
En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :
Robotique et Informatique

Présentée et soutenue par :
M. ANDREAS ORTHEY

le jeudi 24 septembre 2015

Titre :

Unité de recherche :

Ecole doctorale :

EXPLOITER LA STRUCTURE POUR LA PLANIFICATION DE
MOUVEMENT HUMANOIDE

Systèmes (Systèmes)

Laboratoire d'Analyse et d'Architecture des Systèmes (L.A.A.S.)
Directeur(s) de Thèse :

M. OLIVIER STASSE

Rapporteurs :
Mme MAREN BENNEWITZ, FREIBURG UNIVERSITAT
M. PHILIPPE FRAISSE, UNIVERSITE MONTPELLIER 2

Membre(s) du jury :
1 M. PHILIPPE SOUERES, LAAS TOULOUSE, Président
2 M. OLIVIER STASSE, CNRS VITRY, Membre
2 M. SETHU VIJAYAKUMAR, UNIVERSITY OF EDINBURGH, Membre

2

3

Acknowledgement

Foremost, I would like to thank my supervisor Olivier Stasse. Thank you so much

for helping me to kickstart my life in Toulouse, for removing all those administra-

tive obstacles, for giving me the freedom to pursue my own ideas, and for always

grounding my abstract ideas in reality. If I look back, I couldn’t have been luckier

to have someone like you as a supervisor.

I would like to thank equally Sethu Vijayakumar, who was a great supporter

during my time in Edinburgh. And to Vladimir Ivan and Yiming Yang for be-

ing amazing lab mates. To Philippe Fraisse and Maren Bennewitz to review my

manuscript. To Eiichi Yoshida, for helping me with my research proposals and for

being part of my jury.

Special thanks to the whole team GEPETTO. For accompanying me those

three years. For all the creative input, especially from Philippe, Jean-Paul, and

Florent, who gave me a lot of inspiration. For the friendly atmosphere: Nicolas,

Michel, Bruno, Justin, Max, Mehdi, Joseph, Steve, Ganesh, Mathieu, Galo, Paolo,

Aiva, Mylene, and Naoko. And of course to our visitors, Mukunda, Coline, and

Ixchel. You made me really feel at home. Thanks to all the individuals who

inspired me. To Antonio, who build the wall leading us to discover irreducible

trajectories. To Olivier Roussel, a constant source of counter-examples, discussions

about lie group theory, and for being a good friend. To Andrea del Prete, for many

tips and advices for the upcoming postdoc life. And finally, thank you Christian

4

and Nemo. You made my time in our group really enjoyable. Thank you!

Of course, this thesis would not have existed without those masses of people,

of people who contributed to our current stable political situation, of people who

inspired me by their science-fiction novels, of people who discovered our current

knowledge in physics, computer science, mathematics. Too many to name.

Thanks to my family and friends in Germany. Thanks to everyone who sup-

ported me.

5

Abstract

If humanoid robots should work along with humans and should be able to solve

repetitive tasks, we need to enable them with a skill to autonomously plan motions.

Motion planning is a longstanding core problem in robotics, and while its algo-

rithmic foundation has been studied in depth, motion planning is still an NP-hard

problem lacking efficient solutions. We want to open up a new perspective on the

problem by highlighting its structure: the behavior of the robot, the mechanical

system of the robot, and the environment of the robot. We will investigate the hy-

pothesis that each structural component can be exploited to create more efficient

motion planning algorithms. We present three algorithms exploiting structure,

based on geometrical and topological arguments: first, we exploit the behavior of

a walking robot by studying the feasibility of footstep transitions. The resulting

algorithm is able to plan footsteps avoiding up to 60 objects on a 6 square meters

planar surface. Second, we exploit the mechanical system of a humanoid robot by

studying the linear linkage structures of its arms and legs. We introduce the con-

cept of an irreducible motion, which is a completeness-preserving dimensionality

reduction technique. The resulting algorithm is able to find motions in narrow en-

vironments, where previous sampling-based methods could not be applied. Third,

we exploit the environment by reasoning about the topological structure of con-

tact transitions. We show that analyzing the environment is an efficient method

to precompute relevant information for efficient motion planning. Based on those

6

results, we come to the conclusion that exploiting structure is an essential compo-

nent of efficient motion planning. It follows that any humanoid robot, who wants

to act efficiently in the real world, needs to be able to understand and to exploit

structure.

7

Abstract

Afin que les robots humanoïdes puissent travailler avec les humains et être en

mesure de résoudre des tâches répétitives, nous devons leur permettre de plani-

fier leurs mouvements de façon autonome. La planification de mouvement est un

problème de longue date en robotique, et tandis que sa fondation algorithmique

a été étudiée en profondeur, la planification de mouvement est encore un prob-

lème NP-difficile et qui manque de solutions efficaces. Nous souhaitons ouvrir une

nouvelle perspective sur le problème en mettant en évidence sa structure: le com-

portement du robot, le système mécanique du robot et l’environnement du robot.

Nous allons nous intéresser à l’hypothèse que chaque composante structurelle peut

être exploitée pour créer des algorithmes de planification de mouvement plus ef-

ficaces. Nous présentons trois algorithmes exploitant la structure, basés sur des

arguments géométriques et topologiques: d’abord, nous exploitons le comporte-

ment d’un robot de marche en étudiant la faisabilité des transitions des traces de

pas. L’algorithme qui en résulte est capable de planifier des traces de pas tout en

évitant jusqu’à 60 objets situés sur une surface plane 6 mètres carrés. Deuxième-

ment, nous exploitons le système mécanique d’un robot humanoïde en étudiant les

structures des liaisons linéaires de ses bras et de ses jambes. Nous introduisons le

concept d’une trajectoire irréductible, qui est une technique de réduction de dimen-

sion préservant la complétude. L’algorithme résultant est capable de trouver des

mouvements dans des environnements étroits, où les méthodes d’échantillonnage

8

ne pouvaient pas être appliquées. Troisièmement, nous exploitons l’environnement

en raisonnant sur la structure topologique des transitions de contact. Nous mon-

trons que l’analyse de l’environnement est une méthode efficace pour pré-calculer

les informations pertinentes pour une planification de mouvement efficace. En

s’appuyant sur ces résultats, nous arrivons à la conclusion que l’exploitation de la

structure est une composante essentielle de la planification de mouvement efficace.

Il en résulte que tout robot humanoïde, qui veut agir efficacement dans le monde

réel, doit être capable de comprendre et d’exploiter la structure.

Contents 9

Contents

1 Introduction 17

1.1 Contributions . 21

1.2 Publications . 22

1.3 Related Work . 23

2 Reactive Motion Planning 29

2.1 Summary . 29

2.2 Introduction . 30

2.3 Related Work . 31

2.4 Background . 33

2.4.1 Planning in Contact Space 33

2.4.2 Optimal whole-body motion between contact points 34

2.4.3 Swept-Volume Approximations 35

2.5 Contact Transition and Object (CTO) Space 36

2.6 Precomputation of Decision Boundary in CTO Space 39

2.6.1 Sampling of the feasibility function 39

2.6.2 Nonlinear Discriminative Analysis 41

2.6.3 Algorithmic analysis . 43

2.7 Experiments . 44

2.7.1 Planning . 44

10 Contents

2.7.2 Walking in Cluttered Environment 44

2.8 Integration into Industrial Project 47

2.8.1 Implementation Details . 47

2.9 Conclusion . 48

3 Irreducible Motion Planning 51

3.1 Introduction . 52

3.2 Related Work . 55

3.3 Irreducible Trajectories . 56

3.4 Irreducibility for Linear Linkages 59

3.4.1 Swept Volume of a Train . 60

3.4.2 Curvature Functional Space 62

3.4.3 Reducibility theorems of ℱ𝜅0 63

3.4.4 Generalization to 𝑁 sublinks 66

3.4.5 Irreducibility of Linear Linkage 67

3.4.6 3-Dimensional Conjecture 71

3.5 Irreducible Curvature Complete Algorithm 74

3.5.1 Irreducibility Assurance Controller 75

3.6 Experiments . 77

3.6.1 Swimming Snake . 77

3.6.2 Humanoid Robot . 79

3.7 Discussion . 84

3.8 Conclusion . 85

4 Homotopic Particle Motion Planning 87

4.1 Summary . 87

4.2 Introduction . 88

4.3 Related Work . 90

Contents 11

4.4 Environment Homotopy Decomposition 91

4.5 Convex optimization of Footpath Homotopies 95

4.6 Upper Body Optimization . 99

4.7 Experiments . 102

4.8 Conclusion . 105

4.9 𝐻 space to 𝑄 space . 105

5 Conclusion 109

A Proofs 113

12 Contents

List of Figures 13

List of Figures

1.1 Humanoid Robots at DRC . 19

2.1 Layout kids-room problem . 32

2.2 Solution to kids-room problem . 32

2.3 HRP-2 and the kids-room problem 32

2.4 Overview contact transition feasibility 39

2.5 Model complexity and feasibility function 43

2.6 Experiment cluttered environment 45

2.7 Comparison swept volume approximation and feasibility precompu-

tation . 46

2.8 Online replanning on robotic system HRP-2 49

3.1 Linear Linkages in the Wild . 53

3.2 Irreducible Trajectories – Explanatory Example 57

3.3 Free linear linkage . 60

3.4 𝑁 = 2 linear linkage system . 61

3.5 Possible swept volume of linear linkage 64

3.6 Cone spanned by root link . 64

3.7 Succession of Cones . 67

3.8 Linear linkage along a curve in 2d 68

3.9 Visualization of the counterexample for completeness 73

14 List of Figures

3.10 𝜅-curvature completeness . 73

3.11 Irreducible Curvature Projection Algorithm 76

3.12 Visualization of irreducible curvature projection algorithm 77

3.13 Planning for head of swimming snake 79

3.14 Reduced mechanical system HRP-2 79

3.15 Approximation of the arm of HRP-2 80

3.16 Wall motion planning problem . 83

4.1 Homotopically equivalent particle space curves 89

4.2 Conceptual overview homotopic particle motion planning 92

4.3 Visualization largest inscribed circle polytope surface 94

4.4 Function support on contact surfaces 96

4.5 Continuous footstep trajectories in two homotopy classes 96

4.6 Continuous footstep trajectories in four homotopy classes 97

4.7 Cross section of robot HRP-2 . 102

4.8 Visualization homotopic particle motion planning 103

4.9 Comparison particle planning and sampling-based planning 104

4.10 Geometrical sideview humanoid robot 107

5.1 Persistent topological decomposition of motion planning 112

List of Tables 15

List of Tables

3.1 Values reduced mechanical model HRP-2 81

3.2 Values arm approximation HRP-2 81

3.3 Simulation results irreducible motion planning 84

4.1 Planning results homotopic particle motion planning 98

16 List of Tables

17

Chapter 1

Introduction

Robotics has influenced our society in profound ways. Nowadays, we have vacuum

cleaners autonomously operating in our houses, manufacturing robots assembling

aircrafts, and drones autonomously mapping and surveying our planet.

"Motion is one important

building block of intelligent

Behavior"

However, many tasks are out of

reach for current robot technology.

Robots still cannot replace construc-

tion workers, cannot enforce law and

order, and cannot autonomously mine

natural resources. All those tasks re-

quire sufficiently agile robots, robots which can act in the same way as human

beings. Humanoid robots have therefore become an important research direc-

tion in robotics, with many research groups focusing on the design and construc-

tion [1][2][3][4][5][6], and on the control and stabilization [7][8][9][10] of humanoid

robots. Despite those focused efforts, no humanoid robot is able to match the

agility, the speed and the real-world problem-solving skills of a human being. It is

therefore natural to ask what is the missing piece to bring humanoid robots into

the real-world.

18 Chapter 1. Introduction

I am arguing here that one missing piece is a lack of true understanding of

motion. Motion is one important building block of intelligent behavior: if we want

to understand the function of a bicycle, we need to interact with the bicycle, which

requires motion. If we want to write a letter, we need to coordinate our fingers,

which requires motion. If we want to build a spaceship, we need to move and

concatenate small pieces, which requires motion.

It comes to no surprise that planning a motion — the motion planning problem

— is therefore one of the core problems in robotics. The field of motion planning

has become the principled way of formalizing and understanding motions, as de-

scribed in the comprehensive book "Planning Algorithms" by Steve LaValle [11],

which forms the corner-stone of modern motion planning research. One key area of

motion planning are humanoid robots. Humanoid robots are of particular interest,

because they are interesting to study in their own right, involving high-dimensional

problems of stabilization, planning and reasoning, and because they could enable

technological breakthroughs, involving automatization of the agricultural, food

and the service industry. The book "Motion Planning for Humanoid Robots" by

Editors Harada, Yoshida and Yokoi [12] gives a comprehensive overview. The key

message is: the problem is theoretically solved. However, the problem lies in one

of the hardest computational complexity classes and so a problem which can be

solved by a human in one second, can be solved by a humanoid robot only in hours

or days. As a particular example, one experiment from this thesis found that with

state-of-the-art methods moving a robot through a narrow environment like a wall

(see Figure 4.8) took in the worst case up to 44 hours [13].

Clearly, 44 hours is too much if we want to deploy humanoid robots in the

real-world. I am arguing here, that we can reduce the planning time if we are

able to understand and to exploit the structure of the underlying motion planning

problem. This argument will form my main hypothesis: Efficient motion planning

19

Figure 1.1: Motion planning for humanoid robots is computationally hard, but could enable
breakthrough technologies and could provide us with a deeper algorithmic understanding of
intelligent behavior. Left: Robot at the DARPA robotics challenge manipulating a valve. Right:
Robot HRP-2 walking through a wall. Orthey, Andreas. 2015.

requires exploitation of structure. To show that this hypothesis is valid, i will use

a constructive approach by developing specifically tailored algorithms, which each

take advantage of a particular structural component of the problem.

"Hypothesis: Efficient motion

planning requires exploitation

of structure"

To be able to do that, we have

to clarify which components are con-

tributing to motion planning. Infor-

mally, we have identified three main

components: the desired behavior of

the robot, the mechanical system of the

robot, and the environment surrounding the robot. We claim that each component

can be exploited to yield more efficient motion planning algorithms. I will set out

to show the correctness of this claims in the chapters that follow.

We start in Chapter 2 to simplify contact motion planning [14][7] by exploiting

common walking behavior of a humanoid robot. Our algorithm is able to achieve

realtime motion planning by using a large set of simplifications. While being com-

putationally very efficient, the methods developed in this chapter are not complete,

and will not work in very narrow environments.

20 Chapter 1. Introduction

The key contribution of this thesis is the introduction of irreducible trajectories

in Chapter 3, where we prove that a dimensionality reduction from the space of all

possible trajectories to the space of irreducible trajectories preserves completeness.

We show that this concept can be applied to the arms of a humanoid robot, to

simplify motion planning in narrow passage.

Since narrow passage in configuration space are clearly visible in workspace,

we have exploited the workspace topology in Chapter 4. Instead of planning in

configuration space, we formulate the complete motion planning problem in the

workspace as the problem of planning for a set of particles. Most importantly,

using this novel view on the problem we have been able to estimate the number

of local minima in a specific case.

1.1. Contributions 21

1.1 Contributions

To summarize the contributions of this thesis:

1. Chapter 2 investigates methods to simplify motion planning by exploiting a

desired behavior. If the robot only uses upright walking behavior, then we

can precompute swept volume structures for feasibility analysis. In partic-

ular, we precompute if a transition between two contact points is feasible,

given behavior and simple environment primitives

2. In Chapter 3 we exploit linear linkage structures, which are a main compo-

nent of the mechanical system of a humanoid robot. We introduce the key

concept of an irreducible trajectory, which is an abstract notion of how we

can reduce the dimensionality of motion planning while preserving complete-

ness.

3. In Chapter 4 we exploit the topological structure of a given environment.

In particular, we exploit the homotopy classes by conducting continuous

optimization for a set of particles in workspace.

22 Chapter 1. Introduction

1.2 Publications

Parts of this thesis have been made public in Journal or Conference articles. The

complete list of publications from this thesis is given here as a reference

JOURNALS

∙ [15] A.Orthey, O.Roussel, O.Stasse, M.Taix Irreducible Motion Planning

by Exploiting Linear Linkage Structures , Transactions on Robotics (T-RO),

2015, (Submitted to)

CONFERENCES

∙ [16] A.Orthey, V.Ivan, M.Naveau, Y.Yang, O.Stasse, S.Viyajakumar, Ho-

motopic Particle Motion Planning, International Conference on Humanoid

Robots (Humanoids), Seoul, Korea, 2015, (Submitted to)

∙ [13] A.Orthey, O.Stasse, F.Lamiraux, Motion Planning and Irreducible Tra-

jectories, International Conference on Robotics and Automation (ICRA),

Seattle, WA, USA, 2015

∙ [17] O.Stasse, A.Orthey, F. Morsillo, M. Geisert, N. Mansard, M.Naveau,

C.Vassallo, Airbus/Future of Aircraft Factory, HRP-2 as Universal Worker

Proof of Concept, International Conference on Humanoid Robots (Humanoids),

Madrid, Spain, 2014

∙ [18] A.Orthey, O.Stasse, Towards Reactive Whole-Body Motion Planning

in Cluttered Environments by Precomputing Feasible Motion Spaces, Inter-

national Conference on Humanoid Robots (Humanoids), Atlanta, GA, USA,

2013

1.3. Related Work 23

1.3 Related Work

The study of planning a motion in arbitrary environments for a mechanical sys-

tem ℛ is called motion planning. Motion planning resolves around the concepts of

degrees-of-freedom (DOF) and the configuration space (C-space). The DOFs of a

mechanical system ℛ are defined as the maximum number of independent param-

eters which fully specify the transformations applied to the system [11]. The space

spanned by the parameters of the DOFs is called the C-space, denoted by 𝒞. The

C-space is divided into the free C-space 𝒞𝑓 , which contains all those configurations

which are physically feasible, i.e. they respect the following constraints

1. Joint Limits

2. Self-Collision

3. Stability

4. Collision with Environment

Given an initial configuration 𝑞𝑖 ∈ 𝒞𝑓 and a goal configuration 𝑞𝐺 ∈ 𝒞𝑓 , the

goal of motion planning is to find a continuous trajectory 𝜏 : [0, 1] → 𝒞𝑓 , which

lies entirely in 𝒞𝑓 .

Since the seminal works by Lozano-Perez [19], Reif [20] and Canny [21], the

main focus of motion planning was on the algorithmic side. In particular, sampling-

based methods like probabilistic roadmaps (PRM) [11] and the rapidly-exploring

random tree (RRT) [22] have been successfully applied not only in robotic settings

[23], [9],[24], but also in protein folding tasks [25],[26], [27]. Research effort in the

last years has been concentrated immensively on the algorithmic development of

sampling-based methods. Many variants of the RRT have been proposed, among

the most prominent ones are: bidirectional RRT (BiRRT) [11] which grows simul-

taneously two trees in C-space; RRT* [28], the probabilistic optimal variant of

24 Chapter 1. Introduction

RRT; CBiRRT [29] introduces workspace task regions into RRT; AtlasRRT [30]

builds the topological structure of the configuration space to facilitate sampling. A

recent survey for sampling-based methods in motion planning has been published

[31]. For a basic tutorial and future directions consider the two-part paper by

LaValle [32], [33].

While algorithmic developments are an important component for handling an

NP-hard problem, algorithmic developments are not the only possibility to ap-

proach the problem. I am arguing here, that it is at least equally important to

understand and exploit the structure of the underlying problem. Having a good

understanding of the structure, we can then use this understanding to guide algo-

rithmic design.

As motivated in Chapter 1, our interest lies in motion planning for humanoid

robots [34]. Humanoid robots have been successfully employed for many tasks in-

cluding climbing walls [35][14], climbing ladders [9], cooking pancakes [36], opening

doors [37], manipulating valves [38], kicking footballs [39], and moving through nar-

row wall passages [13]. In the recent DARPA robotics challenge semi-autonomous

robots showed remarkable real-world results. However, to obtain fully autonomous

humanoid robots, we argued in Chapter 1 that we need to exploit structure. Struc-

ture can be found in the mechanical system of the robot, in the environment, or

in intended the behavior. To exploit this structure, research in humanoid robotics

has concentrated on finding an efficient decomposition of the problem.

The most basic decomposition is footstep planning, whereby first we plan foot-

steps, and then in a second step, along the footsteps, we plan upper-body motions.

Different variants of this concept have been employed on different robotic systems.

The most prominent examples include the Asimov robot from HONDA [40], HRP-2

[41],[18] from AIST in Japan, NAO from Aldebaran Robotics, [42],[43] and ATLAS

[7] from Boston Dynamics. The goal of footstep planning is to restrict the con-

1.3. Related Work 25

figuration space of the robot to those subspaces which have valid contacts. While

being pratically efficient, however, we sacrifice completeness if we apply footstep

planning.

Another line of research has focused on decomposing motion planning by first

finding multi-body contacts for the robot, and then using those contacts to search

for whole-body configuration. A generalization of footstep planning to multi-

contact planning. Succesful systems have been designed by Hauser [14], and

Escande [44]. An important simplification for multi-contacts is the quantity of

force applicable at a contact, formalized as the force ellipsoid [45]. Tonneau et al.

[46] used this concept in motion planning for virtual avatars to achieve near real-

time performance. While those heuristics work well in practice, again, we sacrifice

completeness by decomposing the problem.

A completeness-preserving decomposition can be obtained by first computing

the topological structure of the environment, and afterwards planning whole-body

configurations only in the path-connected parts of the environment. This has been

pioneered by Brock and Kavraki [47], who developed a sphere expansion algorithm

to efficiently find a tunnel, a path-connected component in the environment be-

tween initial and goal configuration. In an extension of this work, Yang and Brock

[48] investigated how trajectories can be deformed if the tunnel deforms. Deform-

ing a trajectory based on deformation of the environment gives us a clue that there

might be a mapping from environment to trajectories, which can be learned with

machine learning techniques. Jetchev and Toussaint [49] developed such a machine

learning based mapping for a robot manipulator. A recent rigourous treatment of

exploiting the topological structure of the environment is given by Bhattacharya

et al. [50]. Farber [51] investigated the topological complexity of the configuration

space, a notion which could be used to analyse the complexity of the environ-

ment. In Chapter 4 we build upon those works to decompose the contact surfaces

26 Chapter 1. Introduction

of the environment in its homotopy classes and develop a continuous trajectory

optimization method inside each homotopy class.

Despite decomposing the problem into appropriate subproblems, we can exploit

structure also by dimensionality reduction techniques. The core idea is to ignore

dimensions of the planning problem, which might not contribute as much to the

solution. For example the configuration of the finger joint of the hand will not

contribute as much to the change in the swept volume compared to the hip joint.

Simplifications based on dimensionality reduction have been for example employed

for directing sampling-based planners [52], in manipulation planning [53][54] and

on deformable robots [55]. We will review dimensionality reduction techniques

in more detail in Chapter 3, where we also introduce the concept of irreducible

trajectories, which provides a principled framework to reduce the dimensionality

of linkage structures.

More conceptually, we like to point out that exploiting structure is a general

strategy to simplify problems, a strategy to find efficient solutions to NP-hard prob-

lems and a strategy to acquire understanding. Hendrickson [56] exploited structure

to efficiently solve an NP-hard global optimzation problem related to finding in-

variances in molecular structures. Poupart [57] investigated general structural

components in markov decision processes (MDPs) to generate efficient solving

strategies. Ryan [58] exploited graph structures to simplify multi-robot path plan-

ning. Burns and Brock [59] explicitly try to exploit problem structure by steering

sampling-based methods to high-utility regions. Hutchinson [60] exploited visual

features in motion planning. Even highly successful mathematical theories can be

seen as mechanisms to exploit structure. Group theory [61] exploits symmetri-

cal structures of objects and transformations, topology [62] exploits deformation

invariances in geometrical structure, and convex optimization [63] exploits the

structure of specific functional spaces. Motivated by those successes, this thesis is

1.3. Related Work 27

a first step to investigate the structural components in humanoid motion planning

in a principled way. The goal of exploiting structure in motion planning is twofold:

first we want to acquire a deeper understanding of motion planning and second,

we want to develop highly efficient motion planning algorithms.

