Supervised Learning Approaches for Automatic Structuring of Videos

par Danila Potapov

Thèse de doctorat en Mathématiques et Informatique

Sous la direction de Cordelia Schmid et de Zaid Harchaoui.

Soutenue le 22-07-2015

à Grenoble Alpes , dans le cadre de École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble) , en partenariat avec Laboratoire Jean Kuntzmann (Grenoble) (laboratoire) et de LEAR - Learning and recognition in vision (laboratoire) .

Le président du jury était Ivan Laptev.

Le jury était composé de Florent Perronnin, Matthijs Douze.

Les rapporteurs étaient Patrick Perez.

  • Titre traduit

    Méthodes d'apprentissage supervisé pour la structuration automatique de vidéos


  • Résumé

    L'Interprétation automatique de vidéos est un horizon qui demeure difficile a atteindre en utilisant les approches actuelles de vision par ordinateur. Une des principales difficultés est d'aller au-delà des descripteurs visuels actuels (de même que pour les autres modalités, audio, textuelle, etc) pour pouvoir mettre en oeuvre des algorithmes qui permettraient de reconnaitre automatiquement des sections de vidéos, potentiellement longues, dont le contenu appartient à une certaine catégorie définie de manière sémantique. Un exemple d'une telle section de vidéo serait une séquence ou une personne serait en train de pêcher; un autre exemple serait une dispute entre le héros et le méchant dans un film d'action hollywoodien. Dans ce manuscrit, nous présentons plusieurs contributions qui vont dans le sens de cet objectif ambitieux, en nous concentrant sur trois tâches d'analyse de vidéos: le résumé automatique, la classification, la localisation temporelle.Tout d'abord, nous introduisons une approche pour le résumé automatique de vidéos, qui fournit un résumé de courte durée et informatif de vidéos pouvant être très longues, résumé qui est de plus adapté à la catégorie de vidéos considérée. Nous introduisons également une nouvelle base de vidéos pour l'évaluation de méthodes de résumé automatique, appelé MED-Summaries, ou chaque plan est annoté avec un score d'importance, ainsi qu'un ensemble de programmes informatiques pour le calcul des métriques d'évaluation.Deuxièmement, nous introduisons une nouvelle base de films de cinéma annotés, appelée Inria Action Movies, constitué de films d'action hollywoodiens, dont les plans sont annotés suivant des catégories sémantiques non-exclusives, dont la définition est suffisamment large pour couvrir l'ensemble du film. Un exemple de catégorie est "course-poursuite"; un autre exemple est "scène sentimentale". Nous proposons une approche pour localiser les sections de vidéos appartenant à chaque catégorie et apprendre les dépendances temporelles entre les occurrences de chaque catégorie.Troisièmement, nous décrivons les différentes versions du système développé pour la compétition de détection d'événement vidéo TRECVID Multimédia Event Detection, entre 2011 et 2014, en soulignant les composantes du système dont l'auteur du manuscrit était responsable.


  • Résumé

    Automatic interpretation and understanding of videos still remains at the frontier of computer vision. The core challenge is to lift the expressive power of the current visual features (as well as features from other modalities, such as audio or text) to be able to automatically recognize typical video sections, with low temporal saliency yet high semantic expression. Examples of such long events include video sections where someone is fishing (TRECVID Multimedia Event Detection), or where the hero argues with a villain in a Hollywood action movie (Inria Action Movies). In this manuscript, we present several contributions towards this goal, focusing on three video analysis tasks: summarization, classification, localisation.First, we propose an automatic video summarization method, yielding a short and highly informative video summary of potentially long videos, tailored for specified categories of videos. We also introduce a new dataset for evaluation of video summarization methods, called MED-Summaries, which contains complete importance-scorings annotations of the videos, along with a complete set of evaluation tools.Second, we introduce a new dataset, called Inria Action Movies, consisting of long movies, and annotated with non-exclusive semantic categories (called beat-categories), whose definition is broad enough to cover most of the movie footage. Categories such as "pursuit" or "romance" in action movies are examples of beat-categories. We propose an approach for localizing beat-events based on classifying shots into beat-categories and learning the temporal constraints between shots.Third, we overview the Inria event classification system developed within the TRECVID Multimedia Event Detection competition and highlight the contributions made during the work on this thesis from 2011 to 2014.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. Documentation électronique.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Documentation électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.