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Abstract

The critical points of statistical mechanical systems in 2 dimensions or quantum
mechanical systems in 1+1 dimensions (this also includes non interacting systems
in 2+1 dimensions) are efficiently tackled by the exact methods of conformal field
theory (CFT) and integrability, which have witnessed a spectacular progress during
the past 40 years. Several problems have however escaped an exact understanding
so far, among which the plateau transition in the Integer Quantum Hall Effect,
the main reason for this being that such problems are usually associated with non
unitary, logarithmic conformal field theories, the tentative classification of which
leading to formidable mathematical difficulties. Turning to a lattice approach, and
in particular to the quest for integrable, exactly sovable representatives of these
problems, one hits the second difficulty that the associated CFTs are usually of
the non compact type, or in other terms that they involve a continuum of critical
exponents. The connection between non compact field theories and lattice models or
spin chains is indeed not very clear, and in particular it has long been believed that
the former could not arise as the continuum limit of discrete models built out of a
compact set of degrees of freedom, which are the only ones allowing for a systematic
construction of exact solutions.
In this thesis, we show that the world of compact lattice models/spin chains with
a non compact continuum limit is much bigger than what could be expected from
the few particular examples known up to this date. More precisely we propose
an exact Bethe ansatz solution of an infinite family of models (the so-called a

(2)
n

models, as well as some results on the b
(1)
n models), and show that all of these models

allow for a regime described by a non compact CFT. Such models include cases of
great physical relevance, among which a model for two-dimensional polymers with
attractive interactions and loop models involved in the description of coupled Potts
models or in a tentative description of the quantum Hall plateau transition by some
compact geometrical truncation. We show that the existence of an unsuspected non
compact continuum limit for such models can have dramatic practical effects, for
instance on the output of numerical determination of the critical exponents or of
Monte-Carlo simulations. We put our results to use for a better understanding of the
controversial theta transition describing the collapse of polymers in two dimensions,
and draw perspectives on a possible understanding of the quantum Hall plateau
transition by the lattice approach.

Key words : Non compact conformal field theories, Lattice models, Loop models,
Bethe ansatz, Black hole, Polymer collapse, Integer Quantum Hall Effect.
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Résumé

Théories conformes non compactes
en mécanique statistique

Les systèmes de mécanique statistique en 2 dimensions ou de mécanique quantique
en 1+1 dimensions (ainsi que les systèmes sans interactions en 2+1 dimensions) à
leurs points critiques sont sujets à résolution exacte par les méthodes de la théorie
conforme des champs et de l’intégrabilité, qui ont connu développement spectac-
ulaire au cours des 40 dernières années. Plusieurs problèmes résistent cependant
toujours à une compréhension exacte, parmi lesquels celui de la transition entre
plateaux dans l’Effet Hall Quantique Entier. La raison principale en est que de
tels problèmes sont généralement associés à des théories non unitaires, ou théories
conformes logarithmiques, dont la classification se révèle tre d’une grande difficulté
mathématique. Se tournant vers la recherche de modèles discrets (châınes de spins,
modèles sur réseay), dans l’espoir en particulier d’en trouver des représentations en
termes de modèles exactement solubles (intégrables), on se heurte à la deuxième dif-
ficulté représentée par le fait que les théories associées sont la plupart du temps non
compactes, ou en d’autres termes qu’elles donnent lieu à un continuum d’exposants
critiques. En effet, le lien entre modèles discrets et théories des champs non com-
pactes est à ce jour loin d’tre compris, en particulier il a longtemps été cru que de
telles théories ne pouvaient pas émeger comme limites continues de modèles discrets
construits à partir d’un ensemble compact de degrés de libertés, par ailleurs les seuls
qui donnent a accès à une construction systématique de solutions exactes.
Dans cette thèse, on montre que le monde des modèles discrets compacts ayant
une limite continue non compacte est en fait beaucoup plus grand que ce que les
quelques exemples connus jusqu’ici auraient pu laisser suspecter. Plus précisément,
on y présente une solution exacte par ansatz de Bethe d’une famille infinie de modèles
(les modèles a

(2)
n , ainsi que quelques résultats sur les modèles b

(1)
n ), où il est observé

que tous ces modèles sont décrits dans un certain régime par des théories conformes
non compactes. Parmi ces modèles, certains jouent un rle important dans la descrip-
tion de phénomènes physiques, parmi lesquels la description de polymères en deux
dimensions avec des interactions attractives et des modèles de boucles impliqués
dans l’étude de modèles de Potts couplés ou dans une tentative de description de
la transition entre plateaux dans l’Effet Hall par un modèle géométrique compact.
On montre que l’existence insoupo̧nnéede limite continues non compacts pour de
tels modèles peut avoir d’importantes conséquences pratiques, par exemple dans
l’estimation numérique d’exposants critiques ou dans le résultats de simulations de
Monte Carlo. Nos résultats sont appliqués à une meilleure compréhension de la
transition theta décrivant l’effondrement des polymères en deux dimensions, et des
perspectives pour une potentielle compréhension de la transition entre plateaux en
termes de modèles sur réseaux sont présentées.

Mots clés : Théories conformes des champs non compactes, Modèles sur réseaux,
Modèles de boucles, Ansatz de Bethe, Trou noir, Effondrement des polymères, Effet
Hall Quantique Entier.
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Chapter 1

Introduction to critical phenomena,
polymer collapse and the Integer
Quantum Hall Effect

1.1 Universality in macroscopic systems, and confor-

mal field theory

This thesis deals with systems having in common a large number of degrees of freedom,
which it would be both vain and not too useful to treat exactly as one would typically do
in few-body systems. Take for instance substances as different as water, oil, or mercury
close to their boiling temperature Tb. While microscopically, raising the temperature from
slightly below to slightly above Tb does not show any appreciable qualitative difference –
only does it increase slightly the average velocity of the composing atoms or molecules –,
a dramatic change is observed on macroscopic scales, namely the transition between two
phases of very different properties. Following the transition line the as the pressure is
increased, one reaches a critical point where the two phases merge, and around which the
physical properties of the fluid are described by a set of critical exponents. Remarkably,
these exponents are the same for all fluids under consideration, irrespectively of their
microscopic details or chemical composition. How such universal phenomena come about
has been successfully investigated in the framework of the renormalization procedure,
which shows that changing the length scale of a system amounts to moving in the space
of the various couplings constants (microscopic parameters), and that therefore the large
scale, macroscopic properties, of infinitely many microscopically different systems can be
described by a few fixed points of the renormalization group (RG) flow. Let us illustrate
this by a look at the Ising model, where magnets (spins) pointing in either the up or
down direction are placed at the sites of some lattice with a ferromagnetic interaction
between pairs of neighbouring spins. Increasing the length scale at which the system
is observed can be implemented by various types of block-decimation procedures, where
blocks of spins are averaged and taken as the new unit cells, with renormalized interaction
parameters. In the process all microscopic details about the interaction (whether it
couples between nearest neighbours only or has a wider range, etc...) or the geometry of
the lattice turn out to vanish, and the large scale properties essentially depend on the
dimension of the space and one single relevant coupling parameter, which we can tune
through the temperature T . The renormalization group flow in d ≥ 2 is shown in figure

3



0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

T = 0 T = Tc T =∞

Figure 1.1: Renormalization group flow of the two-dimensional Ising model, whose typical
configurations at various temperatures are represented on a square lattice of 400 × 400
sites. The critical point T = Tc is characterized by the absence of a length scale (infinite
correlation length).