28 Chapter 1. Introduction

29

Chapter 2

Reactive Whole-Body Motion

Planning

"To perceive is [..] to learn how the environment structures one’s

possibilities for [..] action afforded by the environment."
— Alva Noë, Action in Perception

2.1 Summary

"We demonstrate how the prior

knowledge about object geome-

tries can achieve near real-time

performance in highly-cluttered

environments"

To solve complex whole-body motion

planning problems in near real-time, it

is essential to precompute as much in-

formation as possible, including our in-

tended movements and how they affect

the geometrical reasoning process. In

this chapter, we focus on the precompu-

tation of the feasibility of contact tran-

sitions in the context of discrete contact

planning. Our contribution is twofold: First, we introduce the contact transition

30 Chapter 2. Reactive Motion Planning

and object (CTO) space, a joint space of contact states and geometrical infor-

mation. Second, we develop an algorithm to precompute the decision boundary

between feasible and non-feasible spaces in the CTO space. This boundary is used

for online-planning in classical contact-transition spaces to quickly prune the num-

ber of possible future states. By using a classical planning setup of A* together

with a 𝑙2-norm heuristic, we demonstrate how the prior knowledge about object ge-

ometries can achieve near real-time performance in highly-cluttered environments,

thereby not only outperforming the state-of-the-art algorithm, but also having a

significantly lower model sparsity.

2.2 Introduction

Consider the problem in Fig. 2.1: A highly-cluttered environment has to be tra-

versed by a humanoid robot, without stepping onto obstacles on the ground. The

goal is to find a set of footsteps, which allows us to move the robot towards the

goal region. This problem is problematic from different point of views: First, for

each footstep we want to take, we have to compute a control law for each degree

of freedom of the robot, such that we fulfill certain constraints like joint limits,

dynamics and stability. Second, we have to check if the body of the robot is in

collision with objects in the environment. Due to the large number of objects

and the nearness of the robot to the objects, this is generally not possible in real-

time. In this chapter, we provide an algorithm, which generates a footstep path

for a humanoid robot which is faster than the state-of-the-art approach, and runs

in real-time even for challenging environment like the one in Fig. 2.1, where 30

objects are randomly placed.

The underlying problem is the one of real-time planning of motions for a high-

dimensional degrees of freedom robot. We approach this problem by using an

2.3. Related Work 31

approximation method to precompute if a motion between two contact points will

be feasible. Our contribution is twofold: First, we introduce the contact transition

and object (CTO) space: The union of a reduced set of contact points and the

parameters of approximated objects in the environment. Second, we perform an

analysis of the decision boundary between feasible and non-feasible subspace within

the CTO space. We hereby focus on a sparse and approximate representation of

this boundary, which allows us to discriminate very fast between feasible and non-

feasible contact points.

This work can be seen as an additional simplification of planning in the contact

space of a robot [44]. It further develops the ideas of [41], which used the swept

volume – defined as ”the space, occupied by a robot during the execution” [64]

– to precompute if a motion between two contact points will be feasible. We

further advance this precomputation idea by including the geometrical information

of objects in the environment.

The chapter is organized by first considering related work in Section 2.3. Sec-

tion 2.4 will focus on background in contact planning, motion generation and

swept volume approximation. In Section 2.5 we introduce the CTO space, Sec-

tion 2.6 discusses the sampling and approximation of the feasibility function, and

Section 2.7 demonstrates the applicability of our approach in a highly-cluttered

environment.

2.3 Related Work

We provide in this section a basic overview about contact planning, with empha-

sis on footstep planning but also on how to construct a general contact space

framework. For each approach, we focus on its relation to our work.

Chestnutt et al. [65, 40] pose the problem of footstep planning as a discrete

32 Chapter 2. Reactive Motion Planning

Figure 2.1 Figure 2.2

Figure 2.3: Left: A highly-cluttered environment with 30 randomly placed objects, where the
robot has to avoid stepping onto objects, while reaching a goal region. Right: Our algorithm
finds a feasible footstep path in 0.3𝑠 by (1) approximating objects with simple geometrical shapes
and (2) adding this geometrical information to the precomputation of the feasibility of motions.

search problem, and are approximating its heuristic by a mobile robot planner.

Complementary to their work we use a simple heuristic, and instead focus solely

on a fast decision about which steps will be feasible in the present of obstacles.

Escande et al. [44] provide a complete framework for multi-contact planning,

in which they investigate how to choose contact points, and how to generate paths

between them. Our work focuses on the first point, for which we provide an

approximate solution.

Hauser et al. [14] are planning general multi-contact points for a humanoid

climbing robot. Their approach focuses on using motion primitives of contact

points as an initial trajectory for a sampling based algorithm. While their work is

concerned with finding a probabilistically complete algorithm, we focus on simpli-

fications for real-time planning.

Hornung et al. [43] are using a anytime variant of the A* algorithm to plan

footsteps for the Nao robot. This can be seen complementary to our work, in

which we try to approximate the feasibility of footstep transitions.

2.4. Background 33

Perrin et al. [41] are using swept volumes to approximate the contact transition

between footsteps. While they require the storage of complete swept volumes for

collision checking, we devised an approximate mapping from contact points to

feasibility by incorporating the object geometry directly into the precomputation

process.

2.4 Background

Our approach is based on three core topics, which will be explained in the following

sections: First, we introduce the concept of contact-space planning to reduce the

dimensionality of a robotic system in Section 2.4.1. Second, we discuss how the

whole-body motion of a robot is generated between two contact points in Section

2.4.2, and finally, we introduce approximation via swept volumes in Section 2.4.3.

2.4.1 Planning in Contact Space

Planning a movement for a robotics system, with many degrees of freedom (dof),

is commonly seen as intractable, because their complexity is exponential in the

number of dof [11]. A simplification, which reduces the planning dimensions, is

the contact-space planning approach [65, 44, 14]. Planning is posed as a discrete

search problem of finding a sequence of contact-points, which can be used to reach

a desired goal region. For transitions between contact-points, local optimization

methods can be used. In our work, we will make the further simplification, that

contact-points are restricted to footsteps. The long-term goal of our research

is the inclusion of hand-environment contacts, which is why we formulate our

approach in terms of general contact-points, rather than foot-contacts. We also

note, that we are interested in fast real-time planning methods, which is contrary

to algorithms which try to find a complete trajectory in the general contact-point

34 Chapter 2. Reactive Motion Planning

space [14, 44]. Earlier research in motion planning made this distinction explicit

by dividing algorithms into coarse and fine motion planning [66] — whereby our

work can be considered coarse motion planning.

2.4.2 Optimal whole-body motion between contact points

For finding a trajectory between two contact points x𝐼 and x𝐺, we assume that

there is an optimization function 𝑝 : R𝑀 × 𝒦 → R𝑑, which maps a contact point

x, of dimension 𝑀 , into a joint configuration 𝑞, of dimension 𝑑, which we will

call a contact configuration. The space 𝒦 defines a behaviour of the robot, i.e.

how the rest of the body is positioned. Given one behaviour, and assuming zero

noise, the mapping 𝑝 is uniquely defined, so that we can further operate on contact

configurations, without loss of generality. Between two contact configurations 𝑞𝐼

and 𝑞𝐺, we then utilize a local optimization function formalized as a classical

optimal control problem

minimize
𝑢

𝑡𝑓∫︁
𝑡0

𝐶(𝑢(𝑡), 𝑞(𝑡))𝑑𝑡

subject to 𝑞(𝑡) = 𝑓(𝑞(𝑡), 𝑢(𝑡))

whereby 𝑞(𝑡) is the configuration at time 𝑡, 𝑢(𝑡) is the control input, 𝑓 is the

dynamics of the robot, and 𝐶 is the cost function, which could depend on the

task and the behaviour we want to achieve. We now assume the existence of an

algorithm 𝑔, which solves the whole-body generation problem between two contact

configurations:

𝑞𝑞𝐼→𝑞𝐺
= 𝑔(𝑞𝐼 , 𝑞𝐺, 𝐶) (2.1)

2.4. Background 35

whereby 𝑞𝑞𝐼→𝑞𝐺
is the final trajectory of the robot, 𝑞𝐼 and 𝑞𝐺 are the start

and the goal configurations, and 𝐶 is the above mentioned cost function. Besides

being a non-chaotic system, we make no restrictions on the optimization algorithm

𝑔 and the cost function 𝐶. Therefore, we can make use of potential functions [11],

nonlinear attractors like the dynamical motion primitive [67], stochastic optimal

control solvers [68], or – as in our case – a hierarchical null space control framework,

called the stack of task [69]. In this case, we use costs depending on distance to

self collisions, distance to joint limits, and dynamical stability.

In the absence of noise, we assume that the optimization problem is uniquely

defined, i.e. for a pair of 𝑞𝐼 ,𝑞𝐺, optimizer 𝑔, and cost function 𝐶, 𝑔 returns one

unique trajectory.

2.4.3 Swept-Volume Approximations

The unique trajectory from Eq. (2.1) defines directly a swept volume of the

robot body [41], which we will denote as 𝒮𝒱𝑞𝐼 ,𝑞𝐺
. The number of possible contact

transitions is infinite and needs to be reduced to make planning computationally

tractable. We therefore use a set of 𝑁 contact points, which are a discretization

of all mechanically feasible footsteps of the robot. This implies the computation

of
(︁

𝑁
2

)︁
swept volumes (one for each transition pair). By adding a waypoint, as re-

ported in [41], one can assume, that each transition will have a common end point,

which prunes the number of swept volumes to 𝑁 . Using this setting, Perrin et al.

[41] have demonstrated real-time motion planning in a constrained environment

with fixed upper body and stepping capabilities. Our goal in the next section is to

show, how to speed up this approach by (1) introducing the geometry of objects

directly into the precomputation algorithm and (2) approximating the decision

boundary between feasible and non-feasible space in the joint space of objects and

contact points.

36 Chapter 2. Reactive Motion Planning

2.5 Contact Transition and Object (CTO) Space

To plan a discrete set of contacts for a robot, we want to precompute if the tran-

sition between two contact points is feasible. The feasibility is a function of the

environment and the underlying controller. It is therefore necessary to represent

the environment, which we do by using an object-centered approach and by fitting

generalized geometrical shapes to those objects.

To decide if a contact transition will be feasible, a common approach [41] is to

use precomputed swept volumes for each contact transitions and check each swept

volume for collisions with all visible objects in scene. In this work, we go one

step back and analyse directly the joint space of contact points 𝒳 and objects O.

Instead of recalling the swept volume and doing collision checking to determine

feasibility, our goal is to approximate a feasibility function 𝑓 : 𝒳 ×O → R directly

by learning a discriminative function of the form 𝑓 : 𝒳 × O → R, such that we

minimize the distance between them.

For making this tractable, we apply two simplifications: First, we use a discrete

set of contact points 𝒳 , which was obtained from all possible contact points 𝒳

by (A) utilizing the symmetries of the robot body and a waypoint contact as

discussed in section 2.4.3, (B) uniformly discretizing contact points from 𝒳 , and

(C) pruning contact points not satisfying internal constraints — like joint limits

and self collisions. This provides us with a set of 𝑁 contact points, which all have

the same common goal contact point x𝐺. For example to go from an arbitrary

contact x0 to another contact x2, we concatenate x0 to x𝐺, and x𝐺 to x2. The

contact points are a set with an underlying structure, in this case an geometrical

ordering (position of contacts) and a metric (distance between contacts). Set and

structure define together a mathematical space, such that we can define:

Definition 1 (Reduced Contact-Transition Space). A discrete set of contact points

2.5. Contact Transition and Object (CTO) Space 37

x0, · · · , x𝑁 , which have a common goal contact point x𝐺

𝒳 = {x0, · · · , x𝑁} (2.2)

In this chapter, one contact point is defined as x = {(𝑥, 𝑦, 𝜃, 𝑞)𝑇 |𝑥, 𝑦, 𝜃 ∈

𝑆𝐸(2), 𝑞 ∈ {𝐿, 𝑅}}, whereby 𝑥, 𝑦 are the middle point of one foot, and 𝜃 is

the inclination, and 𝑞 is the support foot.

Second, we observe that the detailed shape of an object is not important for

coarse motion planning [66], where one is interested in a first reasonable guess of

the trajectory. We therefore build the reduced object space Õ from the complete

object space O by assuming that objects can be approximated by basic geometrical

shapes. As an intermediate representation between a set of basic shapes (cylinder,

sphere, box) and a complete mesh triangle representation, we utilize a general-

ization of basic shapes, called the superellipsoid. The superellipsoid allows us to

describe different basic shapes by one formula with a sparse set of parameters [70]

𝑆(𝑥, 𝑦, 𝑧; 𝜃, �⃗�) =
(︃(︂

𝑥

𝜆1

)︂ 2
𝜃2 +

(︂
𝑦

𝜆2

)︂ 2
𝜃2

)︃ 𝜃2
𝜃1

+
(︂

𝑧

𝜆3

)︂ 2
𝜃1 (2.3)

whereby 𝜃 > 0 specifies the shape (e.g. a cylinder), and �⃗� > 0 specifies the

elongations along the axes (e.g. the height and radius of a cylinder). Eq. (2.3) is

called the inside-outside function, referring to points 𝑥, 𝑦, 𝑧 as being outside the

object for 𝑆(𝑥, 𝑦, 𝑧) > 1 and inside or on the surface for 𝑆(𝑥, 𝑦, 𝑧) ≤ 1. Examples

include the ellipsoid (𝜃1 = 1, 𝜃2 = 1), cylindroid (𝜃1 ≪ 1, 𝜃2 = 1) and the quader

(𝜃1 ≪ 1, 𝜃2 ≪ 1). For this work, we restrict objects to the cylindrical space by

defining

Definition 2 (Reduced Object Space). The set of objects o, which can be approx-

38 Chapter 2. Reactive Motion Planning

imated by a superellipsoid in the form

Õ = {(𝑥, 𝑦, 𝜑, 𝜃, �⃗�)𝑇 |𝑥, 𝑦, 𝜑 ∈ 𝑆𝐸(2),

𝜃 = (0.01, 1)𝑇 ,

�⃗� ∈ R+}

(2.4)

Together with the contact points, we can now define the CTO space:

Definition 3 (Contact Transition and Object Space). The union of reduced con-

tact space and reduced object space

𝒞CTO = {𝒳 ∪ Õ} (2.5)

Having defined the 𝒞CTO space, the rest of the chapter is devoted to the compu-

tation of the decision boundary between the feasible subspace and the non-feasible

subspace. This is formulated as finding a discriminative function 𝑓 , which mini-

mizes an optimization problem of the form

argmin
𝑓

||𝑓(x, o)− 𝑓(x, o)||2

s.t. o ∈ Õ, x ∈ 𝒳

Whereby 𝑓 and 𝑓 are computing the feasibility of a contact transition as de-

picted in Fig. 2.4: 𝑓 first optimizes a controller to traverse the contact points,

then computes the swept volume along its trajectory and finally conducts collision

checking with objects in the environment; 𝑓 simplifies this computation by acting

as a discriminative function for the 𝒞CTO space, to directly decide if a contact

transition and an object are in the feasible subspace. In the next section, we will

focus on the sampling of 𝑓 and its approximation 𝑓 .

2.6. Precomputation of Decision Boundary in CTO Space 39

𝑓(𝑥, 𝑜) : 𝒳 ×O → {0, 1}

Contact 𝒳 Optimizing Controller

Swept Volume

Collision Checking

Feasibility

Object O

𝒞CTO = {𝒳 , Õ}

𝑥 ∈ 𝒳

𝑓(𝑥, 𝑜)

𝑜 ∈ O

O → Õ
𝑓(𝑥, 𝑜)

Figure 2.4: From Contact Transitions to Feasibility. Dashed lines present the precomputation
functions, which form a shortcut for efficient online planning

2.6 Precomputation of Decision Boundary in CTO

Space

To estimate 𝑓 , we first generate samples from the true feasibility function 𝑓 . This

requires the definition of a probability distribution, which provides us samples near

the decision boundary, such that objects have a distance of 𝑑 ≈ 0 to the swept

volume. A particularity of this distribution is its elongated shape, which requires

the usage of a momentum variable to efficiently sample the distribution.

After acquiring samples, we finally discuss the estimation procedure for 𝑓 by

using nonlinear discriminative analysis [71].

2.6.1 Sampling of the feasibility function

We divide the sampling stage of 𝑓 into two phases: First, we acquire 𝑁 contact

points by using an uniform discretization. We recall, that every contact point has

a unique goal, and together with a controller defines implicitly a unique trajectory.

The unique trajectory in turn defines a swept volume by using a function 𝒮 : 𝒳 →

𝒯 , whereby 𝒯 will be a triangle mesh. The complete set of swept volumes can

40 Chapter 2. Reactive Motion Planning

then be defined as

𝒮𝒱1:𝑁 = [𝒮(x1), . . . ,𝒮(x𝑁)] (2.6)

For each swept volume, we start obtaining samples o𝑖 ∈ Õ, by defining a

probability distribution, which provides us with the properties we want: High

probability around the decision boundary, low probability otherwise. One possible

choice is the normal distribution, defined as

𝑝(𝑥𝑗, 𝑜𝑖) = 𝒩 (𝑑[𝒮(x𝑗), 𝑀(o𝑖)]; 𝜇 = 0, 𝜎) (2.7)

whereby 𝑀 computes the triangle meshes of the object 𝑖 at position o𝑖, 𝒮(x𝑗)

is the swept volume from contact position x𝑗, and 𝑑 is defined as the norm between

the nearest points on the object and on the swept volume – or the farthest points

inside the swept volume, if the object is in collision. Finally the standard deviation

𝜎 is a measurement of how much we tolerate samples away from the boundary.

Eq. (2.7) is an elongated probability distribution, which can be very narrow,

depending on our choice of 𝜎. Therefore, standard sampling techniques like the

Markov Chain Monte Carlo (MCMC) algorithm will generally be inefficient, i.e. re-

quire too many samples before converging to the stationary distribution [71]. One

algorithm, which can handle elongated distributions is the Hamiltonian Monte

Carlo (HMC) algorithm [72], which adds a momentum variable to the sampling

process, in order to faster converge to the stationary distribution. The most im-

portant feature of HMC is its ability to follow the contour curve of the distribution

by simulating the hamiltonian dynamics. In our case, this translates to following

the decision boundary of the 𝒞CTO space. The underlying algorithm to simulate

2.6. Precomputation of Decision Boundary in CTO Space 41

this contour-curve following behaviour is called the leap-frog algorithm, and pro-

gresses by using a number of steps 𝜏 and step width 𝜖. The initial momentum in a

certain direction is defined by a proposal distribution. In our experiments, we used

𝜖 = 0.3, 𝜏 = 13 and a multivariate normal distribution 𝒩 (𝜇, Σ) = 𝒩 (0, 0.09 · I)

as the proposal. For Eq. (2.7), we have chosen 𝜎 = 0.17.

For simplifications, we consider in our experiments objects approximated by

a cylindrical representation, by setting the 𝜃 parameters of Eq. (2.3) to 𝜃1 =

0.01, 𝜃2 = 1. The 𝜆 parameters are allowed to vary, and are defined for a cylindrical

representation as 𝜆1 = 𝜆2 = 𝑟 and 𝜆3 = ℎ, whereby 𝑟 is the radius of the cylinder

and ℎ the height. Sampling is then conducted explicitly in the space of Õ =

{(𝑥, 𝑦, 𝑟, ℎ)𝑇 |𝑥, 𝑦 ∈ R, 𝑟, ℎ ∈ R+}.

2.6.2 Nonlinear Discriminative Analysis

After obtaining the samples from the true function 𝑓 , we have to select a model to

approximate 𝑓 by 𝑓 . The choice of this model is mainly determined by its online

performance: The more often we can call the function per second, the better will

be our planning performance. One widely used choice is the multilayer perceptron

(MLP), which can lead to compact models and faster evaluation, but is harder to

train than common kernel machines, because its objective function is non-convex

[71]. Because we need to reduce the time for online performance as much as

possible, we have chosen the MLP with one hidden layer and trained the network

from the sampled data by utilizing the FANN1 library.

Network Optimization

We applied several standard machine learning tricks to obtain a robust and stable

approximation of 𝑓 . First, we splitted our training data into a training set (70%)
1http://leenissen.dk/fann/

42 Chapter 2. Reactive Motion Planning

and a validation set (30%) and used an early stopping criterion by observing the

model error on the validation set. Second, we used multiple restarts with random

initializations. Third, we combined two samplers to avoid spurious non-feasible re-

gions: A uniform coarse sampling technique to avoid spurious non-feasible regions,

and the aforementioned HMC algorithm to accentuate the decision boundary.

Finally, we summarized the essentials steps of the precomputation in Algo-

rithm 3.11. For each contact point x ∈ 𝒳 , we first compute the whole-body

motion to the waypoint x𝐺, by using the optimizer 𝑔 and cost function 𝐶. The

resulting trajectory 𝑞𝑞𝐼→𝑞𝐺
defines a swept volume 𝒮𝒱 , which we approximate by

using a function 𝒮. For the class of objects Õ, we acquire 𝑀 samples o1:𝑀 by using

the HMC sampling algorithms with parameters 𝜏 and 𝜖. Afterwards, we split our

sampling data and start the nonlinear discriminative algorithm to approximate 𝑓 .

𝑓 is finally saved in our complete feasibility structure ℱ .

Algorithm 1: Precomputing feasible motion space
Data: 𝒞, Õ, 𝜏 > 0, 𝜖 > 0, 𝐻 > 0, 𝑀 > 0

Result: 𝒞, Õ, 𝑀, 𝐻, 𝜏, 𝜖

ℱ ← ∅;

forall the x ∈ 𝒳 do

𝑞𝑞𝐼→𝑞𝐺
← 𝑔(x, x𝐺, 𝒞) [69];

𝒮𝒱 ← 𝒮(𝑞𝑞𝐼→𝑞𝐺
) [41];

o1:𝑀 ← Sampler(𝒮𝒱 , Õ, 𝑀, 𝜏, 𝜖) [72];

o𝑡𝑟𝑎𝑖𝑛, o𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ← split(o1:𝑀);

𝑓 ← NDA(𝐻, o𝑡𝑟𝑎𝑖𝑛, o𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛) [71];

𝑝𝑢𝑠ℎ(ℱ , 𝑓)

2.7. Experiments 43

Figure 2.5: Influence of the model complexity on the approximated feasibility function: Each
graph shows the object space Õ for the same swept volume with changed complexity parameter
𝐻. For visualization, we have shown the non-feasible regions for the (𝑥, 𝑦, 𝑟)𝑇 parameters of a
cylinder, whereby we fixed ℎ = 0.03. Shown is the isosurface of the feasibility function for the zero
value, first the real feasibility function (green), and second the approximated function 𝑓 (red).
Depending on the complexity parameter 𝐻 of the model we can observe different performances:
a low complexity like 𝐻 = 4, leads to an underfitting of 𝑓 , while a high complexity 𝐻 = 28 leads
to overfitting, visible by several spurious non-feasible regions. The goal is to find a parameter,
like 𝐻 = 16, which balances model complexity and error rate.

2.6.3 Algorithmic analysis

The offline-precomputation of the feasibility function required ∼6 hours on a 8

core, 3.0Ghz PC with 8GB working memory. The online performance requires

the computation of two matrix multiplications in our MLP, and therefore scales

with 𝒪(𝐻 * (𝑁 + 1)), whereby 𝐻 is the complexity parameter and 𝑁 the number

of dimensions of Õ. At the moment, we have no theoretical guarantee that the

algorithm is strictly conservative, i.e. that it declares a footstep as valid, if it is not.

