕ) of ϕ

then yields a von Neumann algebra L∞(GF ) := πϕ(Ao(F ))′′ ⊆ B(Hϕ) and a co-

multiplication Γ : L∞(GF ) → L∞(GF )⊗L∞(GF ) such that GF = (L∞(GF ),Γ, ωξϕ)

becomes a compact quantum group, called the free orthogonal quantum group (with



CHAPTER 3. LOCALLY COMPACT QUANTUM GROUPS 49

parameter matrix F). In this example, Cu(GF ) = Ao(F ) and C0(GF ) = C(GF ) =

πϕ(Ao(F )) ⊆ B(Hϕ). We mention a few special cases of interest:

• It is known that GF is co-amenable if and only if N = 2 [5, Corollaire 1],

and hence, ĜF is amenable if and only if N = 2 by Tomatsu’s theorem [104,

Theorem 3.8].

• When F =

 0 1

−q−1 0

, for q ∈ [−1, 1], q 6= 0, we recover Woronowicz’s defor-

mation SUq(2) of the compact Lie group SU(2) [117], namely as the universal

C∗-algebra generated by α and γ such that the matrixα −qγ∗

γ α∗


is unitary.

• It is known that GF is a Kac algebra precisely when F is a scalar multiple of a

unitary matrix (see [5, Théorème 3]).

• When F = IN , and we take the universal commutative C∗-algebra generated by

uij satisfying the above relations, then we obtain C(O(N)), the commutative

C∗-algebra of continuous functions on the orthogonal group O(N).

3.7 Completely Bounded Multipliers

Building on work of Cowling, de Cannière, Haagerup and Kraus regarding completely

bounded multipliers of the Fourier algebra [16, 24, 43], Kraus and Ruan introduced

the notion of completely bounded multipliers for Kac algebras [59], which was then

extended to the setting of locally compact quantum groups in [53, 49]. We finish this

chapter with an overview of the relevant theory that will be important in the sequel.
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Definition 3.7.1. Let G be a locally compact quantum group. An element b̂′ ∈

L∞(Ĝ)′ is said to be a completely bounded right multiplier of L1(G) if ρ(f)b̂′ ∈

ρ(L1(G)) for all f ∈ L1(G) and the induced map

mr
b̂′

: L1(G) 3 f 7→ ρ−1(ρ(f)b̂′) ∈ L1(G)

is completely bounded on L1(G). We let M r
cb(L

1(G)) denote the space of all com-

pletely bounded right multipliers of L1(G). It is easy to see that M r
cb(L

1(G)) is a

completely contractive Banach algebra with respect to the norm

‖[b̂′ij]‖Mn(Mr
cb(L

1(G))) = ‖[mr
b̂ij

]‖cb.

Completely bounded left multipliers are defined analogously as those b̂ ∈ L∞(Ĝ)

such that b̂λ(L1(G)) ⊆ λ(L1(G)) and the induced map

ml
b̂

: L1(G) 3 f 7→ λ−1(b̂λ(f)) ∈ L1(G)

is completely bounded. We let M l
cb(L

1(G)) denote the completely contractive Banach

algebra of completely bounded left multipliers.

Given b̂′ ∈ M r
cb(L

1(G)), the adjoint Θr(b̂′) := (mr
b̂′

)∗ defines a normal completely

bounded right L1(G)-module map on L∞(G). When b̂′ = ρ(f), the map Θr(ρ(f)) is

nothing but the convolution action of L1(G) on L∞(G), that is,

Θr(ρ(f))(x) = f ? x = (id⊗ f)Γ(x), x ∈ L∞(G).

In general, the restriction Θr(b̂′)|C0(G) leaves C0(G) invariant by [53, Proposition 4.1],

and, together with [53, Proposition 4.2], we have the completely isometric identifica-

tions

M r
cb(L

1(G)) ∼= CBσL1(G)(L
∞(G)) ∼= CBL1(G)(C0(G)). (3.7)
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In the commutative case, M r
cb(L

1(Ga)) ∼= M(G) by Wendel’s theorem [113], and the

action on L∞(G) is given by

Θr(µ)(f)(s) = µ ? f(s) =

∫
G

f(st)dµ(t), µ ∈M(G), f ∈ L∞(G).

In the co-commutative case, M r
cb(L

1(Gs)) = McbA(G), the completely bounded mul-

tipliers of the Fourier algebra, and the action on L(G) is given by

Θ̂r(ϕ)(λ(s)) = ϕ(s)λ(s), ϕ ∈McbA(G), s ∈ G.

For a locally compact quantum group G, it is known that M r
cb(L

1(G)) is a dual

space [49, Theorem 3.5], with predual Qr
cb(L

1(G)) given as the completion of L1(Ĝ′)

under the completely contractive embedding

L1(Ĝ′) 3 f̂ ′ 7→ αf̂ ′ ∈M
r
cb(L

1(G))∗,

where 〈αf̂ ′ , b̂′〉 = 〈b̂′, f̂ ′〉, for f̂ ′ ∈ L1(Ĝ′) and b̂′ ∈M r
cb(L

1(G)). In the co-commutative

setting, Haagerup and Kraus gave a representation for elements of QcbA(G) as ΩX,ρ

for X ∈ C∗λ(G)⊗min K∞ and ρ ∈ A(G)⊗̂T∞ [43, Proposition 1.5], where

〈ϕ,ΩX,ρ〉 = 〈(Θ̂r(ϕ)⊗ idK∞)(X), ρ〉, ϕ ∈McbA(G).

This was later generalized to the setting of Kac algbras by Kraus and Ruan [60,

Theorem 3.3]. Relying upon the general result [43, Lemma 1.6], their argument

readily extends to arbitrary locally compact quantum groups.

Proposition 3.7.2. Let G be a locally compact quantum group. Then

Qr
cb(L

1(G)) = {ΩX,ρ | X ∈ C0(G)⊗min K∞, ρ ∈ L1(G)⊗̂T∞},

where 〈b̂,ΩX,ρ〉 = 〈(Θr(b̂′)⊗ idK∞)(X), ρ〉, b̂′ ∈M r
cb(L

1(G)).
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As is well-known in the group case (see [34, 74, 76, 98]), for any b̂′ ∈M r
cb(L

1(G)),

the map Θr(b̂′) extends to a normal completely bounded L∞(Ĝ)-bimodule map on

B(L2(G)) which leaves L∞(G) globally invariant [53, Theorem 4.5], and the corre-

sponding representation

Θr : M r
cb(L

1(G)) ∼= CBσ,L
∞(G)

L∞(Ĝ)
(B(L2(G))) (3.8)

yields a completely isometric isomorphism of completely contractive Banach algebras.

By duality, we obtain

Θ̂r : M r
cb(L

1(Ĝ)) ∼= CBσ,L
∞(Ĝ)

L∞(G) (B(L2(G))),

so the above representation framework allows one to study the actions of G and Ĝ

on the single space B(L2(G)). One manifestation of this duality is the following com-

mutation theorem, where for a subset S of CB(B(L2(G))), we denote its commutant

in CB(B(L2(G))) by Sc.

Theorem 3.7.3. [53, Theorem 5.1] Let G be a locally compact quantum group. Then

Θ̂r(M r
cb(L

1(Ĝ))) = Θr(M r
cb(L

1(G)))c ∩ CBσL∞(G)(B(L2(G))). (3.9)

The corresponding result for completely bounded left multipliers takes the fol-

lowing form, and can be proved by combining [53, Theorem 5.1] with [49, Theorem

4.9].

Theorem 3.7.4. Let G be a locally compact quantum group. Then

Θ̂l(M l
cb(L

1(Ĝ))) = U∗Θr(M r
cb(L

1(G)))cU ∩ CBσL∞(G)′(B(L2(G))), (3.10)

where U is conjugation with the unitary U = ĴJ .



Chapter 4

Amenability and Injectivity

In this chapter we introduce and study versions of injectivity of L∞(Ĝ) that capture

fundamental properties of G, such as amenability, compactness, and co-commutativity.

The underlying idea is to refine injectivity through a covariance condition, by which

we mean the existence of a conditional expectation respecting the natural T (L2(G))-

module of B(L2(G)) or the L1(Ĝ)-module structure of L∞(Ĝ). We then relate this

concept to that of injectivity in the category of operator modules.

4.1 T (L2(G))

Let G be a locally compact quantum group. The right fundamental unitary V of G

induces a co-associative co-multiplication

Γr : B(L2(G)) 3 T 7→ V (T ⊗ 1)V ∗ ∈ B(L2(G))⊗B(L2(G)),

and the restriction of Γr to L∞(G) yields the original co-multiplication Γ on L∞(G).

The pre-adjoint of Γr induces an associative completely contractive multiplication on

T (L2(G)), defined by

� : T (L2(G))⊗̂T (L2(G)) 3 ω ⊗ τ 7→ ω � τ = Γr∗(ω ⊗ τ) ∈ T (L2(G)).

53
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Since Γr is a complete isometry, it follows that Γr∗ is a complete quotient map, so we

have

T (L2(G)) = 〈T (L2(G))� T (L2(G))〉. (4.1)

Analogously, the left fundamental unitary W of G induces a co-associative

co-multiplication

Γl : B(L2(G)) 3 T 7→ W ∗(1⊗ T )W ∈ B(L2(G))⊗B(L2(G)),

and the restriction of Γl to L∞(G) is also equal to Γ. The pre-adjoint of Γl induces

another associative completely contractive multiplication

� : T (L2(G))⊗̂T (L2(G)) 3 ω ⊗ τ 7→ ω � τ = Γl∗(ω ⊗ τ) ∈ T (L2(G)).

These two products on T (L2(G)) are quite different in general. It is known that

(T (L2(G)),�) is always left faithful, and right faithful if and only if G is trivial.

Similarly, (T (L2(G)),�) is always right faithful, and is left faithful if and only if G

is trivial (cf. [49]).

The above Banach algebra structure on T (L2(G)) was introduced in the commu-

tative case by Neufang [74], and was further studied in [1, 76, 83]. The general case

has been investigated in [49, 50, 56]. In particular, it was shown in [49, Lemma 5.2]

that the pre-annihilator L∞(G)⊥ of L∞(G) in T (L2(G)) is a norm closed two sided

ideal in (T (L2(G)),�) and (T (L2(G)),�), respectively, and the complete quotient

map

π : T (L2(G)) 3 ω 7→ f = ω|L∞(G) ∈ L1(G) (4.2)

is a completely contractive algebra homomorphism from (T (L2(G)),�), respectively,

(T (L2(G)),�), onto L1(G). Therefore, we have the completely isometric Banach
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algebra identifications

(L1(G), ?) ∼= (T (L2(G)),�)/L∞(G)⊥ and (L1(G), ?) ∼= (T (L2(G)),�)/L∞(G)⊥.

This allows us to view each of (T (L2(G)),�) and (T (L2(G)),�) as a lifting of

(L1(G), ?).

Letting Ĵ denote the conjugate linear isomorphism of L2(G) arising from the

GNS construction of the left Haar weight ϕ̂, we obtain a canonical extension of the

unitary antipode to a *-anti-automorphism R : B(L2(G)) → B(L2(G)), given by

R(T ) = ĴT ∗Ĵ , T ∈ B(L2(G)). The extended antipode maps L∞(G) and L∞(Ĝ) onto

L∞(G) and L∞(Ĝ′), respectively, and satisfies the generalized antipode relations; that

is,

(R⊗R) ◦ Γr = Σ ◦ Γl ◦R and (R⊗R) ◦ Γl = Σ ◦ Γr ◦R, (4.3)

where Σ is the flip map on B(L2(G))⊗B(L2(G)). At the level of T (L2(G)), the

relations (4.3) mean

R∗(ω � τ) = R∗(τ)�R∗(ω) and R∗(ω � τ) = R∗(τ)�R∗(ω)

for all ω, τ ∈ T (L2(G)). We may therefore pass between the left and right products

using R, and as a result, we will often focus on the right product � throughout the

thesis, leaving the corresponding result to the reader to establish.

Example 4.1.1. Let Ga = (L∞(G),Γa, ϕa, ψa) be a commutative locally compact

quantum group. Then, as shown in [74], we have

ω �a τ =

∫
G

ρ(s)∗ωρ(s)πa(τ)(s)ds and ω �a τ =

∫
G

λ(s)τλ(s)∗πa(ω)(s)ds

for any ω, τ ∈ T (L2(G)). Hence, in the commutative case we may literally view �a

and �a as a lifting of convolution from L1(G) to T (L2(G)).
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Example 4.1.2. Let Gs = (L(G),Γs, ϕs) be a co-commutative quantum group with

G discrete. Then using the canonical orthonormal basis (δs)s∈G of `2(G), one may

easily verify that

ω �s τ = [πs(τ)(rt−1)]r,t ◦S ω and ω �s τ = [πs(ω)(r−1t)]r,t ◦S τ,

where [πs(τ)(rt−1)]r,t is the correlation matrix obtained from πs(τ) ∈ A(G), and ◦S is

the Schur product with respect to the canonical orthonormal basis. We may therefore

view the products �s and �s, at least concretely in the discrete case, as a lifting of

pointwise multiplication from A(G) to T (`2(G)).

Since L2(G) = L2(Ĝ) for any locally compact quantum group G, applying the

above construction to the co-multiplication Γ̂ on L∞(Ĝ) yields two dual products

�̂ : T (L2(G))⊗̂T (L2(G)) 3 ω ⊗ τ 7→ ω�̂τ = Γ̂r∗(ω ⊗ τ) ∈ T (L2(G)),

�̂ : T (L2(G))⊗̂T (L2(G)) 3 ω ⊗ τ 7→ ω�̂τ = Γ̂l∗(ω ⊗ τ) ∈ T (L2(G)).

As with the case of completely bounded multipliers, lifting convolution to T (L2(G))

allows one to study properties of G and Ĝ as well as their interactions a single space.

The advantage of T (L2(G)) is that certain interactions have important homological

consequences. One such interaction was shown in [56], and states that the dual

products anti-commute.

Theorem 4.1.3. [56, Theorem 3.3] Let G be a locally compact quantum group. Then

for every ρ, ω, τ ∈ T (L2(G)) we have

(ρ� ω)�̂τ = (ρ�̂τ)� ω. (4.4)

Equation (4.4) is a manifestation of the commutation theorem for completely

bounded multipliers (3.9) at the level of T (L2(G)). Below we derive an important

consequence (Proposition 4.1.6) that will be used many times throughout this chapter.
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For now, we show that in the Kac algebra setting we may further interpret the

above commutation relation at the level of the co-multiplications Γ and Γ̂. A similar

result was recently obtained by Kasprzak and So ltan using different techniques [58,

Proposition 6.3].

Theorem 4.1.4. Let G be a Kac algebra. Then

Γ(L∞(G)) = (U ⊗ 1)Γ̂(L∞(Ĝ))′(U∗ ⊗ 1) ∩ L∞(G)⊗L∞(G),

where U = ĴJ .

Proof. Throughout the proof we denote conjugation with U by U . Let b ∈M l
cb(L

1(Ĝ)),

then by [21, Proposition 6.1], for any ξ, η, α, β ∈ L2(G) we have

〈Θ̂l(b)(|ξ〉〈η|)α, β〉 = 〈(id⊗R)Γ(b), ωα,η ⊗ ωξ,β〉. (4.5)

We remark that the above formula involving the unitary antipode is specific to the case

of Kac algebras (see [21, Proposition 6.1]). By an unpublished result of Haagerup [41],

there exist nets (ai)i∈I and (bi)i∈I in L∞(G) such that
∑

i∈I aia
∗
i ,
∑

i∈I b
∗
i bi converge

weak* in L∞(G) and

Θ̂l(b)(T ) =
∑
i∈I

aiTbi, T ∈ B(L2(G)),

where the series converges weak* in B(L2(G)). Using this with equation (4.5) gives

∑
i∈I

ai ⊗ bi = Σ ◦ (id⊗R)Γ(b) = (id⊗R)Γ(R(b)) ∈ L∞(G)⊗L∞(G).

By duality, for any b̂ ∈ M l
cb(L

1(G)) there exist nets (x̂j)j∈J and (ŷj)j∈J in L∞(Ĝ)

such that
∑

j∈J x̂jx̂
∗
j ,
∑

j∈J ŷ
∗
j ŷj converge weak* in L∞(Ĝ),

Θl(b̂)(T ) =
∑
j∈J

x̂jT ŷj, T ∈ B(L2(G)),
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and

∑
j∈J

x̂j ⊗ ŷj = Σ ◦ (id⊗ R̂)Γ̂(̂b) = (id⊗ R̂)Γ̂(R̂(̂b)) ∈ L∞(Ĝ)⊗L∞(Ĝ).

Noting that U = R ◦ R̂ = R̂ ◦R, we obtain

〈Θl(̂b) ◦ U ◦ Θ̂l(b) ◦ U∗(|ξ〉〈η|)α, β〉

=
∑
j∈J

∑
i∈I

〈x̂jUaiU∗|ξ〉〈η|UbiU∗ŷjα, β〉

=
∑
j∈J

∑
i∈I

〈x̂jUaiU∗ ⊗ UbiU∗ŷj, ωξ,β ⊗ ωα,η〉

=
∑
j∈J

∑
i∈I

〈(x̂j ⊗ R̂(ŷj))(UaiU
∗ ⊗ R̂(UbiU

∗)), ωξ,β ⊗ ωα,η ◦ R̂〉

=
∑
j∈J

∑
i∈I

〈(x̂j ⊗ R̂(ŷj))((U ⊗ 1)(id⊗R)(ai ⊗ bi)(U∗ ⊗ 1)), ωξ,β ⊗ ωα,η ◦ R̂〉

=
∑
j∈J

〈(x̂j ⊗ R̂(ŷj))((U ⊗ 1)Γ(R(b))(U∗ ⊗ 1)), ωξ,β ⊗ ωα,η ◦ R̂〉

= 〈Γ̂(R̂(̂b))((U ⊗ 1)Γ(R(b))(U∗ ⊗ 1)), ωξ,β ⊗ ωα,η ◦ R̂〉.

On the other hand, Θl(̂b) ◦ U ◦ Θ̂l(b) ◦ U∗ = U ◦ Θ̂l(b) ◦ U∗ ◦ Θl(̂b) by (3.10), and a

similar computation gives

〈Θl(̂b) ◦ Θ̂l(b)(|ξ〉〈η|)α, β〉 = 〈(U ⊗ 1)Γ(R(b))(U∗ ⊗ 1)Γ̂(R̂(̂b)), ωη,β ⊗ ωα,η ◦ R̂〉.

By density of ωη,β ⊗ ωα,η ◦ R̂ in T (L2(G))⊗̂T (L2(G)), it follows that

[Γ̂(R̂(̂b)), (U ⊗ 1)Γ(R(b))(U∗ ⊗ 1)] = 0 ⇔ [(U ⊗ 1)Γ̂(b̂)(U∗ ⊗ 1),Γ(b)] = 0

for all b ∈M l
cb(L

1(Ĝ)) and b̂ ∈M l
cb(L

1(G)) (the equivalence follows from the antipode

relations). By normality and weak* density of M l
cb(L

1(G)) and M l
cb(L

1(Ĝ)) in L∞(Ĝ)
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and L∞(G), respectively, we obtain the inclusion

Γ(L∞(G)) ⊆ (U ⊗ 1)Γ̂(L∞(Ĝ))′(U∗ ⊗ 1) ∩ L∞(G)⊗L∞(G).

Conversely, suppose X ∈ (U ⊗ 1)Γ̂(L∞(Ĝ))′(U∗ ⊗ 1) ∩ L∞(G)⊗L∞(G). Then,

unfolding the co-multiplication we obtain

Ŵ (U∗ ⊗ 1)X(U ⊗ 1)Ŵ ∗(1⊗ x̂) = (1⊗ x̂)Ŵ (U∗ ⊗ 1)X(U ⊗ 1)Ŵ ∗

for every x̂ ∈ L∞(Ĝ). Since Ŵ ∈ L∞(Ĝ)⊗L∞(G), it follows that

(ρ⊗ id)(Ŵ (U∗ ⊗ 1)X(U ⊗ 1)Ŵ ∗) ∈ L∞(Ĝ′) ∩ L∞(G) = C1

for every ρ ∈ T (L2(G)). Hence, Ŵ (U∗ ⊗ 1)X(U ⊗ 1)Ŵ ∗ = T ⊗ 1 for some T ∈

B(L2(G)), and formula (3.5) gives X = V (UTU∗ ⊗ 1)V ∗ = Γr(UTU∗), implying

that X ∈ Γr(B(L2(G))) ∩ L∞(G)⊗L∞(G). But then (Γ ⊗ id)(X) = (id ⊗ Γ)(X) by

co-associativity, which forces X ∈ Γ(L∞(G)) by [107, Theorem 2.7].

For a locally compact quantum group G, the multiplication � defines a completely

contractive (T (L2(G)),�)-bimodule structure on B(L2(G)) via

B(L2(G))⊗̂T (L2(G)) 3 (T, ω) 7→ T � ω = (ω ⊗ id)V (T ⊗ 1)V ∗ ∈ L∞(G) ⊆ B(L2(G));

T (L2(G))⊗̂B(L2(G)) 3 (ω, T ) 7→ ω � T = (id⊗ ω)V (T ⊗ 1)V ∗ ∈ B(L2(G)).

Note that since V ∈ L∞(Ĝ′)⊗L∞(G), the (restricted) bimodule action on L∞(Ĝ)

becomes rather trivial. Indeed, for x̂ ∈ L∞(Ĝ) and ω ∈ T (L2(G))

x̂� ω = 〈ω, x̂〉1 and ω � x̂ = 〈ω, 1〉x̂. (4.6)

The multiplication� defines, analogously, a completely contractive (T (L2(G)),�)-
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bimodule structure on B(L2(G)) via

T (L2(G))⊗̂B(L2(G)) 3 (ω, T ) 7→ ω � T = (id⊗ ω)W ∗(1⊗ T )W ∈ L∞(G) ⊆ B(L2(G));

B(L2(G))⊗̂T (L2(G)) 3 (T, ω) 7→ T � ω = (ω ⊗ id)W ∗(1⊗ T )W ∈ B(L2(G)).