1.1 and is characterized by a critical temperature Tc separating two phases, where the
characteristic length ξ of spin correlations is observed to diverge following an universal
law

ξ ∝ |T − Tc|−ν . (1.1)

Once again the exponent ν as well as other exponents describing the physical properties
of Ising models at or around Tc are universal. Even more strikingly, they match exactly
those of the liquid-gas critical point mentioned above.

An central task is therefore, rather than studying the details of every possible micro-
scopic model, to classify and understand the various universality classes, or fixed points of
the RG flow. As was realized by Polyakov in [1], where the scale invariant RG fixed points
were further assumed to be preserved under local scale transformations, this amounts to
classify and solve the possible conformally invariant quantum field theories (or Conformal
Field Theories, or CFTs) in (d − 1) + 1 dimensions. This is achieved by finding in each
case a family of local fields {Φn(x)} which are eigenvalues of the dilatation operator,
namely Φn(λx)→ λ−∆nΦn(x), and over which any operator O(x) can be decomposed as
a linear sum. Provided that the scaling dimensions ∆n and operator product expansions

Φn(x)Φm(y) =
∑

p
Cpm,n

|x−y|∆m+∆n−∆p Φp(y) are known, any correlation function in the theory

can be computed. In particular, the critical exponents are obtained from the dimensions
∆n through various scaling relations. Whereas for d larger than the upper critical dimen-
sion these match their mean-field expectations, lower-dimensional systems usually exhibit
a much richer physics. Of particular importance is the two-dimensional case, where the
group of conformal transformations can be extended to the infinite-dimensional algebra
of local conformal transformations, which viewed in the complex plane coincide with an-
alytical mappings z → w(z), z̄ → w̄(z̄). Although these are not proper symmetries of the
theory (rather, they relate theories defined on different geometries), it turns out to be
of fundamental importance to consider the primary fields Φ∆,∆̄, which are tensors under
these transformations,

Φ∆,∆̄(w, w̄) =

(
dw

dz

)−∆(
dw̄

dz̄

)−∆̄

Φ∆,∆̄(z, z̄) , (1.2)
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∆1
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Figure 1.2: The simplest CFTs such as the minimal models M(p, q) are described by
a set of highest-weight modules, each composed of one primary field (thick dots on the
picture) and its conformal descendents (smaller dots) obtained by action of the Virasoro
generators {Ln}n<0 on the latter.

and from which all scaling (or quasi-primary) fields can be obtained by acting with
the Virasoro generators {Ln}n∈Z (as well as their antiholomorphic counterparts {L̄n}),
subject to the commutation relations

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δn+m,0 , (1.3)

where the parameter c is called the central charge. From there, the classification of
two-dimensional CFTs can be achieved as the classification of Virasoro representations,
namely, in the radial quantization scheme, as a Hilbert space structure characterized by
a vacuum state |0〉 invariant under global conformal transformations as well as highest-
weight states

|∆, ∆̄〉 ≡ lim
z,z̄→0

Φ∆,∆̄(z, z̄)|0〉 (1.4)

and the corresponding descendents, obtained by repeated actions of the Virasoro gener-
ators.

Whereas many exact results have been obtained from this construction since the
seminal paper of [2], recovering in particular [3] the two-dimensional Ising, tricritical Ising
and 3-state Potts model as the first three representatives of the series of unitary minimal
models corresponding to unitary irreducible representations of the Virasoro algebra built
from a finite number of primary fields (see figure 1.2), several important physical problems
have escaped so far a complete classification. These include for instance geometrical
models of self-avoiding walks or percolation [4] and the study of classical [5] or quantum
[6] systems with quenched disorder . The latter have important applications in condensed
matter theory, as they encompass the study of quantum critical points in disordered
systems of non-interacting fermions, among which lies the transition between plateaus
in the Integer Quantum Hall Effect (IQHE) ([7], see section 1.3). The reason for this
is that such problems are associated with much more complicated representations of the
Virasoro algebra, namely which may be (the two cases are not exclusive)

• indecomposable, which means that they cannot be decomposed as sums of irre-
ducible representations. We are then dealing with Logarithmic CFTs (LCFTs),
whose investigation has become over the recent years one of the most active branches
of the field but whose classification, despite important progress (for a review see
[8, 9], and references therein), is believed in mathematical terms to be wild, namely,
it can lead to arbitrarily complicated algebraic structures (see figure 1.3),

5
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Figure 1.3: Logarithmic CFTs involve indecomposable Virasoro modules such as the dia-
mond module represented on this figure. The arrows indicate the action of Viraroso gen-
erators relating between the different highest-weight modules. That the representation
theory of LCFTs is said to be wild means that this can get infinitely more complicated.

∆2(s)∆1(s)

Figure 1.4: Non compact CFTs involve a continuous set of primary fields. In the case of
non compact LCFTs such as the theory of the quantum Hall plateau transition, this gets
coupled to indecomposability.

• irrational, namely which involve an infinite number of primaries. A highly irrational
case if that of theories with a non compact target space, where the set of primary
fields is not even discrete (see figure 1.4). This fact can be seen for instance in the
mini-superspace approximation [10], where the theory is put on a narrow cylinder
whose axis is the time direction and the spatial dependence of the fields is ne-
glected. At any time these become simply a parametrization of the target space,
the Hamiltonian becomes the Laplacian, and any non compact direction in the tar-
get therefore naturally results in a continuum of conformal weights just as, in usual
quantum mechanics, the discrete eigen momenta or energies of a particle in a box
become continuous when the size the box is sent to infinity.

