Conception d'une filière intensifiée par membrane pour le dessalement autonome d'eau de mer : étude du prétraitement et de son effet sur le biocolmatage

par Mathias Monnot

Thèse de doctorat en Génie des Procédés et de l'Environnement

Sous la direction de Corinne Cabassud et de Stéphanie Laborie.

Soutenue le 14-12-2015

à Toulouse, INSA , dans le cadre de Mécanique, Energétique, Génie Civil, Procédés , en partenariat avec Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (laboratoire) et de Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés / LISBP (laboratoire) .

Le président du jury était Remi Lebrun.

Le jury était composé de Corinne Cabassud, Stéphanie Laborie, Anthony Masse.

Les rapporteurs étaient Efrem Curcio, Philippe Moulin.


  • Résumé

    Le dessalement d’eau de mer par osmose inverse (OI) constitue l’une des solutions majeures pour pallier le manque d’eau douce dans les zones côtières. Afin de rendre plus fiable et plus durable cette technologie, la réduction du biocolmatage de membranes d’OI reste un enjeu majeur. L’intérêt est d’autant plus important sur de petites unités de dessalement d’eau de mer destinées à l’alimentation en eau des lieux isolés. Dans ce contexte, ces travaux visent à concevoir une filière intensifiée par membrane destinée à de telles installations autonomes et mobiles. Cette filière a été constituée d’une filtration sur charbon actif en grain (CAG) suivie par ultrafiltration (UF) en tant que prétraitements avant OI pour la réduction de son biocolmatage. D’abord à l’échelle laboratoire, la réalisation des cinétiques et isothermes d’adsorption de différents CAG a permis de sélectionner un CAG présentant les meilleures performances d’adsorption du carbone organique dissous (COD) présent dans l’eau de mer afin de réduire la quantité de nutriments pour les microorganismes. La mise en œuvre d’un pilote de lit fixe de CAG avec le CAG choisi a démontré sur le court terme que la concentration en COD d’eaux de mer réelles était grandement réduite et que toutes les fractions du COD étaient adsorbées. L’UF de l’eau après filtre CAG à l’échelle laboratoire a révélé que l’UF était moins sujette au colmatage qu’avec de l’eau brute. Ce couplage de procédés a ensuite été mis en place sur un prototype de dessalement par OI containerisé. La filtration sur CAG a permis l’élimination du COD par adsorption puis biodégradation. L’UF a ensuite éliminé particules et microorganismes. Les performances de l’OI sur le long terme ont été stables en matière de taux de rejet, flux de perméat et pertes de charge. De tels résultats ont été attribués à l’efficacité du prétraitement à réduire le potentiel de biocolmatage de l’eau de mer. Un taux de conversion de plus de 50% a aussi été fixé réduisant considérablement la consommation énergétique de l’installation.

  • Titre traduit

    Design of a membrane-based intensified process for autonomous seawater desalination in remote areas : study of the pretreatment and its effect on biofouling


  • Résumé

    Seawater reverse osmosis (RO) desalination appears to be one of the solutions to fresh water scarcity in coastal regions. In order to make the process more efficient, more reliable and more sustainable, the reduction of RO membrane biofouling remains a major scientific issue. The interest to solve this issue is especially important for small-scale seawater desalination plants powered by photovoltaic energy aimed at supplying water to remote regions. In this context, this work aimed at designing a membrane-based intensified process for these small stand-alone and mobile installations. This process was composed by a granular activated carbon (GAC) filtration followed by ultrafiltration (UF) as a pretreatment to RO for the reduction of its biofouling. First at lab-scale, adsorption kinetics and isotherms of six different GAC enabled to select the GAC with the best marine dissolved organic carbon (DOC) adsorption performance. This reduced the quantity of nutrients available for microorganisms. A semi-industrial fixed-bed GAC filter operated with the selected GAC showed on short-term that DOC concentration in real seawater was highly reduced and that all DOC fractions were adsorbed. The UF of GAC-pretreated seawater at lab-scale revealed that UF was less subject to fouling than with raw seawater. This combination of processes was then set up on a containerized RO desalination prototype. The RO performance obtained over several weeks were stable in terms of rejection rate, permeate flux and pressure drop. Such results were attributed to the efficiency of the pretreatments to reduce the biofouling potential of seawater. In addition, a recovery rate of over 50% has been fixed which significantly reduced the energy consumption of the installation.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2015 par INSA [diffusion/distribution] à Toulouse

Conception d'une filière intensifiée par membrane pour le dessalement autonome d'eau de mer : étude du prétraitement et de son effet sur le biocolmatage


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Institut national des sciences appliquées. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2015 par INSA [diffusion/distribution] à Toulouse

Informations

  • Sous le titre : Conception d'une filière intensifiée par membrane pour le dessalement autonome d'eau de mer : étude du prétraitement et de son effet sur le biocolmatage
  • Détails : 1 vol. ([36]-264 p.)
  • Annexes : Bibliographie p. 247-264 p
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.