In particular, for x ∈ L∞(G) and ω ∈ T (L2(G)), denoting f = ω|L∞(G), we have

x� ω = x� ω = x ? f and ω � x = ω � x = f ? x. (4.7)

As above, we see that the bimodule actions of (T (L2(G)),�) and (T (L2(G)),�) on

B(L2(G)) are liftings of the usual bimodule action of L1(G) on L∞(G). When G = Ga

is commutative, the right (T (L2(G)),�a)-action and left (T (L2(G)),�a)-action take

the following form (see [74]):

T �a ω(s) = 〈ρ(s)Tρ(s)∗, ω〉 and ω �a T (s) = 〈λ(s)∗Tλ(s), ω〉, s ∈ G.

Motivated by the group setting, the subspaces LUC(G) and RUC(G) of L∞(G)

are defined by [48, 93]

LUC(G) = 〈L∞(G) ? L1(G)〉 and RUC(G) = 〈L1(G) ? L∞(G)〉.

It was shown by Runde in [93, Theorem 2.4] that LUC(G) and RUC(G) are operator

systems in L∞(G) such that

C0(G) ⊆ LUC(G),RUC(G) ⊆M(C0(G)). (4.8)

By definition, LUC(Ga) (respectively, RUC(Ga)) is the usual space LUC(G) (re-

spectively, RUC(G)) of bounded left (respectively, right) uniformly continuous func-

tions on G, and LUC(Gs) = RUC(Gs) is the space UCB(Ĝ) of uniformly continuous

bounded linear functionals on A(G) introduced by Granirer [37]. Using the extended
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module actions of T (L2(G)) on B(L2(G)), it was shown in [49, Proposition 5.3] that

LUC(G) = 〈LUC(G) ? L1(G)〉 = 〈B(L2(G))� T (L2(G))〉;

RUC(G) = 〈L1(G) ? RUC(G)〉 = 〈T (L2(G))� B(L2(G))〉.

When G is co-amenable, (T (L2(G)),�) (respectively, (T (L2(G)),�)) has a contrac-

tive right (respectively, left) approximate identity [49, Proposition 5.4]. In this case,

Cohen’s factorization theorem yields the equalities

LUC(G) = B(L2(G))�T (L2(G)) and RUC(G) = T (L2(G))�B(L2(G)). (4.9)

For every locally compact quantum group G, we have the left and right Arens

products � and 3 on L∞(G)∗ = L1(G)∗∗. Then (L∞(G)∗,�) and (L∞(G)∗,3) are

completely contractive Banach algebras. Given m ∈ LUC(G)∗, we define a bounded

linear map mL on L∞(G) by

mL : L∞(G) 3 x 7→ m�x ∈ L∞(G).

This map is completely bounded, with ‖mL‖cb ≤ ‖m‖, and a right L1(G)-module

map, since

〈m�(x ? f), g〉 = 〈m,x ? (f ? g)〉 = 〈m�x, f ? g〉 = 〈(m�x) ? f, g〉

for all x ∈ L∞(G) and f, g ∈ L1(G). Therefore, mL maps LUC(G) into LUC(G), and

the left Arens product � on L∞(G)∗ induces a completely contractive multiplication

on LUC(G)∗, also denoted �, so that the restriction

L∞(G)∗ 3 m 7→ m|LUC(G) ∈ LUC(G)∗

is a multiplicative complete quotient map from (L∞(G)∗,�) onto (LUC(G)∗,�).
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Let m ∈ LUC(G)∗. Then, as LUC(G) = 〈B(L2(G))�T (L2(G))〉, the module map

mL may be extended to a right (T (L2(G)),�)-module map Θr(m) on B(L2(G)) via

〈Θr(m)(T ), ω〉 = 〈m,T � ω〉 = 〈m, (ω ⊗ id)V (T ⊗ 1)V ∗〉

for T ∈ B(L2(G)) and ω ∈ T (L2(G)). In this case, we also have ‖Θr(m)‖cb ≤

‖m‖, and if we let CBT�(B(L2(G))) denote the algebra of completely bounded right

(T (L2(G)),�)-module maps on B(L2(G)), it follows that

Θr : LUC(G)∗ 3 m 7→ Θr(m) ∈ CBT�(B(L2(G))) (4.10)

is a weak*-weak* continuous, injective, completely contractive algebra homomor-

phism [49, Proposition 6.5].

Remark 4.1.5. Since LUC(G) ⊆ M(C0(G)), one can show that the algebra M(G)

sits isometrically inside LUC(G)∗ via

M(G) 3 µ 7→ µ̃|LUC(G) ∈ LUC(G)∗,

where µ̃ ∈ M(C0(G))∗ is the unique strict extension of µ (see [49, Proposition 6.1]).

When G is co-amenable, we have M r
cb(L

1(G)) ∼= M(G) [49, Theorem 4.2], and the re-

stricted representation Θr|M(G) coincides with (3.8), justifying our common notation.

In general, M(G) sits completely contractively inside M r
cb(L

1(G)) [49, Proposition

4.1], and the restricted representations of LUC(G)∗ and M r
cb(L

1(G)) agree on M(G),

so we will continue to denote both representations by Θr, the particular case being

clear from context.

Analogously, the right Arens product 3 induces a completely contractive Banach

algebra structure on RUC(G)∗, and there exists a weak*-weak* continuous, injective,
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completely contractive anti-homomorphism

Θl : RUC(G)∗ → T�CB(B(L2(G))), (4.11)

where T�CB(B(L2(G))) is the algebra of completely bounded left (T (L2(G)),�)-

module maps on B(L2(G)).

In [49, Remark 7.4], the authors observe that for co-amenable G we have

CBT�(B(L2(G))) ⊆ CBL
∞(G)

L∞(Ĝ)
(B(L2(G))),

where CBL
∞(G)

L∞(Ĝ)
(B(L2(G))) is the algebra of completely bounded L∞(Ĝ)-bimodule

maps on B(L2(G)) that leave L∞(G) globally invariant. As a corollary to the com-

mutation relation (4.4), we can remove the co-amenability hypothesis in the above

inclusion using the following “automatic” module property.

Proposition 4.1.6. Let G be locally compact quantum group. Then

CBT�(B(L2(G))) ⊆ T�̂
CB(B(L2(G))).

Proof. Let Φ ∈ CBT�(B(L2(G))), and fix ρ ∈ T (L2(G)) and T ∈ B(L2(G)). Then for

any ω, τ ∈ T (L2(G)), we have

〈(ρ�̂T )� τ, ω〉 = 〈ρ�̂T, τ � ω〉 = 〈T, (τ � ω)�̂ρ〉 = 〈T, (τ�̂ρ)� ω〉 = 〈T � (τ�̂ρ), ω〉.

Thus,

〈Φ(ρ�̂T ), τ � ω〉 = 〈Φ(ρ�̂T )� τ, ω〉 = 〈Φ((ρ�̂T )� τ), ω〉

= 〈Φ(T � (τ�̂ρ)), ω〉 = 〈Φ(T )� (τ�̂ρ), ω〉

= 〈Φ(T ), (τ�̂ρ)� ω〉 = 〈Φ(T ), (τ � ω)�̂ρ〉

= 〈ρ�̂Φ(T ), τ � ω〉.
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By (4.1), it follows that Φ(ρ�̂T ) = ρ�̂Φ(T ), as required.

Corollary 4.1.7. For any locally compact quantum group G, we have

CBT�(B(L2(G))) ⊆ CBL
∞(G)

L∞(Ĝ)
(B(L2(G))).

Proof. Let Φ ∈ CBT�(B(L2(G))), and x̂, ŷ ∈ L∞(Ĝ). Then for any ρ ∈ T (L2(G)) and

T ∈ B(L2(G)) we have

(x̂T ŷ)� ρ = (ρ⊗ id)V (x̂T ŷ ⊗ 1)V ∗ = (ρ⊗ id)((x̂⊗ 1)V (T ⊗ 1)V ∗(ŷ ⊗ 1))

= (ŷ · ρ · x̂⊗ id)V (T ⊗ 1)V ∗ = T � (ŷ · ρ · x̂).

Thus, for any ω ∈ T (L2(G)) we obtain

〈Φ(x̂T ŷ), ρ� ω〉 = 〈Φ(x̂T ŷ)� ρ, ω〉 = 〈Φ((x̂T ŷ)� ρ), ω〉

= 〈Φ(T � (ŷ · ρ · x̂)), ω〉 = 〈Φ(T )� (ŷ · ρ · x̂), ω〉

= 〈(x̂Φ(T )ŷ)� ρ, ω〉 = 〈x̂Φ(T )ŷ, ρ� ω〉.

Again by (4.1), it follows that Φ is an L∞(Ĝ)-bimodule map on B(L2(G)).

By Proposition 4.1.6, we have Φ ∈T�̂
CB(B(L2(G))), and since V̂ ∈ L∞(G)′⊗L∞(Ĝ),

for any x ∈ L∞(G) we have

(id⊗ ρ)V̂ (Φ(x)⊗ 1)V̂ ∗ = ρ�̂Φ(x) = Φ(ρ�̂x) = 〈ρ, 1〉Φ(x) = (id⊗ ρ)(Φ(x)⊗ 1).

It follows that V̂ (Φ(x) ⊗ 1)V̂ ∗ = Φ(x) ⊗ 1, which implies that ρ̂(f̂)Φ(x) = Φ(x)ρ̂(f̂)

for every f̂ ∈ L1(Ĝ). Since ρ̂(L1(Ĝ)) is weak* dense in L∞(G)′, we have Φ(x) ∈

L∞(G)′′ = L∞(G). Thus, Φ leaves L∞(G) globally invariant, and the claim follows.
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4.2 Covariant Conditional Expectations

Definition 4.2.1. For a locally compact quantum group G, we say that a mapping

Φ ∈ CB(B(L2(G))) is covariant if Φ ∈ CBT�(B(L2(G))).

We now use the representation (4.10) of LUC(G)∗ to establish a one-to-one cor-

respondence between left invariant means on LUC(G) and covariant conditional ex-

pectations onto L∞(Ĝ).

Theorem 4.2.2. Let G be a locally compact quantum group. The following statements

are equivalent:

1. G is amenable;

2. there is a left invariant mean on LUC(G);

3. there is a covariant conditional expectation E : B(L2(G))→ L∞(Ĝ).

Proof. (1)⇒ (2): Restriction of a left invariant mean on L∞(G) yields (2).

(2)⇒ (3): Let m ∈ LUC(G)∗ be a left invariant mean. Then m�y = 〈m, y〉1 for all

y ∈ LUC(G) by left invariance, which gives

〈m�m, y〉 = 〈m,m�y〉 = 〈m, y〉〈m, 1〉 = 〈m, y〉.

Hence, m is a norm one idempotent in LUC(G)∗, making Θr(m) a projection of

norm one in CBT�(B(L2(G))). As such, its image is equal to its fixed points, denoted

HΘ(m). First observe that L∞(Ĝ) ⊆ HΘ(m) as Θr(m)(x̂) = (id⊗m)V (x̂⊗ 1)V ∗ = x̂,

x̂ ∈ L∞(Ĝ). On the other hand, as Θr(m) is a T (L2(G))-module map, its fixed points

form a T (L2(G))-submodule of B(L2(G)). Thus, T �ω ∈ HΘ(m) for every T ∈ HΘ(m)

and ω ∈ T (L2(G)). But if y ∈ HΘ(m) ∩ LUC(G), then x = Θr(m)(x) = m�x =

〈m,x〉1. Hence, if T ∈ HΘ(m) and ω ∈ T (L2(G)) then T � ω = 〈m,T � ω〉1, so that
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for any τ ∈ T (L2(G))

〈Γr(T ), ω ⊗ τ〉 = 〈T, ω � τ〉 = 〈T � ω, τ〉 = 〈m,T � ω〉〈1, τ〉

= 〈Θr(m)(T ), ω〉〈1, τ〉 = 〈T ⊗ 1, ω ⊗ τ〉.

As ω, τ ∈ T (L2(G)) were arbitrary, it follows that Γr(T ) = V (T ⊗ 1)V ∗ = T ⊗ 1,

that is, V (T ⊗ 1) = (T ⊗ 1)V . Hence, ρ(f)T = Tρ(f), for all f ∈ L1(G) and

T ∈ ρ(L1(G))′ = L∞(Ĝ), making E := Θr(m) the required projection.

(3)⇒ (1): If E : B(L2(G))→ L∞(Ĝ) is a conditional expectation in CBT�(B(L2(G))),

then E(LUC(G)) ⊆ LUC(G) ∩ L∞(Ĝ) = C1. Thus, by restriction we obtain a

bounded linear functional n ∈ LUC(G)∗ satisfying 〈n, x〉1 = E(x) for all x ∈ LUC(G).

Moreover, considering the associated map Θr(n) ∈ CBT�(B(L2(G))), we see that

〈E(T ), ω〉1 = E(T )� ω = E(T � ω) = 〈n, T � ω〉1 = 〈Θr(n)(T ), ω〉1

for all T ∈ B(L2(G)) and ω ∈ T (L2(G)). This ensures that E = Θr(n), so E leaves

L∞(G) globally invariant by Corollary 4.1.7, and we have E(L∞(G)) ⊆ L∞(G) ∩

L∞(Ĝ) = C1 by Proposition 3.3.5. Put m := E|L∞(G). Then m ∈ L∞(G)∗ is a state

satisfying

〈m,x ? f〉1 = E(x ? f) = E(x� ρf ) = E(x)� ρf = 〈m,x〉〈1, f〉1

for every x ∈ L∞(G) and f ∈ L1(G), where π(ρf ) = f . Hence, m is a left invariant

mean on L∞(G).

Corollary 4.2.3. A locally compact group G is amenable if and only if there is a

covariant conditional expectation E : B(L2(G))→ L(G).

There is a corresponding result involving right invariant means on RUC(G) and

conditional expectations in T�CB(B(L2(G))). We state the result for completeness

and for later use, but omit the details of the proof as the argument can easily be
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adapted from above using the left representation (4.11).

Theorem 4.2.4. Let G be a locally compact quantum group. The following statements

are equivalent:

1. G is amenable;

2. there is a right invariant mean on RUC(G);

3. there is a conditional expectation E : B(L2(G))→ L∞(Ĝ′) in

T�CB(B(L2(G))).

As G is compact if and only if it admits a left invariant mean in L1(G) [6, Propo-

sition 3.1], and the maps Θr(f),Θl(f) ∈ CB(B(L2(G))) are normal for all f ∈ L1(G)

[53, §4], the following corollary is immediate.

Corollary 4.2.5. Let G be a locally compact quantum group. Then G is compact

if and only if there is a normal covariant conditional expectation E : B(L2(G)) →

L∞(Ĝ).

Remark 4.2.6. In [6], a notion of topological amenability for locally compact quan-

tum groups G was defined by the existence of a left invariant mean on M(C0(G)). The

authors then asked if this notion of amenability is equivalent to the original one. The

answer was recently provided, in the affirmative, by Zobeidi [120], generalizing the

partial result of Runde in the co-amenable setting [93, Theorem 3.6]. As we always

have LUC(G) ⊆M(C0(G)), Theorem 4.2.2 provides an alternative proof (which had

been found independently from [120]) for arbitrary locally compact quantum groups.

For amenable locally compact groups G, one may ask if every conditional expec-

tation E : B(L2(G))→ L(G) is covariant. As we will show in the next theorem, this

is not the case.

Theorem 4.2.7. There exists a discrete amenable group G and a conditional expec-

tation E : B(L2(G))→ L(G) that is not covariant.
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Proof. Consider the group G = SFN of finite permutations of the natural numbers.

As a countable amenable discrete ICC group, its right von Neumann algebra R(G)

is an injective II1-factor with separable predual [86, Proposition 7.3.20]. By [36,

Proposition 3.7], its unitary group U(R(G)) with the strong operator topology is

extremely amenable, meaning there exists a multiplicative left invariant mean m on

LUC(U(R(G))), the C∗-algebra of left uniformly continuous functions on the non-

locally compact group U(R(G)). In other words, m : LUC(U(R(G)))→ C is a unital

*-homomorphism satisfying

〈m, f · u〉 = 〈m, f〉, u ∈ U(R(G)), f ∈ LUC(U(R(G))),

where f · u(v) = f(uv), for u, v ∈ U(R(G)). Appealing to a construction of de la

Harpe [25] (see also [81]), this invariant mean gives rise to a conditional expectation

E(m) : B(L2(G))→ L(G) via

〈E(m)(T )ξ, η〉 = 〈m, fTξ,η〉, T ∈ B(L2(G)), ξ, η ∈ L2(G),

where fTξ,η ∈ LUC(U(R(G))) is defined by fTξ,η(u) = 〈uTu∗ξ, η〉, u ∈ U(R(G)). De-

noting the corresponding map LUC(U(R(G)))∗ → CB(B(L2(G))) by E, it follows

that E is an isometry on states. Indeed, for any n ∈ N, S1, T1, ..., Sn, Tn ∈ B(L2(G))

and ξ ∈ L2(G),

n∑
i,j=1

f
S∗i Sj
Tjξ,Tiξ

(u) =
n∑

i,j=1

〈uS∗i Sju∗Tjξ, Tiξ〉 =

〈( n∑
i=1

Siu
∗Ti

)∗( n∑
j=1

Sju
∗Tj

)
ξ, ξ

〉
≥ 0

for all u ∈ U(R(G)). If n ∈ LUC(U(R(G)))∗ is a state then

n∑
i,j=1

〈T ∗i E(n)(S∗i Sj)Tjξ, ξ〉 =
n∑

i,j=1

〈n, fS
∗
i Sj

Tjξ,Tiξ
〉 ≥ 0,
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so E(n) is completely positive by Proposition 2.4.3 and we have

‖E(n)‖cb = ‖E(n)(1)‖ = ‖1‖ = 1 = ‖n‖.

Now, suppose that E(m) is covariant. By the proof of Theorem 4.2.2 there would

exist a left invariant mean n ∈ LUC(G)∗ such that E(m) = Θr(n). Viewing G

as a subgroup of U(R(G)) via the right regular representation ρ, it follows that

the restriction map r : LUC(U(R(G))) → LUC(G) is a surjective homomorphism.

Indeed, we know that LUC(G) = B(L2(G)) �a T (L2(G)) by equation (4.9), and for

any T ∈ B(L2(G)) and ω ∈ T (L2(G)), we have

T �a ω(s) = 〈ρ(s)Tρ(s)∗, ω〉 = r(fTω )(ρ(s)), s ∈ G,

where fTω ∈ LUC(U(R(G))) is given as above by fTω (u) = 〈uTu∗, ω〉, u ∈ U(R(G)).

Then

〈E(m)(T )ξ, η〉 = 〈Θr(n)(T )ξ, η〉 = 〈n, T � ωξ,η〉 = 〈n, r(fTξ,η)〉 = 〈E(r∗(n))(T )ξ, η〉

for all T ∈ B(L2(G)) and ξ, η ∈ L2(G), so r∗(n) = m as E is injective on states. Thus,

given f, g ∈ LUC(G), take f̃ , g̃ ∈ LUC(U(R(G))) satisfying r(f̃) = f and r(g̃) = g.

Then

〈n, fg〉 = 〈n, r(f̃)r(g̃)〉 = 〈n, r(f̃ g̃)〉 = 〈m, f̃ g̃〉 = 〈m, f̃〉〈m, g̃〉 = 〈n, f〉〈n, g〉.

Hence, n is a multiplicative left invariant mean on LUC(G), which makes G = {e}

by [38, Lemma 4] – a contradiction.

Remark 4.2.8. In [25], de la Harpe showed that a von Neumann algebra M ⊆ B(H)

is injective if and only if there is a left invariant mean on LUC(U(M ′)), where U(M ′)

denotes the unitary group of M ′ under the strong operator topology. For any such in-

variant mean m, the map E(m) defined in Theorem 4.2.7 is a conditional expectation
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from B(H) onto M . The natural question then arises: is every conditional expecta-

tion E : B(H)→ M of the form E(m) for some invariant mean m on LUC(U(M ′))?

Moreover, it would be interesting to find a characterization of conditional expectations

B(H)→M arising from extreme invariant means.

In Theorem 4.2.2, we characterized the amenability of G by means of a condi-

tional expectation E : B(L2(G))→ L∞(Ĝ) commuting with the right (T (L2(G)),�)-

module action on B(L2(G)). As there are seven other T (L2(G))-module structures

on B(L2(G)), we will now characterize the existence of module projections E :

B(L2(G)) → L∞(Ĝ) in each of the remaining cases. To this end, we denote by

T�CB(B(L2(G))) (respectively, CBT�(B(L2(G)))) the space of completely bounded left

(T (L2(G)),�)-module (respectively, right (T (L2(G)),�)-module) maps on B(L2(G)),

and similarly for the dual products �̂ and �̂.

Proposition 4.2.9. Let G be a locally compact quantum group. There exists a con-

ditional expectation E : B(L2(G)) → L∞(Ĝ) in T�CB(B(L2(G))) if and only if G is

amenable.

Proof. By restriction, we may view any f ∈ L1(G) ⊆ L∞(G)∗ as an element of

LUC(G)∗. Moreover, if π : (T (L2(G)),�) → (L1(G), ?) denotes the restriction map

(4.2), for ω, ρ ∈ T (L2(G)) and T ∈ B(L2(G)) we have

〈ρ� T, ω〉 = 〈T, ω � ρ〉 = 〈T � ω, ρ〉 = 〈T � ω, π(ρ)〉 = 〈Θr(π(ρ))(T ), ω〉.