Whereas the study of logarithmic CFTs and their applications in statistical mechanics
and condensed matter has witnessed steady progress during the course of the past few
years [8], non compact conformal field theories have been until recently essentially studied
in the context of string theory or in disordered condensed matter systems through a rather
formal approach [11], and a clear understanding of whether, where and how these might
show up in simple statistical mechanics model has so far been lacking. This thesis is an
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attempt to start filling this lack, and the rest of this chapter one to show how crucial
such an understanding shall be for further progress in the direction towards cornerstone
problems such as that of the IQHE plateau transition. Before introducing the latter,
we now take a detour through some aspects of two-dimensional polymer physics which,
as strange as it may seem at this stage, will serve us as a guideline throughout all this
presentation and which will show some aspects arguably interesting enough for their own
sake.

1.2 Polymer chains

Polymers are long, flexible macromolecules composed of many chemical subunits. Whereas
many of their properties depend on the details of these subunits (obviously plastic poly-
mers such as polystyrene or biopolymers such as DNA or proteins are not expected to
behave quite exactly the same), several global, large scale properties can be studied in
a general setting. For polymers in a dilute solution, consider for instance the radius of
gyration RG, namely the mean squared distance from a given polymer’s building blocks
to its center of mass. As was checked from light-scattering experiments, the latter follows
an universal scaling law as a function of the number of monomer units N , namely,

RG ∝ N ν , (1.5)

with a proportionality factor that depends on the details of the considered polymer,
whereas the exponent ν is, in the case of linear polymers and a good solvent (see below),
always approximately equal to 3

5
in three spatial dimensions, 3

4
in d = 2 and obviously

ν = 1 in d = 1, following the conjecture of Flory [12]. The entropy of a polymer chain of
length N can also be studied, and is observed to have the form

SN = extensive part + (γ − 1) logN + . . . , (1.6)

where the exponent γ is once again universal, namely in good solvents γ ' 7/6 in d = 3
and γ ' 4/3 in d = 2. Other exponents can be defined, for instance relating to the
response of a polymer to end-to-end stretching, and turn out to be all expressible in
terms of the exponents γ and ν through some simple set of scaling relations [13]. For
future reference we introduce among these the correlation length exponent η, defined by
the large distance scaling of the correlation function G(r, r′) counting the probability that
a polymer with one end at point r has its other end at point r′, namely

G(r, r′) ∝ |r − r′|−η . (1.7)

This exponent is related to γ and ν through the usual scaling relation (see for instance
[13])

γ = (2− η)ν . (1.8)

Long polymers as critical systems

The presence of universal scaling laws and critical exponents in polymer chains is very
reminiscent of the universality of critical points presented earlier. Comparing more specif-
ically equation (1.5) with (1.1) suggests a correspondence between the degree of polymer-
ization N and the inverse distance |T − Tc|−1 to the critical point in magnetic systems.
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Figure 1.5: Self-avoiding walk (SAW) on the two-dimensional square lattice.

In order to make this correspondence precise, let us anticipate slightly on the lattice
descriptions of polymers, which we will use extensively throughout this thesis. One of
the simplest of such descriptions is that of the ideal chain, which is a walk consisting of
N random steps on (say) the d-dimensional square lattice. The latter however yields an
exponent ν = 1

2
in any dimension, and real chains in good solvents are rather described

as self-avoiding walks (SAW), which differ from the classical random walks in that they
cannot interstect themselves (see figure 1.5) and recover indeed the values of the critical
exponents introduced in the beginning of this section. Turning back to magnetic sys-
tems, let us consider in particular the so-called O(n) vector model [14], where magnets

represented by n–dimensional vectors of ~Si fixed length live on the sites of the square
lattice and interact through a ferromagnetic nearest-neighbour coupling −K~Si · ~Sj. Just
as the Ising model, the O(n) model shows a transition between a high temperature phase
where the average magnetization is zero, and a low-temperature, broken symmetry phase
where the average magnetization acquires some non zero expectation value. The two are
separated by a critical temperature Tc, which can be described in field-theoretical terms
by the non trivial fixed-point (namely, other from the gaussian fixed point g = m = 0)
of a Landau-Ginzburg Lagrangian of the form [15, 16]

L =
1

2
(∇ϕ)2 +m2ϕ2 +

g

4!
ϕ4 (1.9)

for some n-component vector field ϕ(x), and where the usual set of exponents can be

defined. On the square lattice model we consider the correlation function 〈~Si · ~Sj〉 between
the orientation of two spins on sites i, j, namely

〈~Si · ~Sj〉 =

∫ ∏
k d~Sk ~Si · ~Sj

∏
<k,l> eβK

~Sk·~Sl∫ ∏
k d~Sk

∏
<k,l> eβK~Sk·~Sl

. (1.10)

Series expanding the eβK
~Sk·~Sl terms and integrating over the spin orientations, the de-

nominator (partition function) can be reexpressed [13] as a sum over configurations of
closed loops running over the edges of the square lattice, with a weight n for each closed
loop and a weight βK for each loop segment, whereas in the numerator one has in addi-
tion one open path going from site i to site j. Taking the limit n→ 0 all configurations

8



T > Θ T < Θ

Figure 1.6: Coil (left) and globule (right) configurations of a polymer chain, obtained by
varying the solvent temperature across the so-called theta temperature Θ.

with closed loops vanish, therefore the only configuration contributing to the partition
function is the empty one with weight 1, and the spin-spin correlation function simply
reads

〈~Si · ~Sj〉
∣∣∣
n→0

=
∑

SAW :i→j
lengthN

(βK)N =
∑
N

ΩN(i, j)(βK)N , (1.11)

where ΩN(i, j) is the number of SAW of length N joining sites i and j. We therefore
start to see how the properties of polymer chains described by self-avoiding walks can be
related to those of the magnetic O(n) model in the limit n → 0. In particular, slightly

above the critical temperature in the O(n) model we have βK ∝ T−1 ' Tc
−1e−

T−Tc
Tc , so

the relation between magnetic correlations and SAW is of the Laplace transform type,
and the distance to the critical point T−Tc

Tc
is conjugate to the degree of polymerization N .

Universal scaling laws for polymer chains are obtained in the limit N →∞, for instance
recovering the correspondence mentioned earlier between equations (1.5) and (1.1).

The collapse transition

The equilibrium conformations of dilute polymer chains in a solvent are governed by the
competition between hydrophobic monomer-solvent interactions and entropic, excluded
volume effects. Whereas the latter dominate at high enough temperatures (which we take
as a definition of a good solvent), leading to the coil configuration described previously
with exponent ν = 3

5
in three dimensions, the former usually take on at low temperatures,

leading to a collapsed phase where the polymer is in a globule-like, compact configuration
characterized by a smaller value of the exponent ν = 1

3
(see figure 1.6). The transition

between the two regimes occurs at the so-called theta temperature and is characterized
by an intermediate value of the exponent ν, namely ν = 1

2
in three dimensions. The

coil-globule transition, or theta transition, has been observed experimentally for many
polymer-solvent systems, for instance in the case of polystyrene in a cyclohexane solvent
where the theta temperature is found to be Θ ' 35◦. It also plays a role of great
importance in biophysics, where it is believed to describe the folding of proteins from a
swollen configuration to their collapsed, native conformation [17].

