Computer-aided design and engineering of sucrose-utilizing transglucosylases for oligosaccharide synthesis

par Alizee Verges

Thèse de doctorat en Ingénierie Microbienne et Enzymatique

Sous la direction de Isabelle André.

Soutenue le 08-04-2015

à Toulouse, INSA , dans le cadre de École doctorale Sciences écologiques, vétérinaires, agronomiques et bioingénieries (Toulouse) , en partenariat avec Laboratoire d'ingénierie des systèmes biologiques et des procédés (Toulouse) (laboratoire) et de Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés [LISBP] (laboratoire) .

Le président du jury était Magali Remaud-Simeon.

Le jury était composé de Isabelle André, Laurence Mulard.

Les rapporteurs étaient Birte Svensson, Charles Tellier.

  • Titre traduit

    Design computationnel et ingénierie de transglycosylases pour la synthèse d'oligosaccharides


  • Résumé

    La synthèse d’oligosides complexes reste difficilement réalisable par voie chimique. Le recours aux catalyseurs enzymatiques permettrait de pallier aux contraintes de la chimie mais les enzymes naturelles ne présentent pas toujours les propriétés adéquates et nécessitent d’être optimisées par ingénierie moléculaire. Le couplage de la chimie et de biocatalyseurs conçus « sur mesure », peut offrir une alternative prometteuse pour explorer de nouvelles voies de synthèse des sucres, notamment pour la mise au point de glycovaccins. L’objectif de cette thèse a ainsi visé à mettre en œuvre des stratégies d’ingénierie semi-rationnelles de l’amylosaccharase de Neisseria polysaccharea (ASNp), une α-transglucosylase utilisant le saccharose comme substrat, afin de concevoir de nouvelles spécificités de substrats et d’étendre le potentiel de cette enzyme à catalyser de nouvelles réactions, permettant ainsi d’aller bien au-delà de ce que la Nature peut offrir. Dans une première étude, une approche assistée par ordinateur a été suivie afin de remodeler le site actif de l’enzyme (sous-sites +1, +2 et +3) pour la reconnaissance et la glucosylation en α-1,4 d’un accepteur disaccharidique non-naturel (l’allyl 2-deoxy-2-N-trichloroacetyl-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranose). Le produit attendu, un trisaccharide, est un précurseur dans la synthèse chimio-enzymatique des oligosaccharides mimant les unités répétitives des lipopolysaccharides de Shigella flexneri, dont l’utilisation ultime est le développement de vaccins contre la Shigellose. Une approche computationnelle faisant appel à des outils dédiés au design automatisé de protéines et à une analyse des séquences a conduit au design d’une librairie d’environ 2.7x104 séquences, qui a ensuite été construite expérimentalement puis criblée. Au final, 55 variants actifs sur saccharose (le substrat donneur) ont été identifiés, et un mutant, appelé F3, a révélé sa capacité à glucosyler en α-1,4 le disaccharide cible. De manière étonnante, ce mutant possède 7 mutations au sein de son site actif, nécessaires au déploiement de sa nouvelle spécificité tout en maintenant son aptitude à utiliser le saccharose comme donneur d'unité glucosyle. Dans une deuxième étude, trois variants ont été identifiés lors du criblage de la librairie semi-rationnelle sur saccharose comme présentant de nouvelles spécificités de produits. Ces mutants ont été caractérisés plus en détails, ainsi que leurs produits, sur un plan biochimique et structural. Ces mutants, appelés 37G4, 39A8 et 47A10, contiennent entre 7 et 11 mutations dans leur site actif. Il a été montré qu’ils étaient capables de reconnaitre le saccharose et le maltose (un produit de la réaction avec le saccharose) comme donneur et accepteur pour synthétiser en quantités variables de l’erlose (α-D-Glucopyranosyl-(1→4)-α-D-Glucopyranosyl-(1→2)-β-D-Fructose) et du panose (α-D-Glucopyranosyl-(1→6)-α-D-Glucopyranosyl-(1→4)-α-D-glucose), des molécules non produites par l’enzyme sauvage. Des taux de production relativement élevés ont été obtenus pour ces molécules, dont les propriétés acariogènes et le pouvoir sucrant pourraient présenter un intérêt applicatif pour l’industrie alimentaire. Dans une dernière partie, un autre mutant, appelé 30H3, a été isolé lors du criblage primaire de la librairie de par son activité élevée sur saccharose (une amélioration d’un facteur 6.5 comparé à l’enzyme sauvage). Après caractérisation, le mutant s’est avéré synthétiser un profil unique de produits en comparaison de l’enzyme sauvage ASNp. Il s’est ainsi montré très efficace pour la synthèse de maltooligosaccharides solubles, de taille de chaînes contrôlée allant d’un DP 3 à 21, et de faible polydispersité. Aucun polymère insoluble n’a été identifié. La structure 3D du mutant résolue par cristallographie des rayons X a révélé un agrandissement de la poche catalytique en raison de la présence de 9 mutations introduites dans la première sphère....