Thus, ρ �T = Θr(π(ρ))(T ), so that a map Φ ∈ CB(B(L2(G))) is a left (T (L2(G)),�)-

module homomorphism if and only if Φ ∈ Θr(L1(G))c.

If G is amenable, then there exists a two-sided invariant mean m on L∞(G).

Denoting again by m its restriction to LUC(G), it follows that

m�f = f�m = 〈f, 1〉m (4.12)
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for every f ∈ L1(G). Hence, Θr(m) ∈ Θr(L1(G))c by (4.10). Moreover, the proof of

Theorem 4.2.2 implies that Θr(m) is a conditional expectation onto L∞(Ĝ).

Conversely, suppose that there exists a conditional expectation E : B(L2(G)) →

L∞(Ĝ) in T�CB(B(L2(G))), and let f̂ ∈ L1(Ĝ) be a state. For ω ∈ T (L2(G)) with

f = π(ω) ∈ L1(G) and x ∈ L∞(G), the relations (4.6) imply

〈f̂ ◦ E, f ? x〉 = 〈f̂ ◦ E,ω � x〉 = 〈f̂ , ω � E(x)〉 = 〈ω, 1〉〈f̂ ◦ E, x〉 = 〈f, 1〉〈f̂ ◦ E, x〉.

Thus, f̂ ◦ E is a right invariant mean on L∞(G).

Proposition 4.2.10. Let G be a locally compact quantum group. There exists a

conditional expectation E : B(L2(G)) → L∞(Ĝ) in CBT�(B(L2(G))) if and only if

L∞(Ĝ) is injective.

Proof. Suppose that Ĝ is injective. Then there exists a conditional expectation E :

B(L2(G)) → L∞(Ĝ). By [105], E is an L∞(Ĝ)-bimodule map on B(L2(G)). We

will show that it also lies in CBT�(B(L2(G))). To this end, observe that a map

Φ ∈ CB(B(L2(G))) is a right (T (L2(G)),�)-module map if and only if Φ ∈ Θl(L1(G))c

(see the proof of Proposition 4.2.9). If f ∈ L1(G), then from [53, Theorem 4.10], Θl(f)

is a normal completely bounded L∞(Ĝ′)-bimodule map on B(L2(G)), which by [41]

implies the existence of two nets (âi)i∈I and (b̂i)i∈I in L∞(Ĝ) such that

Θl(f)(T ) =
∑
i∈I

âiT b̂i,

where the sum converges in the weak* topology of B(L2(G)) for all T ∈ B(L2(G)). By

[71, Lemma 2.3] we may approximate E in the weak* topology of CB(B(L2(G))) by

a net of normal completely bounded L∞(Ĝ)-bimodule maps (Φj)j∈J . Consequently,
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for T ∈ B(L2(G)) and ρ ∈ T (L2(G)),

〈E(Θl(f)(T )), ρ〉 = lim
j∈J
〈Φj(Θ

l(f)(T )), ρ〉 = lim
j∈J

∑
i∈I

〈Φj(âiT b̂i), ρ〉

= lim
j∈J

∑
i∈I

〈âiΦj(T )b̂i, ρ〉 = lim
j∈J
〈Θl(f)(Φj(T )), ρ〉

= 〈Θl(f)(E(T )), ρ〉.

Since f ∈ L1(G) was arbitrary, we have E ∈ Θl(L1(G))c. The converse is trivial.

Remark 4.2.11. After the above proposition was proven, it came to the authors’

attention that So ltan and Viselter had independently obtained a related result in [95];

the main result of [95] also characterizes amenability of G in terms of the existence

of certain conditional expectations (namely those mapping L∞(G) into the center of

L∞(Ĝ)), however, the authors do not adopt a homological viewpoint.

Corollary 4.2.12. Let G be a locally compact quantum group for which there exists

a state M ∈ B(L2(G))∗ satisfying M(ρ � T ) = M(T � ρ) for all T ∈ B(L2(G)) and

ρ ∈ T (L2(G)). Then G is amenable if and only if L∞(Ĝ) is injective.

Proof. Suppose E : B(L2(G))→ L∞(Ĝ) is a conditional expectation. Then by Propo-

sition 4.2.10, E is a right (T (L2(G)),�)-module map. Thus, N := M ◦ E is a state

on B(L2(G)) satisfying N(T � ρ) = M(E(T ) � ρ) = M(ρ � E(T )) = 〈ρ, 1〉N(T ) for

all T ∈ B(L2(G)) and ρ ∈ T (L2(G)). It follows that N |L∞(G) is a left invariant mean

on L∞(G).

Remark 4.2.13. The above condition, i.e., the existence of a state M ∈ B(L2(G))∗

such that M(ρ � T ) = M(T � ρ) for all T ∈ B(L2(G)) and ρ ∈ T (L2(G)), may be

seen as a form of inner amenability for locally compact quantum groups. We will

systematically pursue this notion in the final chapter.

Proposition 4.2.14. Let G be a locally compact quantum group. There exists a

conditional expectation E : B(L2(G)) → L∞(Ĝ) in T�CB(B(L2(G))) if and only if G

is co-commutative, i.e., L∞(G) = L(G) for some locally compact group G.
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Proof. If G is co-commutative, then L∞(G) = L(G) for some locally compact group

G, and by [85, Theorem 4] there exists a right invariant mean m on L(G). In this case,

its restriction to UCB(Ĝ) = RUC(G) is also a right invariant mean, and Theorem 4.2.4

provides a conditional expectation Θl(m) : B(L2(G))→ L∞(Ĝ′) in T�CB(B(L2(G))).

By duality, L∞(Ĝ) = L∞(G) = L∞(Ĝ′), making Θl(m) the desired projection.

If E : B(L2(G)) → L∞(Ĝ) exists in T�CB(B(L2(G))), then a simple calcula-

tion implies that (E ⊗ id) ◦ Γl = Γl ◦ E. As Γl(·) = W ∗(1 ⊗ (·))W , with W ∈

L∞(G)⊗L∞(Ĝ), and E(B(L2(G))) = L∞(Ĝ), we must have (E ⊗ id) ◦ Γl(T ) =

Γl ◦ E(T ) ∈ L∞(G)⊗L∞(Ĝ) for every T ∈ B(L2(G)). In particular, for x̂′ ∈ L∞(Ĝ′),

we have

(E ⊗ id) ◦ Γl(x̂′) = (E ⊗ id)(W ∗(1⊗ x̂′)W ) = 1⊗ x̂′ ∈ L∞(G)⊗L∞(Ĝ),

implying that L∞(Ĝ′) ⊆ L∞(Ĝ). As L∞(Ĝ) is in standard form on B(L2(G)), there

exists a conjugate linear isometric involution Ĵ on L2(G) satisfying ĴL∞(Ĝ)Ĵ =

L∞(Ĝ′). We therefore obtain L∞(Ĝ) ⊆ L∞(Ĝ′), that is, L∞(Ĝ) is commutative. By

[99, 109, Theorem 2; §2], L∞(Ĝ) = L∞(G) for some locally compact group G, making

L∞(G) co-commutative.

Proposition 4.2.15. Let G be a locally compact quantum group. There exists a

conditional expectation E : B(L2(G)) → L∞(Ĝ) in CBT�̂
(B(L2(G))) if and only if

G = C1.

Proof. For any T ∈ B(L2(G)) and ρ ∈ T (L2(G)), we have T �̂ρ ∈ L∞(Ĝ), so if such

a conditional expectation E exists, then T �̂ρ = E(T �̂ρ) = E(T )�̂ρ. By density of

products (4.1), it follows that E(T ) = T . In particular B(L2(G)) ⊆ L∞(Ĝ), which

entails that G = Ĝ = C1. The converse is trivial.

Proposition 4.2.16. Let G be a locally compact quantum group. There exists a

conditional expectation E : B(L2(G)) → L∞(Ĝ) in T�̂
CB(B(L2(G))) if and only if

G = C1.
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Proof. Using the extended unitary antipode of Ĝ, denoted by R̂, it follows that R̂◦E◦

R̂ is a conditional expectation onto L∞(Ĝ) in CBT�̂
(B(L2(G))), so the result follows

from Proposition 4.2.15.

Proposition 4.2.17. Let G be a locally compact quantum group. There exists a

conditional expectation E : B(L2(G)) → L∞(Ĝ) in T�̂
CB(B(L2(G))) if and only if G

is amenable.

Proof. If G is amenable, then by Theorem 4.2.2 there exits a conditional expec-

tation onto L∞(Ĝ) in CBT�(B(L2(G))), which, thanks to Proposition 4.1.6, lies in

T�̂
CB(B(L2(G))).

On the other hand, if there exists a conditional expectation E in T�̂
CB(B(L2(G))),

then for any x ∈ L∞(G) and ρ ∈ T (L2(G)) we have

ρ�̂E(x) = E(ρ�̂x) = 〈ρ, 1〉E(x).

As in the proof of Corollary 4.1.7, this implies E(x) ∈ L∞(G). But then E(x) ∈

L∞(G) ∩ L∞(Ĝ) = C1 by Proposition 3.3.5. Define m ∈ L∞(G)∗ by 〈m,x〉1 = E(x),

x ∈ L∞(G). Let f ∈ L1(G) with ω ∈ T (L2(G)) satisfying f = ω|L∞(G). Then since

E ∈ CBT�(B(L2(G))) by the proof of Proposition 4.2.10, for any x ∈ L∞(G) we obtain

〈m,x ? f〉 = 〈m,x� ω〉 = E(x� ω) = E(x)� ω = 〈f, 1〉〈m,x〉.

As f ∈ L1(G) was arbitrary, G is amenable.

Proposition 4.2.18. Let G be a locally compact quantum group. There exists a

conditional expectation E : B(L2(G)) → L∞(Ĝ) in CBT�̂
(B(L2(G))) if and only if G

is amenable.

Proof. This follows from Proposition 4.2.17 using the extended unitary antipode R̂.
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We record the normal version of Proposition 4.2.18 for later use. The proof follows

accordingly and is left to the reader to establish.

Proposition 4.2.19. Let G be a locally compact quantum group. There exists a

normal conditional expectation E : B(L2(G)) → L∞(Ĝ) in CBT�̂
(B(L2(G))) if and

only if G is compact.

Remark 4.2.20. By the proof of [90, Theorem 2.1], it follows that a locally compact

quantum group G is amenable if and only if there exists a non-zero left (respectively,

right, two-sided) invariant functional m ∈ L∞(G)∗. Hence, the existence of a com-

pletely bounded covariant projection E : B(L2(G)) → L∞(Ĝ) is equivalent to the

amenability of G, and it follows that we may replace “conditional expectation” by

“completely bounded projection” in the statements of all the results in this section,

except for Propositions 4.2.17, 4.2.18, and 4.2.19. Recall that a von Neumann algebra

M ⊆ B(H) is injective if and only if there exists a completely bounded projection

E : B(H)→M [14, 84].

4.3 Injective Quantum Group Modules

Continuing in the spirit of the previous section, below we establish a perfect duality

between quantum group amenability and injectivity in the category of T (L2(G))- and

L1(G)-modules. We also show that both amenability of G and of Ĝ may be char-

acterized through the injectivity of B(L2(G)) as a left, respectively, right T (L2(G))-

module. We begin with a few general results on the homology of operator modules

which appear to be new.

Proposition 4.3.1. Let A be a completely contractive Banach algebra and let X ∈

mod−A. If X is C1-projective in mod−C and is relatively C2-projective in mod−A,

then X is C1C2-projective in mod−A.

Proof. Let Y, Z ∈ mod − A, let Ψ : Y � Z be a complete quotient morphism and

Φ : X → Z be a morphism. By relative C2-projectivity, there exists a morphism
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α : X → X⊗̂A+ satisfying m+
X ◦ α = idX and ‖α‖cb ≤ C2, where m+

X : X⊗̂A+ →

X is the extended multiplication map. Since X is a C1-projective operator space,

for every ε > 0, there exists a lifting Φε : X → Y satisfying Ψ ◦ Φε = Φ and

‖Φε‖cb < C1‖Φ‖cb + ε/C2. The mapping (Φε ⊗ id) : X⊗̂A+ → Y ⊗̂A+ is completely

bounded with ‖Φε ⊗ id‖ < C1‖Φ‖cb + ε/C2, and composing with α together with the

multiplication m+
Y : Y ⊗̂A+ → Y we obtain a morphism Φ̃ε = m+

Y ◦ (Φε ⊗ id) ◦ α :

X → Y satisfying ‖Φ̃ε‖ < C1C2‖Φ‖cb + ε. Moreover, using the module properties of

the pertinent morphisms we have

Ψ ◦ Φ̃ε = Ψ ◦m+
Y ◦ (Φε ⊗ id) ◦ α

= m+
Z ◦ (Ψ⊗ id) ◦ (Φε ⊗ id) ◦ α

= m+
Z ◦ (Φ⊗ id) ◦ α

= Φ ◦m+
X ◦ α

= Φ.

Hence, X is C1C2-projective.

Example 4.3.2. The converse of Proposition 4.3.1 (when C1 = C2 = 1) is not true

in general as A is both 1-projective and relatively 1-projective in mod − A for any

unital C∗-algebra. However, the only C∗-algebra which is a 1-projective operator

space is C by [8, Theorem 3.4].

Given a completely contractive Banach algebra A and X ∈ mod−A, there is a

canonical completely contractive morphism ∆+ : X → CB(A+, X) given by

∆+(x)(a) = x · a, x ∈ X, a ∈ A+,

where the right A-module structure on CB(A+, X) is defined by

(Ψ · a)(b) = Ψ(ab), a ∈ A, Ψ ∈ CB(A+, X), b ∈ A+.
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An analogous construction exists for objects in A−mod and X ∈ A−mod−A.

The following well-known characterization of relative injectivity will be used sev-

eral times throughout this thesis. The proof follows verbatim from the classical result

[45, Theorem VII.1.39] (see also [114, Proposition 3.8]).

Proposition 4.3.3. Let A be a completely contractive Banach algebra and let X ∈

mod − A. Then X is relatively C-injective if and only if there exists a morphism

Φ : CB(A+, X) → X with ‖Φ‖cb ≤ C that is a left inverse to ∆+. Moreover, if

X is faithful, then X is relatively C-injective if and only if there exists a morphism

Φ : CB(A, X) → X with ‖Φ‖cb ≤ C that is a left inverse to ∆ : X → CB(A, X),

where ∆(x)(a) := ∆+(x)(a) for all x ∈ X and a ∈ A.

In the case of operator bimodules we also have a similar result, which we state in

the special case where X = A∗ ∈ A−mod−A. The proof follows from the operator

space versions of [92, Lemma 5.3.10, Theorem 5.3.12], so we leave the details to the

reader.

Proposition 4.3.4. Let A be a completely contractive Banach algebra. Then A∗

is relatively C-injective in A − mod − A if and only if there exists a morphism

Φ : (A⊗̂A)∗ → A∗ satisfying ‖Φ‖cb ≤ C and Φ ◦m∗A = idA∗, where mA : A⊗̂A → A

is the multiplication map.

Using Proposition 4.3.3, we now prove an analogue of Proposition 4.3.1 for injec-

tive modules.

Proposition 4.3.5. Let A be a completely contractive Banach algebra and let X ∈

mod−A. If X is C1-injective in mod−C and is relatively C2-injective in mod−A,

then X is C1C2-injective in mod−A.

Proof. We first show that CB(A+, X) is C1-injective in mod−A using the standard

argument. To this end, let Y, Z ∈ mod − A, let κ : Y ↪→ Z be a completely

isometric morphism, and let α : Y → CB(A+, X) be a morphism. Let β : Y → X
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be defined by β(y) = α(y)(e), y ∈ Y , where e ∈ A+ is the unit. By C1-injectivity

of X in mod − C, there exists an extension β̃ : Z → X satisfying β = β̃ ◦ κ and

‖β̃‖cb ≤ C1‖β‖cb ≤ C1‖α‖cb. Define α̃ : Z → CB(A+, X) by α̃(z)(a) = β̃(z · a), for

z ∈ Z, a ∈ A+. Then

α̃(z) · a(b) = α̃(z)(ab) = β̃(z · ab) = α̃(z · a)(b)

for all z ∈ Z and a, b ∈ A. Thus, α̃ is a morphism extending α such that ‖α̃‖cb ≤

‖β̃‖cb ≤ C1‖α‖cb.

Now, by relative C2-injectivity of X in mod − A, Proposition 4.3.3 entails the

existence of a morphism Φ : CB(A+, X)→ X satisfying Φ◦∆+ = idX and ‖Φ‖cb ≤ C2.

Thus, if Y, Z ∈mod−A with κ : Y ↪→ Z a completely isometric morphism, and α :

Y → X is a morphism, then we may extend the morphism ∆+ ◦ α : Y → CB(A+, X)

to a morphism α̃ : Z → CB(A+, X) with ‖α̃‖cb ≤ C1‖∆+◦α‖cb ≤ C1‖α‖cb. Hence, the

morphism Φ◦α̃ : Z → X is the desired extension satisfying ‖Φ◦α̃‖cb ≤ C1C2‖α‖cb.

Example 4.3.6. The converse of Proposition 4.3.5 is not true in general (when

C1 = C2 = 1). Indeed, for any unital completely contractive Banach algebra A and

any 1-injective operator space X, it follows from the proof of Proposition 4.3.5 that

CB(A, X) is 1-injective in mod − A. This clearly implies relative 1-injectivity in

mod − A. However, consider A = B(G) and X = C, where G is a non-amenable

discrete group. Then CB(A, X) = B(G)∗ = C∗(G)∗∗, and if this were a 1-injective op-

erator space, the group C∗-algebra C∗(G) would be nuclear, forcing G to be amenable

by [65, Theorem 4.2].

For a completely contractive Banach algebra A, we let Ae := Aop⊗̂A be its

enveloping completely contractive Banach algebra, where Aop is the opposite algebra

of A, with multiplication given by a ·op b = ba, a, b ∈ A. There is a one-to-one

correspondence between operator A-bimodules X and right operator Ae-modules via

x · (a⊗ b) = a · x · b, x ∈ X, a, b ∈ A.
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Thus, two-sided homological properties of A-bimodules, such as injectivity, may be

studied via its one-sided counterpart over the enveloping algebra Ae. As a result,

we obtain bimodule versions of Propositions 4.3.1 and 4.3.5, which we state in the

special case of X = A∗ ∈ A−mod−A.

Proposition 4.3.7. Let A be a completely contractive Banach algebra. If A is C1-

projective in C−mod− C and is relatively C2-projective in A−mod−A, then A

is C1C2-projective in A−mod−A.

Proposition 4.3.8. Let A be a completely contractive Banach algebra. If A∗ is C1-

injective in C −mod − C and relatively C2-injective in A −mod − A, then A∗ is

C1C2-injective in A−mod−A.

We now consider the injectivity of B(L2(G)) as a T (L2(G))-module. In what fol-

lows we let T� denote the Banach algebra (T (L2(G)),�). Note that if T ∈ B(L2(G))

satisfies ρ � T = 0 for all ρ ∈ T (L2(G)), then 0 = 〈ρ � T, ω〉 = 〈T, ω � ρ〉 for all

ρ, ω ∈ T (L2(G)), entailing T = 0 by (4.1) Thus, B(L2(G)) is faithful in T� −mod.

By a similar argument it follows that B(L2(G)) is also faithful in mod− T�.

Theorem 4.3.9. Let G be a locally compact quantum group. Then G is amenable if

and only if B(L2(G)) is 1-injective in T� −mod.

Proof. Suppose G is amenable, and let m ∈ L∞(G)∗ be a right invariant mean. Since

B(L2(G)) is a 1-injective operator space and is faithful in T�−mod, by Propositions

4.3.3 and 4.3.5 it suffices to provide a completely contractive morphism that is a left

inverse for the map ∆ : B(L2(G))→ CB(T (L2(G)),B(L2(G))) given by

∆(T )(ρ) = ρ� T, T ∈ B(L2(G)), ρ ∈ T (L2(G)). (4.13)

Identifying CB(T (L2(G)),B(L2(G))) ∼= B(L2(G))⊗B(L2(G)) via

〈Φ, ρ⊗ ω〉 = 〈Φ(ω), ρ〉, Φ ∈ CB(T (L2(G)),B(L2(G))), ρ, ω ∈ T (L2(G)),
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one easily sees that ∆ = Γr, and that the corresponding left T�-module structure on

B(L2(G))⊗B(L2(G)) is given by

ρ� A = (id⊗ id⊗ ρ)(id⊗ Γr)(A), A ∈ B(L2(G))⊗B(L2(G)), ρ ∈ T (L2(G)).

It then remains to find a completely contractive morphism Φ : B(L2(G))⊗B(L2(G))→

B(L2(G)) satisfying Φ ◦ Γr = idB(L2(G)).

Let ρ0 ∈ T (L2(G)) be a state. Then m0 := ρ0 ◦ Θr(m) is a state on B(L2(G)),

and we define Φ : B(L2(G))⊗B(L2(G))→ B(L2(G)) by

Φ(A) = (id⊗m0)(V ∗AV ), A ∈ B(L2(G))⊗B(L2(G)). (4.14)

Clearly, Φ is a complete contraction, and for T ∈ B(L2(G)), we have

Φ(Γr(T )) = Φ(V (T ⊗ 1)V ∗) = (id⊗m0)(T ⊗ 1) = T,

so Φ is a left inverse for Γr. Fix A ∈ B(L2(G))⊗B(L2(G)) and ρ ∈ T (L2(G)). Then,

using the standard leg notation, we obtain

Φ(ρ� A) = Φ((id⊗ id⊗ ρ)(V23A12V
∗

23))

= (id⊗m0)(id⊗ id⊗ ρ)(V ∗12V23A12V
∗

23V12)

= (id⊗m0)(id⊗ id⊗ ρ)(V13V23V
∗

12A12V12V
∗

23V
∗

13) (by (3.4))

= (id⊗ ρ)(V (id⊗m0 ⊗ id)(V23V
∗

12A12V12V
∗

23)V ∗) (by (2.5)).