The theta transition was identified by De Gennes [18] to be described by a tricritical
point, which is rather natural in the sense that, long polymers being themselves mapped

9



VH

~B

VLVL

Figure 1.7: Experimental setup for the observation of the Integer Quantum Hall Effect. A
current Vxx ≡ VL is imposed throughout the sample. Because of the transverse magnetic
field ~B, a transverse ’Hall’ voltage Vxy ≡ VH is measured.

onto critical systems, the existence of phase transitions within the latter should be asso-
ciated with the introduction of one additional relevant parameter in the RG sense, and
therefore to a tricritical point. From the field-theoretical point of view this amounts [18]
to replace the Lagrangian (1.12) by

L =
1

2
(∇ϕ)2 +m2ϕ2 +

g

4!
ϕ4 +

g′

6!
ϕ6 , (1.12)

which for a certain value of the coupling constants gives rise to a tricritical point. The
corressponding set of (tri)critical exponents can be described by its mean-field predictions
for space dimensions larger than the upper critical dimension d = 3 1, but differs from
these in d = 2. Despite a considerable amount of work during the three past decades,
the exact determination of these exponents has still remained an open question. Some
progress towards a solution of this long standing puzzle will be the object of our discussion
in chapter 4.

1.3 The Integer Quantum Hall Effect

The Integer Quantum Hall Effect (IQHE) is observed in a two-dimensional sample of
electrons subject to a strong transverse magnetic field, as described in figure 1.7. It is
easily shown classically that the magnetic field originates for a nonzero transverse Hall
current. More precisely the longitudinal (Ohmic) and transverse (Hall) components of
the resistivity, ρxx and ρxy are expected to behave as

ρxx = 0 , ρxy =
B

en
, (1.13)

where e and n are the electric charge and density of electrons, respectively. The exper-
imental observations of Von Klitzing ([7], Nobel Prize 1985), see figure 1.8, go against
these expectations, as for large enough magnetic fields the Hall resistivity shows well
defined plateaus at integer fractions of the ratio h

e2
.

Explaining this quantification clearly requires taking account of the quantum nature
of the electron system, and we introduce the following Hamiltonian for a single spinless
electron in two spatial dimensions with a perpendicular magnetic field [21]

H0 =
1

2m

(
~p+ e ~A

)2

. (1.14)

1It is easily checked that for Lagrangian theories of the type L = 1
2 (∇ϕ)2 + g1ϕ+ . . .

gp
p! ϕ

p, the upper

critical dimension is du = 2p
p−1 (see for instance [19]).
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Figure 1.8: Plateaus for the Hall resistance Rxy and peaks of the Ohmic resistance Rxx

measured as a function of the magnetic field B in the Integer Quantum Hall Effect (figure
taken from [20]).

Here the vector potential has been taken in the Landau gauge ~A = (0, Bx, 0) and the
effects of lattice atoms and interactions (which as we will see are not essential to the
description of the IQHE) are taken in account by the effective mass m. As for the absence
of spin in this description, it stems from the fact that the electronic spins are aligned with
the strong magnetic field, and thereby do not contribute to the dynamics. The problem
is translationally invariant along the direction y, and reduces in the x direction to that
of a quantum harmonic oscillator. The corresponding energy levels, the so-called Landau
levels, are quantized as

En =

(
n+

1

2

)
~ωc , n = 0, 1, . . . , (1.15)

where ωc = eB
m

the so called cyclotron frequency. They are moreover hugely degenerate
with respect to the y-direction wave number k, with a degree of degeneracy per unit area
nB = eB

h
= B

Φ0
, where Φ0 = h

e
is the density of flux quanta. The number of occupied

Landau level is given by the so-called filling fraction

ν =
n

nB
=
nφ0

B
. (1.16)

Owing to this description, all states are delocalized, and therefore current-carrying in
the y direction. Upon varying the density n, or equivalently the magnetic field B at
fixed ν, the Fermi level jumps between Landau levels and the Hall conductivity varies
as the number of occupied states, that is, continuously. We see from there that more
ingredients are needed to take account of the emergence of plateaus, and it turns out
that a crucial role is played by the impurity-induced disorder, which we can model as a
random potential V (x, y) in the Hamiltonian

H = H0 + V (x, y) . (1.17)
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Figure 1.9: Broadening of the Landau levels into Landau bands.

The effect of this random potential is a broadening of the Landau levels into Landau
bands, with localized eigenstates occuring in the band tails (see figure 1.9). These have
wavefunctions exponentially localized around a small region of space (whose size we call
the localization length ξ), forbidding them to contribute to dc-transport at low temper-
ature. The states at the center of the bands are however still delocalized, in other words
they have an infinite localization length, and spread randomly across the entire system.
We now see how the IQHE originates : increasing the filling fraction between two half odd
integer values, that is increasing the Fermi energy between two Landau bands, results in
populating localized levels, under which the conductivity remains constant. Crossing a
half-integer value of the filling fraction populates the extended states at the center of the
corresponding band, originating for both a peak in the longitudinal conductivity and a
jump of the Hall conductivity. The accurate description of the latter actually requires
taking in account the finite size of the sample and the so-called edge states along its
boundary, and we refer to [22] for more details about this mechanism.

The plateau transitions

Whereas the physics inside plateaus is well understood, this is not the case of the tran-
sitions between one plateau to the next, the so called IQHE plateau transitions. All
analytical and numerical results so far [23] are consistent with the picture that at zero
temperature the localization length diverges only at specific energies En close to the
center of the Landau bands with the following power law

ξ ∝ |E − En|−ν , (1.18)

where the localization length exponent ν is independent of the Landau band index and
of the microscopic details of the disorder. The conjectured value of this exponent from
experiments on GaAs-AlGaAs heterostructures [24] or from the numerical simulations on
various models (see for instance Table V in [25] for a review) has been widely discussed
over the years, yielding estimations ranging between 2.3 and 2.7 , with most recent results
close to 2.62 [25].

Once again, this is reminiscent of the scaling laws presented earlier for critical systems
in statistical mechanics, in particular of (1.1). Indeed, the plateau transitions correspond
to critical points, which are now of a quantum critical nature (the transition is not driven
by varying the temperature, rather it can be observed at T = 0). As induced by the
localization of electrons due to disorder, these are one example of the so called Anderson
localization-delocalization transitions, which were shown in the seminal work of Altland
and Zirnbauer to fall into 10 symmetry classes of universal behaviour [26] (the IQHE
plateau transition, on which we will mostly focus, corresponds to the so-called ‘class A’).