We could approach this by proving that the derivative of the feasibility function

is bounded, i.e. K-lipschitz continuous, and using this as a hard constraint during

the optimization of the approximated model.

44 Chapter 2. Reactive Motion Planning

2.7 Experiments

In our experiments, we use a feasibility function 𝑓 with a reasonable model com-

plexity of 𝐻 = 16, which avoids under- and overfitting, as discussed in Fig. 2.5.

We refer to this algorithm as 𝐹𝑃 (16), whereby 𝐹𝑃 stands for feasibility precom-

putation. For comparison, we use a reimplementation of the swept volume approx-

imation (SVA) algorithm, proposed by [41], which stores swept volumes for each

action, and afterwards used a collision checking algorithm for feasibility checks

[73]. Both algorithms are integrated into our planning framework, and tested in a

challenging environment, where we randomly place objects.

2.7.1 Planning

For planning, we utilize a standard A* algorithm [11] with a classical euclidean

𝑙2-norm heuristic to the goal. The heuristic is complementary to our work: We

focus not on the heuristic, but on approximating the extension of nodes in the

graph search. The choice of the heuristic can further speed up planning [65], but

is beyond the scope of this work.

2.7.2 Walking in Cluttered Environment

To evaluate and compare the performance of our feasibility precomputation, we

consider a highly-cluttered and constrained environment, where 𝐾 small objects

are located randomly over a flat, horizontal floor, as visualized in Fig. 2.6. We

generate the objects by using a uniform sampler 𝒰 and bounding cylinders in

the form of 𝑥 = 𝒰(−0.8𝑚, 0.8𝑚), 𝑦 = (0.2𝑚, 2.8𝑚), 𝑟 = 𝒰(0.01𝑚, 0.03𝑚), ℎ =

𝒰(0.01𝑚, 0.1𝑚).

The robot is allowed to set footsteps, which are constrained to be between

𝑥 = [−0.8𝑚, 0.8𝑚] and 𝑦 = [−0.2𝑚, 3.2𝑚].

2.7. Experiments 45

Figure 2.6: A cluttered environment, which we consider in our experimental verification. A
number of cylinders are used as obstacles, and determines the complexity of the scene. In a real
world setting, those cylinders would correspond to approximations of objects, similar to the chair
in Fig. 2.3.

The planning tasks is to move the feet, starting with the left foot at coordinates

(𝑥𝐼 , 𝑦𝐼) = (0, 0), towards the goal at (𝑥𝐺, 𝑦𝐺) = (3, 0), i.e. having one foot in

the vicinity (< 0.3𝑚) of the goal. We compare the two approaches, mentioned

above: For the SVA algorithm, we obtain the cylinders as triangle meshes from

the simulator and store them offline for efficient collision checks. For 𝐹𝑃 (16),

we use the 𝑥, 𝑦, 𝑟, ℎ values as the input for 𝑓 . Before each execution, we apply a

homogeneous transformation to move the object into the coordinate system with

the support foot as origin, such that they coincide with the precomputation stage.

Moreover we prune all objects, which have a certain distance to the robot (< 1.1𝑚)

before we apply the algorithms.

46 Chapter 2. Reactive Motion Planning

0

20

40

T
im

e
[s

]

0

20

40

S
te

ps

0 20 40 60 80 100 120
0

0.5

1

Objects

S
uc

ce
ss

SVA
FP(16)

Figure 2.7: Comparison between swept volume approximations (SVA) [41] (green) and the
precomputation of the feasibility function (red). Each point represents the average over 100
trials in the cluttered environment situation, where the robot had to traverse a distance of 3.0𝑚,
while avoiding 𝑀 objects, randomly distributed on the floor.

Fig. 2.7 shows the performance of the two algorithms on this task: In the first

row, we show the average planning time for successful plans versus the number

of objects in the scene. It can be seen, that the time for planning with the SVA

algorithm (green) increases rapidly with the number of objects. In comparison,

our algorithm (red) increases only marginally and stays bounded by < 1𝑠 even for

𝑁 = 60 objects. Also, we obtain a lower number of steps toward the goal as seen

in the second row. The last row shows the success rate of the planner, i.e. after a

fixed time 𝑇 , we stop the planner and consider the task unsuccessful. Those tasks

are cleared from our system and are not considered for the time and step graphs.

2.8. Integration into Industrial Project 47

2.8 Integration into Industrial Project

In collaboration with the aircraft manufacturer AIRBUS, we developed a proof-of-

concept, in which we want to demonstrate how a humanoid robot can work inside

of an aircraft factory. One aspect of this problem requires that the humanoid

robot is able to react reactively to changes in the environment. We have used

the methods developed in this chapter to address this problem. In particular we

consider a flat floor on which tool-box containers are moving in an unpredictable

fashion.

2.8.1 Implementation Details

Our algorithm consists of three stages: first, we need to acquire the geometry of

the environment and the position of the robot and the obstacles. Second, we plan

a feasible motion, and we send the motion towards a ROS module, which executes

the motion on the real robot. Third, after every step, we replan a new motion by

taking the new position of the robot and the obstacles into account. To avoid the

moving obstacles, we continuously replan our motion.

In detail, for the first stage we equip all obstacles and the robot with motion

capturing sensors. Using the VICON capturing system, we equipped each obstacle

with at least 6 sensors, then used the VICON software to estimate position of each

object. We then send the position commands by using ROS to our algorithm, which

uses the information together with the URDF version of each object to display the

object in rviz. Simultaneously, based on the object geometry, we approximate the

object by a cylinder, such that we can apply our developed techniques. In the

second stage, we use the information about the cylinder and the foot position to

obtain a feasible footstep plan, by using the A* algorithm as explained. We then

send the first three steps of the plan towards another ROS module, which handles

48 Chapter 2. Reactive Motion Planning

the control of the robot by using a hierarchical task-space framework, called the

stack-of-task [69].

After executing one step, the task-space framework sends back an acknowledg-

ment. Once received, we start replanning with the updated informations from the

VICON software. A video of the replanning procedure can be found here

https://www.youtube.com/watch?v=iFV-13XlJvI

Additionally, in Fig. 2.8, you can see three screenshots from the final motion:

first, the robot has planned a feasible footstep path towards a goal object. Second,

an object moves into its way, and the robot adapts its footstep path. Third,

following the adapted path, the robot reaches the goal position.

2.9 Conclusion

In this chapter, we presented the contact transition and object space, a joint space

of contact points and geometrical information of approximated objects. We de-

veloped an algorithm to precompute the feasibility of specific objects and contact

points, by approximating the decision boundary between feasible and non-feasible

subspaces. As a result we obtain a sparse discriminative function, which allowed

us to quickly prune non-feasible contact-points – while at the same time preserving

the important stepping-over capability of humanoid robots.

In our simulated experiments, we demonstrated that our approach can be used

to generate whole-body motions for a humanoid robot in highly-cluttered envi-

ronments in near real-time, thereby outperforming a state-of-the-art algorithm,

which used swept volume approximations. Moreover, our algorithm has a signif-

icantly lower memory fingerprint: instead of saving the complete swept volumes,

we require only the model parameters of our discriminative function to be saved.

https://www.youtube.com/watch?v=iFV-13XlJvI

2.9. Conclusion 49

Figure 2.8: Online replanning on HRP-2. Top: the robot has planned a feasible footstep path
towards a goal object. Middle: an object moves into its way, and the robot adapts its footstep
path. Bottom: Following the adapted path, the robot reaches the goal position.

50 Chapter 2. Reactive Motion Planning

This comes at the price of a lower accuracy at run-time: due to the approximation

of the objects by simple geometrical shapes, we lose the ability to move close to

objects and conduct for example fine-manipulation planning. However, for certain

behaviors like walking, fine-manipulation is per se not required. Also, we see our

method as a first reasonable guess of the trajectory, which could be further refined

locally.

Possible future research directions for this chapter are the incorporation of

object velocities into the precomputation, the estimation of the decision boundary

for the general superellipsoid space of objects, the augmentation of the action space

and the verification on our robotics platform using vision systems. As a natural

extension we like to extend this framework to different behaviors like walking,

crouching and holding objects while walking.

51

Chapter 3

Irreducible Motion Planning by

Exploiting Linear Linkage

Structures

"If a sign is not necessary then it is meaningless. That is the meaning of

Occam’s Razor."
— Ludwig Wittgenstein, Tractatus Logico-Philosophicus

"Irreducibility is a theoretical

framework for completeness-

preserving dimensionality re-

duction in motion planning"

A humanoid robot can be repre-

sented as a mechanical system struc-

ture. This mechanical system structure

consists of components which are re-

current and which differ in size. Can

we take advantage of this recurrency,

by exploiting structural components in

the mechanical system? We answer this

question in the affirmative, and we develop a theoretical concept to study mechan-

ical structures, a concept which we call irreducibility. Irreducibility is a theoretical

52 Chapter 3. Irreducible Motion Planning

framework for completeness-preserving dimensionality reduction in motion plan-

ning. While classical motion planning searches the full space of continuous tra-

jectories, irreducible motion planning searches the space of minimal swept volume

trajectories, called the irreducible trajectory space. We proof that planning in the

irreducible trajectory space preserves completeness. We then apply this theoret-

ical result to linear linkage structures, which can be found in several mechanical

systems, among them humanoid robots. Our main result establishes that we can

reduce the dimensionality of linear linkages in the case where the first link moves on

curvature-constrained curves. We further develop a curvature projection method,

which can be shown to be curvature-complete, a weaker version of general com-

pleteness. As an application, we consider the simplification of humanoid motion

planning by considering the arms and legs as linear linkages.

3.1 Introduction

In this chapter, we will investigate a specific property of mechanical systems which

we call irreducibility. Irreducibility classifies configuration space trajectories into

two categories: reducible and irreducible trajectories. An irreducible trajectory

is a trajectory with a minimal swept volume in the environment. We will prove

here the important fact that planning with only irreducible trajectories preserves

completeness. It follows that motion planning can be conducted entirely inside

the irreducible trajectory space.

However, it is not obvious how one would analytically define this irreducible

trajectory space. In this chapter, we therefore concentrate on a specific mechanical

structure, the linear linkage, and investigate how irreducibility can be defined on

it. We note that linear linkages are prevalent in a variety of mechanical systems,

which are all consequently susceptible to our reduction concept. Four examples

3.1. Introduction 53

Figure 3.1: Examples of free linear linkages in mechanical systems. On the left are different
mechanical systems, and on the right is the abstracted idealized linkage structure. Top: a snake
has one linear linkage with the head as a root link. Top Middle: a train has one linkage with
the locomotive as the root link. Bottom Middle: an octopus has eight arms, each is one linear
linkage with the head as a common root link. Bottom: humanoid robot HRP-2 has two linear
linkages for its arms (with the chest as root link), and two linear linkages for its legs (with the
hip as root link).
@Photograph Courtesy:

- Marek Bydg. Anguis Fragilis Slowworm. 2004. Poland. http://en.wikipedia.org/wiki/Anguis_fragilis.
Web. Accessed April 28th, 2015.

- Unknown Author. BNSF ES44Ac leading a coal train through S-curve in Powder River Basin. 2013. Colorado,
US. http://www.4rail.net. Web. Accessed April 28th, 2015.

- Albert Kok. Octopus Vulgaris. 2007. Location Unknown. http://en.wikipedia.org/wiki/Octopus. Web.
Accessed April 28th, 2015.

- Vincent Fournier. HRP-2 #1 [Kawada], Promet Developed by AIST, 2010. Tochigi, Japan. http://www.
vincentfournier.co.uk. Web. Accessed April 28th, 2015.

http://en.wikipedia.org/wiki/Anguis_fragilis
http://www.4rail.net
http://en.wikipedia.org/wiki/Octopus
http://www.vincentfournier.co.uk
http://www.vincentfournier.co.uk

54 Chapter 3. Irreducible Motion Planning

are shown in Fig. 3.1, a snake and a train with each one linear linkage, an octopus

with eight linear linkages and a humanoid robot with four linear linkages.

This work is based on previous published results in [13]. In particular, Sec. 3.3

and parts of the experimental results have been already published. Our additional

contributions are

∙ Introduced the irreducibility property for linear linkages

∙ Introduced the concept of curvature completeness

∙ Proved that linear linkages are curvature complete for a specific functional

space

∙ Developed a linear-time irreducibility projection algorithm for linear linkages

in 3d.

∙ Conducted simulated experiments for the humanoid robot HRP-2

In terms of prerequisites, we will assume a rudimentary knowledge of differential

geometry in our proofs, as can be found for example in [74].

After summarizing related work in Sec. 3.2, we provide definitions and proofs

of the main theorems of irreducible motion planning in Sec. 3.3. Our main result is

summarized in Corollary 2, which provides a proof of completeness for irreducible

trajectories.

After those preliminaries, we concentrate on linear linkage structures in Sec.

3.4. We provide a definition of linear linkages and we proof conditions under which

we can ignore certain parts of the linkage. This brings us to the concept of a cur-

vature complete algorithm, for which we design in Sec. 3.5 a linear-time algorithm

in the number of links. In Sec. 3.6, we finally conduct a set of experiments for

a swimming snake robot in simulation and for the real humanoid robot platform

HRP-2.

3.2. Related Work 55

3.2 Related Work

Motion planning for humanoid robots is a well studied field [34], which has demon-

strated its potential in the DARPA Robotics Challenge (DRC) in 2015. Humanoid

robots are able to solve difficult tasks, like manipulation planning in kitchen envi-

ronments [75], contact planning in constrained environments [44], or ladder climb-

ing tasks [9]. Techniques for solving those problems range from optimal control

planning [23] over motion database approaches [14] to fast contact planning by

identifying convex surfaces [7].

The mechanism and locomotion system for snake robots has long been studied

[76]. However, path planning for snake robots has been investigated in relatively

few papers. Some of them are classical approaches using numerical potential field

[77], genetic algorithms [78] or Generalized Voronoi Graph [79]. The idea of a

simplified model is studied by [80], who define a frame that is consistent with

the overall shape of the robot in all configurations. In [81] the authors plan a

trajectory only for a portion of the snake robot.

Ultimately, all those approaches try to exploit structure to reduce the computa-

tional complexity of the problem. In this chapter, we concentrate on dimensionality

reduction techniques, which have been extensively studied in the motion planning

literature. Dalibard et al. [52] have used a principal component analysis (PCA)

to bias random sampling. In the context of manipulation motion planning, the

powerful eigengrasps [53][54] have been introduced to identify a low-dimensional

representation of grasping movements. Reduction techniques have been especially

used in cable motion planning. Mahoney et al. [55] perform a PCA for a high-

dimensional cable robot by sampling deformations. Kabul et al. [82] plan the

motion of a cable by first planning a motion for the head. Those works showed re-

markable results, and demonstrate the effectiveness of reduction techniques. Our

work is complementary, in that we are undertaking a formal treatment of condi-

http://www.theroboticschallenge.org/

56 Chapter 3. Irreducible Motion Planning

tions under which dimensionality reduction can be performed.

In particular, we show in our work a connection between the curvature and

the dimensionality of the problem. Curvature constrained curves have been inves-

tigated in the framework of computational geometry [74]. For example, Bereg et

al. [83] introduce the term reducibility in the context of sweeping of disks along a

planar curve. Our work generalizes this concept by giving completeness guarantees

of curves which are non-reducible or as we call it irreducible.

Ahn et al. [84] developed algorithms to compute the reachable regions for

curvature constraint motions inside convex polygons. Our work builds upon their

theoretical contribution to proof when a system is irreducible.

Guha et al. [85] discuss curvature and torsion constraint on space curves in

the context of data point approximation. This work hints at a generalization of

our ideas in Sec. 3.4.6, which we left as a conjecture.

Finally, we use the result described in [86], who showed that a dynamical

humanoid robot is small-space controllable, i.e. we can minimize the oscillations

of the upper body — and thereby the swept volume — by minimizing its step-

size and its step-period. Taking this towards the extreme, the Center-Of-Mass

trajectory can be planned as if the robot was sliding on the floor. This sliding

motion can be seen as an irreducible motion and thereby provides a first necessary

condition for feasibility.

3.3 Irreducible Trajectories

We restate relevant motion planning definitions, following the classical formulation

by [11, Chapter 4]

Definition 4 (Motion Planning Problem). Let 𝐴 = {ℛ, 𝒞, 𝑞𝐼 , 𝑞𝐺, E} be a motion

planning problem, with ℛ the robotic system, 𝒞 the configuration space, 𝑞𝐼 the

3.3. Irreducible Trajectories 57

-1

0

1

2

3

4

5

6

7

8

9

−π
2 −π

4
0 π

4
π
2

qI

qG

τ1 τ2
τ3

⏟ ⏞
𝒞=R×[− 𝜋

2 , 𝜋
2]

-1 0 1
-1

0

1

2

3

4

5

6

7

8

9

⏟ ⏞
𝒮𝒱(𝑞𝐼),𝒮𝒱(𝑞𝐺)

-1 0 1
-1

0

1

2

3

4

5

6

7

8

9

⏟ ⏞
𝒮𝒱(𝜏1)

-1 0 1
-1

0

1

2

3

4

5

6

7

8

9

⏟ ⏞
𝒮𝒱(𝜏2)

-1 0 1
-1

0

1

2

3

4

5

6

7

8

9

⏟ ⏞
𝒮𝒱(𝜏3)⏟ ⏞

Workspace 𝒲=R2

Figure 3.2: Explanatory example of irreducible trajectories for a 2-link, 2-dof robot, which can
move along the 𝑦-axis, and which has one rotational joint between its two links, such that its
configuration space is 𝒞 = R × [−𝜋

2 , 𝜋
2]. Left. Three configuration space trajectories 𝜏1, 𝜏2, 𝜏3

with 𝜏1(0) = 𝜏2(0) = 𝜏3(0) = 𝑞𝐼 , 𝜏1(1) = 𝜏2(1) = 𝜏3(1) = 𝑞𝐺. Right. The workspace volume of
the starting configurations 𝑞𝐼 , 𝑞𝐺, and the swept volume of the three trajectories, whereby we
have that 𝒮𝒱(𝜏1) ⊂ 𝒮𝒱(𝜏2) and 𝒮𝒱(𝜏1) ⊂ 𝒮𝒱(𝜏3), i.e. 𝜏2 and 𝜏3 are reducible by 𝜏1, and 𝜏1 is in
fact irreducible. Adapted from [13].

58 Chapter 3. Irreducible Motion Planning

initial configuration, 𝑞𝐺 the goal configuration, and E the environment.

Definition 5 (Configuration Space Trajectory). Let 𝐴 be given. Then we denote

by ℱ(𝑞𝐼 , 𝑞𝐺) = 𝐶1([0, 1], 𝒞) the set of continuously differentiable functions from

[0, 1] to the configuration space 𝒞, with the property that if 𝜏 ∈ ℱ(𝑞𝐼 , 𝑞𝐺)⇒ 𝜏(0) =

𝑞𝐼 , 𝜏(1) = 𝑞𝐺.

Definition 6 (Swept Volume). The workspace volume swept by the trajectory 𝜏 ∈

ℱ(𝑞𝐼 , 𝑞𝐺) will be denoted by 𝒮𝒱(𝜏).

Definition 7 (Feasible Trajectory). A trajectory 𝜏 ∈ ℱ(𝑞𝐼 , 𝑞𝐺) is called feasible

in an environment E, if 𝒮𝒱(𝜏) ∩ E = ∅.

Definition 8 (Feasible Configuration Space Trajectory). Let 𝒮 ⊂ ℱ(𝑞𝐼 , 𝑞𝐺) be a

set of Configuration space trajectories. Let 𝐴 be a specific motion planning problem.

If there exist 𝜏 ∈ 𝒮 such that 𝜏 solves 𝐴, then 𝒮 is said to be feasible w.r.t. 𝐴.

We denote by ⊂ the proper subset. Let 𝐴 = {ℛ, 𝒞, 𝑞𝐼 , 𝑞𝐺, E} be given, and let

ℱ = ℱ(𝑞𝐼 , 𝑞𝐺).

Definition 9. A trajectory 𝜏 ′ ∈ ℱ is called reducible, if there exist 𝜏 ∈ ℱ such

that 𝒮𝒱(𝜏) ⊂ 𝒮𝒱(𝜏 ′). Otherwise 𝜏 ′ is called irreducible.

Fig. 3.2 provides a visualization of the irreducible definition for trajectories.

We show three configuration space trajectories 𝜏1, 𝜏2, 𝜏3, and its swept volumes in

workspace. Applying the definition, we have that 𝜏2 and 𝜏3 are reducible by 𝜏1.

We will now show why irreducibility is important for motion planning.

Theorem 1. Let 𝜏, 𝜏 ′ ∈ ℱ be such that 𝒮𝒱(𝜏) ⊂ 𝒮𝒱(𝜏 ′), i.e. 𝜏 ′ is reduced by 𝜏 .

If 𝜏 is infeasible ⇒ 𝜏 ′ is infeasible

If 𝜏 ′ is feasible ⇒ 𝜏 is feasible

3.4. Irreducibility for Linear Linkages 59

Proof in Appendix.

Definition 10 (Irreducible Trajectories). Let the set of all irreducible configuration

space trajectories be defined as

I = {𝜏 ∈ ℱ|𝜏 is irreducible} (3.1)

Lemma 1. Let 𝜏 ∈ ℱ ∖ I. Then there exist 𝜏 ′ ∈ I, with 𝒮𝒱(𝜏 ′) ⊂ 𝒮𝒱(𝜏).

Proof in Appendix.

Theorem 2. If I is infeasible then ℱ is infeasible

Proof in Appendix.

Corollary 1. Motion planning is complete in I

Proof in Appendix.

Going back to the example in Fig. 3.2, we can now make the statement,

that trajectories 𝜏2 and 𝜏3 can be ignored for motion planning, while still being

complete. This means we now have a formed a geometric argument, which allows

us to reduce the dimensionality of a motion planning problem while preserving

completeness.

3.4 Irreducibility for Linear Linkages

We will now use the theoretical concept of an irreducible trajectory to study linear

linkages. A linear linkage is a mechanical system consisting of 𝑁 + 1 links, which

are connected in a chain, as depicted in Fig. 3.3. We will call the first link in

the chain the root link, denoted by 𝐿0, and the other 𝑁 links as sublinks. If the

root link is moveable we call the linear linkage free, otherwise non-free. We will

60 Chapter 3. Irreducible Motion Planning

Figure 3.3: A free linear linkage with 𝐿0 being the root link, and 𝐿1, 𝐿2, · · · are called the
sublinks. The black arrow gives the movement direction of 𝐿0. In this chapter, we will give
conditions under which only the root link 𝐿0 has to be planned for, while the sublinks can be
ignored while preserving a curvature completeness property.

exclusively work with free linear linkages with a finite number of sublinks, if not

otherwise stated. We will study in this section conditions for movements of 𝐿0,

such that we can ignore the sublinks.

This whole section is dedicated to the task of finding conditions on the move-

ment of the root link 𝐿0, such that all sublinks can be ignored for motion planning.

Our main idea is that if the root link moves on curvature-constrained curves in

R2, we can always reduce the sublinks, and thereby preserving a weak form of

completeness. We will give an informal treatment of this idea, then proceed to

proof the case of curvature-constraint motion planning in R2 and finally discuss

the R3 case, which we leave as a conjecture.