Now, for any τ, ω ∈ T (L2(G)), recalling that π : T (L2(G)) → L1(G) denotes the

canonical quotient map, we have
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〈(id⊗m0 ⊗ id)(V23V
∗

12A12V12V
∗

23), τ ⊗ ω〉 = 〈(m0 ⊗ id)V ((τ ⊗ id)(V ∗AV )⊗ 1)V ∗, ω〉

= 〈m0,Θ
r(π(ω))((τ ⊗ id)V ∗AV )〉

= 〈ρ0,Θ
r(m) ◦Θr(π(ω))((τ ⊗ id)V ∗AV )〉

= 〈ρ0,Θ
r(m�π(ω))((τ ⊗ id)V ∗AV )〉

= 〈ρ0, 〈ω, 1〉Θr(m)((τ ⊗ id)V ∗AV )〉

= 〈m0 ⊗ ω, (τ ⊗ id)(V ∗AV )⊗ 1〉

= 〈(id⊗m0 ⊗ id)(V ∗AV ⊗ 1), τ ⊗ ω〉

= 〈Φ(A)⊗ 1, τ ⊗ ω〉.

Since τ and ω in T (L2(G)) were arbitrary, it follows that

Φ(ρ� A) = (id⊗ ρ)(V (id⊗m0 ⊗ id)(V23V
∗

12A12V12V
∗

23)V ∗)

= (id⊗ ρ)(V (Φ(A)⊗ 1)V ∗)

= ρ� Φ(A).

Conversely, if B(L2(G)) is 1-injective in T�−mod, then it is relatively 1-injective

in T�−mod, and by Proposition 4.3.3 there exists a completely contractive morphism

Φ : B(L2(G))⊗B(L2(G)) → B(L2(G)) that is a left inverse to Γr. Then Γr ◦ Φ is a

projection of norm one onto the image of Γr. For any A ∈ B(L2(G))⊗B(L2(G)) and

ρ, ω ∈ T (L2(G)), using the module property of Φ together with (2.5) we obtain

〈Γr ◦ Φ(A), ω ⊗ ρ〉 = 〈(id⊗ ρ)(Γr(Φ(A))), ω〉 = 〈ρ� Φ(A), ω〉 = 〈Φ(ρ� A), ω〉

= 〈Φ((id⊗ id⊗ ρ)(id⊗ Γr)(A)), ω〉

= 〈(id⊗ ρ)((id⊗ Φ) ◦ (id⊗ Γr)(A)), ω〉

= 〈(id⊗ Φ) ◦ (id⊗ Γr)(A), ω ⊗ ρ〉.



CHAPTER 4. AMENABILITY AND INJECTIVITY 82

Thus, Γr ◦ Φ = (Φ⊗ id) ◦ (id⊗ Γr). Define a map E : B(L2(G))→ B(L2(G)) by

E(T ) = Φ(T ⊗ 1), T ∈ B(L2(G)).

Then E is a complete contraction, and for T ∈ B(L2(G)) we have

Γr(E(T )) = Γr(Φ(T ⊗ 1)) = (Φ⊗ id) ◦ (id⊗ Γr)(T ⊗ 1)

= (Φ⊗ id)(T ⊗ 1⊗ 1) = Φ(T ⊗ 1)⊗ 1

= E(T )⊗ 1,

which by the standard argument shows that E(T ) ∈ L∞(Ĝ). Moreover, E(x̂) =

Φ(x̂⊗ 1) = Φ(Γr(x̂)) = x̂ for all x̂ ∈ L∞(Ĝ), making E a projection of norm one onto

L∞(Ĝ).

Since Γr ◦ Φ is a projection of norm one onto Γr(B(L2(G))), it follows from [105]

that

(Γr ◦ Φ)(Γr(S)AΓr(T )) = Γr(S)(Γr ◦ Φ(A))Γr(T ) = Γr(SΦ(A)T ),

which, by the injectivity of Γr, implies Φ(Γr(S)AΓr(T )) = SΦ(A)T for all S, T ∈

B(L2(G)) and A ∈ B(L2(G))⊗B(L2(G)). Taking A = x′ ⊗ 1 ∈ L∞(G)′⊗L∞(G)′ and

x ∈ L∞(G), we therefore have Φ(x′ ⊗ 1)x = xΦ(x′ ⊗ 1). Consequently, E(x′) =

Φ(x′ ⊗ 1) ∈ L∞(G)′ for every x′ ∈ L∞(G)′. Since L∞(G) is standard in B(L2(G)),

there is a conjugate linear involution J on L2(G) satisfying JL∞(G)J = L∞(G)′.

Moreover, JL∞(Ĝ)J ⊆ L∞(Ĝ) [64, Proposition 2.1], so that EJ : B(L2(G))→ L∞(Ĝ)

given by

EJ(T ) = JE(JTJ)J, T ∈ B(L2(G)),

also defines a conditional expectation onto L∞(Ĝ). Clearly, EJ(L∞(G)) ⊆ L∞(G) ∩

L∞(Ĝ) = C1, so let m ∈ L∞(G)∗ be given by m(x) = EJ(x). Then m is a state and
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by the proof of Proposition 4.2.10 EJ ∈ CBT�(B(L2(G))), thus

〈m,x ? π(ρ)〉 = 〈m,x� ρ〉 = EJ(x� ρ) = EJ(x)� ρ = 〈π(ρ), 1〉〈m,x〉

for all x ∈ L∞(G) and ρ ∈ T (L2(G)). Hence, G is amenable.

By considering the category of dual operator left T (L2(G))-modules with weak*

continuous completely bounded morphisms, denoted T� − nmod, we obtain the fol-

lowing characterization of compactness.

Corollary 4.3.10. Let G be a locally compact quantum group. Then G is compact if

and only if B(L2(G)) is relatively 1-injective in T� − nmod.

Proof. If G is compact, there is a two-sided invariant mean m ∈ L1(G), and one may

define a normal morphism as in equation (4.14) to produce a completely contractive

left module inverse to ∆, as defined in (4.13). Conversely, one may repeat the second

half of the proof of Theorem 4.3.9 to obtain a normal conditional expectation from

B(L2(G)) onto L∞(Ĝ) mapping L∞(G) into C1. Then [56, Theorem 4.2] implies that

Ĝ is discrete, whence G is compact.

Remark 4.3.11. At this point it is not clear whether we can replace relative 1-

injectivity with 1-injectivity in the statement of Corollary 4.3.10.

From the asymmetry of the completely contractive Banach algebra T�, one may

expect a corresponding asymmetry between the left and right module structure of

B(L2(G)). The following theorem justifies this intuition and reveals a duality between

the two: amenability of G is captured by left injectivity of B(L2(G)) while amenability

of Ĝ is captured by right injectivity of B(L2(G)). Moreover, the theorem provides

one of the main homological manifestations of duality of the thesis – amenability of

Ĝ and 1-injectivity of L∞(G) as an operator L1(G)-module.
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Theorem 4.3.12. Let G be a locally compact quantum group. The following condi-

tions are equivalent:

1. Ĝ is amenable;

2. B(L2(G)) is 1-injective in mod− T�;

3. L∞(G) is 1-injective in mod− L1(G).

Proof. (1)⇒ (2): By [64, Proposition 2.15], the unitary operator U ⊗ U := ĴJ ⊗ ĴJ

on L2(G) ⊗ L2(G) intertwines the right fundamental unitaries of Ĝ and Ĝ′, de-

noted V̂ and V̂ ′, respectively. One then obtains a one-to-one correspondence be-

tween invariant means on L∞(Ĝ) and L∞(Ĝ′) via conjugation with U , making Ĝ

amenable if and only if Ĝ′ is. Thus, assuming amenability of Ĝ, we let m̂′ be a

two-sided invariant mean on L∞(Ĝ′). Similarly to the previous theorem, it suffices

to provide a completely contractive morphism which is a left inverse to the map

∆ : B(L2(G))→ CB(T (L2(G)),B(L2(G))) given by

∆(T )(ρ) = T � ρ, T ∈ B(L2(G)), ρ ∈ T (L2(G)). (4.15)

In this case, we identify CB(T (L2(G)),B(L2(G))) ∼= B(L2(G))⊗B(L2(G)) via

〈Φ, ρ⊗ ω〉 = 〈Φ(ρ), ω〉, Φ ∈ CB(T (L2(G)),B(L2(G))), ρ, ω ∈ T (L2(G)).

This ensures ∆ = Γr, and that the corresponding T (L2(G))-module structure on

B(L2(G))⊗B(L2(G)) is given byA�ρ = (ρ⊗id⊗id)(Γr⊗id)(A) forA ∈ B(L2(G))⊗B(L2(G))

and ρ ∈ T (L2(G)).

Take a normal state ρ0 ∈ T (L2(G)), and define Φ : B(L2(G))⊗B(L2(G)) →

B(L2(G)) by

Φ(A) = (id⊗m0)(V ∗AV ) A ∈ B(L2(G))⊗B(L2(G)),
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where m0 := ρ0 ◦ Θ̂′r(m̂′) is a state on B(L2(G)), and Θ̂′r denotes the representation

(4.10) of LUC(Ĝ′)∗. Clearly, Φ is a completely contractive left inverse to Γr. To show

that Φ is also a morphism we follow along similar lines as in Theorem 4.3.9. Fix

A ∈ B(L2(G))⊗B(L2(G)) and ρ ∈ T (L2(G)). Then

Φ(A� ρ) = Φ((ρ⊗ id⊗ id)(V12A13V
∗

12))

= (id⊗m0)(ρ⊗ id⊗ id)(V ∗23V12A13V
∗

12V23)

= (id⊗m0)(ρ⊗ id⊗ id)(V12V
∗

23V
∗

13A13V13V23V
∗

12)

= (ρ⊗ id)(V (id⊗ id⊗m0)(V ∗23V
∗

13A13V13V23)V ∗).

Denoting by π̂′ the canonical quotient map T (L2(G)) ∼= T (L2(Ĝ′)) → L1(Ĝ′), and

using the fact that V̂ ′ = σV ∗σ, where σ is the flip map on L2(G) ⊗2 L
2(G), for any

τ, ω ∈ T (L2(G)), we have

〈(id⊗ id⊗m0)(V ∗23V
∗

13A13V13V23), τ ⊗ ω〉

= 〈(id⊗ id⊗m0)(V ∗23(σ ⊗ 1)V ∗23A23V23(σ ⊗ 1)V23), τ ⊗ ω〉

= 〈(id⊗ id⊗m0)(V ∗13V
∗

23A23V23V13), ω ⊗ τ〉

= 〈(id⊗m0)(V ∗(1⊗ (τ ⊗ id)(V ∗AV ))V ), ω〉

= 〈(m0 ⊗ id)(V̂ ′((τ ⊗ id)(V ∗AV )⊗ 1)V̂ ′∗), ω〉

= 〈m0, Θ̂
′r(π̂′(ω))((τ ⊗ id)(V ∗AV ))〉

= 〈ρ0, Θ̂
′r(m̂′) ◦ Θ̂′r(π̂′(ω))((τ ⊗ id)(V ∗AV ))〉

= 〈ρ0, Θ̂
′r(m̂′�̂′π̂′(ω))((τ ⊗ id)(V ∗AV ))〉

= 〈ρ0, 〈ω, 1〉Θr(m̂′)((τ ⊗ id)(V ∗AV ))〉

= 〈m0 ⊗ ω, (τ ⊗ id)(V ∗AV )⊗ 1〉

= 〈(id⊗m0 ⊗ id)(V ∗AV ⊗ 1), τ ⊗ ω〉

= 〈Φ(A)⊗ 1, τ ⊗ ω〉.
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As τ and ω were arbitrary, we have

Φ(A� ρ) = (ρ⊗ id)(V (id⊗ id⊗m0)(V ∗23V
∗

13A13V13V23)V ∗)

= (ρ⊗ id)(V (Φ(A)⊗ 1)V ∗)

= Φ(A)� ρ.

(2) ⇒ (3): If B(L2(G)) is 1-injective in mod − T�, there exists a completely

contractive morphism Φ : B(L2(G))⊗B(L2(G)) → B(L2(G)) such that Φ ◦ Γr =

idB(L2(G)). By the proof of Proposition 4.1.6, it follows that Φ(ρ �̂ X) = ρ �̂ Φ(X),

where the left module action �̂ is given by

ρ �̂ X = (id⊗ ρ⊗ id)(Γ̂r ⊗ id)(X), ρ ∈ T (L2(G)), X ∈ B(L2(G))⊗B(L2(G)).

Furthermore, the proof of Corollary 4.1.7 entails Φ(L∞(G)⊗B(L2(G))) ⊆ L∞(G).

Since Γl : B(L2(G))→ L∞(G)⊗B(L2(G)), the composition Φ◦Γl therefore maps into

L∞(G). Moreover, if x ∈ L∞(G) then Φ ◦ Γl(x) = Φ ◦ Γr(x) = x, making Φ ◦ Γl a

projection of norm one from B(L2(G)) onto L∞(G). Thus, L∞(G) is 1-injective in

mod− C.

Next, consider the map Ψ = Φ|L∞(G)⊗L∞(G) : L∞(G)⊗L∞(G) → L∞(G). Since

the right module action of (T (L2(G)),�) on B(L2(G)) restricts to the canonical right

L1(G)-module action on L∞(G), it follows that Ψ is a completely contractive right

L1(G)-module map such that Ψ◦Γ = idL∞(G). Since L∞(G) is faithful in mod−L1(G),

Proposition 4.3.3 entails the relative 1-injectivity of L∞(G) in mod − L1(G), and

therefore the 1-injectivity of L∞(G) in mod− L1(G) by Proposition 4.3.5.

(3)⇒ (1): Viewing B(L2(G)) as a right operator L1(G)-module via

T � f = (f ⊗ id)Γl(T ) = (f ⊗ id)W ∗(1⊗ T )W, f ∈ L1(G), T ∈ B(L2(G)), (4.16)

as L∞(G) is 1-injective in mod − L1(G), the identity on L∞(G) extends to a com-
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pletely contractive morphism E : B(L2(G))→ L∞(G). Proposition 4.2.18 then entails

the amenability of Ĝ.

Remark 4.3.13. The proof that amenability of Ĝ implies 1-injectivity of L∞(G) in

mod− L1(G) in Theorem 4.3.12 relies on the T�-module structure of B(L2(G)) and

the commutation relation (4.4) at the level of T (L2(G)). At present it is not clear

how to prove this implication without passing through T (L2(G)).

Analogously, there is a left module version of Theorem 4.3.12 involving the left

product �.

Theorem 4.3.14. Let G be a locally compact quantum group. The following condi-

tions are equivalent:

1. Ĝ is amenable;

2. B(L2(G)) is 1-injective in T� −mod;

3. L∞(G) is 1-injective in L1(G)−mod.

Several applications of Theorem 4.3.12 will be pursued in the next section. For

now, let us highlight the special cases of commutative and co-commutative quantum

groups, respectively.

Corollary 4.3.15. Let G be a locally compact group. The following conditions hold:

1. B(L2(G)) is 1-injective in mod− T�a;

2. B(L2(G)) is 1-injective in T�a −mod;

3. L∞(G) is 1-injective in mod− L1(G);

4. L∞(G) is 1-injective in L1(G)−mod.

We remark that conditions (3) and (4) in Corollary 4.3.15 are not entirely new,

and can be derived by known methods (see [18, Theorem 2.4]). The next corollary,

however, is entirely new.
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Corollary 4.3.16. Let G be a locally compact group. The following conditions are

equivalent:

1. G is amenable;

2. B(L2(G)) is 1-injective in mod− T�s;

3. B(L2(G)) is 1-injective in T�s −mod;

4. L(G) is 1-injective in mod− A(G);

5. L(G) is 1-injective in A(G)−mod.

Remark 4.3.17. One cannot replace 1-injectivity with relative 1-injectivity in condi-

tions (4) and (5) of Corollary 4.3.16. The relative 1-injectivity of L(G) as an operator

A(G)-module is in fact equivalent to inner amenability of G, as we will show in The-

orem 5.1.4.

We finish this section by connecting amenability of a locally compact quantum

group G with injectivity of L∞(Ĝ) as an operator T�-module. As it turns out, and

will become apparent in the proof, in the case of L∞(Ĝ) it suffices to consider relative

injectivity.

Theorem 4.3.18. Let G be a locally compact quantum group. The following state-

ments are equivalent:

1. G is amenable;

2. L∞(Ĝ) is 1-injective in mod− T�;

3. L∞(Ĝ) is relatively 1-injective in mod− T�;

4. L∞(Ĝ) is 1-injective in T� −mod;

5. L∞(Ĝ) is relatively 1-injective in T� −mod.
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Proof. (1) ⇒ (2): Observe that if x̂ ∈ L∞(Ĝ) such that 0 = x̂ � ρ = 〈x̂, ρ〉1 for all

ρ ∈ T (L2(G)), then 〈x̂, f̂〉 = 0 for all f̂ ∈ L1(Ĝ), forcing x̂ = 0. Thus, L∞(Ĝ) is

faithful in mod − T�. Since G is amenable, we know that L∞(Ĝ) is a 1-injective

operator space by Theorem 4.2.2. By Propositions 4.3.3 and 4.3.5 it therefore suffices

to provide a completely contractive morphism which is a left inverse to the map

∆r : L∞(Ĝ)→ CB(T (L2(G)), L∞(Ĝ)) given by

∆r(x̂)(ρ) = x̂� ρ, x̂ ∈ L∞(Ĝ), ρ ∈ T (L2(G)).

Identifying CB(T (L2(G)), L∞(Ĝ)) ∼= B(L2(G))⊗L∞(Ĝ) via

〈Ψ, ρ⊗ f̂〉 = 〈Ψ(ρ), f̂〉,

for Ψ ∈ CB(T (L2(G)), L∞(Ĝ)), ρ ∈ T (L2(G)) and f̂ ∈ L1(Ĝ), one easily sees that

∆r(x̂) = x̂ ⊗ 1 for all x̂ ∈ L∞(Ĝ), and the corresponding T�-module structure on

B(L2(G))⊗L∞(Ĝ) is given by

A� ρ = (ρ⊗ id⊗ id)(Γr ⊗ id)(A), A ∈ B(L2(G))⊗L∞(Ĝ), ρ ∈ T (L2(G)).

Since G is amenable, there exists a conditional expectation E : B(L2(G)) → L∞(Ĝ)

that is a morphism in mod−T� by Theorem 4.2.2. Fix a state f̂ ∈ L1(Ĝ), and define

Φr : B(L2(G))⊗L∞(Ĝ)→ L∞(Ĝ) by

Φr(A) = E((id⊗ f̂)A), A ∈ B(L2(G))⊗L∞(Ĝ).

Then Φr is a complete contraction, and for x̂ ∈ L∞(Ĝ) we have

Φr(∆r(x̂)) = Φr(x̂⊗ 1) = E(x̂) = x̂,

so that Φr is a left inverse to ∆r. Moreover, for A ∈ B(L2(G))⊗L∞(Ĝ) and ρ ∈
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T (L2(G)), we have

Φr(A� ρ) = Φr((ρ⊗ id⊗ id)(Γr ⊗ id)(A)) = E((ρ⊗ id)Γr((id⊗ f̂)A))

= E(((id⊗ f̂)A)� ρ) = E((id⊗ f̂)A)� ρ = Φr(A)� ρ.

(2)⇒ (3) is trivial.

(3) ⇒ (1): Since L∞(Ĝ) is relatively 1-injective in mod − T�, there is a completely

contractive morphism Φr : B(L2(G))⊗L∞(Ĝ) → L∞(Ĝ) that is a left inverse to ∆r.

Define E : B(L2(G))→ L∞(Ĝ) by E(T ) = Φr(T ⊗ 1) for all T ∈ B(L2(G)). Then E

is a morphism, and for x̂ ∈ L∞(Ĝ) we get

E(x̂) = Φr(x̂⊗ 1) = Φr(∆r(x̂)) = x̂,

so that E is a projection of norm one onto L∞(Ĝ). Theorem 4.2.2 then entails the

amenability of G.

(1)⇒ (4): As above, it follows that L∞(Ĝ) is faithful in T�−mod, and that L∞(Ĝ)

is a 1-injective operator space. By Propositions 4.3.3 and 4.3.5 it therefore suffices to

provide a completely contractive morphism which is a left inverse to ∆l : L∞(Ĝ) →

CB(T (L2(G)), L∞(Ĝ)) given by

∆l(x̂)(ρ) = ρ� x̂, x̂ ∈ L∞(Ĝ), ρ ∈ T (L2(G)).

With the identification CB(T (L2(G)), L∞(Ĝ)) ∼= B(L2(G))⊗L∞(Ĝ), it follows that

∆l(x̂) = 1 ⊗ x̂ for all x̂ ∈ L∞(Ĝ) and that the corresponding T�-module struc-

ture on B(L2(G))⊗L∞(Ĝ) is given by ρ � A = (id ⊗ ρ ⊗ id)(Γr ⊗ id)(A) for A ∈

B(L2(G))⊗L∞(Ĝ) and ρ ∈ T (L2(G)). By amenability of G, there exists a condi-

tional expectation E : B(L2(G)) → L∞(Ĝ) that is a morphism in T� − mod by

Proposition 4.2.9. Fix a state f̂ ∈ L1(Ĝ), put m := f̂ ◦ E ∈ B(L2(G))∗, and define
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Φl : B(L2(G))⊗L∞(Ĝ)→ L∞(Ĝ) by

Φl(A) = (m⊗ id)(A), A ∈ B(L2(G))⊗L∞(Ĝ).