12



As any second order phase transition, the plateau transitions are expected to be
described by a CFT, whose knowledge should enable us to yield exact predictions for
the critical exponents and correlation functions. Let us pause here for two remarks.
First, the powerful machinery of CFT presented in the introduction holds only in the
two-dimensional case, and therefore in the description of the critical points of classical
systems in 2 dimensions or of quantum systems in 1+1 dimensions. That the field theory
of the IQHE, which is originally a problem in 2+1 dimensions, can be reduced to one of
those owes to its non interacting nature : since electrons do not interact with one another
and evolve in a static potential their one-body energy is preserved, so the frequency which
enters Green’s functions becomes simply a parameter of the action and one may consider
each frequency separately, thus reducing the problem to some 2-dimensional Euclidean
field theory. Second, we have been leaving aside the presence of disorder, which manifestly
breaks translational invariance. Conformal invariance is actually expected to be restored
at large scales by averaging over disorder, which brings us to the issue of computing the
disorder average of physical quantities such as correlation functions

〈O〉 =

∫
dφO e−S[φ,V ]∫
dφ e−S[φ,V ]

. (1.19)

The main difficulty in computing (1.19) is the presence of the random potential V in the
denominator. There are essentially two known techniques used to overcome this :

• The replica trick consists in considering n ∈ N copies (replicas) of the system, and
then taking a formal n → 0 limit. The free energy (whose derivatives yield the
different correlation functions of interest) is obtained from the identity

lnZ = lim
n→0

Zn − 1

n
, (1.20)

and in the right-hand side Zn can be disordered averaged, yielding an effective field
theory in the replicated space.

• The supersymmetry trick (SUSY) consists in introducing Grassmann (anticommut-
ing) variables ψ such that

1∫
dφ e−S[φ,V ]

=

∫
dψ e−S[ψ,V ] , (1.21)

yielding an effective field theory in the supersymmetric space of fields φ, ψ.

Both of these techniques were applied to the IQHE case respectively by Pruisken [27]
and Weidenmüller [28]. The averaging over disorder was proceeded with a Hubbard-
Stratonovitch transformation onto matrix-valued fields, yielding an effective field theory
whose low-energy modes (the ones of interest for the large scale, critical point physics)
are described by a sigma model with action

S[Q] =
1

8

∫
d2r Str

[
−σxx (∇Q)2 + 2σxyQ∂xQ∂yQ

]
, (1.22)

where σxx and σxy are the dimensionless conductivities, and the matrix field Q lives in

some symmetric target (super)space, namely U(n,n)
U(n)×U(n)

(n → 0) in the replica approach
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Figure 1.10: Two-parameter flow diagram of the sigma model (1.22) for the Integer
Quantum Hall Effect. The strong coupling fixed points at σxy = n+ 1

2
(in red) are critical

and correspond to the transitions between plateaus.

and U(1,1|2)
U(1|1)×U(1|1)

in the SUSY one. Crucially the action (1.22) carries a so-called topological

term (the one proportional to σxy), of a strongly non perturbative nature. Whereas the
usual scaling theory of localization [29] predicts that in two dimensions all single-particle
electronic states are localized by arbitrarily weak disorder, the presence of a topological
term in the sigma model action is one of the few mechanisms responsible for exceptions
to this rule (for a general review of the possible mechanisms see for instance [30]). It
is actually believed that the corresponding two-parameter RG flow diagram is the one
given in figure 1.10, where the fixed points at θ = 2πσxy = (2n+1)π describe the plateau
transitions.

Turning to the CFT of the critical points, the fact it has escaped the range of man-
ageable CFTs so far can be explained by two aspects, directly read off the sigma model
target space : it is non unitary, which can be related to general supergroup properties or,
in the replica approach, to the n→ 0 limit, and it is non compact due to the non positive-
definiteness of the target space metrics. Non-unitarity, though unphysical in field theory
and particle physics, emerges naturally in condensed matter theory as soon as one con-
siders disorder averages, or in geometrical problems such as percolation or self-avoiding
walks as soon as one consider non local observables. One consequence is that the theory
of the plateau transitions in the IQHE is expected to be logarithmic, as introduced in
section 1.1.

1.4 A step towards exact solutions : lattice models

From crystallography to quantum chromodynamics, through condensed matter physics
and network models, lattice models (that is, physical models with an underlying discrete
spatial structure) have played a central role in several areas of modern physics. In some
cases, such as the study of ferromagnetic solids which lead to the Ising model, the un-
derlying lattice structure is dictated by nature. In other cases, however, it is ‘artificial’.
The models we will be using in this thesis to describe the collapse of two-dimensional
polymers and the quantum Hall plateau transition fall into this second category, and it is
legitimate to ask whether the introduction of a lattice structure in these cases may spoil
the physics under study, and if not, what we may actually gain from it.

The answer to the first question traces back to universality. Considering that the
large scale physics of critical systems should not depend on their microscopic details,
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describing a continuous material by its lattice analog should not affect its large scale
behaviour provided that the essential symmetries are respected. In practice, we will get
to indroduce loop, vertex, face models (all to be defined shortly), whose different control
parameters (the strength of an interaction, the anisotropy of the lattice, all of which enter
the model through the Boltzmann weights of its various configurations) will need to be
fine-tuned to possibly recover the critical points of interest.

The second question, “why do that ?”, allows for several levels of answer. First, it
is likely that the field theories of polymer collapse and quantum Hall plateau transitions
may not be understood in the same way as for simpler, unitary CFTs, namely by the clas-
sification of Virasoro representations. The representation theory of the Virasoro algebra
is actually believed to be wild in the sense that it is as complicated as it can be, and for
this reason the indecomposable modules corresponding to logarithmic CFTs, which both
theories of the polymer collapse and the plateau transitions are believed to be, may very
well escape the most sophisticated, though, to their own extent, successful [31], attempts
of classification. The use of lattice models as a possible alternative can be traced back to
the works of Pasquier and Saleur [32], and later Read and Saleur [33] as well as Pearce,
Rasmussen and Zuber [34], where it was observed that many of the algebraic features
that make logarithmic CFTs so complicated are already present in the corresponding
lattice models. The corresponding lattice algebras and their various representations have
been the object of extensive study during the past decades, and powerful methods have
been developed to tackle all kinds of models on the same footing. For instance, various
vertex or loop models can be mapped onto height models, whose critical behaviour can
be understood from the Coulomb gas formalism [35] as that of bosonic fields dressed with
electric or magnetic excitations. More generally, lattice models are well suited for numeri-
cal experiments, and we will see shortly how the whole operator content of the continuum
CFTs can be obtained by diagonalization of the corresponding finite size transfer matrix.
What shall however be the key point in this thesis is that many of these models allow
for an exact solution, at the price of yet another fine-tuning of the Boltzmann weights
so that these obey well-known constraints, gathered under the name of the Yang–Baxter
equation [36]. It turns out that most common critical systems were found to have such an
exactly solvable, or (quantum) integrable lattice model in their universality class 2 , and
the corresponding solutions can be found by the inverse scattering method, or (algebraic)
Bethe ansatz [37], reducing the diagonalization of a one-dimensional transfer matrix or
the corresponding quantum Hamiltonian, which usually involves a set of equations ex-
ponentially growing with the size of the system, to the resolution of the so-called Bethe
equations, whose number is instead proportional to the system size and which allow for
powerful analytic developments in the continuum limit.

