Comportement d'un composite à matrice céramique en fatigue et mise en place d'indicateurs d'endommagement par émission acoustique

par Elie Racle

Thèse de doctorat en Matériaux

Sous la direction de Nathalie Godin et de Pascal Reynaud.

Soutenue le 11-09-2015

à Lyon, INSA , dans le cadre de Ecole Doctorale Matériaux de Lyon (Villeurbanne) , en partenariat avec MATEIS - Matériaux : Ingénierie et Science (laboratoire) .

Le président du jury était Lamine Boubakar.

Le jury était composé de Nathalie Godin, Pascal Reynaud, Lamine Boubakar, Zoheir Aboura, Eric Martin, Philippe Boisse, Laurent Gornet.

Les rapporteurs étaient Zoheir Aboura, Eric Martin.


  • Résumé

    La compréhension du comportement d'un composite à matrice céramique (CMC) lorsqu'il est sollicité en fatigue est l'un des points clés pour permettre son utilisation dans un cadre industriel. Il est en effet nécessaire de déterminer la chronologie des différents mécanismes d'endommagement ainsi que d'estimer la durée de vie en conditions d'utilisation. Il est alors nécessaire de réaliser une caractérisation mécanique mais aussi de définir des indicateurs d'endommagement permettant la prévision de durée de vie. Dans ce but, il est intéressant de coupler l'analyse des paramètres mécaniques et les observations microstructurales à des techniques de suivi en temps réel de l'endommagement. L'émission acoustique (EA) est une méthode de suivi non destructive qui permet de répondre à cette problématique. Elle permet notamment de quantifier et de localiser l'endommagement. Dans ce travail, de nouveaux indicateurs d'endommagement sont mis en place tels la "Sévérité" des signaux définie à partir de l'énergie acoustique ainsi que la "Sentry function" définie à partir de l'énergie acoustique et de l'énergie mécanique. Ce travail s'articule autour de deux principaux axes. Dans un premier temps il s'agit de caractériser les effets de la sollicitation cyclique sur ce type de matériau, ceci notamment en comparant l'évolution des paramètres mécaniques, les observations microstructurales ainsi que l’analyse de l'évolution globale de l'émission acoustique (EA) lorsque le matériau est soumis à un chargement statique et à un chargement cyclique. La seconde partie consiste à déterminer un scenario d'endommagement. Dans un premier temps, les signaux d’EA sont analysés en fonction de leur détection dans le cycle (charge/décharge). Ensuite la détermination de la signature acoustique des différents mécanismes d'endommagement par application de techniques de reconnaissance de formes supervisées a permis d'évaluer leur chronologie d'activation durant les essais de fatigue cyclique. Cette étude a permis de mettre en évidence un ensemble de mécanismes propres à la sollicitation cyclique, composé principalement de décohésion et de frottement aux interfaces fibre/matrice et matrice/matrice. De plus, l'utilisation de l'émission acoustique a permis de définir des temps caractéristiques ou critiques pouvant être utilisés dans un objectif de prévision de la durée de vie. En effet, par exemple la sévérité des signaux a permis de mettre en évidence un temps caractéristique situé entre 25 et 45% de la durée de vie du matériau. La détection en temps réel de ce temps caractéristique permet d'estimer la durée de vie restante.

  • Titre traduit

    Behaviour of a ceramic matrix composite under fatigue loading and definition of damge indicators based on acoustic emission


  • Résumé

    The full understanding of a ceramic matrix composite under fatigue loading is needed in view of industrial applications. It is necessary to determine the damage mechanisms chronology and to be able to forecast the lifetime of the material in the conditions of use. To reach these purposes, a mechanical characterisation has to be done as well as the definition of damage indicators. It is then interesting to link the analysis of mechanical parameters and microscope observations with a non-destructive monitoring technique. Acoustic emission (AE) appears to be a good candidate to monitor material damage under loading. It makes the quantification and the material damage localisation possible. In this study, indicators based on released acoustic energy are used as "Severity" of signals or "Sentry function" which depends on both acoustic and mechanical energies. This work is organised in two parts. First, the analysis of mechanical parameters behaviour, material microstructure and global evolution of acoustic emission under static and cyclic loading makes the characterisation of the effects of cyclic fatigue on the material possible. The second part consists in determining a damage scenario. First acoustic emission signals are analysed depending on their acquisition during a cycle (loading or unloading). Then the connection between the acoustic emission signals and the different damage mechanisms, using a supervised clustering method, facilitated the estimation of the activation of these different damage mechanisms during cyclic fatigue tests. This study pointed out different damage mechanisms generated by cyclic loading, which are mainly debonding and friction at matrix/fibre and matrix/matrix interfaces. In addition, damage indicators based on acoustic emission enabled to determine characteristic times which can be used for lifetime forecast. For example, signal severity shows a characteristic time between 25% and 45% of the time to ultimate failure. Detection of this time in real-time during a test can be used to estimate the time of the ultimate failure of the material.



Le texte intégral de cette thèse sera accessible sur intranet à partir du 11-09-2020

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?