Clearly Φl is a completely contractive left inverse to ∆l. Furthermore, for A ∈

B(L2(G))⊗L∞(Ĝ), ρ ∈ T (L2(G)) and ĝ ∈ L1(Ĝ), we have

〈Φl(ρ� A), ĝ〉 = 〈(m⊗ id)(ρ� A), ĝ〉 = 〈m, (id⊗ ρ)Γr((id⊗ ĝ)A)〉

= 〈f̂ , E(ρ� ((id⊗ ĝ)A))〉 = 〈f̂ , ρ� E((id⊗ ĝ)A)〉

= 〈ρ, 1〉〈m, (id⊗ ĝ)(A)〉 = 〈ρ, 1〉〈Φl(A), ĝ〉 = 〈ρ� Φl(A), ĝ〉.

(4)⇒ (5) is trivial.

(5) ⇒ (1): Since L∞(Ĝ) is relatively 1-injective in T� −mod, there is a morphism

Φl : B(L2(G))⊗L∞(Ĝ)→ L∞(Ĝ) that is a left inverse to ∆l. Define E : B(L2(G))→

L∞(Ĝ) by E(T ) = Φl(T ⊗ 1) for all T ∈ B(L2(G)). Since E(1) = Φl(1 ⊗ 1) =

Φl(∆l(1)) = 1, E is a unital morphism, and for any state f̂ ∈ L1(Ĝ), we have

1 = f̂ ◦ E(1) ≤ ‖f̂ ◦ E‖ ≤ 1, making f̂ ◦ E a state in B(L2(G))∗. By the proof

of Proposition 4.2.9, it then follows that the restriction of f̂ ◦ E to L∞(G) is a left

invariant mean.

Remark 4.3.19. Contrary to Remark 4.2.20, it is unclear whether we can replace

1-injectivity with C-injectivity for some C > 1 in the statements of the results in this

section.

4.4 Applications

It is a well-known fact in abstract harmonic analysis that closed subgroups of locally

compact amenable groups are amenable (see [92, Theorem 1.2.7]). With Theorem

4.3.14 at our disposal, we may now generalize this fact to arbitrary locally compact
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quantum groups.

Let G and H be two locally compact quantum groups. Then H is said to be a

closed quantum subgroup of G (in the sense of Vaes) if there exists a normal unital

injective *-homomorphism γ : L∞(Ĥ)→ L∞(Ĝ) satisfying

(γ ⊗ γ) ◦ Γ̂H = Γ̂G ◦ γ. (4.17)

This is not the original definition of Vaes (cf. [108, Definition 2.5]), but was shown

to be equivalent in [23, Theorem 3.3]. With this definition, we have an analog of the

Herz restriction theorem [46] for quantum groups, that is, γ∗ : L1(Ĝ) → L1(Ĥ) is a

complete quotient map [23, Theorem 3.7]. Indeed, if G and H are commutative, with

underlying locally compact groups G and H, the map γ is nothing but the canonical

inclusion

L(H) 3 λH(s) 7→ λG(s) ∈ L(G),

where λH and λG are the left regular representations of H and G, respectively. Its

pre-adjoint γ∗ is then the canonical quotient map A(G) → A(H) coming from the

classical Herz restriction theorem.

Remark 4.4.1. There is an a priori weaker notion of closed quantum subgroup of a

locally compact quantum group G due to Woronowicz [23, Definition 3.2]. In what

follows, we restrict ourselves to Vaes’ definition, so that a closed quantum subgroup

of a locally compact quantum group will always refer to the definition (4.17) given

above.

Theorem 4.4.2. Let G and H be two locally compact quantum groups such that H

is a closed quantum subgroup of G. If G is amenable then H is amenable.

Proof. Since G is amenable, Theorem 4.3.14 entails the 1-injectivity of L∞(Ĝ) in

L1(Ĝ) − mod. The space B(L2(H)) = B(L2(Ĥ)) becomes a left operator L1(Ĝ)-



CHAPTER 4. AMENABILITY AND INJECTIVITY 93

module via:

f̂ �Ĝ T = γ∗(f̂)�Ĥ T = (id⊗ γ∗(f̂))Γ̂rĤ(T ), f̂ ∈ L1(Ĝ), T ∈ B(L2(H)).

Clearly, L∞(Ĥ) is an L1(Ĝ)-submodule of B(L2(H)) and γ : L∞(Ĥ)→ L∞(Ĝ) is a left

L1(Ĝ)-module map. Thus, we may extend γ to a completely contractive left L1(Ĝ)-

module map γ̃ : B(L2(H)) → L∞(Ĝ). Then γ̃ is a unital complete contraction and

thus completely positive. Moreover, L∞(Ĥ) is contained in the multiplicative domain

of γ̃ (as it extends a *-homomorphism), so the bimodule property of completely

positive maps over their multiplicative domains ensures that

γ̃(x̂T ŷ) = γ(x̂)γ̃(T )γ(ŷ), x̂, ŷ ∈ L∞(Ĥ), T ∈ B(L2(H)).

Since γ̃ is a left L1(Ĝ)-module map, for x ∈ L∞(H) and f̂ , ĝ ∈ L1(Ĝ) we also have

〈Γ̂Ĝ(γ̃(x)), f̂ ⊗ ĝ〉 = 〈γ̃(x), f̂ ?̂ĝ〉

= 〈ĝ �Ĝ γ̃(x), f̂〉

= 〈γ̃(ĝ �Ĝ x), f̂〉

= 〈γ̃(γ∗(ĝ)�Ĥ x), f̂〉

= 〈ĝ, 1〉〈γ̃(x), f̂〉

= 〈γ̃(x)⊗ 1, f̂ ⊗ ĝ〉.

The standard argument then shows that γ̃(x) ∈ L∞(Ĝ) ∩ L∞(G) = C1.

Now, consider the space X := γ̃−1(γ(L∞(Ĥ))) ⊆ B(L2(H)). By above, this is a

closed operator L∞(Ĥ)-submodule of B(L2(H)) containing L∞(H) and L∞(Ĥ), where

the canonical L∞(Ĥ)-bimodule action is given by multiplication. By restriction, we

obtain a completely contractive L∞(Ĥ)-bimodule map γ−1 ◦ γ̃|X : X → L∞(Ĥ) ⊆

B(L2(H)). By Wittstock’s bimodule extension theorem [116], this map extends to

a completely contractive L∞(Ĥ)-bimodule map Φ : B(L2(H)) → B(L2(H)). As in
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the proof of Proposition 4.2.10, it follows that Φ ∈ CBT�H
(B(L2(H))). Hence, for

x ∈ L∞(H), and ρ ∈ T (L2(H))

(γ−1 ◦ γ̃)(x�H ρ) = Φ(x�H ρ) = Φ(x)�H ρ = ((γ−1 ◦ γ̃)(x))�H ρ

= 〈ρ, 1〉(γ−1 ◦ γ̃)(x)

as (γ−1 ◦ γ̃)(L∞(H)) = C1. Thus, γ−1 ◦ γ̃|L∞(H) is a left invariant mean, and H is

amenable.

Remark 4.4.3. By [94, Theorem 8] together with [23, Theorem 6.1] it follows that

a compact quantum subgroup of a co-amenable quantum group is co-amenable. The

corresponding question for arbitrary quantum subgroups remains open.

For a locally compact quantum group G, the set of unitary elements u ∈ L∞(G)

satisfying Γ(u) = u ⊗ u forms a locally compact group under the relative weak*

topology, called the intrinsic group of G, and is denoted Gr(G). The character group

of G is defined as G̃ := Gr(Ĝ). It follows that G̃a
∼= G, its underlying locally compact

group, and G̃s
∼= Ĝ, the group of continuous characters on G. For more details on

the character group and properties of the assignment G 7→ G̃ we refer the reader to

[57, 22]. Since G̃ is always a closed quantum subgroup of G [22, Theorem 5.5], we

obtain the following generalization of [57, Theorem 5.14] beyond discrete quantum

groups.

Corollary 4.4.4. Let G be a locally compact quantum group. If G is amenable then

G̃ is amenable.

In [42] Haagerup provided an elegant characterization of injective von Neumann

algebras via decomposability of completely bounded maps. More specifically, a von

Neumann algebra M is injective if and only if CB(M) = span CP(M). The next result

provides a similar decomposition for L1(G)-module maps on L∞(G) when L∞(G) is

1-injective in mod− L1(G).
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Proposition 4.4.5. Let G be a locally compact quantum group. If L∞(G) is 1-

injective in mod− L1(G) (equivalently, Ĝ is amenable) then

CBL1(G)(L
∞(G)) = span CPL1(G)(L

∞(G)).

Proof. Viewing Mn(L∞(G)) as an operator L1(G)-module under the amplified action:

[xij] ? f = [xij ? f ], [xij] ∈Mn(L∞(G)), f ∈ L1(G),

we claim that Mn(L∞(G)) is 1-injective in mod− L1(G) for any n ∈ N. Indeed, the

canonical morphism

∆n : Mn(L∞(G))→ CB(L1(G),Mn(L∞(G))) = Mn(CB(L1(G), L∞(G)))

is nothing but the nth amplification of ∆ : L∞(G) → CB(L1(G), L∞(G)), so the nth

amplification of a completely contractive module left inverse of ∆ (which exists by

1-injectivity of L∞(G)) provides a completely contractive module left inverse to ∆n.

Since Mn(L∞(G)) is 1-injective in mod − C [102, Proposition XV.3.2], the claim

follows from Propositions 4.3.3 and 4.3.5.

Now, let Φ ∈ CBL1(G)(L
∞(G)) be a complete contraction, and consider the Paulsen

system S ⊆M2(L∞(G)) defined by

S =

{α1 x

y β1

∣∣∣∣ x, y ∈ L∞(G), α, β ∈ C
}
.

Then S is an L1(G)-submodule of M2(L∞(G)) and Φ gives rise to a unital completely

positive L1(G)-module map ΦS : S →M2(L∞(G)) via off-diagonalization [79]:

ΦS

α1 x

y β1

 =

 α1 Φ(x)

Φ∗(y) β1

 ,

α1 x

y β1

 ∈ S,
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where Φ∗(y) = Φ(y∗)∗, y ∈ L∞(G). By 1-injectivity of M2(L∞(G)) in mod −

L1(G), the map ΦS extends to a completely contractive L1(G)-module map Φ̃ :

M2(L∞(G))→M2(L∞(G)) such that

Φ̃

1 0

0 1

 =

1 0

0 1

 .

Hence, Φ̃ is completely positive and is of the form

Φ̃

x11 x12

x21 x22

 =

Ψ1(x11) Φ(x12)

Φ∗(x21) Ψ2(x22)

 , [xij] ∈M2(L∞(G)),

where Ψi ∈ CPL1(G)(L
∞(G)) is the associated map to Pii ◦ Φ̃ ◦ Pii, and Pii ∈

CPL1(G)(M2(L∞(G))) is the diagonal projection onto the (i, i)th entry for i = 1, 2.

By [29, Proposition 5.4.2], it follows that the map

Φ̃|L∞(G) : L∞(G) 3 x 7→

Ψ1(x) Φ(x)

Φ∗(x) Ψ2(x)

 ∈M2(L∞(G))

is a completely positive L1(G)-module map. Thus, via polarization (as in [29, Propo-

sition 5.4.1]), it follows that Φ ∈ span CPL1(G)(L
∞(G)).

Remark 4.4.6. As the proof of Proposition 4.4.5 shows, when L∞(G) is 1-injective

in mod− L1(G) we can decompose every element Φ ∈ CBL1(G)(L
∞(G)) into a linear

combination of 4 completely positive L1(G)-module maps.

Remark 4.4.7. It would be interesting to study the converse of Proposition 4.4.5,

that is, does CBL1(G)(L
∞(G)) = span CPL1(G)(L

∞(G)) necessitate the amenability

of Ĝ? We believe this to be true, and are currently working towards a proof in

collaboration with Zhong-Jin Ruan, who initially proposed the question.

For a locally compact group G, it is well-known that B(G) = McbA(G) whenever G

is amenable [24, Corollary 1.8]. Using Proposition 4.4.5 together with [21, Theorem
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5.2] we can now generalize this implication to arbitrary locally compact quantum

groups. We note that the same result was obtained under the a priori stronger

assumption that G is co-amenable [49, Theorem 4.2].

Corollary 4.4.8. Let G be a locally compact quantum group. If Ĝ is amenable then

Cu(G)∗ ∼= M r
cb(L

1(G)).

Proof. First, we claim that CBL1(G)(C0(G), L∞(G)) = CBL1(G)(C0(G)). One inclu-

sion is obvious, so let Φ ∈ CBL1(G)(C0(G), L∞(G)). Then the restriction of its ad-

joint Φ∗|L1(G) ∈ L1(G)CB(L1(G),M(G)) = L1(G)CB(L1(G)), noting that L1(G) =

〈L1(G) ? L1(G)〉 is a closed ideal in M(G). Hence, (Φ∗|L1(G))
∗ ∈ CBσL1(G)(L

∞(G)) =

CBL1(G)(C0(G)) by [53, Proposition 4.1]. But

〈(Φ∗|L1(G))
∗(x), f〉 = 〈x,Φ∗|L1(G)(f)〉 = 〈x,Φ∗(f)〉 = 〈Φ(x), f〉

for all x ∈ C0(G) and f ∈ L1(G), so (Φ∗|L1(G))
∗ is an extension of Φ which leaves

C0(G) invariant, hence so too does Φ.

Letting I denote the complete isometry

CBL1(G)(C0(G)) 3 Φ 7→ (Φ∗|L1(G))
∗ ∈ CBσL1(G)(L

∞(G))

and R : CBL1(G)(L
∞(G)) → CBL1(G)(C0(G), L∞(G)) the completely contractive re-

striction map, it follows that Pσ := I ◦ R : CBL1(G)(L
∞(G)) → CBσL1(G)(L

∞(G))

is a completely contractive projection onto CBσL1(G)(L
∞(G)). Moreover, Pσ maps

CPL1(G)(L
∞(G)) onto CPσL1(G)(L

∞(G)).

Since Ĝ is amenable, CBL1(G)(L
∞(G)) = span CPL1(G)(L

∞(G)) by Proposition

4.4.5, so given Φ ∈ CBσL1(G)(L
∞(G)) there exist Φi ∈ CPL1(G)(L

∞(G)) i = 1, ..., 4 such
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that

1

4
(Φ1−Φ2 + i(Φ3−Φ4)) = Φ = Pσ(Φ) =

1

4
(Pσ(Φ1)−Pσ(Φ2) + i(Pσ(Φ3)−Pσ(Φ4)))

and it follows that CBσL1(G)(L
∞(G)) = span CPσL1(G)(L

∞(G)). By [21, Theorem

5.2], span CPσL1(G)(L
∞(G)) ∼= Cu(G)∗, so we have M r

cb(L
1(G)) ∼= CBσL1(G)(L

∞(G)) ∼=

Cu(G)∗.

The observations in the proof of Corollary 4.4.8 lead to the following new charac-

terization of the predual of M r
cb(L

1(G)).

Proposition 4.4.9. Let G be a locally compact quantum group. Then

Qr
cb(L

1(G)) ∼= C0(G)⊗̂L1(G)L
1(G),

completely isometrically.

Proof. As noted in the proof of Corollary 4.4.8, we have

CBL1(G)(C0(G)) = CBL1(G)(C0(G), L∞(G)).

Thus, Θr : M r
cb(L

1(G)) ∼= CBL1(G)(C0(G), L∞(G)) completely isometrically [53, Propo-

sition 4.1]. We need to show that Θr is a weak*-weak* homeomorphism. Since

CBL1(G)(C0(G), L∞(G)) ∼= (C0(G)⊗̂L1(G)L
1(G))∗

weak* homeomorphically, and Θr is a completely isometric isomorphism, it suffices

to show that Θr is weak* continuous on bounded sets (see [20, Lemma 10.1]). Let

(b̂′i)i∈I be a bounded net in M r
cb(L

1(G)) converging weak* to b̂′. By Proposition 3.7.2,

for any X ∈ C0(G)⊗min K∞ and ρ ∈ L1(G)⊗̂T∞, we have ΩX,ρ ∈ Qr
cb(L

1(G)), where

〈â′,ΩX,ρ〉 = 〈(Θr(â′)⊗ idK∞)(X), ρ〉, â′ ∈M r
cb(L

1(G)).
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In particular, take y ∈ K∞ and τ ∈ T∞ such that 〈y, τ〉 = 1, and let X = x⊗ y and

ρ = f ⊗ τ for some x ∈ C0(G) and f ∈ L1(G). Then

〈Θr(b̂′i)(x), f〉 = 〈(Θr(b̂′i)⊗ idK∞)(X), ρ〉

= 〈b̂′i,ΩX,ρ〉

→ 〈b̂′,ΩX,ρ〉

= 〈(Θr(b̂′)⊗ idK∞)(X), ρ〉

= 〈Θr(b̂′)(x), f〉.

Hence, (Θr(b̂′i))i∈I converges point weak* to Θr(b̂′) in CB(C0(G), L∞(G)). Letting

q : C0(G)⊗̂L1(G) � C0(G)⊗̂L1(G)L
1(G) be the quotient map, and viewing Θr(b̂′i) ∈

(C0(G)⊗̂L1(G)L
1(G))∗, for any x1, ..., xn ∈ C0(G) and f1, ..., fn ∈ L1(G) we have

〈
Θr(b̂′i), q

( n∑
k=1

xk ⊗ fk
)〉

=
n∑
k=1

〈Θr(b̂′i)(xk), fk〉

→
n∑
k=1

〈Θr(b̂′)(xk), fk〉

=

〈
Θr(b̂′), q

( n∑
k=1

xk ⊗ fk
)〉

.

By density of the image q(C0(G) ⊗ L1(G)) of the algebraic tensor product C0(G) ⊗

L1(G) in C0(G)⊗̂L1(G)L
1(G), it follows that (Θr(b̂′i))i∈I converges weak* to Θr(b̂′) in

CBL1(G)(C0(G), L∞(G)) = (C0(G)⊗̂L1(G)L
1(G))∗.

Remark 4.4.10. The identification of Qr
cb(L

1(G)) in Proposition 4.4.9 appears to be

new even in the co-commutative case, that is, for any locally compact group G we

have Qcb(G) ∼= C∗λ(G)⊗̂A(G)A(G).

For our next application, we give a simplified proof of the fact that amenability of

a discrete quantum group implies co-amenability of its compact dual. For compact

Kac algebras, this was shown by Ruan [90, Theorem 4.5] and was later generalized
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to arbitrary compact quantum groups by Tomatsu [104, Theorem 3.8]. Tomatsu’s

argument relies on the specific modular theory of discrete quantum groups in order

to apply the Powers–Størmer inequality (see [40, Lemma 2.10] for instance) in a crucial

step. Our argument below completely avoids modular theory and the Powers–Størmer

inequality, and instead relies on a new homological approach.

Theorem 4.4.11. A compact quantum group G is co-amenable if and only if Ĝ is

amenable.

Proof. Co-amenability of G always implies amenability of Ĝ [6, Theorem 3.2], so

assume Ĝ is amenable. By Theorem 4.3.12 we know that L∞(G) is 1-injective in

mod − L1(G). Let Φ : L∞(G)⊗L∞(G) → L∞(G) be a completely contractive left

inverse to Γ which is a right L1(G)-module map. As a unital complete contraction,

Φ is completely positive and Φ|C(G)⊗minC(G) 6= 0 since C(G) is unital. By [6, Theorem

3.3] we also know that C(G) is nuclear, so let (Ψa)a∈A be a net of finite-rank, unital

completely positive maps converging to idC(G) in the point-norm topology. For a ∈ A,

consider the unital completely positive map Φa : C(G)→ C(G) given by

Φa = Φ ◦ (id⊗Ψa) ◦ Γ|C(G).

The fact that Φa maps into C(G) can be established using the density of

Γ(C(G))(C(G) ⊗ 1) in C(G) ⊗min C(G) (see [63, Corollary 6.11]) together with the

Γ(L∞(G))-module property of Φ (see the proof of Theorem 4.3.9). However, the

invariance Φa(C(G)) ⊆ C(G) will be a byproduct of the following argument.

Since Ψa is finite rank, there exists xa1, ..., x
a
na ∈ C(G) and µa1, ...µ

a
na ∈M(G) such

that

Ψa(x) =
na∑
n=1

〈µan, x〉xan, x ∈ C(G), a ∈ A.

For each a ∈ A, and 1 ≤ n ≤ na, let Φ(a,n) : C(G)→ C(G) be defined by

Φ(a,n)(x) = Φ(x⊗ xan), x ∈ C(G).
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Then Φ(a,n) is completely bounded with ‖Φ(a,n)‖cb ≤ ‖xan‖C(G), and is a right L1(G)-

module map. Hence, Φ(a,n) ∈ CBL1(G)(C(G)) = Θr(M r
cb(L

1(G))). By Corollary 4.4.8,

M r
cb(L

1(G)) = Cu(G)∗, so there exist νan ∈ Cu(G)∗ such that Φ(a,n) = Θr(νan).

Let α ∈ Irr(G), 1 ≤ i, j ≤ nα. Then

Φa(u
α
ij) =

nα∑
k=1

Φ((id⊗Ψa)(u
α
ik ⊗ uαkj))

=
nα∑
k=1

na∑
n=1

〈µan, uαkj〉Φ(uαik ⊗ xan)

=
nα∑
k=1

na∑
n=1

〈µan, uαkj〉Φ(a,n)(u
α
ik)

=
nα∑
k=1

na∑
n=1

〈µan, uαkj〉Θr(νan)(uαik)

=
nα∑
k=1

na∑
n=1

Θr(νan)((id⊗ µan)(uαik ⊗ uαkj))

=
na∑
n=1

Θr(νan)((id⊗ µan)Γ(uαij))

=
na∑
n=1

Θr(νan)(Θr(µan)(uαij))

=
na∑
n=1

Θr(νan ? µ
a
n)(uαij)

= Θr

( na∑
n=1

νan ? µ
a
n

)
(uαij).