The rest of this section is devoted to a first and yet very evocative encounter with
some of the essential notions brought up in this short introduction, namely some of the
various forms of two-dimensional lattice models and the mappings that exist between
them, the transfer matrix and the associated technique of finite-size scaling for critical
systems, as well as the Bethe ansatz procedure for exactly solvable models.

2Note in that two-dimensional conformal field theories are, by essence, integrable, in the sense that the
decoupling between holomorphic and anti-holomorphic sectors allows for an infinite number of conserved
quantities. Considering indeed the spin-s current Js = (J, J̄) where J and J̄ are descendent of the
identity at level (s+1) in the holomorphic (resp. antiholomorphic) sector, one has ∂z̄J = ∂zJ̄ = 0, hence
∂µJ µs = 0, and therefore the conservation of the charge Qs =

∫
dxJ0

s =
∮

dz J + dz̄ J̄ .
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Figure 1.11: Loop configurations arising from the lattice description of a two-dimensional
polymer (left) and the supersymmetric path integral formulation of the point-contact
conductance at the IQHE plateau transition (right). Both these constructions will be
detailed in chapter 2.

Loop models, vertex models, face models and the equivalence between them

As we will detail in the next chapter, models for the collapse of a polymer in two di-
mensions and for the computation of transport observables at the Integer Quantum Hall
Effect plateau transition can be formulated in terms of geometrical paths propagating on
the square lattice and interacting at its vertices. In the former case, the emergence of
such a geometrical interpretation is quite straightforward, as the propagating path is just
a representation of the polymer itself on a discretized space, already discussed in section
1.2. The latter case requires a more indirect way [38, 39], where the computation of a
transport observable such as the point-contact conductance (see section 2.4.2) is written
in its supersymmetric path integral formulation as a sum over advanced and retarded
paths going from one edge e1 to another edge e2 of the square lattice, yielding another
classical geometrical model with two different colours of paths.

Both of the resulting models, for which representations of typical configurations are
shown in figure 1.11, belong to the class of loop models, which is a term generically used
to describe models for loop gases on the lattice. See [40] for a review, and [41] for a
variety of new models and results; such models are also encountered in the field of topo-
logical quantum computation, namely the ground state and worldlines of quasiparticles
excitations of 2 + 1-dimensional quantum mechanical models are projected onto the 2-
dimensional plane, where they can be considered as the configurations of a classical loop
gas, hence furnishing a natural geometrical interpretation for the non trivial braiding of
quasiparticles [42, 43]. Loop models are in general specified by a variety of parameters,
namely the number of loop colours involved [44], the fugacity n attributed to each closed
loop (in the model built at the IQHE transition every closed loop has to be traced over a
supersymmetric space, and therefore has a weight n = 0; in particular, the configuration
depicted on the right panel of figure 1.11 is associated with a weight zero; n = 0 also
holds true in the polymer model as long as the polymer under consideration cannot close
on itself), the way loops interact with themselves or one another (via, for instance, the
Boltzmann weight attributed to configurations where two loops come close to each other
at a given vertex), if they can cross [45], etc...

Investigating the various aspects of a given model, it is generally useful, if not crucial,
to switch between this model’s different formulations. All the loop models of interest for
us can be mapped onto vertex models, which are statistical models where the degrees of
freedom are carried by the edges of a given lattice and the interactions are encoded by the
Boltzmann weights associated with the various configurations at vertices. Alternatively,
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Figure 1.12: Mapping from a dilute loop configuration on the square lattice to a sum
over the configurations of a ‘spin one’ vertex model, where each edge carries either an
orientation ±1, or no orientation at all (0).

these can sometimes also be written as face models, where the degrees of freedom are
attached to the sites of the lattice and interact through ‘interactions-round-a-face’ (IRF)
around each plaquette (see for instance [41]). Details of such mappings in the particular
cases of interest will be given in Chapter 2, and we shall here simply sketch the idea
on how a simple loop model such as that originating from the description of polymers
can be turned into a vertex formulation [40]. This is summed up in figure 1.12, where
loops are first given an orientation destined to be summed over, each configuration of
oriented loops being thereby translated into a configuration of edges either oriented, or
empty. Importantly, the orientation of edges allows to translate the weight of closed
loops in terms of local angular contributions, which allows to decompose the Boltzmann
weight of each configuration of edges as a product over the configurations at each vertex,
hence the resulting vertex model. We note in passing that the non-locality intrisic to
the problem of counting closed loops has thereby been traded against a problem of local,
albeit complex weights, which is an example on how non-unitarity naturally emerges from
physical statistical mechanics problems.

The transfer matrix formalism

We now move on to introduce the transfer matrix formalism, whose role will be of central
importance throughout this thesis and which is more generally nothing less than the
discrete formulation of the well-known equivalence between classical statistical systems
with short-ranged interactions in d dimensions and relativistic quantum field theories in
d− 1 space dimensions 3.