3.4.1 Swept Volume of a Train

Let us observe that a train is a linear linkage with the locomotive as a root link,

and its 𝑁 railroad cars as sublinks. If the train moves between two stations on

given railroad tracks, then we can state the following: the swept volume of the

train with 𝑁 railroad cars is equal to the swept volume of the train with zero

railroad cars. The reason is that we constrain the movement of the locomotive

to be bounded by a minimal curve radius. Given a minimal curve radius, we are

allowed to construct arbitrary railroad tracks for a train, to move from one city to

the next. More abstractly, we can translate this to: we are allowed to construct

3.4. Irreducibility for Linear Linkages 61

𝐿0

𝐿1

𝐿2

𝜃1

𝜃2𝛿0

𝛿1

𝑙0

𝑙1

Figure 3.4: 𝑁 = 2 linear linkage system

space curves 𝑓 from a functional space ℱ , under the constraint that every function

𝑓 has a bounded curvature.

To come back from our train example to arbitrary mechanical systems, let us

call the locomotive a root link, and each railroad car a sublink. Intuitively, if the

root link is big enough, i.e. the locomotive is bigger than the railroad cars, and

if the root link moves on space curves bounded by a certain curvature, then we

can state that there exists a configuration of the sublinks, such that the swept

volume of the sublinks is a subset of the swept volume of the root link. The big

implication here is: if we find a physically feasible railroad track for a locomotive,

then we can add a finite number of railroad cars, while still being feasible. A train

in this sense is redundant, i.e. there are links which can be ignored for motion

planning. Our goal now is to formalize those ideas rigorously. We will start by

defining a functional space for the root link 𝐿0, then proof that there always exist

configurations for the sublinks 𝐿1, · · · , 𝐿𝑁 , such that they are inside of the swept

volume of 𝐿0.

62 Chapter 3. Irreducible Motion Planning

3.4.2 Curvature Functional Space

Let us consider a 𝑁 = 1 linear linkage with links 𝐿0, 𝐿1 in the plane R2, connected

by a rotational joint at the center of 𝐿0, with distance 𝑙0 to 𝐿1. A 𝑁 = 2 linear

linkage is visualized in Fig. 3.4. The rotational joint has an allowed rotation of

𝜃 ∈ [−𝜃𝐿, 𝜃𝐿]. Let us denote by 𝑠 = (𝑠0, 𝑠1) ∈ R2 the position of 𝐿0, and by

𝑠′ its orientation. Let us define a cone 𝒦𝜃𝐿(𝑠) = {(𝑥0, 𝑥1) ∈ R2|‖𝑥1 − 𝑠1‖2 ≤

(𝑥0 − 𝑠0) tan 𝜃𝐿} with apex 𝑠, orientation 𝑠′, and aperture 𝜃𝐿. Then given 𝐿0 at

(𝑠, 𝑠′), we can define the set 𝜕𝑃0 of all possible positions of 𝐿1 as a circle intersecting

𝒦𝜃𝐿(𝑠) and the corresponding disk segment 𝑃0 as a disk intersecting 𝒦𝜃𝐿(𝑠).

𝑃0 = {𝑥 ∈ R2|‖𝑥− 𝑠‖ ≤ 𝑙0} ∩ 𝒦𝜃𝐿(𝑠)

𝜕𝑃0 = {𝑥 ∈ R2|‖𝑥− 𝑠‖ = 𝑙0} ∩ 𝒦𝜃𝐿(𝑠)
(3.2)

whereby 𝑃0 and 𝜕𝑃0 are visualized in Fig. 3.5.

We will now construct a functional space ℱ𝜅0 by hand, and then prove that all

functions from ℱ𝜅0 starting at (𝑠, 𝑠′) will necessarily have to leave 𝑃0 by crossing

𝜕𝑃0.

Let us define the functional space

ℱ𝜅0 = 𝐶2([0, 1],R2) (3.3)

with given 𝜏(0) = 𝑠, 𝜏 ′(0) = 𝑠′, 𝜏(1) /∈ 𝑃0 and for all 𝜏 ∈ ℱ𝜅0 we define a

maximum curvature by

𝜅0 = 2 sin(𝜃𝐿)
𝑙0

(3.4)

The curvature 𝜅0 has been constructed in the following way: first, let us observe

that for any point 𝜏(𝑡) on 𝜏 the curvature is defined by 𝜅0 = 1
𝑅0

whereby 𝑅0 is

the radius of the osculating circle at 𝜏(𝑡)[74]. We will now consider trajectories

parametrized by arc-length, such that 𝜏 ′(𝑡) · 𝜏 ′′(𝑡) = 0. The center of the osculating

3.4. Irreducibility for Linear Linkages 63

circle has to lie therefore in the direction of vector 𝜏 ′′(𝑡). We are searching for the

minimal ball, which ensures that all functions will necessarily leave 𝑃0 through

𝜕𝑃0. This ball touches the most extreme point of 𝜕𝑃0, which we call 𝑥𝑀 :

𝑥𝑀 = (𝑙0 cos(𝜃𝐿), 𝑙0 sin(𝜃𝐿))𝑇 (3.5)

See also Fig. 3.5 for clarification. The ball can be found by solving the equation

‖𝑥𝑀 − (0, 𝑅0)𝑇‖2 = 𝑅2
0 (3.6)

The solution is given by

𝑅0 = 𝑙0
2 sin(𝜃𝐿) (3.7)

Please note that 𝑙0 ≤ 2𝑅0, which will be important in the upcoming proof.

3.4.3 Reducibility theorems of ℱ𝜅0

We are now going to proof some elementary properties of this functional space

ℱ𝜅0 , which will ultimately show that under certain conditions, we can ignore the

sublinks for motion planning. The reader is encouraged to visualize the theorems

by thinking about the train example and the maximum curvature under which

the swept volume of the cars will be inside the swept volume of the locomotive.

Our first theorem builds upon the pocket lemma introduced by [87]. It also uses

a slightly modified version of a result by [84, Lemma 6]

Theorem 3. For all 𝜏 ∈ ℱ𝜅0 there exists 𝑡0 ∈ [0, 1] such that 𝜏(𝑡0) ∈ 𝜕𝑃0 and

𝜏(𝑡) ∈ 𝑃0 for all 𝑡 ≤ 𝑡0.

Explanation: every trajectory from our constructed functional space ℱ𝜅0 will

leave the region 𝑃0 by crossing 𝜕𝑃0. Visualized in Fig. 3.6.

64 Chapter 3. Irreducible Motion Planning

𝑃0

𝜕𝑃0

𝒦𝜃𝐿(𝑠)𝑠 𝑠′

𝑠′′

(0, 𝑅0)

𝑥0

𝑥1

𝑅0

𝑥𝑀

𝑠

𝑃0 ∩ 𝐿𝐷(𝑠) ∖𝐵𝑅(0, 𝑅)

𝜃𝐿

Figure 3.5: 𝜕𝑃0 is the space of all possible positions of link 𝐿1, constrained by link 𝐿0. We
establish in this section that for a specifically constructed functional space ℱ𝜅0 any function
which starts at 𝑠 and has first derivative equal to 𝑠′ will leave the area 𝑃 by crossing 𝜕𝑃0.

Figure 3.6: Cone spanned by the length 𝑙0, the limit angle 𝜃𝐿 and the position of 𝑠. Every
function from ℱ𝜅0 will necessarily leave 𝑃0 by crossing 𝜕𝑃0 at 𝜏(𝑡0) to reach a point 𝜏(1) outside
𝑃0.

3.4. Irreducibility for Linear Linkages 65

Proof. Let us decompose the problem into two parts. First, we consider the left

side of 𝑠, which we define as 𝐿𝐷(𝑠) = {(𝑥0, 𝑥1) ∈ R2|𝑥0 ≥ 0, 𝑥1 ≥ 0}. Our

proof will first establish that all circles with center (0, 𝑅) and radius 𝑅 ≥ 𝑅0 will

intersect 𝜕𝑃0. Second, we use a lemma from [84] to establish that all trajectories

from ℱ𝜅0 will necessarily leave 𝑃0 by crossing 𝜕𝑃0, and that there is no trajectory

crossing the ball 𝐵𝑅(0, 𝑅) for given curvature 𝜅 = 1
𝑅

.

∙ We will proof that every circle with center (0, 𝑅) and radius 𝑅 ≥ 𝑅0 will

intersect 𝜕𝑃0. By construction we have that the circle 𝑅0 intersects 𝜕𝑃0

at the point specified by angle 𝜃𝐿. We define the angle depending on 𝑅

by 𝜃(𝑅) = asin
(︃

𝑙0
2𝑅

)︃
. We want to establish that indeed 𝜃𝐿 ≥ 𝜃(𝑅) ≥ 0,

i.e. a ball with radius 𝑅 ≥ 𝑅0 will always intersect 𝜕𝑃0 at a point below

𝑥𝑀 and above 0. Since asin is monotone increasing on [0, 1], 𝑙0, 𝑅 ≥ 0 and

𝑙0 ≤ 2𝑅, we have that 𝜃(𝑅) ≥ 0. To establish 𝜃𝐿 ≥ 𝜃(𝑅) we note that given

asin
(︃

𝑙0
2𝑅0

)︃
≥ asin

(︃
𝑙0
2𝑅

)︃
we can write 𝑙0

2𝑅0
≥ 𝑙0

2𝑅
, since asin is monotone

increasing. It follows that 𝑅 ≥ 𝑅0 as required.

∙ Let us now construct a polygonal chain for one 𝑅 ≥ 𝑅0 in the following way:

we start on the boundary of 𝑃0 at point 𝑠 and follow direction 𝑠′ until we

reach 𝜕𝑃0. At 𝜕𝑃0 we move upwards on 𝜕𝑃0 until we meet the ball with

radius 𝑅, which intersects 𝜕𝑃0. This construct is a polygonal chain and

specifically called a forward chain by [84]. This chain follows the boundary

of 𝑃0∩𝐿𝐷(𝑠). Ergo, we can apply Lemma 6 of [84], which states that if such

a forward chain intersects the circle of unit radius, then the reachable region

of all trajectories in ℱ𝜅0 is given by 𝑃0 ∩ 𝐿𝐷(𝑠) ∖ 𝐵𝑅(0, 𝑅) (the unit radius

can be obtained by scaling the space). See Fig. 3.5 for visualization. One

interpretation of the pocket lemma from [87] let us now state the following:

no trajectory can escape the region 𝑃0 ∩ 𝐿𝐷(𝑠) ∖ 𝐵𝑅(0, 𝑅) except through

𝜕𝑃0 or the lower boundary. Since the same arguments apply for the lower

66 Chapter 3. Irreducible Motion Planning

part, i.e. with 𝑅𝐷(𝑠) = {𝑥 ∈ R2|𝑥0 ≥ 0, 𝑥1 ≤ 0} instead of 𝐿𝐷(𝑠), we

can reason that any function from ℱ𝜅0 starting in 𝑠 can only escape the

region 𝑃0 ∖ (𝐵𝑅(0, 𝑅)∪𝐵𝑅(0,−𝑅)) ⊂ 𝑃0 through the arc segment 𝜕𝑃0. Since

𝜏(1) /∈ 𝑃0, the result follows.

This assures that for a moving particle, it will always cross the arc segment

𝜕𝑃0. Now we consider the sweeping of disks 𝐷𝛿 = {𝑥 ∈ R2|‖𝑥‖ ≤ 𝛿} with radius

𝛿 along a trajectory 𝜏 ∈ ℱ𝜅0 . Let us define 𝐿0 = 𝐷𝛿0(𝑠0), 𝐿1 = 𝐷𝛿1(𝑠1), and

𝑠1 = (𝑙0 cos(𝜃), 𝑙0 sin(𝜃)).

Theorem 4. Let 𝐿0 = 𝐷𝛿0(𝑠). Then there exists 𝜃 ∈ [−𝜃𝐿, 𝜃𝐿] such that for all

𝜏 ∈ ℱ𝜅0 there exists 𝑡0 ∈ [0, 1] such that 𝐿1 ⊂ (𝜏(𝑡0)⊕ 𝐿0) if 𝛿1 ≤ 𝛿0.

Proof. Due to Theorem 3 we have that a point starting from 𝑠0 following a tra-

jectory from 𝜏 ∈ ℱ𝜅0 will necessarily cross 𝜕𝑃0. Let 𝜏(𝑡) ∈ 𝜕𝑃0 be the crossing

point. Let us choose 𝑠1 = 𝜏(𝑡) as the position of link 𝐿1. 𝜃 can be recovered by

𝜃 = acos
(︃

(𝑠1 − 𝑠0)𝑇 𝑠′

‖𝑠′‖𝑙0

)︃
. Now at 𝑠1 we have that the volume of (𝜏(𝑠1) ⊕ 𝐿0) is

smaller than (𝜏(𝑠1)⊕ 𝐿1) exactly when 𝛿1 ≤ 𝛿0.

3.4.4 Generalization to 𝑁 sublinks

Let us define a linear linkage in canonical form in the following way: Let 𝐿0, · · · , 𝐿𝑁 ∈

𝐷2 be disk links of radius 𝛿0, · · · , 𝛿𝑁 connected by lines of equal length 𝑙0, · · · , 𝑙𝑁−1

with 𝑙0 = · · · = 𝑙𝑁−1, 𝛿𝑖 > 0, 𝑙𝑖 > 𝛿𝑖 + 𝛿𝑖+1, 𝛿𝑖 ≤ 𝛿0 for all 𝑖 ∈ [0, 𝑁] and joints

limits {{−𝜃𝐿
0 , 𝜃𝐿

0 }, · · · , {−𝜃𝐿
𝑁−1, 𝜃𝐿

𝑁−1}} with 𝜃𝐿
0 = · · · = 𝜃𝐿

𝑁−1. We will refer to this

canonical linear linkage structure as ℛ𝑁
𝐿 .

3.4. Irreducibility for Linear Linkages 67

Figure 3.7: A succession of cones, spanning the space between 𝑠 and 𝜕𝐶𝑠, which necessarily
has to be traversed by any function from ℱ𝜅𝑁

.

Let us define by 𝑃𝑁 the interior of the space spanned by all possible sublink

configurations, as depicted in Fig. 3.7. Let us define analog a functional space

ℱ𝜅𝑁
as

ℱ𝜅𝑁
= 𝐶1([0, 1],R2) (3.8)

with 𝜏(0) = 𝑠, 𝜏 ′(0) = 𝑠′, 𝜏(1) /∈ 𝑃𝑁 , and for all 𝜏 ∈ ℱ𝜅𝑁
we have a maximum

curvature given by

𝜅𝑁 = 2 sin(𝜃𝐿)
𝑁𝑙0

, 𝑁 > 1 (3.9)

3.4.5 Irreducibility of Linear Linkage

For 𝑁 = 1, we proved that there exist 𝜃1 such that 𝐿1 ∈ 𝜏 . For 𝑁 > 1, the

tangent 𝑡 of 𝜏 might differ from the normal 𝑛 of the line (𝐿0𝐿1). We denote the

angle between 𝑡 and 𝑛 as 𝜃𝐷𝑖
. See Fig. 3.8 for clarification. To ensure that we can

always find a feasible configuration, such that all links are on 𝜏 , we therefore need

68 Chapter 3. Irreducible Motion Planning

to ensure that 𝜃𝑖 = 𝜃𝐷𝑖
+ 𝜃𝑡 ≤ 𝜃𝐿 for all 𝑖 ∈ [0, 𝑁].

Figure 3.8: Linear Linkage along a curve 𝜏 . The angle between the tangent to the osculating
circle 𝑡 and the normal 𝑛 of the line (𝐿0𝐿1) is given by 𝜃𝐷𝑖 . The angle 𝜃𝑡 denotes the maximum
angle given a maximal constant curvature 𝜅𝑁 .

For our proofs, we assume two premises to be true.

P1 If 𝑙0 = 𝑙𝑖 for all 𝑖 ∈ [1, 𝑁], then 𝜃𝐷1 = 𝜃𝐷𝑖
for all 𝑖 ∈ [1, 𝑁]

P2 Maximum angle between 𝑡 and 𝑛 can be found for 𝜏 = 𝜏𝜅𝑁
with 𝜏𝜅𝑁

being the

constant maximum curvature trajectory with curvature 𝜅𝑁 everywhere.

We now want to determine the angles 𝜃𝑡,𝜃𝐷1 depending on the radius 𝑅0 of the

osculating circle.

3.4. Irreducibility for Linear Linkages 69

By geometrical arguments of circle-circle intersection 1, we can write

𝑛(𝑅0, 𝑙0) =

⎛⎜⎝ 𝑙0
2𝑅0

√︁
4𝑅2

0 − 𝑙2
0

𝑙20
2𝑅0

⎞⎟⎠

𝑡(𝑅0, 𝑙0) =

⎛⎜⎝ −𝑙20
2𝑅0

+ 𝑅0

𝑙0
2𝑅0

√︁
4𝑅2

0 − 𝑙2
0

⎞⎟⎠
(3.10)

𝜃𝑡 = arctan
⎛⎝ 𝑙0√︁

4𝑅2
0 − 𝑙2

0

⎞⎠
𝜃𝐷1 = arccos

(︃
𝑛 · 𝑡
‖𝑛‖‖𝑡‖

)︃
= arccos

(︃
4𝑅2

0 − 𝑙2
0

4𝑅2
0

)︃ (3.11)

We now choose a certain 𝑅0, and prove that 𝜃𝑡(𝑅0) + 𝜃𝐷1(𝑅0) ≤ 𝜃𝐿. Let

𝑅0 = 𝑁𝑙0
2 sin 𝜃𝐿

(3.12)

such that ℱ𝜅𝑁
is defined by 𝜅𝑁 = 1

𝑅0
.

Lemma 2. Given premises P1, P2 and a trajectory 𝜏 ∈ ℱ𝜅𝑁
, then for 𝑡 ∈ [0, 1]

and 𝛿0 = 0, 𝛿𝑖 = 0, there exist joint configurations 𝜃1, · · · , 𝜃𝑁 for the linear linkage

ℛ𝑁
𝐿 , such that every 𝐿𝑖 is located on 𝜏 . Furthermore, the maximum distance

between 𝜏 and the lines (𝐿0𝐿1) · · · (𝐿𝑁−1𝐿𝑁) is given by 𝑑𝜅𝑁
= 𝑅0 −

√︃
𝑅2

0 −
𝑙2
0
4

Proof. 𝜃𝑡,𝜃𝐷1 evaluates to

𝜃𝑡 = arctan
(︃

sin 𝜃𝐿

√
𝑁2 − sin2 𝜃𝐿

)︃

𝜃𝐷1 = arccos
(︃

𝑁2 − sin2 𝜃𝐿

𝑁2

)︃ (3.13)

for 𝑁 > 1.
1Circle-Circle Intersection – Wolfram Mathworld

http://mathworld.wolfram.com/Circle-CircleIntersection.html

70 Chapter 3. Irreducible Motion Planning

Due to premise P2, we know that 𝜃𝑡 + 𝜃𝐷1(𝑅0) ≥ 𝜃𝑡 + 𝜃𝐷1(𝑅) for 𝑅 ≥ 𝑅0, and

so we can concentrate on the maximum curvature case 𝑅0. Due to premise P1, we

now only have to prove that 𝜃𝑡 + 𝜃𝐷1 ≤ 𝜃𝐿. By induction on 𝑁 , we get for 𝑁 = 2

𝜃𝑡(2) = arctan
(︃

sin 𝜃𝐿

√
4− sin2 𝜃𝐿

)︃
≤ arctan

(︃
sin 𝜃𝐿

2

)︃

≤ sin 𝜃𝐿

2 ≤ 𝜃𝐿

2

𝜃𝐷1(2) = arccos
(︃

1− sin2 𝜃𝐿

4

)︃
= 2 arctan

(︃
2 sin 𝜃𝐿

8− sin2 𝜃𝐿

)︃

≤ 4 sin 𝜃𝐿

8− sin2 𝜃𝐿
≤ 4 sin 𝜃𝐿

8 = sin 𝜃𝐿

2 ≤ 𝜃𝐿

2

(3.14)

whereby we relied on the fact that for 𝑥 > 0 we have arctan(𝑥) ≤ 𝑥 since

arctan′(𝑥) = 1
1+𝑥2 ≤ 1, for 𝑥 > 0 we have sin(𝑥) ≤ 𝑥 since sin′(𝑥) = cos(𝑥) ≤ 1,

and that arccos(𝑥) = 2 arctan
(︃√

1− 𝑥2

1 + 𝑥

)︃
.

We now observe that

𝜃𝑡(𝑁) = arctan
(︃

sin 𝜃𝐿

√
𝑁2 − sin2 𝜃𝐿

)︃
≥ arctan

(︃
sin 𝜃𝐿

𝑁

)︃

≥ arctan
⎛⎝ sin 𝜃𝐿√︁

(𝑁 + 1)2 − sin2 𝜃𝐿

⎞⎠ = 𝜃𝑡(𝑁 + 1)

𝜃𝐷1(𝑁) = arccos
(︃

𝑁2 − sin2 𝜃𝐿

𝑁2

)︃
≥ arccos

(︃
1− sin2 𝜃𝐿

𝑁2

)︃

≥ arccos
(︃

1− sin2 𝜃𝐿

(𝑁 + 1)2

)︃
= 𝜃𝐷1(𝑁 + 1)

(3.15)

which shows that 𝜃𝑡(𝑁) + 𝜃𝐷1(𝑁) ≥ 𝜃𝑡(𝑁 + 1) + 𝜃𝐷1(𝑁 + 1). Therefore we have

𝜃𝐿 ≥ 𝜃𝑡(2) + 𝜃𝐷1(2) ≥ · · · ≥ 𝜃𝑡(𝑁) + 𝜃𝐷1(𝑁) for 𝑁 > 1 as required.

Now given the constant maximum curvature we have that the points 𝐿0, (0, 𝑅0)

and 𝐿1 are creating an isosceles triangle. See Fig. 3.8 for visualization. The

maximum distance of the line (𝐿0𝐿1) and the circle can be obtained by the height

3.4. Irreducibility for Linear Linkages 71

of the triangle, such that 𝑑𝜅𝑁
= 𝑅0 −

√︃
𝑅2

0 −
𝑙2
0
4 .

Theorem 5. Let 𝜏 = 𝜏𝐼 ∘ 𝜏𝜅𝑁
∘ 𝜏𝐸 with 𝜏 ∈ ℱ𝜅𝑁

and 𝜏𝐼 , 𝜏𝐺 be the linear extensions

of 𝜏 . If the root link 𝐿0 moves along 𝜏 , then for 𝛿𝑖 ≤ 𝛿0 and 𝑙2
0

2𝑅0
≤ 𝛿0, we have

that there exists sublink configurations 𝜃1, · · · , 𝜃𝑁 such that the volume of the linear

linkage ℛ𝑁
𝐿 is a subset of 𝜏 ⊕ 𝐿0

Proof. By Lemma 2, the maximum distance of the linear linkage to 𝜏 is given by

𝑑𝜅𝑁
. If 𝛿0 ≥ 𝑑𝜅𝑁

, then any point on the linear linkage curve will be inside 𝜏 ⊕ 𝐿0.

By Theorem 2 we can choose 𝜃1, · · · , 𝜃𝑁 , such that the center of every 𝐿𝑖 is located

on 𝜏 . Then there exists an instance 𝑡 such that 𝐿𝑖 = 𝜏(𝑡). 𝐿𝑖 is a subset of 𝜏 ⊕𝐿0

exactly if 𝛿0 ≥ 𝛿𝑖.

We have showed that if the root link of a linear linkage moves on a 𝜅𝑁 -curvature

constrained trajectory, then there exists a sublink configuration at every instance,

such that all sublinks are inside of the swept volume of the root link.