Letting µa =
∑na

n=1 ν
a
n ? µ

a
n, it follows by density of matrix coefficients (see §3.6) that

Φa = Θr(µa). Moreover, we have µa ∈M(G) as M(G) is a two-sided ideal in Cu(G)∗.

Since Θr is a (complete) isometry,

‖µa‖M(G) = ‖Θr(µa)‖cb = ‖Φa‖cb = 1, a ∈ A,
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and since Φa converges to idC(G) in the point-norm topology it follows that

µa ? x = Θr(µa)(x)→ x, x ∈ C(G).

Let µ be a weak* cluster point of (µa)a∈A in the unit ball of M(G) = C(G)∗. Then

µ is a right identity of M(G). The restricted unitary antipode R maps C(G) into

C(G) and satisfies R∗(µ?ν) = R∗(ν) ?R∗(µ) for all ν ∈M(G). Hence, R∗(µ) is a left

identity of M(G). It follows that ε := µ+R∗(µ)−µ ?R∗(µ) is an identity for M(G).

Hence, G is co-amenable by [6, Theorem 3.1].

Given a completely contractive Banach algebra A with a contractive approximate

identity, any essential module X ∈ mod − A is induced by [20, Proposition 6.4].

Since a locally compact quantum group G is co-amenable if and only if L1(G) has a

contractive approximate identity [48, Theorem 2], the next proposition supports the

idea that our methods may be applicable to the general duality problem of amenability

and co-amenability.

Proposition 4.4.12. Let G be a locally compact quantum group for which the dual Ĝ

is amenable. Then for any closed right ideal I �L1(G), the multiplication map yields

a completely isometric isomorphism m̃I : I⊗̂L1(G)L
1(G) ∼= 〈I ? L1(G)〉. In particular,

if I is essential, then I⊗̂L1(G)L
1(G) ∼= I, that is, I is an induced right L1(G)-module.

Proof. First, note that for any self-induced completely contractive Banach algebra

A and any closed right ideal J � A, we have m̃A/J : (A/J)⊗̂AA ∼= A/〈J · A〉,

completely isometrically. Indeed, identifying (A/〈J · A〉)∗ = 〈J · A〉⊥ ⊆ A∗, it follows

that (m̃A/J)∗ : 〈J · A〉⊥ → ((A/J)⊗̂AA)∗ = (NA/J)⊥ is equal to (m̃A)∗|〈J ·A〉⊥ . In

particular, (m̃A/J)∗ is a complete isometry. Letting q : A � A/J be the complete

quotient map, if X ∈ (NA/J)⊥ then (q∗ ⊗ id)(X) ∈ (NA)⊥, so there exists F ∈ A∗

such that (q∗ ⊗ id)(X) = (m̃A)∗(F ) as A is self-induced. Clearly, F ∈ 〈J · A〉⊥, so

(m̃A/J)∗ is also surjective.
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By above, it follows that m̃L1(G)/I : (L1(G)/I)⊗̂L1(G)L
1(G) ∼= L1(G)/〈I ? L1(G)〉.

Consider the commutative diagram:

I⊗̂L1(G)L
1(G) L1(G)⊗̂L1(G)L

1(G) (L1(G)/I)⊗̂L1(G)L
1(G)

〈I ? L1(G)〉 L1(G) L1(G)/〈I ? L1(G)〉

m̃I m̃L1(G) m̃(L1(G)/I)

Since Ĝ is amenable, by Theorem 4.3.12 the top, and hence both rows are 1-exact. As

the last two columns are completely isometric, it follows that m̃I : I⊗̂L1(G)L
1(G) ∼=

〈I ? L1(G)〉 completely isometrically.

A locally compact quantum group G is said to be regular if

K(L2(G)) = 〈(id⊗ ω)(σV ) | ω ∈ T (L2(G))〉,

where K(L2(G)) denotes the ideal of compact operators on L2(G), and as usual, 〈·〉

denotes the closed linear span. For example, Kac algebras are regular, as well as

discrete and compact quantum groups (see [51]). Under the assumption of regularity,

we now obtain a version of Theorem 4.3.12 at the predual level.

Theorem 4.4.13. Let G be a locally compact quantum group. Consider the following

conditions:

1. Ĝ is compact (equivalently, G is discrete);

2. T (L2(G)) is relatively 1-projective in T� −mod;

3. L1(G) is 1-projective in L1(G)−mod.

Then (1)⇔ (2)⇒ (3), and when G is regular, the conditions are equivalent.

Proof. The implication (1) ⇒ (2) follows by an argument similar to the proof of

Theorem 4.3.12 using a normal two-sided invariant mean m̂′ on L∞(Ĝ′), which exists

by compactness. The implication (2)⇒ (1) also follows similarly to Theorem 4.3.12,
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giving the relative 1-injectivity of L∞(G) in nmod − L1(G) and the existence of

a normal conditional expectation E : B(L2(G)) → L∞(G). Hence, the inclusion

L∞(G) ↪→ B(L2(G)) is admissible in nmod−L1(G) with respect to the right L1(G)-

module structure on B(L2(G)) given by (4.16). Relative 1-injectivity then implies the

existence of a normal condition expectation P : B(L2(G)) → L∞(G) that is a right

L1(G)-module map under the �-action. Thus, Ĝ is compact by Proposition 4.2.19.

(2) ⇒ (3): By the above we know that Ĝ is compact and L∞(G) is relatively

1-injective in nmod − L1(G), which implies that L1(G) is relatively 1-projective in

L1(G) −mod. By discreteness of G we have L∞(G) ∼=
⊕
{Mnα(C) | α ∈ Irr(Ĝ)}

which implies that L1(G) ∼=
⊕

1{Tnα(C) | α ∈ Irr(Ĝ)}, where Tnα(C) is the space

of nα × nα trace-class operators. Hence, L1(G) is 1-projective in C − mod by [8,

Proposition 3.6, Proposition 3.7]. The left version of Proposition 4.3.1 then entails

the 1-projectivity of L1(G) in L1(G)−mod.

Now, suppose that G is regular. Considering again the right L1(G)-module struc-

ture on B(L2(G)) given by the �-action (4.16), it follows from [51, Corollary 3.6]

that K(L2(G)) is an essential L1(G)-submodule of B(L2(G)), that is, K(L2(G)) =

〈K(L2(G))� L1(G)〉. We show (3)⇒ (1).

Since the multiplication mL1(G) : L1(G)⊗̂L1(G) → L1(G) is a complete quotient

morphism and L1(G) is 1-projective in L1(G) −mod, for every ε > 0 there exists a

morphism Φε : L1(G)→ L1(G)⊗̂L1(G) satisfying mL1(G) ◦Φε = idL1(G) and ‖Φε‖cb <

1 + ε. Moreover, we know that L∞(G) is 1-injective in mod−L1(G) as the dual a 1-

projective module. Thus, M r
cb(L

1(G)) ∼= Cu(G)∗ by Proposition 4.4.8, and L∞(G) is a

1-injective operator space. Appealing to [102, Theorem 3.1], there exits a net (Ψi)i∈I

of normal finite-rank complete contractions Ψi : L∞(G) → L∞(G) converging to

idL∞(G) in the point weak* topology. Using the normal completely bounded morphism

Φ∗ε : L∞(G)⊗L∞(G) → L∞(G) which is a left inverse of Γ, one can argue in a

similar manner to Theorem 4.4.11 by averaging the normal finite-rank maps Ψi into

multipliers and use the fact that L1(G) is a two-sided ideal in Cu(G)∗ to obtain a
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bounded net (fi)i∈I in L1(G) satisfying f ? fi− f → 0 weakly for all f ∈ L1(G). The

standard convexity argument then yields a bounded right approximate identity for

L1(G), and G is necessarily co-amenable.

Now, since π : (T (L2(G)),�)→ L1(G) is a complete quotient morphism, for any

ε > 0 it also has a right inverse morphism Ψε : L1(G) → T (L2(G)) with ‖Ψε‖cb <

1 + ε. Then Ψ∗ε : B(L2(G)) → L∞(G) is a normal completely bounded right �-

module projection onto L∞(G). Since L1(G) has a contractive approximate identity

and K(L2(G)) is an essential L1(G)-module, we know that K(L2(G)) is induced,

that is, m̃K(L2(G)) : K(L2(G))⊗̂L1(G)L
1(G) → K(L2(G)) is a completely isometric

isomorphism. Hence, so too is its dual

(m̃K(L2(G)))
∗ : T (L2(G)) ∼= CBL1(G)(K(L2(G)), L∞(G)).

Then Ψ∗ε|K(L2(G)) ∈ CBL1(G)(K(L2(G)), L∞(G)) = (m̃K(L2(G)))
∗(T (L2(G))), so let ρ ∈

T (L2(G)) satisfy (m̃K(L2(G)))
∗(ρ) = Ψ∗ε|K(L2(G)). Then for all y ∈ K(L2(G)) and f ∈

L1(G) we have

〈Ψ∗ε|K(L2(G))(y), f〉 = 〈(m̃K(L2(G)))
∗(ρ)(y), f〉 = 〈ρ, y � f〉 = 〈ρ� y, f〉.

By weak* density of K(L2(G)) in B(L2(G)), it follows that Ψ∗ε(T ) = ρ � T for all

T ∈ B(L2(G)). In particular,

π(ρ) ? x = ρ� x = Ψ∗ε(x) = x

for all x ∈ L∞(G) as Ψ∗ε is a projection. Then π(ρ) is a right identity for L1(G),

and using the unitary antipode R as in Theorem 4.4.11 we may construct a two-sided

identity for L1(G), that is, G is discrete, whence Ĝ is compact.

Analogously, there is a right module version of Theorem 4.4.13.
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Theorem 4.4.14. Let G be a locally compact quantum group. Consider the following

conditions:

1. Ĝ is compact;

2. T (L2(G)) is relatively 1-projective in mod− (T (L2(G)),�);

3. L1(G) is 1-projective in mod− L1(G).

Then (1)⇔ (2)⇒ (3), and when G is regular, the conditions are equivalent.

Remark 4.4.15. As in Remark 4.3.11, it is not clear at this time whether we can

replace 1-relative projectivity of T (L2(G)) with 1-projectivity of T (L2(G)) in the

statements of Theorems 4.4.13 and 4.4.14. However, one cannot replace 1-projectivity

of L1(G) with relative 1-projectivity of L1(G) in condition (3) of Theorems 4.4.13 and

4.4.14, as, for example, L1(G) is always relatively 1-projective for any locally compact

group G (see [18, Theorem 2.4]).

Since any co-commutative quantum group is regular, we immediately obtain a

new characterization of compact groups.

Corollary 4.4.16. Let G be a locally compact group. The following conditions are

equivalent:

1. G is compact;

2. A(G) is 1-projective in mod− A(G);

3. A(G) is 1-projective in A(G)−mod.



Chapter 5

Inner Amenability and Relative

Injectivity

5.1 Classical Theory

If G is a locally compact group and p ∈ [1,∞], then G acts by conjugation on Lp(G)

via

βp(s)f(t) = f(s−1ts)∆(s)1/p, s ∈ G, f ∈ Lp(G).

When p = 2, we obtain a strongly continuous unitary representation β2 : G →

B(L2(G)) satisfying β2(s) = λ(s)ρ(s) for s ∈ G, and when p = ∞, the conjugation

action becomes

β∞(s)f(t) = f(s−1ts), s ∈ G, f ∈ L∞(G).

Following Paterson [82, 2.35.H], we say that G is inner amenable if there exists a

state m ∈ L∞(G)∗ satisfying

〈m,β∞(s)f〉 = 〈m, f〉 s ∈ G, f ∈ L∞(G). (5.1)

Remark 5.1.1. In [27], Effros defined a discrete group G to be “inner amenable” if

there exists a conjugation invariant mean m ∈ `∞(G)∗ such that m 6= δe. In what

107
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follows, inner amenability will always refer to the definition given above (5.1).

The class of inner amenable locally compact groups forms a large, interesting

class of groups containing all amenable groups and IN groups, where a locally compact

group G is IN if there exists a compact neighborhood of the identity which is invariant

under conjugation. If the identity has an entire neighborhood basis consisting of

compact, conjugate invariant subsets, then G is said to be SIN, which stands for

small invariant neighborhoods. For example, compact, abelian and discrete groups

are SIN.

A strongly continuous unitary representation π : G→ B(Hπ) of a locally compact

group G is said to be amenable if there exists a state mπ ∈ B(Hπ)∗ such that

〈mπ, π(s)Tπ(s)∗〉 = 〈mπ, T 〉, ∀ s ∈ G, T ∈ B(Hπ).

This concept was introduced by Bekka [7], who showed, among other things, that G is

inner amenable precisely when β2 is an amenable unitary representation [7, Theorem

2.4]. By [97, Proposition 3.1], inner amenability is equivalent to the existence of a

β2-invariant state on β2(G)′′ ⊆ B(L2(G)), the von Neumann subalgebra generated

by the conjugate representation. We now show that inner amenability is equivalent

to the existence of a β2-invariant state on L(G), i.e., a G-invariant state under the

canonical G-action on L(G) given by

x 7→ λ(s)xλ(s)∗, x ∈ L(G), s ∈ G.

In turn, we answer a question raised by Lau and Paterson in [67, Example 5].

Proposition 5.1.2. A locally compact group G is inner amenable if and only if there

exists a G-invariant state on L(G).

Proof. If G is inner amenable, then by [7, Theorem 2.4] there exists a β2-invariant
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state m ∈ B(L2(G))∗, whose restriction to L(G) is necessarily G-invariant, as

〈m,λ(s)xλ(s)∗〉 = 〈m,λ(s)ρ(s)xρ(s)∗λ(s)∗〉 = 〈m,β2(s)xβ2(s)∗〉 = 〈m,x〉

for all x ∈ L(G) and s ∈ G.

Conversely, suppose m ∈ L(G)∗ is a G-invariant state. Since L(G) is standardly

represented on L2(G), every normal state ω ∈ L(G)∗ is the restriction of a vector

state ωξ to L(G) for a unique unit vector ξ ∈ P , the closed cone generated by f ∗ Jf

[40, Lemma 2.10], where f ∈ Cc(G), the continuous functions on G with compact

support, and Jf(s) = f(s−1)∆(s−1)1/2, s ∈ G. Hence, there exists a net of unit

vectors (ξα)α∈A in P such that (ωξα)α∈A converges to m in the weak* topology of

L(G)∗. By G-invariance, it follows that

β2(s) · ωξα · β2(s)∗ − ωξα = ωβ2(s)ξα − ωξα → 0

weakly in A(G) = L(G)∗ for all s ∈ G. By the standard convexity argument, it

follows that there is a net of unit vectors (ηγ)γ∈C in P satisfying

‖β2(s) · ωηγ · β2(s)∗ − ωηγ‖A(G) = ‖ωβ2(s)ηγ − ωηγ‖A(G) → 0, s ∈ G.

However, since β2(s) = λ(s)ρ(s) = λ(s)Jλ(s)J we have β2(s)P ⊆ P for any s ∈ G by

(2.3). By [40, Lemma 2.10], we then have

‖β2(s)ηγ − ηγ‖2
L2(G) ≤ ‖ωβ2(s)ηγ − ωηγ‖A(G) → 0, s ∈ G.

Since

‖β2(s)|ηγ| − |ηγ|‖L2(G) ≤ ‖β2(s)ηγ − ηγ‖L2(G),

we may assume without loss of generality that ηγ ≥ 0. Then, by [40, Lemma 2.10]

‖ωβ2(s)ηγ − ωηγ‖L1(G) ≤ 2‖β2(s)ηγ − ηγ‖L2(G) → 0
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for all s ∈ G, and letting fγ := η2
γ, we obtain a net of states in L1(G) satisfying

‖β1(s)fγ − fγ‖L1(G) = ‖ωβ2(s)ηγ − ωηγ‖L1(G) → 0, s ∈ G.

Any weak* cluster point m ∈ L∞(G)∗ of (fγ)γ∈C will therefore be conjugate invariant,

and G is inner amenable.

As an immediate corollary, we obtain the following hereditary property of inner

amenability which appears to be new.

Corollary 5.1.3. Let G be a locally compact group and let H be a closed subgroup of

G. If G is inner amenable, then H is inner amenable.

Proof. Letting LH(G) := {λG(s) | s ∈ H}′′ ⊆ L(G), it follows that

Φ : L(H) 3 λH(s) 7→ λG(s) ∈ LH(G)

is a *-isomorphism of von Neumann algebras. Thus, if m ∈ L(G)∗ is a G-invariant

state then mH := m|LH(G) ◦Φ ∈ L(H)∗ is an H-invariant state on L(H), so H is inner

amenable by Proposition 5.1.2.

Since a locally compact group G is IN precisely when L(G) has a normal G-

invariant state [103, Proposition 4.2], Proposition 5.1.2 shows that IN is to inner

amenability what compactness is to amenability.

We now give a homological characterization of inner amenability.

Theorem 5.1.4. A locally compact group G is inner amenable if and only if L(G)

is relatively 1-injective in A(G)−mod.

Proof. If G is inner amenable, then by [119, Theorem 1] there exists a net of unit

vectors (ξα)α∈A in L2(G) satisfying

‖β2(s)ξα − ξα‖L2(G) → 0
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uniformly on compact subsets of G. Thus, combining [91, Lemma 3.1, Lemma 4.1],

it follows that Γs : L(G) → L(G)⊗L(G) has a completely contractive left inverse Φ

which is a left A(G)-module map. Since L(G) is faithful in A(G)−mod, Proposition

4.3.3 implies that L(G) is relatively 1-injective.

Conversely, relative 1-injectivity implies the existence of a completely contractive

morphism Φ : L(G)⊗L(G) → L(G) satisfying Φ ◦ Γs = idL(G). It follows that

Γs ◦ Φ : L(G)⊗L(G) → L(G)⊗L(G) is a projection of norm one onto the image of

Γs, and therefore, as in the proof of Theorem 4.3.9,

xΦ(T )y = Φ(Γs(x)TΓs(y)) (5.2)

for all x, y ∈ L(G) and T ∈ L(G)⊗L(G).

Now, let x ∈ L(G). By the module property of Φ we have ψ · Φ(x ⊗ 1) =

Φ(x ⊗ ψ · 1) = ψ(e)Φ(x ⊗ 1) for all ψ ∈ A(G). The standard argument then gives

Φ(x⊗ 1) ∈ C1, so that m : L(G)→ C defined by 〈m,x〉 = Φ(x⊗ 1), x ∈ L(G), yields

a state on L(G). Moreover, by equation (5.2) we obtain

〈m,λ(t)xλ(t)∗〉 = Φ(λ(t)xλ(t)∗ ⊗ 1) = Φ((λ(t)⊗ λ(t))(x⊗ 1)(λ(t)∗ ⊗ λ(t)∗))

= Φ(Γs(λ(t))(x⊗ 1)Γs(λ(t)∗)) = λ(t)Φ(x⊗ 1)λ(t)∗ = Φ(x⊗ 1)

= 〈m,x〉

for any x ∈ L(G) and t ∈ G. Thus, m is a G-invariant state on L(G), which by

Proposition 5.1.2 implies that G is inner amenable.

In [91, Lemma 3.2] Ruan and Xu implicity showed that A(G) is relatively 1-

projective as an operator module over itself whenever G is an IN group (see also [33,

Theorem 4.1]). We can now establish the converse, providing a partial solution to the

open question of relative C-projectivity of A(G) [33, §4].
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Corollary 5.1.5. Let G be a locally compact group. Then A(G) is relatively 1-

projective in mod− A(G) if and only if G is an IN group.

Proof. Assuming relative 1-projectivity of A(G), there exists a normal completely

contractive left A(G)-module map Φ : L(G)⊗L(G)→ L(G) such that Φ◦Γs = idL(G).

By the proof of Theorem 5.1.4 we obtain a normal G-invariant state on L(G), which,

by [103, Proposition 4.2], implies that G is IN. The converse follows from [91, Lemma

3.2].

Not surprisingly, there is a manifestation of inner amenability at the level of

T (L2(G)). The added advantage, however, is that it leads naturally to a notion of

inner amenability for locally compact quantum groups.

Proposition 5.1.6. A locally compact group G is inner amenable if and only if there

exists a state m ∈ B(L2(G))∗ such that

〈m, ρ�a T 〉 = 〈m,T �a ρ〉, ρ ∈ T (L2(G)), T ∈ B(L2(G)). (5.3)

Proof. If G is inner amenable, then by [119, Theorem 1] there exists a net of unit

vectors (ξα)α∈A in L2(G) satisfying

‖λ(s)ξα − ρ(s)∗ξα‖L2(G) = ‖β2(s)ξα − ξα‖L2(G) → 0 (5.4)

uniformly on compact subsets of G. Passing to a subnet, we may assume that the net

(ωξα) of normal states on B(L2(G)) converges weak* to some state m ∈ B(L2(G))∗.

Then, for ρ ∈ T (L2(G)), T ∈ B(L2(G)), we have

〈m, ρ�a T 〉 = lim
α
〈ωξα , ρ�a T 〉 = lim

α
〈T �a ωξα , ρ〉

= lim
α

∫
G

〈ρ(s)Tρ(s)∗ξα, ξα〉π(ρ)(s)ds

= lim
α

∫
G

〈Tρ(s)∗ξα, ρ(s)∗ξα〉π(ρ)(s)ds.
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Using the compact convergence (5.4), it follows that

lim
α

∫
G

〈Tρ(s)∗ξα, ρ(s)∗ξα〉π(ρ)(s)ds = lim
α

∫
G

〈Tλ(s)ξα, λ(s)ξα〉π(ρ)(s)ds

= lim
α

∫
G

〈λ(s)∗Tλ(s)ξα, ξα〉π(ρ)(s)ds

= lim
α
〈ωξα �a T, ρ〉

= lim
α
〈ωξα , T �a ρ〉

= 〈m,T �a ρ〉.