Let a model defined on a square lattice of dimensions L × M sites, with specified
boundary conditions (if these are periodic in the horizontal direction, our lattice amounts

3Close enough to its critical point such that its correlation length is larger than any of its microscopic
scales, a given statistical mechanics model with local interactions can be rewritten in terms of (say) one
continuous function ϕ(x) on the d-dimensional euclidian space and the corresponding local Hamiltonian
H[ϕ] =

∫
ddxH(ϕ(x), ∂ϕ(x), . . .), such that the expectation value of any operator may be written as

〈..〉 =
∫

Dϕ(x) .. exp(−
∫

ddxH). Interpreting one particular space dimension as an imaginary time, say
x0 = −it, the above expectation value can be rewritten as

∫
Dϕ(~x, t) .. exp(

∫
dt
∫

dd−1~xL), namely as
the Feynman path integral formulation of a quantum-mechanical expectation value over a set of fields
evolving in d− 1 dimensions of space and one dimension of time.
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Figure 1.13: The configurations of a d-dimensional statistical mechanics model can be
built up by repeated actions of the transfer matrix T , which can be interpreted as the
discrete imaginary time evolution operator of a d− 1-dimensional quantum system.

to a cylinder; if these are periodic in both directions, our lattice amounts to a torus, etc...).
For simplicity we assume that the degrees of freedom are ‘spins’ sµ ≡ si,j living on the
sites of the lattice (i = 1, . . . L, j = 1, . . .M) and that the interactions are between
nearest-neighbouring spins only. The partition function at inverse temperature β is a
sum over the possible spin configurations

Z =
∑
{sµ}

e−βH =
∑
{sµ}

e−β
∑
〈µ,ν〉 h(sµ,sν) , (1.23)

and can be decomposed into horizontal slices as

Z =
∏
j

∑
{si,j}

e−βH̃j,j+1 ≡
∏
j

Tj,j+1 , (1.24)

where H̃j,j+1 encodes all interactions h(si,j, si±1,j) within row j, as well as interactions
between the spins in row j and those of row j + 1. The matrix T with elements Tj,j+1,
acting on the configurations of row j, is the so-called transfer matrix, which can be
interpreted geometrically as adding one row to the system, see figure 1.13

Interpreting the vertical direction as an imaginary time τ = it, the transfer matrix is
therefore seen to play the role of the discrete time evolution operator for a one-dimensional
quantum system with Hamiltonian H1D = Hj,j+1. We emphasise that this construction
can be generalized to any type of lattice model with local interactions. In particular, we
have remained purposely loose on the treatment of boundary conditions in the vertical
direction : for spin models with periodic boundary conditions in the vertical direction,
the product TM of transfer matrices has to be traced over in order to recover the partition
function. For loop models with periodic boundary conditions, some care has to be taken
to give the correct weight to loops winding around the vertical direction of the torus,
hence the so-called Markov trace [40], on which we will not give any more detail here.

As we shall now see progressively, the transfer matrix formalism makes quite natural
the access to the large-scale behaviour of the model of interest. Consider for instance the
calculation of the partition function for a system of size L×M with specified boundary
conditions, where L is kept finite and M is arbitrarily large. Expanding the product
(1.24) over a basis of eigenvectors of T with eigenvalues Λ

(L)
0 > Λ

(L)
1 > . . ., we see

that it is dominated for M large enough by a term proportional to (Λ
(L)
0 )M , hence the

corresponding free energy per site in the M →∞ limit, fL,∞ = − 1
LM

logZ = − 1
L

log Λ
(L)
0 .
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Further, we can choose to compute in the same way, say, a spin-spin correlation function
between one spin on row j and one spin on row j + y. The result in the y large, M large
limit is easily seen to involve the two largest transfer matrix eigenvalues, more precisely
the connected correlation function is seen to have the following exponential decay,

〈si,jsi,j+y〉 ∝ e−y/ξ (1.25)

where the correlation length ξ is obtained as

ξ =
1

ln Λ
(L)
0 /Λ

(L)
1

. (1.26)

We now start to see how criticality may show up in the transfer matrix analysis as
the thermodynamic limit L,M →∞ is taken : for a non critical system, that is, with a
finite correlation length, we expect the ratio Λ

(L)
0 /Λ

(L)
1 to have a finite limit as L → ∞,

or in other terms, we expect the corresponding one-dimensional quantum system to be
gapped, or massive. On the contrary, for a critical system, an infinite correlation length
implies that the ratio Λ

(L)
0 /Λ

(L)
1 should go to 1 as L → ∞, or in other terms, that the

corresponding one-dimensional quantum system is gapless.
The asymptotic behaviour of the gap f

(L)
1 −f

(L)
0 ≡ ln Λ

(L)
0 /Λ

(L)
1 at criticality is actually

well-determined from conformal field theory, as will be the object of the next paragraph.
As we shall see more generally, the study of the transfer matrix’s dominant eigenvalues
(the low-lying levels of the 1d quantum Hamiltonian) can inform us about the whole set
of critical exponents of the corresponding CFT.

From transfer matrices to critical exponents: finite-size scaling on the cylinder

Consider a quasi-primary field φ with conformal weight ∆ (we restrict for simplicity to
the holomorphic sector), whose two-point function on the plane is known from conformal
invariance to be of the form

〈φ(z)φ(0)〉 =
1

z2∆
. (1.27)

Mapping the plane onto a cylinder of width L by means of the transformation

w =
iL

π
ln z , (1.28)

yields on the latter

〈φ(iy)φ(0)〉 ∝ e−
π∆
L
y . (1.29)

Comparing with the scaling of lattice correlation functions as studied above (where peri-
odic boundary conditions neeed to be taken for comparison with the cylinder; for other
types of boundary conditions, one should need to consider CFT two-point functions
on other geometries such as the half-infinite complex plane, leading to analog results)
suggests that there is a correspondence between the operators of the CFT under inves-
tigation and the dominant eigenvalues of the corresponding lattice transfer matrix, or,
equivalently, with the low-lying levels of the corresponding quantum Hamiltonian. More
precisely, the transfer matrix’s largest eigenvalue is shown [46] to scale as

f
(L)
0 ≡ − ln Λ

(L)
0 = Lf∞ −

πc

6L
+ . . . (1.30)
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4, whereas the eigenvalue Λ
(L)
φ related to the field φ yields the corresponding conformal

weights (∆, ∆̄) as

f
(L)
φ − f (L)

0 ≡ ln
Λ

(L)
0

Λ
(L)
φ

=
2π(∆ + ∆̄)

L
+ . . . . (1.31)

Let us now look back on the way we have taken so far. From a given classical or quan-
tum critical problem, namely that of polymer collapse in two dimensions or the plateau
transition in the Integer Quantum Hall Effect, we have claimed that one may derive
classical two-dimensional geometrical models on the square lattice, hoping that a fine-
tuning of the corresponding Boltzmann weights should recover the universal behaviour
of interest in each case. Once the corresponding transfer matrix or quantum Hamilto-
nian clearly defined in either its loop, vertex, or any of its representations, criticality can
be investigated and the associated set of critical exponents in principle extracted from
the finite-size scaling of the corresponding eigenvalues. Additionally, peculiar algebraic
features of the continuum limit such as indecomposability in the case of a logarithmic
conformal field theory can be dug out from algebraic features of the finite size transfer
matrix itself, or its associated quantum Hamiltonian [8]. What remains hidden behind
our use of the term ‘in principle’ is that the finite-size scaling analysis can turn out to be
very difficult in practice. The dimension of the transfer matrix usually grows up expo-
nentially with the system size L, limiting the range of sizes tractable by usual numerical
methods to, at best, L ∼ 10 or 20 for usual systems. Adding to this the fact that in
some cases (namely, whenever marginal operators are present, or, more fundamentally,
in the case of the non compact CFTs which are of central interest for us) the corrections
to the conformal charges in (1.30) and (1.31) may show a really slow convergence of the
order of logL, we cannot escape as a conclusion that the critical exponents can sometimes
simply turn out to be untractable from straight numerics. What is left for us to rely on is
the possibility to turn the corresponding models into exactly-solvable ones, a procedure
whose main lines we shall depict now.