  • Résumé

    Chemical synthesis of complex oligosaccharides still remains critical. Enzymes have emerged as powerful tools to circumvent chemical boundaries of glycochemistry. However, natural enzymes do not necessarily display the required properties and need to be optimized by molecular engineering. Combined use of chemistry and tailored biocatalysts may thus be attractive for exploring novel synthetic routes, especially for glyco-based vaccines development. The objective of this thesis was thus to apply semi-rational engineering strategies to Neisseria polysaccharea amylosucrase (NpAS), a sucrose-utilizing α-transglucosylase, in order to conceive novel substrate specificities and extend the potential of this enzyme to catalyze novel reactions, going beyond what nature has to offer. In a first study, a computer aided-approach was followed to reshape the active site of the enzyme (subsites +1, +2 and +3) for the recognition and α-1,4 glucosylation of a non-natural disaccharide acceptor molecule (allyl 2-deoxy-2-N-trichloroacetyl-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranose). The trisaccharide product is a building block for the chemo-enzymatic synthesis of oligosaccharides mimicking the repetitive units of the Shigella flexneri lipopolysaccharides, and ultimately, for the production of a vaccine against Shigellosis disease. Using computational tools dedicated to the automated protein design, combined with sequence analysis, a library of about 2.7x104 sequences was designed and experimentally constructed and screened. Altogether, 55 mutants were identified to be active on sucrose (the donor substrate), and one, called mutant F3, was subsequently found able to catalyze the α-1,4 glucosylation of the target disaccharide. Impressively, this mutant contained seven mutations in the first shell of the active site leading to a drastic reshaping of the catalytic pocket without significantly perturbing the original specificity for sucrose donor substrate. In a second study, three variants were identified from the screening of the semi-rational library on sole sucrose as displaying totally novel product specificities. They were further characterized, as well as their products, at both biochemical and structural level. These mutants, called 37G4, 39A8 and 47A10, contained between 7 and 11 mutations into their active site. They were found able to use sucrose and maltose (a reaction product from sucrose) as both donor and acceptor substrates to produce in varying amounts erlose (α-D-Glucopyranosyl-(1→4)-α-D-Glucopyranosyl-(1→2)-β-D-Fructose) and panose (α-D-Glucopyranosyl-(1→6)-α-D-Glucopyranosyl-(1→4)-α-D-glucose) trisaccharides, which are not produced at all by parental wild-type enzyme. Relatively high yields were obtained for the production of these molecules, which are known to have acariogenic and sweetening properties and could be of interest for food applications. In a last part, another mutant 30H3 was isolated due to its high activity on sucrose (6.5-fold improvement compared to wild-type activity) from primary screening of the library. When characterized, the mutant revealed a singular product profile compared to that of wild-type NpAS. It appeared highly efficient for the synthesis of soluble maltooligosaccharides of controlled size chains, from DP 3 to 21, and with a low polydispersity. No formation of insoluble polymer was found. The X-ray structure of the mutant was determined and revealed the opening of the catalytic pocket due to the presence of 9 mutations in the first sphere. Molecular dynamics simulations suggested a role of mutations onto flexibility of domain B’ that might interfere with oligosaccharide binding and explain product specificity of the mutant.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2015 par INSA à Toulouse

Computer-aided design and engineering of sucrose-utilizing transglucosylases for oligosaccharide synthesis


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Institut national des sciences appliquées. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.
Cette thèse a donné lieu à 1 publication .

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2015 par INSA à Toulouse

Informations

  • Sous le titre : Computer-aided design and engineering of sucrose-utilizing transglucosylases for oligosaccharide synthesis
  • Détails : 1 vol. (203 p.)
  • Annexes : Notes bibliogr.
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.