3.4.6 3-Dimensional Conjecture

In 3 dimensions, a space curve is defined by its curvature and torsion [74]. We will

conjecture that our results apply also to 3 dimensions. Let us define the following

functional space

ℱ𝜅,𝑇 = 𝐶2([0, 1],R3) (3.16)

with 𝜏 ∈ ℱ𝜅,𝑇 ⇒ 𝜏(0) = 𝑠, 𝜏 ′(0) = 𝑠′, 𝜏 ′′(0) = 𝑠′′ and that 𝜏(1) is outside a

cone 𝑃0 spanned by 𝑠, and the length of the link 𝑙0, as depicted in Fig. 3.6. The

72 Chapter 3. Irreducible Motion Planning

curvature 𝜅 and torsion 𝑇 of 𝜏 is constrained to be

𝜅 = 2 sin(𝜃𝐿)
𝑙0

, 𝑇 ∈ R (3.17)

Conjecture 1. Theorem 5 holds for ℱ𝜅,𝑇 in 3-dimensions.

We will use this conjecture in our planning algorithm, to verify it experimen-

tally and let the proof for future work.

Finally, we want to point out that completeness is not maintained for ℱ𝜅,𝑇

Theorem 6. The motion planning problem 𝐴 for ℛ𝑁
𝐿 is not complete in ℱ𝜅,𝑇

Proof. Since we constraint the functional space to not allow functions with curva-

tures > 𝜅, we can trivially construct a counterexample in the following way: let

us consider a disk 𝐷2 = {𝑥 ∈ R2|‖𝑥‖ ≤ 𝛿} with radius 𝛿, starting at a point 𝑠 and

having direction 𝑠′. We construct an environment 𝐸 by sweeping the disk along

a constant 𝜅′ curvature curve 𝜑, connecting (𝑠, 𝑠′) to (𝑠, 𝑠′), whereby 𝜅′ > 𝜅. Let

us now look at the motion planning problem of planning for 𝐷2 from (𝑠, 𝑠′) to a

point (𝑝, 𝑝′), with (𝑝, 𝑝′) ∈ 𝐸. Visualized in Fig. 3.9. Since the environment is

not intersecting the boundary of the cone 𝑃0, which is constructed by 𝑠, 𝑠′, 𝜅′, it

follows from Theorem 4 that no function can reach (𝑝, 𝑝′).

We established so far that if we can find a feasible trajectory for link 𝐿0 under

a curvature constraint, then we can find a trajectory for the whole linear linkage,

which is feasible. We showed that this is not complete, however we can define a

weaker version of completeness, which we call 𝜅-curvature completeness

Definition 11. A motion planning algorithm is 𝜅-curvature complete if it finds a

trajectory in the functional space ℱ𝜅0 ⊂ ℱ , if one exists, or correctly reports that

no such exist.

3.4. Irreducibility for Linear Linkages 73

Figure 3.9: Visualization of a simple completeness counterexample, in which an environment
𝐸 has to be solved, which follows a 𝜅′ > 𝜅 curvature curve.

We observe that this is a weaker version, such that completeness would imply

𝜅-curvature completeness, but not the other way round. This is depicted schemat-

ically in Fig. 3.10.

The next section will be devoted to develop a 𝜅-curvature complete algorithm.

Figure 3.10: The 𝜅-curvature completeness property and its relation to probabilistic complete-
ness and completeness.

74 Chapter 3. Irreducible Motion Planning

3.5 Irreducible Curvature Complete Algorithm

In Theorem 5, we established that a linear linkage ℛ𝑁
𝐿 with links 𝐿0 → · · · → 𝐿𝑁

has a feasible solution if we can find a feasible solution for 𝐿0 which respects a

certain curvature 𝜅. Here, we describe an algorithm to compute this solution. We

will use spherical joints for the sublinks, such that we have joint configurations

𝜃1, · · · , 𝜃𝑁 , 𝛾1, · · · , 𝛾𝑁 .

Now, given a trajectory 𝜏 ∈ ℱ𝜅𝑁
for 𝐿0, we compute feasible joint configura-

tions for the sublinks 𝐿1, · · · , 𝐿𝑁 . A rotational joint can be seen as a special case

with 𝛾1 · · · , 𝛾𝑁 = 0.

Let 𝐴 = {ℛ𝑁
𝐿 , 𝒞, 𝑞𝐼 , 𝑞𝐺, E} be a motion planning problem for ℛ𝑁

𝐿 . Let 𝜏 ∈ ℱ𝜅𝑁

be the trajectory of the root link 𝐿0. If 𝜏⊕𝐿0 is a feasible solution, then by Theorem

5 we are guaranteed to find a feasible configuration such that 𝜏 ⊕ (𝐿0 ∪ · · · ∪ 𝐿𝑁)

is a feasible solution. We will describe now how to find the configurations given a

trajectory 𝜏 ∈ ℱ𝜅𝑁
.

For all 𝑡0 ∈ [0, 1] we compute 𝜃1 by the following procedure: start at 𝜏(𝑡0) and

move along 𝜏 in backward direction. See Fig. 3.12. Since we are guaranteed by

Theorem 3 that we will meet 𝜕𝑃0, we can denote the intersection point as 𝑡𝑛 < 𝑡0

with ‖𝜏(𝑡𝑛)− 𝜏(𝑡0)‖ = 𝑙0. Then we have

𝜃 = acos
(︃
−𝜏 ′(𝑡0)𝑇 (𝜏(𝑡𝑛)− 𝜏(𝑡0))
‖𝜏 ′(𝑡0)‖‖𝜏(𝑡𝑛)− 𝜏(𝑡0)‖

)︃
(3.18)

from 𝑡𝑞 we recursively compute all 𝜃 values.

As a technical detail, we note that this requires that even at 𝑞𝐼 , we can follow

the trajectory backwards. Therefore, we need to extend the trajectory by moving

along the sublinks at 𝑞𝐼 to obtain an extended trajectory 𝜏 = 𝜏𝐼 ∘ 𝜏 .

The resulting algorithm is described in Fig. 3.11. It takes the input trajectory

𝜏 and produces a resulting configuration vector at each instance 𝑡 ∈ [0, 1] along 𝜏 ,

3.5. Irreducible Curvature Complete Algorithm 75

such that the resulting swept volume of all links is inside the swept volume of the

root link, i.e. (𝜏 ⊕ 𝐿0 ∪ · · · ∪ 𝐿𝑁) ⊆ (𝜏 ⊕ 𝐿0). The complexity scales with 𝒪(𝑁).

The algorithm has been implemented in python and is available as a standalone

module

https://github.com/orthez/irreducible-curvature-projection/

3.5.1 Irreducibility Assurance Controller

The analytical computation of the irreducible configuration at instance 𝑡 enables us

to design a control algorithm, which pushes the robot body towards an irreducible

trajectory.

Let us denote by 𝜑 : ℱ × [0, 1] → R𝑁 × R𝑁 the computation of joint angles

for our spherical joint from the current trajectory 𝜏 ∈ ℱ of body 𝐿0 at instance

𝑡0 ∈ [0, 1]. The output are joint angles 𝜃, 𝛾 specifying the position of the spherical

joints at instance 𝑡0. Let us denote by 𝜙 : [0, 1] → R𝑁 × R𝑁 the measured joint

angles at instance 𝑡0 ∈ [0, 1].

A proportional gain controller can be constructed as 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) with 𝑒(𝑡) =

‖𝜑(𝑡) − 𝜙(𝑡)‖. This gives a hint at the possibilities of this geometrical inspired

approach. In general, using the controller will minimize the swept volume, which

could be useful in different areas. We note that minimal swept volume loosely

relates to minimal air resistance. For example, an octopus robot could use this

to let the arms trail behind its body while moving, such that water resistance is

minimized. A road train — a tractor unit pulling two or more trailers — could

minimize its air resistance to minimize gas consumption.

https://github.com/orthez/irreducible-curvature-projection/

76 Chapter 3. Irreducible Motion Planning

Algorithm 2: Irreducible Curvature Projection
Data: 𝑡0, 𝜏, 𝜏 ′, 𝜏 ′′, 𝛿0:𝑁 , 𝑙1:𝑁 , Δ𝑡
Result: 𝜃1:𝑁 , 𝛾1:𝑁
e1 ← 𝜏 ′(𝑡0);
e2 ← 𝜏 ′′(𝑡0);
e3 ← 𝜏 ′(𝑡0)× 𝜏 ′′(𝑡0);
𝑡𝑐𝑢𝑟 ← 𝑡0;

R ←

⎛⎜⎝e1 · e𝑥 e2 · e𝑥 e3 · e𝑥

e1 · e𝑦 e2 · e𝑦 e3 · e𝑦

e1 · e𝑧 e2 · e𝑧 e3 · e𝑧

⎞⎟⎠;

for 𝑖← 1 to 𝑁 do
𝑡𝑛 ← 𝑡0;
while ‖𝜏(𝑡𝑛)− 𝜏(𝑡𝑐𝑢𝑟)‖ ≤ 𝑙𝑖 do

𝑡𝑛 ← 𝑡𝑛 −Δ𝑡

𝜏𝑛 ← 𝜏(𝑡𝑛);
𝑝𝐼 ← 𝜏(𝑡𝑛)− 𝜏(𝑡𝑐𝑢𝑟);
𝑝𝑊 ← R𝑇 𝑝𝐼 ;
𝑥𝐿 ← (−1, 0, 0)𝑇 ;
𝑝𝑥𝑦 ← 𝑝𝑊 − (𝑝𝑇

𝑊 e𝑧)e𝑧;
𝑝𝑧𝑥 ← 𝑝𝑊 − (𝑝𝑇

𝑊 e𝑦)e𝑦;
𝜃𝑖 ← acos(𝑝𝑥𝑦𝑥𝐿

‖𝑝𝑥𝑦‖‖𝑥𝐿‖);
𝛾𝑖 ← acos(𝑝𝑧𝑥𝑥𝐿

‖𝑝𝑧𝑥‖‖𝑥𝐿‖);
if 𝑝𝑇

𝑊 e𝑧 < 0 then
𝛾𝑖 ← −𝛾𝑖;

if 𝑝𝑇
𝑊 e𝑦 > 0 then
𝜃𝑖 ← −𝜃𝑖;

R ← R ·R𝑌 (𝛾𝑖) ·R𝑍(𝜃𝑖);
e1 ← Re𝑥;
e2 ← Re𝑦;
e3 ← Re𝑧;
𝑡𝑐𝑢𝑟 ← 𝑡𝑛;

Figure 3.11: Irreducible Curvature Projection Algorithm. e𝑥, e𝑦, e𝑧 represent the 𝑥, 𝑦, 𝑧 basis
vectors, respectively.

3.6. Experiments 77

Figure 3.12: Given a trajectory 𝜏 ∈ ℱ𝜅𝑁
, we can analytically compute the joint configurations,

such that sublinks of the linear linkage are reduced, i.e. they are inside of the swept volume of
𝜏 ⊕ 𝐿0..

3.6 Experiments

We performed two experiments to verify our theoretical results. First, a swimming

snake in a 2d and a 3d environment. Planning is conducted for the head of the

snake under a curvature constraint. After finding a feasible head trajectory we

can use the Irreducible Curvature Projection Algorithm to project the remaining

sublinks into the swept volume of the head. Second, we planned a constrained

motion for the humanoid robot HRP-2, where we plan a motion for a reduced

mechanical model with 7 dimensions. After planning a motion, we then use our

projection algorithm to find the position of the remaining links.

3.6.1 Swimming Snake

For the snake simulation, we have choosen a bounded curvature, and estimated

the number of links, such that we obtain the longest possible irreducible snake.

Our values were 𝜅 = 1m−1, 𝛿0 = 0.23m, 𝛿𝑖 = 0.138m, 𝑙0 = 0.33m and 𝜃𝐿 = 𝜋
2

giving rise to

𝑁 =
⌊︃

2 sin(𝜃𝐿)
𝜅𝑙0

⌋︃
= 6 (3.19)

Planning with our curvature-constrained functional space is equivalent to plan-

78 Chapter 3. Irreducible Motion Planning

ning a path for the non-holonomic snake’s head subject to differential constraints

describing forward non-slipping motions and for which we will assume constant

speed. Note that this is equivalent to the model of Dubin’s car. This can be

solved in both 2d and 3d using kinodynamic planning [11].

In 2d, the configuration space of the snake’s head is 𝑆𝐸(2) with 𝑞 = (𝑥, 𝑦, 𝜃)𝑇

and the differential model is given by

�̇� = cos 𝜃

�̇� = sin 𝜃

𝜃 = 𝑢

(3.20)

where the control space is defined by the steering angle 𝑢. In 3d, the configuration

space is 𝑆𝐸(3) and the differential model is similar to a driftless airplane given by

𝑞 = 𝑞

(︃ 3∑︁
𝑖=1

𝑢𝑖𝑋𝑖 + 𝑋4

)︃
(3.21)

where
𝑋1 =

[︂ 0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]︂
𝑋2 =

[︂ 0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

]︂
𝑋3 =

[︂ 0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]︂
𝑋4 =

[︂ 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]︂
𝑋5 =

[︂ 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]︂
𝑋6 =

[︂ 0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]︂
is a basis for se(3), the Lie algebra of 𝑆𝐸(3).

The controls 𝑢1, 𝑢2 and 𝑢3 are then the roll, pitch and yaw steering angles,

respectively. We have performed one experiment in 2d in a rocky environment, and

averaged the results for the classical and the irreducible case over 100 experiments,

as reported in Tab. 3.3. While having the same success rate, the planning time

is reduced by one order of magnitude. We further planned a single motion in 3d,

where the snake has to swim through holes in a formation of rocks. Fig. 3.13

shows the results of our projection algorithm with the swept volume of the head

in magenta.

3.6. Experiments 79

Figure 3.13: Planning for the head of a swimming snake in 2D (left, middle), and in 3d (right).
The swept volume of the head is shown in magenta. The position of the sublinks is an output of
the curvature projection algorithm.

Figure 3.14: We use a reduced mechanical model for motion planning, which preserves cur-
vature completeness for the linear arm linkages with respect to the chest (left,middle). After
planning for the reduced model, we can project the remaining links into the swept volume, and
thereby solving very narrow environments (right, adapted from [16]).

3.6.2 Humanoid Robot

Next, we conduct motion planning for the humanoid robot HRP-2, by abstracting

away the two arms as linear linkages. Also, we consider the right leg as a linear

linkage connected to the left leg. We additionally approximate the head by a

sphere, so that yaw rotations leave the head invariant. This leaves us with an

effective configuration space of R8, which is shown in Table 3.1. Motion planning

can now be conducted with a reduced mechanical model, as shown in Fig. 3.14.

80 Chapter 3. Irreducible Motion Planning

Curvature constraint for chest HRP-2

Each arm of HRP-2 is a linear linkage, which we will approximate by four spheres

as depicted in Fig. 3.15. We positioned the spheres at the moveable joints of the

robot. The resulting linear linkage has 𝑁 = 4 links with length 𝐿0 = 0.25m and

sphere radius of 𝛿 = 0.08m. We choose a common joint interval [−𝜋
4 , 𝜋

4] for the

free joints. We can compute the resulting maximum curvature as

𝜅 =
2 sin(𝜋

4)
3𝐿0

= 1.8856m−1 (3.22)

Meaning, if we can find a trajectory of the chest (without considering the arms),

which has a bounded 𝜅 curvature, then we are guaranteed to find joint angles for

the arm, such that the swept volume of the arms and the chest is a subset of the

swept volume of the chest. The resulting joint limits for the arms of HRP-2 are

shown in Table 3.2.

Figure 3.15: Approximation of the arm as a linear linkage in canonical form

3.6. Experiments 81

Table 3.1: Variable Joints of Humanoid Robot HRP-2, and the corresponding range. If the
value is set to 𝜑, then the joints are ignored for motion planning, and are determined by the
irreducible projection algorithm in a post-processing stage.

Joint Fixed Value Anatomical Name Range
HEAD0 0.0
HEAD1 - Neck [−0.52, 0.79]
CHEST0 0.0
CHEST1 - Waist [−0.09, 1.05]
RARM 𝜑 Right Arm
LARM 𝜑 Left Arm
LLEG0 0.0
LLEG1 0.0
LLEG2 - Hip [−2.18, 0.73]
LLEG3 - Knee [−0.03, 2.62]
LLEG4 - Ankle [−1.31, 0.73]
LLEG5 0.0
RLEG 𝜑 Right Leg

LSOLE_X - Left Foot [−0.5, 0.5]
LSOLE_Y - Left Foot [−3.0, 3.0]
LSOLE_𝜃 - Left Foot [0, 2𝜋]

Table 3.2: Values for the approximated linear linkage structure of the arms of HRP-2. Our
curvature algorithm determines the exact values based on the movement of the chest.

Joint 0 1 2 3 4 5 6

Left Arm −𝜋
2 [𝜋

4 , 3𝜋
4] −𝜋

2 [−𝜋
4 , 𝜋

4] 0.0 [−𝜋
4 , 𝜋

4] 0.1

Right Arm −𝜋
2 [−3𝜋

4 , −𝜋
4] −𝜋

2 [−𝜋
4 , 𝜋

4] 0.0 [−𝜋
4 , 𝜋

4] 0.1

82 Chapter 3. Irreducible Motion Planning

Implementation Details

For our simulations, we use the humanoid path planner (HPP) framework [88].

It is a general motion planning framework based on random sampling techniques

[11], tailored for planning on humanoid robots like HRP-2. We will make use of

a planning algorithm based on sliding motions. A sliding motion is dynamically

stable, as we discussed in Sec. 3.2, and is particulary suitable for constrained

environment as it locally minimizes the swept volume by minimizing oscillations.

From a motion planning point of view, a sliding motion is easier to deal with

computationally: while planning discrete contact steps gives rise to a combinato-

rial explosion, a continuous sliding motion can be optimized by taking derivative

informations into account.

To plan a single motion, we use the rapidly-exploring tree (RRT) [22] algo-

rithm. We replace the basic configuration shooter, which samples a random con-

figuration from the configuration space by an irreducible configuration shooter, to

only sample inside the subspace generated by ignoring the arms and the right leg.

After planning, we compute the reduced configurations by using the irreducible

curvature projection algorithm.

The irreducible configuration shooter has been released as an open-source sub-

module for the HPP framework, which can be found here

https://github.com/orthez/hpp-motion-prior/

Experimental Results

To test our theoretical results, we have chosen a motion planning problem, where

the robot HRP-2 has to move through a wall, as shown in Fig. 3.16. Those results

have been taken from [13]. Due to the wall constraint, a solver has to find a

narrow passage in the configuration space to solve the problem. In the classical

https://github.com/orthez/hpp-motion-prior/

3.6. Experiments 83

35-dof setting, this problems has not been solved, since in practice the probability

to find a feasible configuration vanishes towards zero. We consider here the 8-dof

setting without waypoints, by using the irreducible subspace.

The results of 10 runs are reported in Table 3.3. Since the passage is narrow,

RRT can take a long time to converge, for our experiment, it took between 44

minutes up to 43 hours. This shows that sampling-based methods are becoming

inefficient in narrow environments, which is closely related to the 𝜖-goodness cri-

teria [89], which states that the convergence rate of sampling-based methods is

inversly proportional to the volume of the free configuration space.

We have successfully applied the irreducibility concept on the HRP-2 humanoid

walk through the wall. This experiment, however, uses a different planning algo-

rithm which exploits environmental structure, and follows the resulting trajectory

by using a hierarchical task-space controller. We submitted those results in [16].

Since this chapter is concerned with a feasibility study, the resulting motion will

be non-optimal, assumes infinitesimal small footsteps and might appear unnatural

to a human observer. However, having a first feasible trajectory is a prerequisite

for fast convergence of local planning algorithms like CHOMP [90] or AICO [68].

Figure 3.16: Wall Motion Planning Problem. Left initial configuration Middle one irreducible
configuration on the final trajectory found by an RRT on the irreducible subspace Right goal
configuration. Adapted from [13].

84 Chapter 3. Irreducible Motion Planning

Table 3.3: Simulation results for the snake and for the humanoid robot. The "snake 2d Rocks"
and "Snake 3d Rock Formation" refers to the environment shown in Fig. 3.13. HRP-2 Wall
refers to the experiment in Fig. 3.16. Results taken from [13].

Planning
Problem

𝒞 Dimension #Success/
#Experiments

𝜎(s) 𝜇(s)

Snake 2d
Rocks

(Classical)

R3+𝑁 100/100 54.15s 94.36s

Snake 2d
Rocks

(Irreducible)

R3 100/100 1.34s 1.04s

HRP-2 Wall
(Classical)

R35 Not solveable (> 3days)

HRP-2 Wall
(Irreducible)[13]

R7 10/10 12h14m 9h34m

3.7 Discussion

The theoretical framework presented is able to simplify motion planning problems

by exploiting the linear linkage structure, which can be found in a diverse number

of mechanical systems, including snakes, octopuses and humanoid robots.

Our conceptual idea is a completeness-preserving dimensionality reduction tech-

nique. To apply this concept in practice, we introduced a new concept called

𝜅-curvature completeness. This 𝜅-curvature completeness is in general a proper

subset of completeness, and therefore we can always find certain situations in which

we cannot find a solution, even if one exists. We believe, however, that for some

mechanical systems 𝜅-curvature completeness and completeness are equivalent, for

example for systems which resemble Dubin’s car with trailers and positive velocity.

Motion planning can now be simplified by first planning under a certain cur-

vature constraint in the reduced dimensionality space. If a motion plan has been

3.8. Conclusion 85

found, we can execute it. If no plan has be found, we can increase the dimension-

ality.

In the larger scheme, we think about irreducibility as one component of motion

prior information: developing efficient motion planning algorithms requires us to

make use of the underlying structure of the problem. Here, we showed that certain

mechanical systems allow us to exploit their linear linkage structure.

Finally, it seems that linear linkages are quite common in nature. Irreducibility

could be a way to motivate why the octopus aligns its limbs behind its head during

swimming. Besides minimizing water resistance, it could also thereby simplify

motion planning. We think there is a variety of interesting phenomena which

could be studied by exploiting our concept of an irreducible trajectory in motion

research.

3.8 Conclusion

We described the concept of irreducibility, which allows us to conduct completeness-

preserving dimensionality reduction for motion planning. The main result in The-

orem 2 states that finding no feasible trajectory in the space of irreducible trajec-

tories implies that there is no feasible trajectory in the space of all configuration

space trajectories, i.e. that motion planning is complete w.r.t. irreducible trajec-

tories.

We have described how irreducibility can be applied to linear linkages by using

the concept of 𝜅-curvature completeness. Based on those results, we developed

a linear-time algorithm to project configurations into the swept volume of the

root links of a linear linkage. Finally, we conducted a set of experiments for the

humanoid robot HRP-2, by considering the arms as linear linkages.

Future research will focus on the automatic discovery of the irreducible trajec-

86 Chapter 3. Irreducible Motion Planning

tory space, on the correctness of the conjectures in Sec. 3.4.6, and on applying

our principle to more general linkage structures.

87

Chapter 4

Homotopic particle motion

planning for humanoid robotics

"Clearly a complete understanding of walking requires a theory of spatial

memory"
— David Rosenbaum, Human Motor Control

"A good model should account for the environment"

— de Groot, A. & Gobet, F., Perception and Memory in Chess

4.1 Summary

We showed in Chapter 3, that exploiting the inherent mechanical structure of a

robot is essential to an understanding of motion planning. In this chapter, we

want to show that the environment equally consists of a rich structure which we

can exploit. In particular, we exploit the topology of the environment to discover

connected components. Inside a connected component, instead of planning one

trajectory in configuration space, motion planning can be seen as optimizing a set

88 Chapter 4. Homotopic Particle Motion Planning

of homotopically equivalent particle trajectories. Our contributions are: i) finding

the homotopy classes of a single footstep trajectory in an environment, ii) finding

a single footstep trajectory in a single homotopy class formulated as a convex

optimization problem, and iii) finding a feasible upper body trajectory given a

footstep trajectory, formulated as a set of convex optimization problems. This

view provides us with important insights into the difficulty of motion planning,

and – under some assumptions – allows us to provide the number of local minima

of a given motion planning problem. We demonstrate our approach on a real

humanoid platform with 36-dof in a highly restricted environment.