Thus, m satisfies (5.3).

Conversely, if such a state exists, then its restriction to L(G) satisfies

〈m,x�a ρ〉 = 〈m, ρ�a x〉 = 〈ρ, 1〉〈m,x〉

for all x ∈ L(G) and ρ ∈ T (L2(G)). In particular, 〈m,x〉 = 〈m,x�a ρ〉 for all states

ρ ∈ T (L2(G)). Let t ∈ G and h ∈ L∞(G). Then

〈π(λ(t)∗ρλ(t)), h〉 = 〈λ(t)∗ρλ(t),Mh〉 = 〈ρ, λ(t)Mhλ(t)∗〉 = 〈ρ,Mλ(t)h〉

= 〈π(ρ), λ(t)h〉 = 〈λ(t−1)π(ρ), h〉.

Hence, π(λ(t)∗ρλ(t))(s) = π(ρ)(ts) for all s, t ∈ G. Then

(λ(t)xλ(t)∗)�a ρ =

∫
G

λ(s−1t)xλ(t−1s)π(ρ)(s)ds

=

∫
G

λ(r)∗xλ(r)π(ρ)(tr)dr

=

∫
G

λ(r)∗xλ(r)π(λ(t)∗ρλ(t))(r)dr

= x�a (λ(t)∗ρλ(t)),
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so that

〈m,λ(t)xλ(t)∗〉 = 〈m, (λ(t)xλ(t)∗)�a ρ〉 = 〈m,x�a (λ(t)∗ρλ(t))〉 = 〈m,x〉

for all x ∈ L(G), t ∈ G and states ρ ∈ T (L2(G)). Thus, G is inner amenable by

Proposition 5.1.2.

5.2 Quantum Theory

In [35], a notion of inner amenability was given for an arbitrary locally compact

quantum group G by means of the existence of a state m ∈ L∞(G)∗ satisfying

〈m,x ? f〉 = 〈m, f ? x〉, f ∈ L1(G), x ∈ L∞(G).

In other words, there exits a “tracial” state for the bimodule action of L1(G) on

L∞(G). However, if G is any co-amenable locally compact quantum group, then

any cluster point in L∞(G)∗ of a contractive approximate identity in L1(G) is such

a tracial state. In particular, any locally compact group gives rise to an “inner

amenable” locally compact quantum group in the sense of [35].

In this section we introduce a suitable notion of inner amenability for locally

compact quantum groups. Indeed, we will show that Ga is inner amenable precisely

when the underlying locally compact group G is inner amenable. We begin a system-

atic study of its basic properties, provide examples, and discuss related notions. In

particular, we investigate its relationship with relative injectivity.
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5.2.1 Definition and Basic Properties

Definition 5.2.1. Let G be a locally compact quantum group. Then we call G inner

amenable if there exists a state m ∈ B(L2(G))∗ satisfying

〈m, ρ� T 〉 = 〈m,T � ρ〉, ρ ∈ T (L2(G)), T ∈ B(L2(G)). (5.5)

Such a state m is said to be an inner invariant mean.

By Proposition 5.1.6, a commutative quantum group Ga is inner amenable if and

only if its underlying locally compact group G is inner amenable, so Definition 5.2.1

is a bona fide generalization of classical inner amenability.

Remark 5.2.2. A natural question is to seek a definition of inner amenability at the

level of L∞(G). Motivated by the group case, one is led to consider the conjugate

co-representation WσV σ = W (1⊗U)W (1⊗U∗) ∈ L∞(G)⊗B(L2(G)) of G (see [90]),

and the associated map β̃2 : B(L2(G))→ L∞(G)⊗B(L2(G)) defined by

β̃2(T ) = (WσV σ)∗(1⊗ T )WσV σ, T ∈ B(L2(G)).

If β̃2(L∞(G)) ⊆ L∞(G)⊗L∞(G), i.e., it leaves L∞(G) globally invariant, then one

could define a corresponding conjugation action on L∞(G). This invariance, however,

is not clear beyond the commutative case.

Following [78], we say that a locally compact quantum group G is strongly inner

amenable if there exists a net (ξα)α∈A of unit vectors such that

‖WσV σ(η ⊗ ξα)− (η ⊗ ξα)‖ → 0, η ∈ L2(G).

Proposition 5.2.3. Let G be a locally compact quantum group. If G is strongly inner

amenable then it is inner amenable.

Proof. Let (ξα)α∈A be a net of unit vectors asymptotically invariant under the conju-
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gate co-representation. Passing to a subnet, we may assume that (ωJξα)α∈A converges

weak* to a state m ∈ B(L2(G))∗. For any η ∈ L2(G) and T ∈ B(L2(G)), using equa-

tion (3.5) together with the adjoint relations of W and V , we have

〈m,ωη � T 〉 = lim
α
〈ωJξα , ωη � T 〉 = lim

α
〈V (T ⊗ 1)V ∗(Jξα ⊗ η), (Jξα ⊗ η)〉

= lim
α
〈(1⊗ T )σV ∗σ(η ⊗ Jξα), σV ∗σ(η ⊗ Jξα)〉

= lim
α
〈(1⊗ T )(Ĵ ⊗ J)σV σ(Ĵη ⊗ ξα), (Ĵ ⊗ J)σV σ(Ĵη ⊗ ξα)〉

= lim
α
〈(1⊗ T )(Ĵ ⊗ J)W ∗(Ĵη ⊗ ξα), (Ĵ ⊗ J)W ∗(Ĵη ⊗ ξα)〉

= lim
α
〈(1⊗ T )W (η ⊗ Jξα),W (η ⊗ Jξα)〉

= lim
α
〈W ∗(1⊗ T )W (η ⊗ Jξα), (η ⊗ Jξα)〉

= lim
α
〈ωJξα , T � ωη〉

= 〈m,T � ωη〉.

By linearity and density of {ωη | η ∈ L2(G)} in T (L2(G)), it follows that m is an

inner invariant mean.

In the group case, strong inner amenability coincides with inner amenability by

[119, Theorem 1]. It is not clear, however, if the equivalence persists for general

quantum groups.

If G is a compact quantum group, then it is easy to see that Λϕ(1) ∈ L2(G)

is invariant under the conjugate co-representation WσV σ, and hence, G is strongly

inner amenable. More generally, any amenable quantum group is inner amenable.

Proposition 5.2.4. Let G be a locally compact quantum group. If G is amenable

then it is inner amenable.

Proof. Let m ∈ L∞(G)∗ be a two-sided invariant mean. Then, denoting again by m

its restriction to LUC(G), let n := ρ0 ◦ Θr(m) ∈ B(L2(G))∗, where ρ0 ∈ T (L2(G))
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is a fixed normal state, and consider the state R∗(n)�n ∈ B(L2(G))∗ where R is the

extended unitary antipode and � is the left Arens product on B(L2(G))∗ lifting the

multiplication in (T (L2(G)),�).

Fix ρ, ω ∈ T (L2(G)) and T ∈ B(L2(G)). Firstly, we have

〈n�ρ, T 〉 = 〈n, ρ� T 〉 = 〈ρ0,Θ
r(m) ◦Θr(π(ρ))(T )〉

= 〈ρ0,Θ
r(m�π(ρ))(T )〉 = 〈ρ, 1〉〈n, T 〉.

Hence, n�ρ = 〈ρ, 1〉n. Secondly, since Θr(m) is a right T�-covariant conditional

expectation onto L∞(Ĝ), we also have

〈n�(T � ρ), ω〉 = 〈n, (T � ρ)� ω〉

= 〈ρ0,Θ
r(m)((T � ρ)� ω)〉

= 〈ρ0,Θ
r(m)(T � ρ)� ω〉

= 〈ρ0, 1〉〈Θr(m)(T � ρ), ω〉

= 〈ρ0, 1〉〈Θr(m)(T )� ρ, ω〉 (by Proposition 4.2.10)

= 〈ρ0, 1〉〈Θr(m)(T ), ρ� ω〉

= 〈ρ0,Θ
r(m)(T )� (ρ� ω)〉

= 〈ρ0,Θ
r(m)(T � (ρ� ω))〉

= 〈n, T � (ρ� ω)〉

= 〈n�T, ρ� ω〉

= 〈(n�T )� ρ, ω〉.

Thus, n�(T � ρ) = (n�T )� ρ. Putting things together, on the one hand we obtain

〈R∗(n)�n, ρ� T 〉 = 〈R∗(n), (n�ρ)�T 〉 = 〈ρ, 1〉〈R∗(n), n�T 〉,
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and on the other,

〈R∗(n)�n, T � ρ〉 = 〈R∗(n), n�(T � ρ)〉 = 〈R∗(n), (n�T )� ρ〉

= 〈n,R((n�T )� ρ)〉 = 〈n,R∗(ρ)�R(n�T )〉

= 〈n�R∗(ρ), R(n�T )〉 = 〈R∗(ρ), 1〉〈n,R(n�T )〉

= 〈ρ, 1〉〈R∗(n), n�T 〉.

Therefore, R∗(n)�n is the required inner invariant mean.

Combining Corollary 4.2.12 with Proposition 5.2.4, we obtain a quantum group

analogue of the Lau–Paterson result in [66, Corollary 3.2], which states that a locally

compact group G is amenable if and only if it is inner amenable and L(G) is 1-injective

C−mod.

Corollary 5.2.5. A locally compact quantum group G is amenable if and only if it

is inner amenable and L∞(Ĝ) is 1-injective in C−mod.

Motivated by the group setting, we propose the following definition of IN for

quantum groups.

Definition 5.2.6. Let G be a locally compact quantum group. We say that G is IN

if there is a normal state ω ∈ T (L2(G)) satisfying

〈ω, ρ� T 〉 = 〈ω, T � ρ〉, ρ ∈ T (L2(G)), T ∈ B(L2(G)). (5.6)

Note that ω ∈ T (L2(G)) satisfies (5.6) if and only if

ω � ρ = ρ� ω, ρ ∈ T (L2(G)), (5.7)

meaning that ω is a central element of T (L2(G)) with respect to the T�−T�-bimodule

structure. This suggests that (5.7) is the appropriate notion of centrality in T (L2(G)).
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Indeed, the next proposition shows that the center Z(T�) = {0} for any non-trivial

quantum group G.

Proposition 5.2.7. Let G be a locally compact quantum group. If Z(T�) 6= {0},

then G = C1 is trivial.

Proof. Let ω ∈ Z(T�) be non-zero. Then ω�T = T �ω for all T ∈ B(L2(G)), which,

by the commutation relation (4.4), means that for any state τ ∈ T (L2(G)),

T � ω = τ�̂(T � ω) = τ�̂(ω � T ) = ω � (τ�̂T )

= (τ�̂T )� ω = T � (ω�̂τ).

It follows that ω and ω�̂τ agree on the weak* dense subspace 〈T (L2(G))�B(L2(G))〉

of B(L2(G)), and therefore, by normality, ω = ω�̂τ . By linearity, we obtain the

equality ω = ω�̂τ for any τ ∈ T (L2(G)). Thus, ω is a left identity for �̂ which

implies that Ĝ, and therefore G, is trivial [56, Proposition 3.7].

By the argument of Proposition 5.2.4 it immediately follows that any compact

quantum group is IN. Also, any co-commutative quantum group Gs is IN. Indeed,

using (3.5) we have

Vs = σ(1⊗ U)Ws(1⊗ U∗)σ = σ(1⊗ U)σW ∗
aσ(1⊗ U∗)σ = (U ⊗ 1)W ∗

a (U ⊗ 1),

and by equation (3.2),

(U ⊗ 1)W ∗
a (U ⊗ 1)ξ(s, t) = W ∗

a (U ⊗ 1)ξ(s−1, t)∆(s)−1/2

= (U ⊗ 1)ξ(s−1, s−1t)∆(s)−1/2

= ξ(s, s−1t)

= Waξ(s, t)

for all s, t ∈ G and ξ ∈ L2(G × G). Hence, Vs = Wa, that is, the right fundamental
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unitary of Gs is the left fundamental unitary of Ga. Thus, for any ρ, ω ∈ T (L2(G))

and T ∈ B(L2(G)) we have

〈ω �s ρ, T 〉 = 〈ω, (id⊗ ρ)(Vs(T ⊗ 1)V ∗s )〉

= 〈ω, (id⊗ ρ)(Wa(T ⊗ 1)W ∗
a 〉

= 〈ω, (ρ⊗ id)(W ∗
s (1⊗ T )Ws)〉

= 〈ρ�s ω, T 〉,

implying that every ω ∈ T (L2(G)) is a normal inner invariant mean for Gs.

To further elucidate our definition of IN for quantum groups, we now derive a

sufficient criterion.

Proposition 5.2.8. Let G be a locally compact quantum group. If there exists a

non-zero vector ξ ∈ L2(G) satisfying

λ(f)ξ = Ĵ τ̂−i/2(λ(f)∗)Ĵξ, f ∈ L1(G), (5.8)

then G is IN. When G = Ga is commutative, the converse holds.

Proof. Let η ∈ L2(G). Resolving the identity idL2(G) with respect to an orthonormal

basis (ei)i∈I of L2(G), we have

ωη � T = (id⊗ ωη)V (T ⊗ 1)V ∗ =
∑
i∈I

ViTV
∗
i

and

T � ωη = (ωη ⊗ id)W ∗(1⊗ T )W =
∑
i∈I

W ∗
i TWi

where Vi = (id ⊗ ωei,η)(V ), Wi = (ωη,ei ⊗ id)(W ) = λ(ωη,ei |L∞(G)) and both sums

converge in the weak* topology. It suffices to show that ξ ∈ L2(G) satisfies V ∗i ξ =

Wiξ for all i ∈ I and all η ∈ L1(G), as the corresponding normalized vector state

ωξ̃ ∈ T (L2(G)) with ξ̃ := ξ/‖ξ‖, would be a normal inner invariant mean for G. To
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this end, we use the fact that V = (U ⊗ 1)Ŵ (U∗ ⊗ 1) (see (3.5)) to obtain

V ∗i = (id⊗ ωei,η)(V )∗ = (id⊗ ωη,ei)(V ∗) = U(id⊗ ωη,ei)(Ŵ )U∗

= U(ωη,ei ⊗ id)(W ∗)U∗ = UŜ−1((ωη,ei ⊗ id)(W ))U∗ = UŜ−1(λ(ωη,ei))U
∗

= ĴJR̂(τ̂i/2(λ(ωη,ei)))JĴ = Ĵ τ̂−i/2(λ(ωη,ei)
∗)Ĵ .

As Wi = λ(ωη,ei |L∞(G)), and ξ satisfies (5.8), we have

V ∗i ξ = Ĵ τ̂−i/2(λ(ωη,ei |L∞(G))
∗)Ĵξ = Wiξ

for all i ∈ I and η ∈ L2(G).

Now, suppose that G = Ga is commutative. The relation (5.8) then becomes

λ(f)ξ = ρ(f o)ξ, f ∈ L1(G), (5.9)

where f o(s) = f(s−1)∆(s−1) is the usual involution on L1(G). For s ∈ G, let δs be the

corresponding point mass in M(G). If (fi)i∈I is a contractive approximate identity in

L1(G) then the net (f si )i∈I given by f si = δs ∗ fi satisfies the norm convergence

f si ∗ g → δs ∗ g and g ∗ f si → g ∗ δs, g ∈ L1(G).

Since L2(G) is an essential L1(G)-module under the action f ∗ η = λ(f)η, f ∈ L1(G),

η ∈ L2(G), by Cohen’s factorization theorem we have L2(G) = L1(G)∗L2(G). Hence,

ξ = g ∗ η for some g ∈ L1(G) and η ∈ L2(G). Then

λ(s)ξ = λ(s)g ∗ η = λ(δs ∗ g)η = lim
i∈I

λ(f si ∗ g)η = lim
i∈I

λ(f si )ξ.

On the other hand, L2(G) is also an essential L1(G)-module under the action f · η =

ρ(f)η, f ∈ L1(G), η ∈ L2(G), so again by Cohen’s factorization theorem we have

ξ = h · β for some h ∈ L1(G) and β ∈ L2(G). Then, by continuity of the involution
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on L1(G) we have

ρ(s−1)ξ = ρ(s−1)h ∗ β = ρ(δs−1 ∗ h)β = lim
i∈I

ρ((f si )o ∗ h)β = lim
i∈I

ρ((f si )o)ξ.

Thus, by equation (5.9) we have λ(s)ξ = ρ(s−1)ξ. Since s ∈ G was arbitrary, it follows

that ωξ|L(G) is a normal G-invariant state on L(G), so G is IN by [103, Proposition

4.2].

To further elucidate equation (5.8), let us suppose that ξ in Proposition 5.2.8

satisfies ξ = Λϕ̂(λ(g)) for some non-zero g ∈ L1(G) such that λ(g) ∈ Nϕ̂ ∩ D(σ̂i/2),

where σ̂ denotes the modular automorphism group of the dual weight ϕ̂. Then for all

f ∈ L1(G) such that λ(f) ∈ Tϕ̂, we have

Λϕ̂(λ(f ? g)) = λ(f)Λϕ̂(λ(g))

= Ĵ τ̂−i/2(λ(f)∗)ĴΛϕ̂(λ(g))

= Ĵ τ̂−i/2(λ(f)∗)Λϕ̂(σ̂i/2(λ(g))∗)

= ĴΛϕ̂(τ̂−i/2(λ(f)∗)σ̂i/2(λ(g))∗)

= Λϕ̂(σ̂i/2(τ̂−i/2(λ(f)∗)σ̂i/2(λ(g))∗)∗)

= Λϕ̂(σ̂−i/2(σ̂i/2(λ(g))τ̂−i/2(λ(f)∗)∗))

= Λϕ̂(λ(g)σ̂−i/2(τ̂i/2(λ(f)))).

Thus, we arrive at the following commutation relation

λ(f ? g) = λ(g)σ̂−i/2(τ̂i/2(λ(f))), λ(f) ∈ Tϕ̂.

If this is satisfied, then by density of {f ∈ L1(G) | λ(f) ∈ Tϕ̂} in L1(G) [9, Lemma

4.1], together with the fact that Ŝ−1(λ(f)) = (f⊗ id)(W ∗), f ∈ L1(G), equation (5.8)

holds. In summary, we have shown the following.
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Proposition 5.2.9. Let G be a locally compact quantum group. If there exits a non-

zero g ∈ L1(G) satisfying λ(g) ∈ Nϕ̂ ∩ D(σ̂i/2) and

λ(f ? g) = λ(g)σ̂−i/2(τ̂i/2(λ(f))), λ(f) ∈ Tϕ̂, (5.10)

then G is IN.

If G is a Kac algebra, then τ̂i/2 = id, and the commutation relation (5.10) reduces

to

λ(f ? g) = λ(g)σ̂−i/2(λ(f)), λ(f) ∈ Tϕ̂.

Moreover, if G is unimodular, meaning ϕ = ϕ ◦ R, then σ̂i/2 = id [63, Proposition

8.9] and the relation further reduces to

λ(f ? g) = λ(g)λ(f) = λ(g ? f), λ(f) ∈ Tϕ̂.

Therefore, if G is a unimodular Kac algebra, then a sufficient condition to be IN

is Z(L1(G)) ∩ λ−1(Nϕ̂) 6= {0}. For example, any discrete Kac algebra is IN, as

λ−1(Nϕ̂) = L1(G) in that case. Recall that Mozak’s theorem ensures the equivalence

of IN and Z(L1(G)) 6= {0} in the commutative case G = Ga [73]. In general, the

equivalence of IN and having non-trivial center Z(L1(G)) remains open (note that

one direction is obvious).

Remark 5.2.10. A locally compact quantum group G is said to be SIN if LUC(G) =

RUC(G) [47]. All compact and discrete quantum groups are SIN, and a commutative

quantum group is SIN precisely when its underlying locally compact group is SIN

[72]. Contrary to the group case, however, it is not clear whether every SIN quantum

group is IN.
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5.2.2 Relative Injectivity

In [91, Lemma 4.1] Ruan and Xu showed that the dual L∞(Ĝ) of a strongly inner

amenable Kac algebra G is relatively 1-injective in L1(Ĝ)−mod. We will now show

that relative 1-injectivity follows from the a priori weaker notion of inner amenability.

In the process we will also show that inner amenability passes to the character group.

Proposition 5.2.11. Let G be a locally compact quantum group. Consider the fol-

lowing conditions:

1. Ĝ is inner amenable;

2. L∞(G) is relatively 1-injective in L1(G)−mod;

3.
˜̂G = Gr(G) is inner amenable.

Then (1)⇒ (2)⇒ (3). When G is co-commutative, the conditions are equivalent.

Proof. (1)⇒ (2): By [64, Proposition 2.15], the unitary operator U ⊗ U := ĴJ ⊗ ĴJ

on L2(G)⊗ L2(G) intertwines the right fundamental unitaries of Ĝ and Ĝ′, denoted

V̂ and V̂ ′, respectively. Similarly, U ⊗ U intertwines the left fundamental unitaries

of Ĝ and Ĝ′, denoted by Ŵ and Ŵ ′, respectively. One then obtains a one-to-one

correspondence between inner invariant means on B(L2(G)) with respect to Ĝ and

Ĝ′ via conjugation with U , making Ĝ inner amenable if and only if Ĝ′ is. Thus,

assuming inner amenability of Ĝ, we let m̂′ ∈ B(L2(G))∗ be an inner invariant mean

with respect to Ĝ′.

