Modélisation multi-physique des écoulements viscoplastiques : application aux coulées de lave volcanique

par Noé Bernabeu

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Pierre Saramito et de Claude Smutek.

Le président du jury était Stéphane Labbé.

Le jury était composé de Andrew Harris.

Les rapporteurs étaient Laurent Chupin, Anne Mangeney.


  • Résumé

    Nous présentons une contribution autour de la modélisation des écoulements viscoplastiques. En vue d'applications réalistes telle que la simulation numérique des coulées de lave volcanique, le travail se concentre particulièrement sur les fluides complexes dont la rhéologie dépend fortement de grandeurs physiques telle que la température ou la concentration en particule. Nous développons un nouvel algorithme de résolution numérique des équations de Herschel-Bulkley combinant une méthode de Lagrangien augmenté à paramètre d'augmentation variable, une méthode des caractéristiques d'ordre 2 et une adaptation de maillage automatique. Sur des problèmes stationnaires ou en évolution tel que le problème test de la cavité entraînée, il apporte une solution efficace pour garantir à la fois une précision numérique élevée et un temps de calcul raisonnable. Cet algorithme est ensuite étendue et adapté au cas des rhéologies non-isothermes et aux suspensions. Concernant la simulation numérique des coulées de lave volcanique, nous détaillons une méthode de réduction par analyse asymptotique des équations de Herschel-Bulkley pour des écoulements de faible épaisseur sur une topographie arbitraire. Elle permet alors de décrire ces écoulements tridimensionnels de fluides viscoplastiques à surface libre par des équations bidimensionnelles surfaciques. Cette approche est ensuite étendue au cas non-isotherme en y ajoutant l'équation de la chaleur et des dépendances thermiques sur la rhéologie. Par intégration verticale de l'équation de la chaleur, on retrouve un modèle bidimensionnel. Le modèle non-isotherme est validé sur une expérience de dôme réalisée en laboratoire et une simulation numérique est réalisée autour d'une coulée qui a eu lieu sur le volcan du Piton de la Fournaise à la Réunion, en décembre 2010. La comparaison donne des résultats qui sont de notre point de vue satisfaisants et encourageants.

  • Titre traduit

    Multiphysics modeling of viscoplastic flows : application to volcanic lava flows


  • Résumé

    We present a contribution about modeling of viscoplastic flows. For realistic applications such as numerical simulation of volcanic lava flows, the work focuses particularly on complex fluids whose rheology strongly depends on physical quantities such as temperature or the particle concentration. We develop a new numerical resolution algorithm of Herschel-Bulkley's equations combining an augmented Lagrangian method with variable augmentation parameter, a second order characteristic method and an auto-adaptive mesh procedure. On stationary or evolving problems as the lid-driven cavity flow benchmark, it provides an effective solution to ensure both a high numerical accuracy within a reasonable computing time. This algorithm is then extended and adapted to the case of non-isothermal rheological and suspensions. On the numerical simulation of volcanic lava flows, we describe a method of reducing by asymptotic analysis of the Herschel-Bulkley's equations for thin flows on arbitrary topography. It allows to describe the three-dimensional flows of viscoplastic fluid with free surface by bidimensional surface equations. This approach is then extended to the non-isothermal case by adding the heat equation and thermal dependencies on rheology. By vertical integration of the heat equation, a two-dimensional model is maintained . The non-isothermal model is validated on a laboratory experiment of dome and a numerical simulation is performed on a December 2010 Piton de la Fournaise lava flow from La Réunion island. In our view, the comparison gives satisfactory and encouraging results.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.