4.2 Introduction

We recall that we define the motion planning problem as 𝐴 = {ℛ, 𝒞, 𝑞𝐼 , 𝑞𝐺, E}

[11] with ℛ be a robotic system, 𝒞 the configuration space of ℛ, 𝑞𝐼 ∈ 𝒞 the initial

configuration, 𝑞𝐺 ∈ 𝒞 the goal configuration and E the environment.

The motion planning problem was shown to be NP-hard [20], and for humanoid

robots, computational time can become several hours in a narrow environment

[13, 23, 44]. We argue that the main problem is the reliance on random sampling

techniques [22]: if the subset of feasible configuration gets arbitrarily small, the

convergence rate of random sampling gets arbitrarily high [89]. While random

sampling is excellent for solving the problem in general, we argue here that to

design truly efficient algorithms, we need to study, understand and exploit the

underlying structure of the motion planning problem.

Here, we concentrate on investigating and exploiting the environment structure

by extracting homotopy classes. A homotopy class is a set of functions, which can

be continuously deformed into each other, as depicted in Fig. 4.1. For each

homotopy class, we consider the trajectories of a set of particles {𝜏𝑘}𝜂
𝑘=0 on the

4.2. Introduction 89

𝑓3

𝑓2

𝑓1

𝑥𝐼

𝑥𝐺

Figure 4.1: Left: Two functions are in the same homotopy class, if they can be continuously
deformed into each other, while fixing their end points. 𝑓1 would be not homotopically equivalent
to 𝑓2, while 𝑓3 would be. Right: In 3d, we conduct homotopic motion planning for a set of
particles, particles with homotopically equivalent space curves.

robot body moving through R3 on space curves of the form 𝜏𝑘 : [0, 1] → R3. We

assume here that all particle trajectories are homotopically equivalent. Motion

planning can then be conducted in the environment by first finding a single particle

trajectory, and then finding all particles on the robot body by restricting them to

belong to the same homotopy class as the single particle trajectory.

Towards this goal, we decompose the open space of the environment into smaller

volumes and analyze their covering to compute homotopy classes of robot particles

moving through open space. We argue here that performing motion planning lo-

cally in one homotopy class ensures continuity, which is a requirement for optimiza-

tion based planners. This decomposition of motion planning is called homotopic

motion planning [50].

Our contributions are

∙ Identification of the homotopy classes in a given environment for a sliding

footstep and the approximation of the free space

90 Chapter 4. Homotopic Particle Motion Planning

∙ Formulation of the problem of finding a sliding contact trajectory in one

homotopy class as a convex optimization problem

∙ Formulation of the problem of finding a set of particle trajectories on the

robot body, which are constrainted by the contact trajectory, as a set of

convex optimization problems

Sec. 4.4 describes how we decompose an environment into walkable surfaces,

homotopy classes and the free space inside of one homotopy class. Sec. 4.5 formu-

lates optimizing a single footstep trajectory as a convex optimization problem, and

Section 4.6 formulates the upper body optimization as a set of convex optimization

problems under convex inequality constraints from the environment. The reader

is refered to consult Fig. 4.2 for a technical overview.

4.3 Related Work

Bhattacharya et al. [50] compute homotopy classes in the environment, and use

them as a constraint for graph-based search. Our work is complementary in the

sense that we investigate how to formulate planning in one homotopy class as a

set of convex optimal problems, while their work investigates how to compute the

homotopy classes in the first place.

The technique presented in [47] estimates a single homotopy class by growing

random spheres. Our approach tries to be more systematic in that we reason

about contact surfaces, and restrict the free space by the robots geometry. Also,

we consider planning inside a homotopy class not as a potential field controller,

but as a global optimization procedure.

The work by [91] consider sweeping a spherical object to find weakly colli-

sion free footstep positions. Our work is similar for footsteps but precomputes

homotopy classes to identify high-level minima.

4.4. Environment Homotopy Decomposition 91

[92] identifies narrow passage in the environment, and computes important

waypoint configurations inside those narrow passages. This idea inspired our com-

putation of connector elements, elements which connect two contact surfaces.

Ivan et al. [93] introduce different topological representations which makes it

easier to solve certain subproblems of motion planning. Our work is complemen-

tary, in that we would be able to analyze which representation to use given a

certain problem.

The authors of [7] discover convex regions of footsteps in an environment, and

employ mixed-integer programming to find a solution. Our work explores how

adding more structure in form of connectivity can help to discover the homotopy

classes, and formulate the resulting problem as a set of convex optimization prob-

lems.

Farber [51] introduced the topological complexity of a configuration space. Our

work can be seen as a practical means of identifying the covering of the workspace

volume and thereby its topological complexity. Our optimization algorithms are

then one proposal to find paths inside of a given covering.

This work is fundamentally based on the work by [13], who introduced irre-

ducible configuration for humanoid robots. Our work is complementary in that we

are restricting our motions to the space of irreducible configuration while exploiting

environment structure.

4.4 Environment Homotopy Decomposition

In this section, we describe how we compute the free space of a given environment,

and its connectivity. We start by reasoning about surfaces on which a foot contact

is possible, which we call walkable surfaces. For each walkable surface, we compute

its free space stack, a set of boxes on top of the surface in which the swept volume of

92 Chapter 4. Homotopic Particle Motion Planning

Sec. 4.4
E 𝑆 𝐵 𝐼

𝑥𝐼 , 𝑥𝐺 𝐻 𝐺𝐸

Sec. 4.5 𝑥𝐼 , 𝑥𝐺𝐻 𝜏0

Sec. 4.6
𝜏0 𝑃 ϒ

𝐼

𝑋

𝒞

Figure 4.2: The conceptual overview about this chapter. Top: in section 4.4 we decompose
the environment E into walkable surfaces 𝑆, intersections 𝐼 and intersections 𝐼. From the start
contact 𝑥𝐼 , the goal contact 𝑥𝐺 and the connectivity graph 𝐺𝐸 we compute the homotopy classes
𝐻 on 𝑆. Middle: Given the homotopy classes 𝐻, the start contact 𝑥𝐼 and the goal contact
𝑥𝐺, we compute a sliding footstep trajectory 𝜏0, supported on 𝐻. Bottom: We compute upper-
body particle trajectories ϒ from a given footstep trajectory 𝜏0, planes 𝑃 , cuboids 𝐵, and from
cross-sections 𝑋 generated by sampling robot configurations 𝒞.

the robotℛ necessarily has to lie. We further represent the connectivity of surfaces

by a graph structure. This graph structure then enables us identify homotopy

classes.

We will consider a decomposition of the environment into a set of objects as

E = 𝑂1 ⊔ · · · ⊔𝑂𝛼 (4.1)

with 𝑂𝑖 being a bounded convex polytope

𝑂𝑖 = {𝑥 ∈ R3|𝑎(𝑖)𝑇
𝑗 𝑥 ≤ 𝑏

(𝑖)
𝑗 , ‖𝑎(𝑖)

𝑗 ‖2 = 1, 𝑗 ∈ [1, 𝛼𝑖]} (4.2)

We make here the assumption that every object 𝑂𝑖 is a convex polytope. If an

object is not a convex polytope, we decompose it into convex subobjects [94], such

that we can operate without loss of generality on convex polytopes.

4.4. Environment Homotopy Decomposition 93

For every object 𝑂𝑖, we define the 𝑝-th surface element as

𝑆𝑝
𝑖 = {𝑥 ∈ R3|𝑎(𝑖)𝑇

𝑝 𝑥 = 𝑏(𝑖)
𝑝 , 𝑎

(𝑖)𝑇
𝑗 𝑥 ≤ 𝑏

(𝑖)
𝑗 ,

𝑗 = 1, · · · , 𝑝− 1, 𝑝 + 1, · · · , 𝛼𝑖}
(4.3)

with 𝑎(𝑖)
𝑝 the surface normal, and 𝑏(𝑖)

𝑝 the distance to the origin.

Definition 12 (Walkable Surface). A surface element 𝑆𝑝
𝑖 is called walkable, if

1. the slope of 𝑆𝑝
𝑖 is smaller than the maximum slope ℛ𝜃 the robot can stand on

‖𝑎(𝑖)
𝑝 − 𝑣𝑔‖ ≤

√︁
(2− 2 cos(ℛ𝜃)) (4.4)

with 𝑣𝑔 = (0, 0, 1)𝑇

2. the foot of radius ℛFR is fully contained inside 𝑆𝑝
𝑖 , meaning the following

convex problem is feasible (based on the maximum inscribed circle problem

[63])
maximize

𝑥∈R𝑛,𝑟∈R
𝑅

subject to 𝑎𝑇
𝑖 𝑥 + 𝑅𝑎𝑇

𝑖 𝑎′
𝑖 ≤ 𝑏𝑖,

𝑖 = {1, · · · , 𝑝− 1, 𝑝 + 1, · · · , 𝛼𝑖}

𝑎𝑇
𝑝 𝑥 = 𝑏𝑝

𝑅 ≥ ℛFR

(4.5)

whereby 𝑟 is the radius of the circle, 𝑥 the center, 𝑎′
𝑖 is the orthogonal pro-

jection onto the hyperplane of 𝑎𝑝, i.e. 𝑎′
𝑖 = 𝑎𝑖 − (𝑎𝑇

𝑖 𝑎𝑝)𝑎𝑝. Visualized in Fig.

4.3.

We now add a notion of connectivity:

Definition 13 (Connectivity). Two walkable surfaces 𝑆𝑖, 𝑆𝑗 are called connected,

94 Chapter 4. Homotopic Particle Motion Planning

𝑅𝑥 𝐵𝑝
𝑖 (0, 𝛿)

𝐵𝑝
𝑖 (𝛿, 2𝛿)

𝐵𝑝
𝑖 (2𝛿, 3𝛿)

𝑆𝑝
𝑖

Figure 4.3: Left: a polytope (light gray), a surface element (dark gray) and an inscribed circle
with radius 𝑅 and center 𝑥. Right: a set of cuboids 𝐵𝑝

𝑖 on top of one surface element 𝑆𝑝
𝑖 (dark

gray)

iff 𝑑(𝑆𝑖, 𝑆𝑗) < ℛStepWidth, with ℛStepWidth being the maximum step size of the robot

ℛ

This connectivity gives rise to a graph structure 𝐺𝐸, which contains walkable

surface nodes, and an edge between two connected surfaces.

To approximate the free space, we stack cuboids on top of each walkable surface.

A cuboid of height 𝛿 and with distance Δ𝐿 to 𝑆𝑝
𝑖 is defined as 𝐵𝑝

𝑖 (Δ𝐿, Δ𝐿 + 𝛿) See

Fig. 4.3. The stack of cuboids on 𝑆𝑝
𝑖 will be denoted by

𝐵𝑝
𝑖 = {𝐵𝑝

𝑖,𝑘}
𝛽
𝑘=1

𝐵𝑝
𝑖,𝑘 = 𝐵𝑝

𝑖 (𝑘𝛿, (𝑘 + 1)𝛿)}
(4.6)

𝛽 is choosen such that 𝛽 >
ℛHU

𝛿
with ℛHU the maximum height of the robot.

For each 𝐵𝑝
𝑖,𝑘, we apply a clipping algorithm [95] to decompose it into smaller

convex cuboids.

Additionally we define the intersection element between two stacks of cuboids

𝐵𝑖, 𝐵𝑗 as 𝐼𝑖𝑗 = 𝐵𝑖 ∩𝐵𝑗.

Now, given two configurations 𝑞𝐼 , 𝑞𝐺 ∈ 𝒞 of the robot, we compute the right

foot position as 𝑥𝐼 = 𝑇 (𝑞𝐼), 𝑥𝐺 = 𝑇 (𝑞𝐺) by using a forward kinematics operator

𝑇 . Given 𝑥𝐼 , 𝑥𝐺, we define 𝑆𝐼 = argmin
𝑆𝑘∈𝑆

𝑑(𝑥𝐼 , 𝑆𝑘) to be the initial surface, and

4.5. Convex optimization of Footpath Homotopies 95

𝑆𝐺 = argmin
𝑆𝑘∈𝑆

𝑑(𝑥𝐺, 𝑆𝑘) to be the goal surface.

Given 𝑆𝐼 , 𝑆𝐺, we compute ℋ = {𝐻1, · · · , 𝐻𝑅}, the set of 𝑅 simple connected

paths on the environment graph 𝐺𝐸. We call 𝐻 ∈ ℋ a homotopy, and we will

write the connection of walkable surfaces as 𝐻 : 𝑆0 → · · · → 𝑆𝑅𝐻
. As a note, the

complexity of finding all connected paths in a graph with 𝑉 vertices is 𝒪(|𝑉 |!)

[96].

To summarize, in this section we preprocessed the environment E, to decom-

pose it into

∙ A set of 𝑁𝑤 walkable surfaces 𝑆1, · · · , 𝑆𝑁𝑤

∙ A set of 𝑁𝑤 stack of cuboids 𝐵1, · · · , 𝐵𝑁𝑤

∙ A set of 𝑁𝑖 connector elements 𝐼1, · · · , 𝐼𝑁𝑖

∙ The environment graph 𝐺𝐸, describing the connectivity between walkable

surfaces

∙ A set of homotopies ℋ for given 𝑥𝐼 , 𝑥𝐺

4.5 Convex optimization of Footpath Homotopies

Given 𝐻 : 𝑆0 → · · · → 𝑆𝑅𝐻
, our goal is to find a sliding footstep trajectory sup-

ported on the surfaces 𝑆0, · · · , 𝑆𝑅𝐻
. More formally, we will consider the functional

space of space curves as

Ω(𝑥𝐼 , 𝑥𝐺, 𝐻) = 𝐶1([0, 1],R3) (4.7)

under the constraints that for all 𝜏 ∈ Ω(𝑥𝐼 , 𝑥𝐺, 𝐻) we have 𝜏(0) = 𝑥𝐼 , 𝜏(1) =

𝑥𝐺, and that a segment 𝜏(𝑡) for 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] has support on a walkable surface 𝑆𝑖,

as depicted in Fig. 4.4. In between support, we assume that the function is not

96 Chapter 4. Homotopic Particle Motion Planning

𝑆0 𝑆1 · · · 𝑆𝑅−1 𝑆𝑅

𝜏(𝑡0, 𝑡1) 𝜏(𝑡1, 𝑡2) · · · 𝜏(𝑡𝑅−1, 𝑡𝑅) 𝜏(𝑡𝑅, 𝑡𝑅+1)

Figure 4.4: A function 𝜏 has support on a walkable surface 𝑆𝑖 at the time [𝑡𝑖, 𝑡𝑖+1].

𝐺𝐸

Figure 4.5: Two homotopy classes of footsteps, and two solutions, obtained by solving one
convex optimization program in each homotopy class. Also we show the environment graph 𝐺𝐸

for this particular example, which represents connectivity between walkable surfaces.

supported, i.e. the foot can freely move through space, under the restriction that

the non-support movement is smaller than the maximum stepsize.

One way to represent a function from the functional space Ω(𝑥𝐼 , 𝑥𝐺, 𝐻) is by a

linear combination of basis functions [97]. We assume here that all functions are

of polynomial form, i.e. a function 𝜏 ∈ Ω(𝑥𝐼 , 𝑥𝐺, 𝐻) is represented at instance 𝑡

by a polynomial 𝜏(𝑡) =
𝐾∑︀

𝑖=0
𝑤𝑖𝑡

𝑖. We will make the assumption that higher-order

terms are negligible such that we choose a finite 𝐾 ≫ 0, and use 𝑝(𝑡) =
𝐾−1∑︀
𝑖=0

𝑤𝑖𝑡
𝑖.

We will denote 𝐹 = {𝑥0, · · · , 𝑥𝐾−1} ∈ R𝐾×𝐷, with 𝐾 basis functions, and 𝐷

the discretization of [0, 1]. For all 𝑡 ∈ [0, 1] we denote the approximation by

𝜏 = 𝑊 𝑇 𝐹 (𝑡), with 𝑊 ∈ R𝐾×3. The resulting optimization problem is convex

in the parameters 𝑊 [63], and we can apply the constraints that every 𝜏 lies

4.5. Convex optimization of Footpath Homotopies 97

Figure 4.6: Four homotopy classes in the environment: Our algorithm finds the homotopy
classes via graph search, and then solves one convex optimization problem in each class to find
the global optimal solution trajectory.

in the homotopy class 𝐻 as convex inequality constraints. The resulting convex

optimization problem in homotopy class 𝐻 becomes

minimize
𝜏∈Ω(𝑥𝐼 ,𝑥𝐺,𝐻)

𝑐(𝜏) (4.8)

subject to 𝜏(0) = 𝑥𝐼 , 𝜏(1) = 𝑥𝐺 (4.9)

∀𝑆𝑖 ∈ {𝑆0, · · · , 𝑆𝑅}, 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] :

𝐴𝑖𝜏(𝑡) ≤ 𝑏𝑖

(4.10)

∀𝑡 ∈ [0, 1] :

‖𝜏(𝑡)− 𝜏(𝑡 + Δ𝑡)‖ ≤ ℛStepWidth

(4.11)

∀𝑡 ∈ [0, 1] :

‖𝜏(𝑡)−𝑊 𝑇 𝐹 (𝑡)‖ ≤ 𝜖
(4.12)

whereby we have the following parameters

98 Chapter 4. Homotopic Particle Motion Planning

Table 4.1: Results for planning paths in the two scenarios shown in Fig. 4.5 and Fig. 4.6. 𝑅
is the number of homotopies, 𝑇𝑊 is the time to extract walkable surfaces from the environment,
𝑇𝐺 the time to compute the connectivity between surfaces, 𝑇𝑃 the planning time of solving 𝑅
convex optimization problems, and 𝑇 is the accumulated time of all stages together (averaged
over 10 runs, rounded).

Environment 𝑅 Homotopies 𝑇𝑊 (s) 𝑇𝐺(s) 𝑇𝑃 (s) 𝑇 (s)
Stepping 1 (Fig. 4.5) 2 0.27 1.92 6.53 8.73
Stepping 2 (Fig. 4.6) 4 0.26 1.68 20.34 22.28

∙ ℛStepWidth the maximum step size of the robot

∙ 𝜖 > 0 approximation constant to circumvent numerical instabilities

∙ 𝐾 number of basis functions

∙ 𝑐(𝜏) is a convex objective function on 𝜏 , for example the shortest path

The given convex problem describes the set of all trajectories restricted to one

homotopy class. We can easily add other convex inequality constraints, for example

a valid footstep at 𝑡 can be modeled as another convex inequality constraint:

∀𝑡 ∈ [0, 1] : 𝐴𝑖𝜏(𝑡) ≤ 𝑏𝑖 −ℛ𝐹 diag(𝐴𝑇
𝑖 𝐴′

𝑖) (4.13)

whereby 𝐴𝑖 = {𝑎0, · · · , 𝑎𝑀𝑖
} contains the normals of the polytope associated

to the walkable surface 𝑆𝑖, 𝐴′
𝑖 = {𝑎′

0, · · · , 𝑎′
𝑀𝑖
} with 𝑎′

𝑗 = 𝑎𝑗 − (𝑎𝑇
𝑗 𝑎𝑝)𝑎𝑝, and ℛ𝐹

being the radius of the foot. Compare to (4.5).

Fig. 4.5 shows the result of our convex optimization problem for an environ-

ment with 2 homotopy classes. A more complex version with 4 homotopy classes

is shown in Fig. 4.6. The final planning results are depicted in Table 4.1, all

generated by using the splitting conic solver (SCS) [98] inside cvxpy [99].

4.6. Upper Body Optimization 99

4.6 Upper Body Optimization

We have showed so far how to optimize a single footstep trajectory 𝜏0 ∈ Ω(𝑥𝐼 , 𝑥𝐺, 𝐻)

in one homotopy class of the environment via a convex optimization problem. Now

we assume that 𝜏0 is fixed. Our goal is to find a set of particle trajectories in the

same homotopy class as 𝜏0, belonging to the swept volume of ℛ, such that those

particles are feasible in E. To put if differently, instead of searching for a single

configuration space trajectory, we are searching for a set of mutually constrained

particle trajectories in the environment. This section describes one possible way

to constrain those particle trajectories to lie in the same homotopy class as 𝜏0.

Please consult also Fig. 4.2 for an overview.

Each particle of the swept volume moves along a space curve in R3. Let

ϒ = {{𝜏 𝑙
𝑘, 𝜏 𝑟

𝑘}}
𝜂
𝑘=0 be the set of space curves of 2(𝜂 + 1) particles, with 𝜏

{𝑙,𝑟}
𝑘 ∈

𝐶1([0, 1],R3), and 𝜏 𝑙
𝑘 represents the left outer hull of the swept volume of the robot

at height 𝑘𝛿, and 𝜏 𝑟
𝑘 the right hull. If we take a cross-section of the swept volume,

then 𝜏𝑘 is represented by a point at height 𝑘𝛿, as depicted by the red dots in Fig.

4.7. To achieve this, we apply three constraints on the functional space ϒ

1. 𝜏𝑘(𝑡) ∈ 𝑃 (𝑡), the plane orthogonal to the foot trajectory 𝜏0 at instance 𝑡

(cmp. Fig. 4.8)

𝑃 (𝑡) = {𝑥 ∈ R3|𝑎𝑇
𝑃 (𝑡)𝑥 = 𝑏𝑃 (𝑡)} (4.14)

with 𝑎𝑃 (𝑡) = 𝜏 ′
0(𝑡)

‖𝜏0(𝑡)‖ and 𝑏𝑃 (𝑡) = 𝑎𝑇 (𝑡)𝜏0(𝑡).

2. 𝜏𝑘(𝑡) has to be feasible in E, i.e. if 𝜏0 is supported on 𝑆𝑝
𝑖 at 𝑡, then

𝜏𝑘(𝑡) ∈ 𝐵𝑝
𝑖 (𝑘𝛿, (𝑘 + 1)𝛿) (4.15)

100 Chapter 4. Homotopic Particle Motion Planning

3. At instance 𝑡, all particles resemble a cross-section 𝑋𝑘 of the robot

𝜏𝑘 ∈ 𝑋𝑘 (4.16)

The first two constraints are a linear equality and a convex inequality, respec-

tively. The third constraint however is non-convex. To obtain 𝑋𝑘, we sample the

configuration space 𝒞 and compute cross-sections. A cross-section of a configura-

tion is defined as its swept volume on the plane in movement direction, i.e. at 𝑡,

the volume of 𝑞 ∈ 𝒞 is projected onto 𝑃 (𝑡), as depicted in Fig. 4.7. As a simpli-

fication, we use only irreducible configurations of the robot [13]. An irreducible

configuration is a configuration which has a minimal swept volume. Basically, we

sample {𝑞1, · · · , 𝑞𝜎} ∈ 𝒞, apply a cross-section operator 𝜑 : 𝒞 → 𝑋 ×𝑋 and com-

pute the cross-sections 𝑋 = {{𝑥𝑙,1, 𝑥𝑟,1}, · · · , {𝑥𝑙,𝑁 , 𝑥𝑟,𝑁}}. 𝑥𝑙 stands for the left

points of the swept volume, and 𝑥𝑟 for the right points and we note that there is

a linear transformation 𝐴𝐿 such that 𝑥𝑟 = 𝐴𝐿𝑥𝑙.

We now have to find a feasible cross-section for each plane. As a simplification,

we consider the cross-sections only at intersections 𝐼𝑟 of the environment, since

those intersections represent the narrow passages. We note that we have only

convex boxes in-between intersections, and so we assume that we can linearly

interpolate two intersection points.