By Proposition 4.3.3, it suffices to provide a completely contractive morphism

which is a left inverse to the map ∆ : L∞(G)→ CB(L1(G), L∞(G)) given by

∆(x)(f) = x� f, T ∈ B(L2(G)), ρ ∈ T (L2(G)). (5.11)

Identifying CB(L1(G), L∞(G)) ∼= L∞(G)⊗L∞(G) via

〈Φ, f ⊗ g〉 = 〈Φ(f), g〉, Φ ∈ CB(L1(G), L∞(G)), f, g ∈ L1(G),
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we have ∆ = Γ, and that the corresponding L1(G)-module structure on L∞(G)⊗L∞(G)

is defined by X�f = (f⊗id⊗id)(Γr⊗id)(X) for X ∈ L∞(G)⊗L∞(G) and f ∈ L1(G).

We proceed along similar lines as in Theorem 4.3.12. First, consider the map

Φ : B(L2(G))⊗L∞(G)→ L∞(G) defined by

Φ(A) = (id⊗ m̂′)(V ∗AV ) A ∈ B(L2(G))⊗L∞(G).

Clearly, Φ is a completely contractive left inverse to Γ. We now show that Φ is a

right T�-module map. This will complete the proof since Proposition 4.1.6 will entail

the invariance Φ(L∞(G)⊗L∞(G)) ⊆ L∞(G), and the restricted module action T� y

L∞(G) is the pertinent L1(G)-module action. To this end, fix A ∈ B(L2(G))⊗L∞(G)

and ρ ∈ T (L2(G)). Then

Φ(A� ρ) = Φ((ρ⊗ id⊗ id)(V12A13V
∗

12))

= (id⊗ m̂′)(ρ⊗ id⊗ id)(V ∗23V12A13V
∗

12V23)

= (id⊗ m̂′)(ρ⊗ id⊗ id)(V12V
∗

23V
∗

13A13V13V23V
∗

12)

= (ρ⊗ id)(V (id⊗ id⊗ m̂′)(V ∗23V
∗

13A13V13V23)V ∗).

Now, using the fact that V̂ ′ = σV ∗σ, where σ is the flip map on L2(G)⊗ L2(G), for

any τ, ω ∈ T (L2(G)), we have

〈(id⊗ id⊗ m̂′)(V ∗23V
∗

13A13V13V23), τ ⊗ ω〉

= 〈(id⊗ id⊗ m̂′)(V ∗23(σ ⊗ 1)V ∗23A23V23(σ ⊗ 1)V23), τ ⊗ ω〉

= 〈(id⊗ id⊗ m̂′)(V ∗13V
∗

23A23V23V13), ω ⊗ τ〉

= 〈(id⊗ m̂′)(V ∗(1⊗ (τ ⊗ id)(V ∗AV ))V ), ω〉

= 〈(m̂′ ⊗ id)(V̂ ′((τ ⊗ id)(V ∗AV )⊗ 1)V̂ ′∗), ω〉

= 〈m̂′, ω�̂′((τ ⊗ id)(V ∗AV ))〉

= 〈m̂′, ((τ ⊗ id)(V ∗AV ))�̂′ω〉.
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But (τ ⊗ id)(V ∗AV ) ∈ L∞(G) and Ŵ ′ ∈ L∞(Ĝ′)⊗L∞(G)′, so

〈m̂′, ((τ ⊗ id)(V ∗AV ))�̂′ω〉 = 〈m̂′, (ω ⊗ id)(Ŵ ′∗(1⊗ ((τ ⊗ id)(V ∗AV )))Ŵ ′)〉

= 〈m̂′, (τ ⊗ id)(V ∗AV )〉〈ω, 1〉

= 〈(id⊗ m̂′ ⊗ id)(V ∗AV ⊗ 1), τ ⊗ ω〉

= 〈Φ(A)⊗ 1, τ ⊗ ω〉.

As τ and ω were arbitrary, we have

Φ(A� ρ) = (ρ⊗ id)(V (id⊗ id⊗ m̂′)(V ∗23V
∗

13A13V13V23)V ∗)

= (ρ⊗ id)(V (Φ(A)⊗ 1)V ∗)

= Φ(A)� ρ.

(2) ⇒ (3): Recall that Gr(G) is a group of unitaries in L∞(G), so it acts naturally

on L∞(G) by conjugation. The existence of a state m ∈ L∞(G)∗ which is Gr(G)-

invariant follows directly from the argument of Theorem 5.1.4. Since
˜̂G is a closed

quantum subgroup of Ĝ in the sense of Vaes [22, Theorem 5.5], there exists a nor-

mal ∗-homomorphism γ :
̂
L∞(

˜̂G) → L∞(G) intertwining the co-multiplications. As
̂
L∞(

˜̂G) = L(
˜̂G) = L(Gr(G)), the state m◦γ ∈ L(Gr(G))∗ is Gr(G)-invariant, making

Gr(G) inner amenable by Proposition 5.1.2.

When G = Gs is co-commutative, then Gr(Gs) = G and the implication (3)⇒ (1)

follows immediately from Proposition 5.1.2.

Remark 5.2.12. In the proof of Proposition 5.2.11, we did not use the full strength

of the inner invariant mean m̂′ ∈ B(L2(G))∗, but rather its restriction to L∞(G)

which was an invariant state for the left action of L1(Ĝ′) on L∞(G). This weaker

notion of inner amenability, which we shall call weak inner amenability of Ĝ′, has been

considered by Kalantar [55]. Inner amenability of Ĝ′ entails weak inner amenability

of Ĝ′, but their equivalence is not clear beyond the group case.
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Remark 5.2.13. We suspect, but have been unable to prove that relative 1-injectivity

of L∞(G) in L1(G)−mod implies inner amenability of Ĝ for general locally compact

quantum groups G.

5.2.3 Biflatness and Biprojectivity

As in the one-sided case, for a completely contractive Banach algebra A, we say that

an operator A-bimodule X is C-biflat (respectively, relatively C-biflat) if its dual X∗

is C-injective (respectively, relatively C-injective) in A−mod−A.

In [91, Theorem 4.3] Ruan and Xu provided a sufficient condition for relative

1-biflatness of L1(Ĝ) for any Kac algebra G by means of the existence of a net

of unit vectors (ξα)α∈A which are asymptotically invariant under the conjugate co-

representation WσV σ and for which ωξα|L∞(G) is a bounded approximate identity of

L1(G). In the group setting, this condition is precisely the existence of a quasi-central

bounded approximate identity (see [69, 96]). We may now obtain the same conclusion

under weaker hypotheses.

Proposition 5.2.14. Let G be a locally compact quantum group for which there exists

a right invariant mean m ∈ L∞(G)∗ satisfying

〈m,ω�̂′x〉 = 〈ω, 1〉〈m,x〉, ω ∈ T (L2(G)), x ∈ L∞(G). (5.12)

Then L∞(G) is relatively 1-injective in L1(G) − mod − L1(G). When G = Gs is

co-commutative, the converse is also true.

Proof. By Proposition 4.3.4, it suffices to provide a completely contractive L1(G)-

bimodule map Φ : L∞(G)⊗L∞(G) → L∞(G) which is a left inverse to Γ. Defining

Φ(X) = (id ⊗ m)(V ∗XV ), X ∈ L∞(G)⊗L∞(G), as in Proposition 5.2.11, it im-

mediately follows that Φ is a completely contractive right L1(G)-module map and

Φ ◦ Γ = idL∞(G). However, since m is also a right invariant mean on L∞(G), the

module argument from Theorem 4.3.9 shows that Φ is also a left L1(G)-module map.
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When G = Gs is co-commutative, then for f ∈ L1(G) let Θ̂f : L(G)⊗L(G) →

L(G)⊗L(G) be the normal completely bounded map given by

Θ̂f (X) =

∫
G

(λ(t)∗ ⊗ λ(t)∗)X(λ(t)⊗ λ(t))f(t)dt, X ∈ L(G)⊗L(G).

Then, given a completely contractive A(G)-bimodule left inverse Φ : L(G)⊗L(G)→

L(G) to Γs, it follows as in Theorem 5.1.4 that Γs ◦ Φ is a Γs(L(G))-bimodule

map. By Wittstock’s bimodule extension theorem [116], this map extends to an

Γs(L(G))-bimodule map Ψ : B(L2(G))⊗B(L2(G)) → B(L2(G))⊗B(L2(G)). More-

over, by [71, Lemma 2.3] we may approximate Ψ in the point weak* topology by a

net (Ψα)α∈A of normal completely bounded Γs(L(G))-bimodule maps. Thus, for any

X ∈ L(G)⊗L(G), we have

Γs ◦ Φ(Θ̂f (X)) = Ψ(Θ̂f (X))

= Ψ

(∫
G

(λ(t)∗ ⊗ λ(t)∗)X(λ(t)⊗ λ(t))f(t)dt

)
= w∗ − lim

α
Ψα

(∫
G

(λ(t)∗ ⊗ λ(t)∗)X(λ(t)⊗ λ(t))f(t)dt

)
= w∗ − lim

α

(∫
G

Ψα((λ(t)∗ ⊗ λ(t)∗)X(λ(t)⊗ λ(t)))f(t)dt

)
= w∗ − lim

α

(∫
G

Ψα(Γs(λ(t)∗)XΓs(λ(t)))f(t)dt

)
= w∗ − lim

α

(∫
G

Γs(λ(t)∗)Ψα(X)Γs(λ(t))f(t)dt

)
= w∗ − lim

α
Θ̂f (Ψα(X))

= Θ̂f (Ψ(X))

= Θ̂f (Γs ◦ Φ(X)),

where we used normality of Ψα and Θ̂f in the fourth and eighth equality, respectively.

By definition of Θ̂f , we have Θ̂f ◦ Γs = Γs ◦ Θ̂l(f), so the above calculation entails

Γs ◦ Φ ◦ Θ̂f = Γs ◦ Θ̂l(f) ◦ Φ, which, by injectivity of Γs implies Φ ◦ Θ̂f = Θ̂l(f) ◦ Φ.
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As in the proof of Theorem 5.1.4, the restriction Φ|L(G)⊗1 defines a state m ∈

L(G)∗. The bimodule property of Φ ensures that m is a left invariant mean for the

A(G)-action on L(G). Moreover, if ρ ∈ T (L2(G)) with ρ|L∞(G) = f , then

〈m,x�a ρ〉 = m(Θ̂l(f)(x)) = m

(∫
G

λ(s)∗xλ(s)f(s)ds

)
= Φ

(∫
G

(λ(s)∗ ⊗ λ(s)∗)(x⊗ 1)(λ(s)⊗ λ(s))f(s)ds

)
= Φ(Θ̂f (x⊗ 1)) = Θ̂l(f)(Φ(x⊗ 1))

= 〈ρ, 1〉〈m,x〉

for all x ∈ L(G). The result then follows from the fact that Vs = Wa (as shown in

§5.2.1). Indeed,

ω�̂′sx = (id⊗ ω)(V̂ ′s (x⊗ 1)V̂ ′∗s ) = (ω ⊗ id)(V ∗s (1⊗ x)Vs)

= (ω ⊗ id)(W ∗
a (1⊗ x)Wa) = x�a ω

for all ω ∈ T (L2(G)) and x ∈ L(G). Hence, m also satisfies (5.12).

Remark 5.2.15. In Proposition 5.2.14 we weakened the hypothesis of [91, Theorem

4.3] to the existence of a right invariant mean on L∞(G) which is invariant under the

T�̂′-action of the dual, that is, the weak inner amenability of Ĝ and amenability of G

are realized by the same state. In contrast, Ruan and Xu [91, Theorem 4.3] assume

that both the strong inner amenability and co-amenability of Ĝ are realized by the

same state.

Remark 5.2.16. Proposition 5.2.14 gives a full characterization of 1-biflatness of

the Fourier algebra A(G) in terms of the existence of a state m ∈ L(G)∗ which was

invariant under both the right A(G)-action and the right L1(G)-action on L(G). We

expect that this condition is equivalent to the existence of a quasi-central bounded

approximate identity for L1(G), i.e., G is QSIN (see [96]), and are currently working

towards a proof in collaboration with Zsolt Tanko. If true, this would provide a partial
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converse to [2, Theorem 2.4], concerning the open question of relative C-biflatness of

A(G) and its relation to QSIN.

A completely contractive Banach algebra A is operator amenable if it is rela-

tively C-biflat for some C > 0 and has a bounded approximate identity. This is

not the original definition of operator amenability, but was shown to be equivalent

in [91, Theorem 2.4]. This notion is the operator module analogue of the classical

concept introduced by Johnson [52], who showed that the group algebra L1(G) of a

locally compact group G is (operator) amenable if and only if G is amenable. In the

breakthrough paper [89], Ruan established the dual result, showing that the Fourier

algebra A(G) of a locally compact group G is operator amenable precisely when G is

amenable. Since L∞(G) is a 1-injective operator space, and the T�̂a
′-action is trivial

on L∞(G), it follows from Propositions 4.3.8 and 5.2.14 together with [52] that a lo-

cally compact group G is amenable if and only if L1(G) is 1-biflat. Dually, if G were

amenable, then L(G) is an injective operator space, and it is relatively 1-injective in

A(G)−mod−A(G) by [91, Theorem 4.4]. Thus, Proposition 4.3.8 together with [89,

Theorem 3.6] show that a locally compact group G is amenable if and only if A(G)

is 1-biflat. We may therefore interpret the above results as the equivalence

L1(G) is 1-biflat ⇔ A(G) is 1-biflat.

As we will now prove, this is true in much greater generality.

Theorem 5.2.17. Let G be a locally compact quantum group. Then L1(G) is 1-biflat

if and only if L1(Ĝ) is 1-biflat.

Proof. Clearly, it suffices to show one direction by quantum Pontrjagin duality, so

suppose that L1(Ĝ) is 1-biflat, that is, L∞(Ĝ) is 1-injective in L1(Ĝ)−mod−L1(Ĝ).

Consider the L1(Ĝ)-bimodule structure on B(L2(G)) given by

f̂�̂T = (id⊗ f̂)V̂ (T ⊗ 1)V̂ ∗ and T �̂f̂ = (f̂ ⊗ id)Ŵ ∗(1⊗ T )Ŵ ,
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for f̂ ∈ L1(Ĝ) and T ∈ B(L2(G)). Then by 1-injectivity, idL∞(Ĝ) extends to a

completely contractive L1(Ĝ)-bimodule projection E : B(L2(G)) → L∞(Ĝ). By the

left T�̂-module property, it follows from the standard argument that E(L∞(G)) ⊆

L∞(G) ∩ L∞(Ĝ) = C1. Also, Proposition 4.2.10 implies that E is a right T�-module

map. Let R be the extended unitary antipode of G. Then

(R⊗R)(V̂ ′) = (R⊗R)(σV ∗σ) = Σ(R⊗R)(V ∗) = Σ(Ĵ ⊗ Ĵ)(V )(Ĵ ⊗ Ĵ) = ΣŴ ,

where the last equality follows from equation (3.5) and the adjoint relations of W and

V . Let ER : B(L2(G))→ L∞(Ĝ′) be the projection of norm one R ◦E ◦R. Then for

ω ∈ T (L2(G)) and T ∈ B(L2(G)), we have

ER(ω�̂′T ) = R(E(R((id⊗ ω)V̂ ′(T ⊗ 1)V̂ ′∗)))

= R(E((id⊗ ω ◦R)(R⊗R)(V̂ ′(T ⊗ 1)V̂ ′∗)))

= R(E((id⊗ ω ◦R)((R⊗R)(V̂ ′∗)(R(T )⊗ 1)(R⊗R)(V̂ ′))))

= R(E((id⊗ ω ◦R)((ΣŴ ∗)(R(T )⊗ 1)(ΣŴ ))))

= R(E((ω ◦R⊗ id)(Ŵ ∗(1⊗R(T ))Ŵ )))

= R(E(R(T )�̂(ω ◦R)))

= R(E(R(T ))�̂(ω ◦R))

= ω�̂′ER(T ).

Thus, ER is a left T�̂′-module map. Since R(L∞(G)) = L∞(G), the restriction

ER|L∞(G) defines a state m ∈ L∞(G)∗ satisfying

〈m,ω�̂′x〉 = 〈ω, 1〉〈m,x〉, ω ∈ T (L2(G)), x ∈ L∞(G).

But E was also a right T�-module map, which implies that ER is a left T�-module
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map by the generalized antipode relation (4.3). Thus, we also have

〈m,ω � x〉 = 〈ω, 1〉〈m,x〉, ω ∈ T (L2(G)), x ∈ L∞(G),

meaning that m is a right invariant mean on L∞(G). By Proposition 5.2.14 it follows

that L∞(G) is relatively 1-injective in L1(G)−mod− L1(G).

By 1-injectivity of L∞(Ĝ) in L1(Ĝ) − mod − L1(Ĝ), there exists a completely

contractive morphism Φ : L∞(Ĝ)⊗L∞(Ĝ) → L∞(Ĝ) which is a left inverse to Γ̂. It

follows that Φ|L∞(Ĝ)⊗1 defines a state m̂ ∈ L∞(Ĝ)∗ which is a right L1(Ĝ)-module

map, i.e., Ĝ is amenable. Hence, L∞(G) is a 1-injective operator space by Theorem

4.2.2. Proposition 4.3.8 then entails the 1-injectivity of L∞(G) in L1(G) −mod −

L1(G).

The relative biprojectivity of L1(G), that is, relative projectivity of L1(G) as an

operator bimodule over itself, has been completely characterized: L1(G) is relatively

C-biprojective if and only if L1(G) is relatively 1-biprojective if and only if G is a

compact Kac algebra [1, 19, 11]. The corresponding characterization for (relative) C-

biflatness is wide open. Remarkably, if a compact quantum group G has a relatively

C-biflat convolution algebra L1(G), then it must be a Kac algebra [11, Theorem 1.1].

We finish this section with a generalization of [56, Theorem 4.9] beyond co-

amenable quantum groups, which at the same time characterizes the 1-biprojectivity

of L1(G).

Theorem 5.2.18. Let G be a locally compact quantum group. Then the following

conditions are equivalent:

1. G is finite–dimensional.

2. T� is relatively 1-biprojective;

3. L1(G) is 1-biprojective;
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Proof. (1)⇒ (2) follows from [56, Theorem 4.9].

(2) ⇒ (3) follows similarly to the proof of Theorem 4.4.13, giving the relative

1-biprojectivity of L1(G) together with the 1-biprojectivity of L1(G) as an operator

space. Proposition 4.3.7 then yields (3).

(3) ⇒ (1) The 1-biprojectivity of L1(G) ensures the existence of a normal com-

pletely bounded L1(G)-bimodule left inverse Φ : L∞(G)⊗L∞(G)→ L∞(G) to Γ. As

usual, the restriction Φ|L∞(G)⊗1 : L∞(G) → L∞(G) maps into C, and, moreover, it

is a right L1(G)-module map, so G is compact by normality of Φ. Since compact

quantum groups are regular, we may repeat the proof of (3) ⇒ (1) from Theorem

4.4.13 to deduce the discreteness of G. Thus, G is finite-dimensional by [56, Theorem

4.8].

Remark 5.2.19. As in Remark 4.4.15, it is not clear whether we can replace relative

1-biprojectivity of T� with 1-biprojectivity of T� in Theorem 5.2.18.



Chapter 6

Future Directions

We believe there are many interesting avenues of research that are generated by

this thesis. The first, is to study the non-relative homological properties of various

L1(G)-modules of interest in abstract harmonic analysis, such as C0(G), M(G) and

L2(G). Another, would be a complete systematic investigation of the concept of inner

amenability for locally compact quantum groups. We have clearly only scratched the

surface, and further analysis should lead to interesting examples. In particular, to

what extent can the well-known results surrounding IN and SIN groups be generalized

to locally compact quantum groups?

Given a locally compact quantum group G and a von Neumann algebra M , a

left co-action of G on M is a normal, unital, injective ∗-homomorphism α : M →

L∞(G)⊗M satisfying (id ⊗ α) ◦ α = (Γ ⊗ id) ◦ α. Taking a faithful representation

M ⊆ B(H), the crossed product of M by G, denoted M oα G is defined as the von

Neumann subalgebra of B(L2(G))⊗B(H) generated by α(M) and L∞(Ĝ) ⊗ 1. It is

well-known that there exits an co-action of the dual L∞(Ĝ), and hence an operator

L1(Ĝ)-module structure on the crossed product M oα G (see [107]). As in the group

case, there is a notion of Zimmer amenability for co-actions of quantum groups, so

a natural question is to seek a characterization of Zimmer amenability in terms of

injectivity of the crossed product under the induced L1(Ĝ)-module structure. Indeed,
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when M = C1 and α is trivial, we have M oαG = L∞(Ĝ), and the action is Zimmer

amenable precisely when G is amenable, that is, when L∞(Ĝ) is 1-injective as an

operator L1(Ĝ)-module.

Finally, having refined injectivity of group von Neumann algebras L(G) through

a covariance condition, that is, injectivity as an operator A(G)-module, a natural

question is to seek a similar manifestation at the level of group C∗-algebras. In other

words, is there a notion of “covariant nuclearity” which captures amenability of the

underlying group? One may ask similar questions regarding weaker approximation

properties such has weak amenability and the Haagerup property. One is then led to

consider an analogue of the Grothendieck programme for Banach modules, including

module approximation properties and mapping spaces of morphisms. Similar ideas

have appeared previously for modules over C∗-algebras, in particular, Hilbert C∗-

modules, however there has been relatively little concerning operator modules over

more general completely contractive Banach algebras. With the theory of quantum

groups currently under heavy investigation, and whose underlying structure is gov-

erned by operator modules over non-C∗-algebras, it seems natural to pursue these

questions in the near future.
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