Our algorithm proceeds in the following manner: we compute the feasibility

of 𝑁 cross-sections by solving 𝑁 convex optimization problems Θ𝑖
1, · · · , Θ𝑖

𝑁 for all

intersections 𝑖 ∈ [1, 𝑉] in 𝐼1, · · · , 𝐼𝑉 . A feasible path is then a sequence 𝜆1, · · · , 𝜆𝑉

of feasible cross-sections Θ1
𝜆1 , · · · , Θ𝑉

𝜆𝑉
with Θ𝑖

𝜆𝑗
<∞. We can represent this as a

solution matrix

4.6. Upper Body Optimization 101

Λ =

⎡⎢⎢⎢⎢⎢⎣
Θ1

1 · · · Θ𝑉
1

...

Θ1
𝑁 · · · Θ𝑉

𝑁

⎤⎥⎥⎥⎥⎥⎦ (4.17)

whereby we have that Θ𝑖
𝑗 solves the problem of feasibility of a cross-section 𝑋𝑗

on an intersection element 𝐼𝑖. Let 𝑡𝑖 be such that 𝜏(𝑡𝑖) ∈ 𝐼𝑖. Then Θ𝑖
𝑗 becomes

Θ𝑖
𝑗 = minimize

{𝜏0,··· ,𝜏𝜂}∈ϒ
𝑐(𝜏0, · · · , 𝜏𝜂) (4.18)

subject to ∀𝑘 ∈ [0, 𝜂] :

𝜏𝑘(𝑡𝑖), 𝐴𝐿𝜏𝑘(𝑡𝑖) ∈ 𝑃 (𝑡𝑟) (4.19)

𝜏𝑘(𝑡𝑖), 𝐴𝐿𝜏𝑘(𝑡𝑖) ∈ 𝐼𝑖(𝑘𝛿, (𝑘 + 1)𝛿) (4.20)

𝜏𝑘(𝑡𝑖), 𝐴𝐿𝜏𝑘(𝑡𝑖) = 𝑋𝑗 (4.21)

whereby 𝑐(𝜏0, · · · , 𝜏𝜂) is an arbitrary convex cost function.

Fig. 4.8 represents the complete algorithmic output: from an environment, we

compute walkable surfaces, we compute a footstep trajectory, we compute planes

orthogonal to the footstep, we solve a set of convex optimization problems at each

intersection, and we compute a final set of particle trajectories in the environment.

Finally, our main point here is that we have investigated the structure of the

planning problem. Given our assumptions, we can compute the number of local

minima of our planning problem as

𝐿 =
𝑅∑︁

𝑖=1
𝑁𝑉𝑖 (4.22)

with 𝑅 the number of homotopy classes, 𝑁 the number of cross-sections, and

𝑉𝑖 the number of intersections inside the 𝑖-th homotopy class. For the wall envi-

102 Chapter 4. Homotopic Particle Motion Planning

Figure 4.7: Left: The cross-section space for a humanoid robot. Each line represents a certain
height above a walkable surface. The cross-section of the robot intersects each height at two
points, which we call 𝑥𝐿 and 𝑥𝑅 for left and right, respectively. We assume that every cross-
section gives rise to only two points, i.e. we ignore configurations, where this is not the case.
Overlaid (white line segments) are the constraints by the wall environment, which impose a
convex box inequality on the cross-sections.Right: the final experiment, with the humanoid
robot HRP-2 walking through a narrow environment.

ronment in Fig. 4.8 we have 𝑁 = 144,𝑉 = 2,𝑅 = 1 and so 𝐿 = 20736.

While our work is preliminary and non-complete, we want to stress the fact that

knowing the number of local minima is important for understanding the inherent

complexity of motion planning.

4.7 Experiments

We implemented the algorithms in python, and used cvxpy [99] to compute so-

lutions to the local minima. The source code to reproduced the experiments is

available at

https://github.com/orthez/mpp-path-planner

For experimental verification, we have chosen the wall environment depicted in

Fig. 4.8, which contains 145 objects.

https://github.com/orthez/mpp-path-planner

4.7. Experiments 103

Figure 4.8: From Left to Right, Top to Bottom: 1) all polytopes in the wall environment 2) the
extracted walkable surfaces from our algorithm, 3) the footstep trajectory in the single homotopy
class, computed by solving the convex optimization problem (4.8), 4) the vertical planes along the
footstep trajectory, 5) the intersection of boxes on each walkable surface to create the connection
elements 6) the final plan of workspace trajectories, all homotopically equivalent and representing
a configuration space trajectory.

104 Chapter 4. Homotopic Particle Motion Planning

Planning
In-
stance

RRT
[13]

PP

0 3h37m 15m41s
1 6h07m 16m03s
2 3h55m 16m01s
3 9h34m 16m12s
4 6h37m 15m41s
5 0h44m 15m41s
6 16h19m 15m42s
7 2h45m 15m43s
8 43h57m 15m45s
9 2h03m 15m16s

Figure 4.9: Comparison of running time on 10 instances for RRT (red) (adapted from [13]) and
for our particle planning (PP) algorithm (blue). For PP, the time depends on the discretization

The following parameters were used: 𝛽 = 40, 𝛿 = 0.05, such that 𝛽𝛿 = 2.0 >

ℛ𝐻 with ℛ𝐻 = 1.539𝑚 the maximum height of HRP-2 [1]. For Problem (4.8), we

used 𝜖 = 0.02, 𝐷 = 1000, 𝐾 = 2000, and we used a minimum number of 𝐷𝑖 = 15

samples for each walkable surface 𝑆𝑖.

The environment decomposition took 3𝑚20𝑠, and our algorithm computed 𝑁 =

144 cross-section configurations. We employ a greedy version of our algorithm,

which computes all local minima for the first intersection, and then checks if the

next intersection can be solved by the solution to the first intersection. For each

intersection, we computed all minima and found out that 11/144 have been feasible

(7.64%). The computation took 12𝑚15𝑠 (averaged over 10 runs). All together we

have a total computation time of 15𝑚35𝑠. We compared the results of all runs with

the results of a rapidly exploring random tree [22], operating on the irreducible

configuration space [13]. The results in Fig. 4.9 show that we have a lower variance

while performing better at the given sampling resolution.

To move the robot in the real world, we add small footsteps along the path, one

every 0.1𝑚. Given footsteps and trajectory of the upper body, we use a dynamical

solver to compute zero-moment point trajectories for the robot. We have used

4.8. Conclusion 105

those results to verify the motion in the dynamical simulator OpenHRP [100], and

executed it on the humanoid robot HRP-2 [1]. The video can be found here

http://homepages.laas.fr/aorthey/videos/wall-homotopy.mp4

4.8 Conclusion

We decomposed the general motion planning problem into a set of homotopic

motion planning problems, with the goal of developing more efficient algorithms

for the homotopic motion planning problem.

We presented three results: I) how to identify homotopy classes in an envi-

ronment, based on walkable surfaces, surfaces on which a robot can make a foot

contact. II) how to find a single contact trajectory inside a given homotopy class,

formulated as a single convex optimization problem, and III) how to find a feasible

upper body trajectory by solving a set of convex optimization problems.

Regarding future work, we currently work on incorporating our particle plan-

ning into a local motion planning algorithm to produce a dynamical feasible mo-

tion. We also would like to investigate when a surface is walkable, depending on

physical properties like density, geometry, maximum pressure, and slippage. Fi-

nally, we would like to investigate the complexity properties of homotopic particle

motion planning.

4.9 𝐻 space to 𝑄 space

Fig. 4.10 depicts the geometry of computing the joint angles 𝑞3, 𝑞4, given ℎ2 and

the foot direction. Elementary geometry provides us with the following values

(RY depicts a rotation around the 𝑦 axis in counter-clock wise manner):

http://homepages.laas.fr/aorthey/videos/wall-homotopy.mp4

106 Chapter 4. Homotopic Particle Motion Planning

𝑙1 = ℎ1 − 𝑑𝑘

𝑙2 = ℎ3 − 𝑑2 − ℎ1

𝑑5 =
√︁

(ℎ2
2 + 𝑙2

2)

𝑙3 = 𝑑2
5 − 𝑑2

4 + 𝑑2
3

2𝑑5

𝑎 = 1
2𝑙1

√︁
4𝑙2

1𝑑2
0 − (𝑙2

1 − 𝑑2
1 + 𝑑2

0)2

𝑏 = 1
2𝑑5

√︁
4𝑑2

5𝑑2
3 − (𝑑2

5 − 𝑑2
4 + 𝑑2

3)2

𝑙0 =
√︁

𝑑2
0 − 𝑎2

𝑝1 = 𝑑𝑘

(︁
0 0 1

)︁𝑇

𝑝3 = ℎ1

(︁
0 0 1

)︁𝑇

𝑝4 = (ℎ1 + 𝑑2)
(︁

0 0 1
)︁𝑇

𝑝6 = ℎ3

(︁
0 0 1

)︁𝑇

+ ℎ2

(︁
1 0 0

)︁𝑇

v𝑘 = 𝑑𝑘

(︁
0 0 1

)︁𝑇

v0 = 𝑙0
𝑝3 − 𝑝1

‖𝑝3 − 𝑝1‖
+ 𝑎

RY(𝜋
2)(𝑝3 − 𝑝1)
‖𝑝3 − 𝑝1‖

v′
0 = 𝑙0

𝑝3 − 𝑝1

‖𝑝3 − 𝑝1‖
+ 𝑎

RY(−𝜋
2)(𝑝3 − 𝑝1)

‖𝑝3 − 𝑝1‖

v1 = 𝑝3 − 𝑝1 − v0

v′
1 = 𝑝3 − 𝑝1 − v′

0

v2 = 𝑑2

(︁
0 0 1

)︁𝑇

v3 = 𝑙3
𝑝6 − 𝑝4

‖𝑝6 − 𝑝4‖
+ 𝑏

RY(𝜋
2)(𝑝6 − 𝑝4)
‖𝑝6 − 𝑝4‖

v′
3 = 𝑙3

𝑝6 − 𝑝4

‖𝑝6 − 𝑝4‖
+ 𝑏

RY(−𝜋
2)(𝑝6 − 𝑝4)

‖𝑝6 − 𝑝4‖

v4 = 𝑝6 − 𝑝4 − v3

v′
4 = 𝑝6 − 𝑝4 − v′

3

(4.23)

4.9. 𝐻 space to 𝑄 space 107

𝑑3

𝑑4

𝑑5

ℎ2

𝑑2

𝑙2
𝑏

𝑙3

𝑑𝑘

𝑑0

𝑑1

𝑙1𝑙1
𝑎

𝑙0
ℎ1

ℎ3

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝5

𝑝′
2

𝑝′
5

v𝑘

v0

v1

v2

v3

v4

v′
3

v′
4

v′
0

v′
1

𝑧

𝑥

Figure 4.10: Sideview of the cross section skeleton of a humanoid robot. 𝑑𝑘 is the ankle length,
𝑑0 the lower limb length, 𝑑1 the thigh length, 𝑑2 the hip length, 𝑑3 the chest length, and 𝑑4 the
head length. Also, we have 𝑝0 the sole, 𝑝1 the ankle, 𝑝2 the knee, 𝑝3 the hip, 𝑝4 the waist, 𝑝5 the
neck and 𝑝6 the head. Under the assumption that the hip 𝑝3 and the waist 𝑝4 are always on one
line with 𝑝0 and 𝑝1, we can parametrize the configurations by four parameters 𝐾, ℎ1, ℎ2, ℎ3. 𝐾 is
the arrangement, meaning for 𝐾 = 0 we have an active link path 𝑝0𝑝1𝑝2𝑝3𝑝4𝑝5𝑝6, for 𝐾 = 1 we
have 𝑝0𝑝1𝑝2𝑝3𝑝4𝑝′

5𝑝6, for 𝐾 = 2 we have 𝑝0𝑝1𝑝′
2𝑝3𝑝4𝑝5𝑝6, and for 𝐾 = 3 we have 𝑝0𝑝1𝑝′

2𝑝3𝑝4𝑝′
5𝑝6.

108 Chapter 4. Homotopic Particle Motion Planning

109

Chapter 5

Conclusion

"Go Adam, go Eve. The world is yours."

—Karel Čapek, R.U.R.

"Exploitation of Structure is an

essential component for Mo-

tion Planning"

We have investigated the hypothe-

sis that motion planning can be simpli-

fied by exploiting structure. To show

that this hypothesis is correct, we con-

structed three motion planning algo-

rithms, which exploit the desired be-

havior of the robot, the mechanical system and the environment, respectively.

As a result, we found that yes, motion planning can be simplified by exploiting

structure. In particular, we found that knowing the behavior is useful to precom-

pute the expected swept volume, knowing the mechanical system is useful to find

irreducible swept volume movements, and knowing the environment is useful to

precompute high-level minima.

Since we established that exploiting structure is viable for motion planning, we

like to point the interested reader into some future directions. In particular, we

have identified four main directions, which we think fruitful towards the long-term

110 Chapter 5. Conclusion

goal of developing efficient motion planning algorithms for humanoid robots.

First, we discussed in Ch. 4, that a complete understanding of motion planning

would require us to know the number of local minima. Knowing the number of

local minima can be used to reason about the problem on an abstract level and it

can be used to come up with efficient locally convex optimization programs. We

demonstrated that in principle this is possible in a simplified setting, and future

research should address the problem of finding the number of local minima in more

general settings. Especially interesting in this regard is the connection between the

workspace topology and the configuration space topology in the sense of Farber

[51].

Second, we observe that in many real-life situations the topology structure of

an environment is not stable, but it is changing in a continuous manner. As an

example, consider a robot trying to cross a street with cars, as depicted in Fig.

5.1. The homotopy classes of movements in the environment are not static but are

evolving dynamically, some homotopy classes are created, some homotopy classes

are closed over time. One extension of topological motion planning is to inves-

tigate persistency of homotopy classes, i.e. for safe and stable motion planning,

we would like the robot to choose a maximal persistent homotopy class in the

environment [101]. In particular, we would like to choose a persistent homotopy

class, by leveraging the mathematical area of persistent homology [102]. Persis-

tent homology has already been successfully applied to topological data analysis

[103][104], and would fit perfectly for choosing the maximum persistent homotopy

class in a principled way.

Third, we would like to extend our concepts to multiple contacts. Multiple

contacts are important for stabilization of the robot, especially in environments

where the robot can hardly move without hand contacts, for example in rock

climbing, balancing over a beam, or unstable, rocky environments. Pioneer work

111

has been conducted in this area by Hauser et al. [14], and Escande [44]. We would

like to extend our particle planning framework from Ch. 4 to include also hand

contacts, and analyze the environment based on possible hand contact surface

structures. Also, the connection between contact planning and irreducible motion

planning is still an interesting open research question to be investigated.

Fourth, we believe that truly efficient motion planning algorithm need to be

able to abstract information and reason on higher abstract levels. Higher abstrac-

tion levels are studied in the literature under the names of hierarchical motion

planning [105],[106],[107] and task or symbolic motion planning [108],[109], [110].

However, there is not yet a framework which integrates both symbolic reason-

ing and motion planning. First works in this direction have been undertaken

in optimizing grasp planning [111]. We believe that this integration of different

abstraction levels is an essential step to exploit structural components. We like

to point out that any abstraction has to provide us with a guarantee of success,

meaning any abstraction has to preserve completeness of motions in some way.

Let us conclude this thesis by reminding you that motion planning is an NP-

hard problem. While this implies that general-purpose algorithms are not effi-

cient, we have shown that humanoid motion planning exhibits nevertheless a rich

exploitable structure. We showed that exploiting structural components can be

beneficial towards algorithmic development. In the future, we hope that more

structural components are discovered and investigated, to allow us to efficiently

solve the motion planning problem for humanoid robots. A general solution would

not only enable autonomous capabilities like space exploration, food harvesting, or

construction work, but could also bring solutions to seemingly disconnected fields

like molecular modeling, protein folding, or architectural design. I hope that by

now I have been able to convince you that exploiting structure is viable, and that

this thesis has made a small but purposeful contribution towards the general goal

112 Chapter 5. Conclusion

Figure 5.1: A complicated real-life scenario: the robot needs to cross a street, where the
movement of cars opens and closes homotopy classes in relative short times. The robot needs to
be able to predict the movement of the cars, such that it can understand the topological changes
necessary to decompose the motion planning problem.

of autonomously acting machines.

113

Appendix A

Proofs

Proof of Theorem 1. Let 𝑠 = 𝒮𝒱(𝜏) and 𝑠′ = 𝒮𝒱(𝜏 ′). 𝑠 is feasible if 𝑠 ∩ E = ∅.

We proceed by direct proof:

(1) Let 𝑠 be infeasible, then ∃𝑣 ∈ 𝑠, such that 𝑣 ∩ E = 𝑣. Since 𝑠 ⊂ 𝑠′, we have

that 𝑣 ∈ 𝑠′. Since 𝑣 exists, we can conclude that at least 𝑠′ ∩ ℰ > 𝑣, which makes

𝑠′ infeasible.

(2) 𝜏 ′ being feasible means 𝑠′ ∩E = ∅. Since 𝑠 ⊂ 𝑠′, it follows from elementary set

theory that 𝑠 ∩ E = ∅, which proofs that 𝜏 is feasible.

Proof of Lemma 1. Let 𝜇 be the lebesque measure on the workspace𝒲 . First, let

us see that if 𝒮𝒱(𝜏1) ⊂ 𝒮𝒱(𝜏0), then 𝜇(𝒮𝒱(𝜏1)) < 𝜇(𝒮𝒱(𝜏0)).

Now, by definition, if 𝜏0 /∈ I, then ∃𝜏1 ∈ ℱ , such that 𝒮𝒱(𝜏1) ⊂ 𝒮𝒱(𝜏0). Then

either 𝜏1 ∈ I, and we are done. Or 𝜏1 /∈ I, and by definition, ∃𝜏2 ∈ ℱ , such that

𝒮𝒱(𝜏2) ⊂ 𝒮𝒱(𝜏1). Let us assume that there is no trajectory 𝜏𝑖 ∈ I, such that we

obtain an infinite sequence Π = {𝜏0, 𝜏1, 𝜏2, · · · } of reducible trajectories 𝜏𝑖 ∈ ℱ ,

such that ∀𝜏𝑖 ∈ Π : 𝒮𝒱(𝜏𝑖+1) ⊂ 𝒮𝒱(𝜏𝑖). Since we have ∀𝜏𝑖 ∈ Π : 𝜇(𝒮𝒱(𝜏𝑖+1)) <

𝜇(𝒮𝒱(𝜏𝑖)) and 𝜇(𝒮𝒱(𝜏)) > 0, the sequence is strictly monotonically decreasing and

bounded, and will therefore converge to its maximum lower bound, which we call

𝐶, i.e. lim𝑛→∞ 𝜇(𝒮𝒱(𝜏𝑖)) = 𝐶. Consequently, since the maximum lower bound is

114 Appendix A. Proofs

obtained, there cannot exists another trajectory 𝜏 ′, such that 𝜇(𝒮𝒱(𝜏 ′)) < 𝐶. By

definition, the sequence is converged in I, and therefore we conclude that every

element 𝜏 ∈ ℱ ∖ I is reducible by 𝜏 ′ ∈ I.

Proof of Theorem 2. Let us assume that ∃𝜏 ∈ ℱ , with 𝜏 being feasible, and that

∀𝜏 ′ ∈ I : 𝜏 ′ is not feasible. Since 𝜏 is feasible, it follows that 𝜏 /∈ I. Then by

definition there has to be a 𝜏 ′′ ∈ ℱ such that 𝒮𝒱(𝜏 ′′) ⊂ 𝒮𝒱(𝜏). Then 𝜏 ′′ is feasible

by Theorem 1. Further, either we have that 𝜏 ′′ ∈ I. Then we have a contradiction.

Or we have 𝜏 ′′ /∈ I, which means that we can still find another 𝜏 ′′′ ∈ ℱ reducing

𝜏 ′′. By Lemma 1, we know that such a sequence can be reduced by a 𝜏 ∈ I . So

we reach a contradiction, too.

Proof of Corollary 1. By definition, motion planning is complete, if we can find a

solution (a trajectory), if one exist. By Theorem 2, we know that if we cannot find

a solution in I, then there is no solution in ℱ . Conversely, if there is a solution in

ℱ , then by Theorem 1, there exists a solution in I.

Bibliography 115

Bibliography

[1] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata,
K. Akachi, and T. Isozumi, “Humanoid robot HRP-2,” in International Con-
ference on Robotics and Automation, 2004, pp. 1083–1090.

[2] R. Tellez, F. Ferro, S. Garcia, E. Gomez, E. Jorge, D. Mora, D. Pinyol,
J. Oliver, O. Torres, J. Velazquez et al., “Reem-b: An autonomous
lightweight human-size humanoid robot,” in International Conference on
Humanoid Robots, 2008.

[3] K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, and S. Ka-
jita, “Cybernetic human hrp-4c,” in International Conference on Humanoid
Robots, 2009.

[4] A. Parmiggiani, M. Maggiali, L. Natale, F. Nori, A. Schmitz, N. Tsagarakis,
J. S. Victor, F. Becchi, G. Sandini, and G. Metta, “The design of the icub
humanoid robot,” 2012.

[5] T. Asfour, J. Schill, H. Peters, C. Klas, J. Bucker, C. Sander, S. Schulz,
A. Kargov, T. Werner, and V. Bartenbach, “Armar-4: A 63 dof torque con-
trolled humanoid robot,” in International Conference on Humanoid Robots,
2013.

[6] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fu-
jimura, “The intelligent asimo: System overview and integration,” in Inter-
national Conference on Intelligent Robots and Systems, vol. 3, 2002.

[7] R. Deits and R. Tedrake, “Footstep Planning on Uneven Terrain with Mixed-
Integer Convex Optimization,” in International Conference on Humanoid
Robots, 2014.

[8] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-
based analysis and control of legged locomotion, part 1: Theory and applica-
tion to three simple gait models,” International Journal of Robotics Research,
vol. 31, no. 9, 2012.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1307969
http://groups.csail.mit.edu/robotics-center/public_papers/Deits14a.pdf
http://groups.csail.mit.edu/robotics-center/public_papers/Deits14a.pdf

116 Bibliography

[9] Y. Zhang, J. Luo, K. Hauser, H. A. Park, M. Paldhe, C. Lee, R. Ellenberg,
B. Killen, P. Oh, J. H. Oh et al., “Motion planning and control of ladder
climbing on DRC-Hubo for DARPA Robotics Challenge,” in International
Conference on Robotics and Automation, 2014.

[10] S. Feng, X. Xinjilefu, W. Huang, and C. G. Atkeson, “3d walking based on
online optimization,” in Humanoid Robots (Humanoids), 2013 13th IEEE-
RAS International Conference on. IEEE, 2013, pp. 21–27.

[11] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[12] K. Harada, S. Hattori, H. Kurokawa, M. Morisawa, S. Kajita, and
E. Yoshida, “Two-stage time-parametrized gait planning for humanoid
robots,” IEEE/ASME Trans. on Mechatronics, vol. 15, no. 5, pp. 694–703,
2010.

[13] A. Orthey, F. Lamiraux, and O. Stasse, “Motion Planning and Irreducible
Trajectories,” in International Conference on Robotics and Automation,
2015.

[14] K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe, “Using motion primi-
tives in probabilistic sample-based planning for humanoid robots,” in Algo-
rithmic foundation of robotics VII. Springer, 2008, pp. 507–522.

[15] A. Orthey, O. Roussel, O. Stasse, and M. Taix, “Irreducible Motion Planning
by Exploiting Linear Linkage Structures,” in Transactions on Robotics, 2015
(Submitted to).

[16] A. Orthey, V. Ivan, M. Naveau, Y. Yang, O. Stasse, and S. Vijayakumar,
“Homotopic Particle Motion Planning,” in International Conference on Hu-
manoid Robots, 2015 (Submitted to).

[17] O. Stasse, A. Orthey, F. Morsillo, M. Geisert, N. Mansard, M. Naveau,
and C. Vassallo, “Airbus/Future of Aircraft Factory, HRP-2 as
Universal Worker Proof of Concept,” in International Conference
on Humanoid Robots, 2014, p. Video Session. [Online]. Available:
https://www.youtube.com/watch?v=iFV-13XlJvI

[18] A. Orthey and O. Stasse, “Towards Reactive Whole-Body Motion Planning
in Cluttered Environments by Precomputing Feasible Motion Spaces ,” in
International Conference on Humanoid Robots (Humanoids), Atlanta, GA,
USA, 2013.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6907139
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6907139
http://planning.cs.uiuc.edu/
http://homepages.laas.fr/aorthey/papers/orthey_2015a.pdf
http://homepages.laas.fr/aorthey/papers/orthey_2015a.pdf
http://link.springer.com/chapter/10.1007/978-3-540-68405-3_32
http://link.springer.com/chapter/10.1007/978-3-540-68405-3_32
http://homepages.laas.fr/aorthey/papers/orthey_2015c.pdf
http://homepages.laas.fr/aorthey/papers/orthey_2015c.pdf
https://hal.archives-ouvertes.fr/hal-01137918v1
https://www.youtube.com/watch?v=iFV-13XlJvI
https://www.youtube.com/watch?v=iFV-13XlJvI
https://www.youtube.com/watch?v=iFV-13XlJvI
http://e.guigon.free.fr/rsc/article/TodorovJordan02.pdf
http://e.guigon.free.fr/rsc/article/TodorovJordan02.pdf

Bibliography 117

[19] T. Lozano-Pérez, “Spatial planning: A configuration space approach,” IEEE
Trans. Computers, vol. 32, no. 2, pp. 108–120, 1983.

[20] J. H. Reif, “Complexity of the mover’s problem and generalizations,” in
Conference on Foundations of Computer Science, 1979, pp. 421–427.

[21] J. F. Canny, The complexity of robot motion planning. MIT press, 1988.

[22] S. M. Lavalle and J. J. Kuffner Jr, “Rapidly-Exploring Random Trees:
Progress and Prospects,” in Algorithmic and Computational Robotics: New
Directions, 2000.

[23] A. El Khoury, F. Lamiraux, and M. Taix, “Optimal Motion Planning for Hu-
manoid Robots,” in International Conference on Robotics and Automation,
2013.

[24] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion plan-
ning for humanoid robots,” in International Symposium of Robotics Research,
2005.

[25] I. Al-Bluwi, T. Siméon, and J. Cortés, “Motion planning algorithms for
molecular simulations: A survey,” Computer Science Review, vol. 6, no. 4,
pp. 125–143, 2012.

[26] K. A. Dill and J. L. MacCallum, “The protein-folding problem, 50 years on,”
Science, vol. 338, no. 6110, pp. 1042–1046, 2012.

[27] D. Devaurs, T. Siméon, and J. Cortés, “Efficient sampling-based approaches
to optimal path planning in complex cost spaces,” in Algorithmic Founda-
tions of Robotics XI. Springer International Publishing, 2015, pp. 143–159.

[28] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” International Journal of Robotics Research, vol. 30, no. 7, 2011.

[29] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manipulation
planning on constraint manifolds,” in International Conference on Robotics
and Automation. IEEE, 2009.

[30] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints by
rapidly exploring manifolds,” Transactions on Robotics, 2013.

[31] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A
review,” Access, IEEE, vol. 2, pp. 56–77, 2014.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4568037
http://mitpress.mit.edu/books/complexity-robot-motion-planning
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.7457
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.7457
http://hal.archives-ouvertes.fr/hal-00715419/PDF/main.pdf
http://hal.archives-ouvertes.fr/hal-00715419/PDF/main.pdf

118 Bibliography

[32] S. M. LaValle, “Motion planning: The essentials,” IEEE Robotics and Au-
tomation Society Magazine, vol. 18, no. 1, pp. 79–89, 2011.

[33] ——, “Motion planning: Wild frontiers,” IEEE Robotics and Automation
Society Magazine, vol. 18, no. 2, pp. 108–118, 2011.

[34] K. Y. Kensuke Harada, Eiichi Yoshida, Ed., Motion Planning for Humanoid
Robots. Springer, 2010.

[35] T. Bretl, S. Lall, J.-C. Latombe, and S. Rock, “Multi-step motion planning
for free-climbing robots,” in Workshop on the Algorithmic Foundations of
Robotics (WAFR), 2004.

[36] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mosenlechner, D. Panger-
cic, T. Ruhr, and M. Tenorth, “Robotic roommates making pancakes,” in
International Conference on Humanoid Robots, 2011.

[37] S. Dalibard, A. Nakhaei, F. Lamiraux, and J. Laumond, “Manipulation of
documented objects by a walking humanoid robot ,” in International Con-
ference on Humanoid Robots, 2010.

[38] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd,
P. Abeles, D. Stephen, N. Mertins, A. Lesman et al., “Team ihmc’s lessons
learned from the darpa robotics challenge trials,” Journal of Field Robotics,
2015.

[39] S. Lengagne, N. Ramdani, and P. Fraisse, “Planning and fast replanning safe
motions for humanoid robots,” Transactions on Robotics, vol. 27, no. 6, pp.
1095–1106, 2011.

[40] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade, “Footstep planning for the honda asimo humanoid,” in Inter-
national Conference on Robotics and Automation, April 2005.

[41] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast
humanoid robot collision-free footstep planning using swept volume approx-
imations,” Transactions on Robotics, vol. 28, no. 2, 2012.

[42] A. Hornung and M. Bennewitz, “Adaptive level-of-detail planning for effi-
cient humanoid navigation,” in International Conference on Robotics and
Automation. IEEE, 2012, pp. 997–1002.

[43] A. Hornung, D. Maier, and M. Bennewitz, “Search-based footstep planning,”
in ICRA Workshop on Progress and Open Problems in Motion Planning and
Navigation for Humanoids, Karlsruhe, Germany, 2013.

http://hal.archives-ouvertes.fr/docs/00/51/81/87/PDF/dalibard-humanoids10.pdf
http://hal.archives-ouvertes.fr/docs/00/51/81/87/PDF/dalibard-humanoids10.pdf
http://dx.doi.org/10.1109/TRO.2011.2172152
http://dx.doi.org/10.1109/TRO.2011.2172152
http://dx.doi.org/10.1109/TRO.2011.2172152

Bibliography 119

[44] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points for hu-
manoid robots,” Robotics and Autonomous Systems, vol. 61, no. 5, pp. 428
– 442, 2013.

[45] T. Yoshikawa, “Analysis and control of robot manipulators with redun-
dancy,” in International Symposium of Robotics Research. Mit Press Cam-
bridge, MA, 1984.

[46] S. Tonneau, J. Pettré, and F. Multon, “Using task efficient contact config-
urations to animate creatures in arbitrary environments,” Computers and
Graphics, 2014.

[47] O. Brock and L. E. Kavraki, “Decomposition-based Motion Planning: A
Framework for Real-time Motion Planning in High-dimensional Configura-
tion Spaces,” in International Conference on Robotics and Automation, 2001.

[48] Y. Yang and O. Brock, “Elastic roadmaps - motion generation for au-
tonomous mobile manipulation,” Autonomous Robots, vol. 28, no. 1, pp.
113–130, 2010.

[49] N. Jetchev and M. Toussaint, “Fast motion planning from experience: trajec-
tory prediction for speeding up movement generation,” Autonomous Robots,
2013.

[50] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints in
search-based robot path planning,” Autonomous Robots, vol. 33, no. 3, pp.
273–290, 2012.

[51] M. Farber, “Topological complexity of motion planning,” Discrete and Com-
putational Geometry, vol. 29, no. 2, pp. 211–221, 2003.

[52] S. Dalibard and J.-P. Laumond, “Linear Dimensionality Reduction in
Random Motion Planning,” International Journal of Robotics Research,
2011. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00486793

[53] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dimensionality reduction for
hand-independent dexterous robotic grasping,” in International Conference
on Intelligent Robots and Systems, 2007.

[54] P. Allen, M. Ciocarlie, and C. Goldfeder, “Grasp planning using
low dimensional subspaces,” in The Human Hand as an Inspiration
for Robot Hand Development, ser. Springer Tracts in Advanced
Robotics, R. Balasubramanian and V. J. Santos, Eds. Springer
International Publishing, 2014. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-03017-3_24

http://www.sciencedirect.com/science/article/pii/S0921889013000213
http://www.sciencedirect.com/science/article/pii/S0921889013000213
http://www.sciencedirect.com/science/article/pii/S009784931400079X
http://www.sciencedirect.com/science/article/pii/S009784931400079X
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=932817
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=932817
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=932817
http://link.springer.com/article/10.1007/s10514-012-9315-y
http://link.springer.com/article/10.1007/s10514-012-9315-y
http://link.springer.com/article/10.1007/s10514-012-9304-1
http://link.springer.com/article/10.1007/s10514-012-9304-1
http://arxiv.org/abs/math/0111197
https://hal.archives-ouvertes.fr/hal-00486793
https://hal.archives-ouvertes.fr/hal-00486793
https://hal.archives-ouvertes.fr/hal-00486793
10.1109/IROS.2007.4399227
10.1109/IROS.2007.4399227
http://dx.doi.org/10.1007/978-3-319-03017-3_24
http://dx.doi.org/10.1007/978-3-319-03017-3_24
http://dx.doi.org/10.1007/978-3-319-03017-3_24
http://dx.doi.org/10.1007/978-3-319-03017-3_24

120 Bibliography

[55] A. Mahoney, J. Bross, and D. Johnson, “Deformable robot motion planning
in a reduced-dimension configuration space,” in International Conference on
Robotics and Automation, 2010.

[56] B. Hendrickson, “The molecule problem: Exploiting structure in global op-
timization,” SIAM Journal on Optimization, vol. 5, no. 4, 1995.

[57] P. Poupart, “Exploiting structure to efficiently solve large scale partially
observable markov decision processes,” Ph.D. dissertation, Department of
Computer Science, University of Toronto, 2005.

[58] M. R. K. Ryan, “Exploiting subgraph structure in multi-robot path plan-
ning,” 2008.

[59] B. Burns and O. Brock, “Sampling-based motion planning using predictive
models,” in International Conference on Robotics and Automation, 2005.

[60] S. Hutchinson, “Exploiting visual constraints in robot motion planning,” in
International Conference on Robotics and Automation, 1991.

[61] T. Judson, Abstract algebra: Theory and Applications. Orthogonal Publish-
ing, 2014.

[62] J. Munkres, Topology. Pearson, 2000.

[63] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge university
press, 2004.

[64] P. Jiménez, F. Thomas, and C. Torras, “Collision detection algorithms for
motion planning,” in Robot Motion Planning and Control, J.-P. Laumond,
Ed. Berlin: Springer-Verlag, 1998, pp. 1–53.

[65] J. Chestnutt, “Navigation and Gait Planning,” in Motion Planning for Hu-
manoid Robots, K. Harada, E. Yoshida, and K. Yokoi, Eds. Springer London,
2010, pp. 1–28.

[66] Y. K. Hwang and N. Ahuja, “Gross motion planning—a survey,” ACM Com-
puting Surveys (CSUR), vol. 24, no. 3, pp. 219–291, 1992.

[67] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynam-
ical Movement Primitives: Learning Attractor Models for Motor Behaviors,”
Neural computation, 2013.

[68] M. Toussaint, “Robot trajectory optimization using approximate inference,”
in International Conference on Machine Learning, 2009.

http://www.cs.utah.edu/gdc/publications/papers/ICRA2010dejohnso.pdf
http://www.cs.utah.edu/gdc/publications/papers/ICRA2010dejohnso.pdf
http://stanford.edu/~boyd/cvxbook/
http://dx.doi.org/10.1007/978-1-84996-220-9_1
http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00393
http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00393
http://dl.acm.org/citation.cfm?id=1553508

Bibliography 121

[69] N. Mansard, O. Khatib, and A. Khedar, “A unified approach to integrate uni-
lateral constraints in the stack of tasks,” Transactions on Robotics, vol. 25,
no. 3, June 2009.

[70] A. H. Barr, “Superquadrics and angle-preserving transformations,” IEEE
Computer graphics and Applications, 1981.

[71] C. M. Bishop, Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2006.

[72] R. M. Neal, “Mcmc using hamiltonian dynamics,” Handbook of Markov
Chain Monte Carlo (editors S. Brooks, A. Gelman, G. Jones, XL Meng).
Chapman and Hall/CRC Press, 2010.

[73] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Technical Report TR99-018, Depart-
ment of Computer Science, University of North Carolina, Tech. Rep., 1999.

[74] M. Spivak, A comprehensive introduction to differential geometry. Vol. I.
Publish or Perish Inc., 1979.

[75] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann, “Hu-
manoid motion planning for dual-arm manipulation and re-grasping tasks,”
in International Conference on Intelligent Robots and Systems, 2009.

[76] S. Hirose and H. Yamada, “Snake-like robots [Tutorial],” Robotics and Au-
tomation Magazine, 2009.

[77] E. S. Conkur and R. Gurbuz, “Path Planning Algorithm for Snake–Like
Robots,” Information Technology And Control, vol. 37, no. 2, pp. 159–162,
2008.

[78] J. Liu, Y. Wang, B. Ii, and S. Ma, “Path planning of a snake-like robot
based on serpenoid curve and genetic algorithms,” in Intelligent Control and
Automation, 2004.

[79] W. Henning, F. Hickman, and H. Choset, “Motion Planning for Serpentine
Robots,” in Proceedings of ASCE Space and Robotics, 1998.

[80] D. Rollinson and H. Choset, “Virtual Chassis for Snake Robots,” in Inter-
national Conference on Intelligent Robots and Systems, 2011.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.8240
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.8240
http://his.anthropomatik.kit.edu/pdf_humanoids/Vahrenkamp2009b.pdf
http://his.anthropomatik.kit.edu/pdf_humanoids/Vahrenkamp2009b.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4799450
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.7900&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.7900&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1343634
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1343634
http://ascelibrary.org/doi/abs/10.1061/40337(205)1
http://ascelibrary.org/doi/abs/10.1061/40337(205)1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6094645

122 Bibliography

[81] E. Cappo and H. Choset, “Planning end effector trajectories for a serially
linked, floating-base robot with changing support polygon,” in American
Control Conference, 2014.

[82] I. Kabul, R. Gayle, and M. C. Lin, “Cable route planning in complex en-
vironments using constrained sampling,” in ACM Symposium on Solid and
Physical Modeling. ACM, 2007.

[83] S. Bereg and D. Kirkpatrick, “Curvature-bounded traversals of narrow cor-
ridors,” in Symposium on Computational geometry. ACM, 2005.

[84] H.-K. Ahn, O. Cheong, J. Matoušek, and A. Vigneron, “Reachability by
paths of bounded curvature in a convex polygon,” Computational Geometry,
2012. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0925772111000617

[85] S. Guha and S. D. Tran, “Reconstructing curves without delaunay compu-
tation,” Algorithmica, 2005.

[86] S. Dalibard, A. Khoury, F. Lamiraux, M. Taix, and J. Laumond, “Small-
Space Controllability of a Walking Humanoid Robot,” in International Con-
ference on Humanoid Robots, 2011.

[87] P. K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, and S. Whitesides,
“Curvature-constrained shortest paths in a convex polygon,” SIAM Journal
on Computing, 2002.

[88] F. Lamiraux and J. Mirabel, “HPP: a new software framework for
manipulation planning,” 2015, submitted to International Conference
on Intelligent Robots and Systems. [Online]. Available: https://hal.
archives-ouvertes.fr/hal-01138118

[89] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan, “Random-
ized query processing in robot path planning,” in Symposium on Theory of
Computing. ACM, 1995, pp. 353–362.

[90] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith, C. Dellin,
J. A. D. Bagnell, and S. Srinivasa, “CHOMP: Covariant Hamiltonian Opti-
mization for Motion Planning,” International Journal of Robotics Research,
May 2013.

[91] N. Perrin, O. Stasse, F. Lamiraux, and E. Yoshida, “Weakly collision-free
paths for continuous humanoid footstep planning,” in International Confer-
ence on Intelligent Robots and Systems, 2011.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6859430
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6859430
http://gamma.cs.unc.edu/papers/documents/articles/2007/kabul07.pdf
http://gamma.cs.unc.edu/papers/documents/articles/2007/kabul07.pdf
http://www.sciencedirect.com/science/article/pii/S0925772111000617
http://www.sciencedirect.com/science/article/pii/S0925772111000617
https://hal.archives-ouvertes.fr/hal-00602384
https://hal.archives-ouvertes.fr/hal-00602384
https://hal.archives-ouvertes.fr/hal-01138118
https://hal.archives-ouvertes.fr/hal-01138118
https://hal.archives-ouvertes.fr/hal-01138118
https://hal.archives-ouvertes.fr/hal-01138118
http://www.sciencedirect.com/science/article/pii/S0022000098915781
http://www.sciencedirect.com/science/article/pii/S0022000098915781
http://www.ri.cmu.edu/pub_files/2013/5/CHOMP_IJRR.pdf
http://www.ri.cmu.edu/pub_files/2013/5/CHOMP_IJRR.pdf
http://dx.doi.org/10.1109/IROS.2011.6048120
http://dx.doi.org/10.1109/IROS.2011.6048120

Bibliography 123

[92] Y. Yang and O. Brock, “Efficient Motion Planning Based on Disassembly,”
in Robotics: Science and Systems, Cambridge, USA, June 2005.

[93] V. Ivan, D. Zarubin, M. Toussaint, T. Komura, and S. Vijayakumar,
“Topology-based representations for motion planning and generalization
in dynamic environments with interactions,” The International Journal of
Robotics Research, vol. 32, no. 9-10, pp. 1151–1163, 2013.

[94] J.-M. Lien and N. M. Amato, “Approximate convex decomposition of polyhe-
dra and its applications,” Computer Aided Geometric Design, vol. 25, no. 7,
pp. 503–522, 2008.

[95] B. R. Vatti, “A Generic Solution to Polygon Clipping,” Communications
of ACM, vol. 35, no. 7, pp. 56–63, Jul. 1992. [Online]. Available:
http://doi.acm.org/10.1145/129902.129906

[96] R. Sedgewick, “Part 5: Graph algorithms,” in Algorithms in C. Addison
Wesley Professional, 2001.

[97] W. Rudin, Functional analysis, 2nd ed., ser. International Series in Pure and
Applied Mathematics. New York: McGraw-Hill Inc., 1991.

[98] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “Operator splitting for
conic optimization via homogeneous self-dual embedding,” arXiv preprint
arXiv:1312.3039, 2013.

[99] S. Diamond, E. Chu, and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” http://cvxpy.org/, May 2014.

[100] F. Kanehiro, H. Hirukawa, and S. Kajita, “OpenHRP: Open architecture hu-
manoid robotics platform,” The International Journal of Robotics Research,
vol. 23, no. 2, pp. 155–165, 2004.

[101] P. Lehner, A. Sieverling, and O. Brock, “Incremental, Sensor-Based Motion
Generation for Mobile Manipulators in Unknown, Dynamic Environments,”
in International Conference on Robotics and Automation, 2015.

[102] R. Ghrist, Elementary Applied Topology. CreateSpace Independent Pub-
lishing Platform, 2014.

[103] ——, “Barcodes: the persistent topology of data,” Bulletin of the American
Mathematical Society, vol. 45, no. 1, pp. 61–75, 2008.

[104] H. Edelsbrunner and J. Harer, Computational topology: an introduction.
American Mathematical Soc., 2010.

http://www.roboticsproceedings.org/rss01/p14.pdf
http://ijr.sagepub.com/content/early/2013/06/13/0278364913482017.abstract
http://ijr.sagepub.com/content/early/2013/06/13/0278364913482017.abstract
http://www.sciencedirect.com/science/article/pii/S0167839608000344
http://www.sciencedirect.com/science/article/pii/S0167839608000344
http://dl.acm.org/citation.cfm?id=129906
http://doi.acm.org/10.1145/129902.129906
http://books.google.fr/books/about/Functional_Analysis.html?id=Sh_vAAAAMAAJ
http://arxiv.org/abs/1312.3039
http://arxiv.org/abs/1312.3039
http://cvxpy.org/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1013334
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1013334
http://www.robotics.tu-berlin.de/fileadmin/fg170/Publikationen_pdf/ICRA15_0300_FI.pdf
http://www.robotics.tu-berlin.de/fileadmin/fg170/Publikationen_pdf/ICRA15_0300_FI.pdf

124 Bibliography

[105] D. Zarubin, V. Ivan, M. Toussaint, and S. Vijayakumar, “Hierarchical motion
planning in topological representations,” in Robotics: Science and Systems,
2012.

[106] F. Stulp and S. Schaal, “Hierarchical reinforcement learning with motion
primitives,” in International Conference on Humanoid Robots, 2011.

[107] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion planning
in the now,” in International Conference on Robotics and Automation, 2011,
pp. 1470–1477.

[108] E. Plaku and G. D. Hager, “Sampling-based motion and symbolic action
planning with geometric and differential constraints,” in International Con-
ference on Robotics and Automation, 2010, pp. 5002–5008.

[109] M. Toussaint, “Logic-geometric programming: An optimization-based ap-
proach to combined task and motion planning,” in International Joint Con-
ference on Artificial Intelligence, 2015.

[110] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for solving
sequential manipulation planning problems,” in International Conference on
Intelligent Robots and Systems, 2014.

[111] A. Orthey, M. Toussaint, and N. Jetchev, “Optimizing Motion Primitives
to Make Symbolic Models More Predictive,” in International Conference on
Robotics and Automation, Karlsruhe, Germany, 2013.

http://homepages.laas.fr/aorthey/papers/optimizing_motion_primitives.pdf
http://homepages.laas.fr/aorthey/papers/optimizing_motion_primitives.pdf

	Acknowledgement
	Abstract
	Résumé

	Contents
	Chapter 1 Introduction
	1.1 Contributions
	1.2 Publications
	1.3 Related Work

	Chapter 2 Reactive Whole-Body Motion Planning
	2.1 Summary
	2.2 Introduction
	2.3 Related Work
	2.4 Background
	2.4.1 Planning in Contact Space
	2.4.2 Optimal whole-body motion between contact points
	2.4.3 Swept-Volume Approximations

	2.5 Contact Transition and Object (CTO) Space
	2.6 Precomputation of Decision Boundary in CTO Space
	2.6.1 Sampling of the feasibility function
	2.6.2 Nonlinear Discriminative Analysis
	2.6.3 Algorithmic analysis

	2.7 Experiments
	2.7.1 Planning
	2.7.2 Walking in Cluttered Environment

	2.8 Integration into Industrial Project
	2.8.1 Implementation Details

	2.9 Conclusion

	Chapter 3 Irreducible Motion Planning by Exploiting Linear Linkage Structures
	3.1 Introduction
	3.2 Related Work
	3.3 Irreducible Trajectories
	3.4 Irreducibility for Linear Linkages
	3.4.1 Swept Volume of a Train
	3.4.2 Curvature Functional Space
	3.4.3 Reducibility theorems of Fko
	3.4.4 Generalization to N sublinks
	3.4.5 Irreducibility of Linear Linkage
	3.4.6 3-Dimensional Conjecture

	3.5 Irreducible Curvature Complete Algorithm
	3.5.1 Irreducibility Assurance Controller

	3.6 Experiments
	3.6.1 Swimming Snake
	3.6.2 Humanoid Robot

	3.7 Discussion
	3.8 Conclusion

	Chapter 4 Homotopic particle motion planning for humanoid robotics
	4.1 Summary
	4.2 Introduction
	4.3 Related Work
	4.4 Environment Homotopy Decomposition
	4.5 Convex optimization of Footpath Homotopies
	4.6 Upper Body Optimization
	4.7 Experiments
	4.8 Conclusion
	4.9 H space to Q space

	Chapter 5 Conclusion
	Appendix A Proofs
	Bibliography