Exactly solvable models and Bethe Ansatz

Assume, as announced, that we are able to obtain an integrable lattice model for each of
the universality classes of interest. Namely, and as will be explained at length in section
2.1, that we have been able to tune the Boltzmann weights of the corresponding (say)
vertex models so that these obey the so-called Yang–Baxter equation, without spoiling
the original critical behaviour.

For a given integrable vertex model whose degrees of freedom live in some finite
dimensional vector space (such as, for instance, the assumed integrable version of the
‘spin one’ vertex model inherited from the loop description of polymers), the eigenvalues
of the transfer matrix or its equivalent quantum Hamiltonian at a given size L can be
obtained by the algebraic Bethe ansatz [37], which consists in building eigenstates from a
reference, trivial one called the pseudovacuum. These eigenstates and the corresponding
eigenvalues are parametrized by a set of ∝ L complex Bethe roots subject to a set of non
linear equations, hence reducing the problem of diagonalizing matrices of sizes ∼ expL

4Equation (1.30) is analog to the Casimir effect in quantum electrodynamics, where the boundary
conditions imposed on the wavefunction by two metallic plates induce a force between them, varying as
a function of the distance L between the two plates and interpreted as resulting from an energy of the
vacuum.
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to the resolution of ∝ L Bethe ansatz equations (BAE). There are in general two ways to
proceed from there

• Solve numerically the BAE for large values of L (typically of order 100 or 1000),
compute the corresponding transfer matrix eigenvalues and infer the conformal
spectrum from finite size scaling.

• Use analytical techniques to infer the conformal spectrum directly from the L→∞
limit of the BAE.

These two ways are actually quite complementary: indeed, it will in practice some-
times turn too complicated to obtain the whole conformal content from purely analytical
methods; conversely, numerical data for systems of a few thousands of sites should some-
times not be enough to fix completely the logarithmic finite-size corrections mentioned
earlier. Understanding the continuum limit of a given integrable model can therefore end
up being a very complicated task, which will for us involve a substantial combination of
numerical and analytical techniques.

1.5 Non-compactness

As might not have escaped the reader’s attention, we have insisted on the fact that only
compact lattice models, namely models with a finite number of degrees of freedom per
lattice site or edge, qualify for a Bethe ansatz solution. Progress in the non compact case
has been made recently [47], but leaves the problem of exact solutions still largely open.

Whereas the lattice model for polymer collapse clearly enters the first category (as it
can be reformulated in terms of a vertex model with three possible states per edge), this
is not the case of that describing the IQHE transition. This fact can be seen straightfor-
wardly from the loop language, as the blue and red loops corresponding to the Feynman
paths in figure 1.11 are allowed to pass through any edge an arbitrary number of times.
In order to reach any exact result, the procedure we follow in this thesis is that intro-
duced by Ikhlef, Cardy and Fendley [39] of truncating the infinite loop model to a finite
one, hoping that the universal behaviour might be left unaffected in the process. The
original results of [39] obtained from direct transfer matrix diagonalization are in this
sense rather disappointing, as the critical exponents found in the truncated case differ
significantly from those expected at the plateau transition. In particular, the correlation
length exponent for the truncated model is measured as

ν ' 1.1 , (1.32)

which definitely lies out of the range 2.3 ≤ ν ≤ 2.7 of common expectations (see section
1.3). This apparent failure raises the general question of whether compact spin chains or
lattice models might at all give rise, in the continuum limit, to non compact field theories
such as that of the IQHE. As an illustration, we can consider the simplest of such theories,
namely that of the two-dimensional euclidean free field with action

S =

∫
d2x (∂µϕ)2 , (1.33)

which is a theory of a real bosonic field taking its values on the (non compact) real line

21



5. This theory is well-known [48] to describe the properties of a two-dimensional Brow-
nian motion, and recovers in particuliar the constant value of the propagator G1(r, r′) =
〈ϕ(0)ϕ(r)〉 and therefore the corresponding trivial critical exponent x1 = 0 [49], in agree-
ment with the fact that a Brownian motion starting from a point r should visit any point
r′ with probability one. From there the fuseau, or watermelon exponents x` (to be defined
in more detail later in this manuscript) associated with the scaling of the probability that
` independent Brownian motions starting from a point r meet at some point r′ are readily
deduced to be identically equal to zero. As it is well-known, Brownian motions allow for
a discrete representation as random walks on the (say) square lattice, which are, from
the fact that they can visit any lattice site or edge an arbitrary number of times, a man-
ifest example of model with a non compact set of degrees of freedom. In contrast, the
self-avoiding walks introduced in section 1.2 (see figure 1.5), which are a compact lattice
model, will be argued later in this thesis to be described by a compact CFT, resulting in
particular in a non trivial set of exponents x`.

A significant breakthrough was brought in by the 2002 paper of Jacobsen, Read and
Saleur [50], where it was shown that introducing the possibility for loop crossings in the
low-temperature (dense) phase of the self-avoiding walks leads the latter to a different
critical point described by a set of non compact bosonic fields, and reproducing precisely
the zero fuseau exponents of the Brownian motion as could also be seen from an equiva-
lent exactly solvable model [51] (recently, [52], the particular Osp(3|2) case was studied
by mean of Bethe ansatz, and shown explicitely to give rise to a continuum spectrum of
exponents). More precisely, the formulation introduced in section 1.2 in terms of a O(n)-
invariant vector model was there traded for a OSp(2m+n|2m)-invariant supersymmetric
model, whose low-temperature phase identifies as a broken symmetry, Goldstone phase
with target space OSp(2m + n|2m)/OSp(2m + n − 1|2m) ' S2m+n−1|2m, allowed from
the fact that for n < 2 the supergroup action cannot be implemented in terms of unitary
vector transformations, hence rendering ineffective the use of the Mermin–Wagner theo-
rem. In the original O(n)-invariant model (1.10) this phase is absent, but it was argued
in [50] to indeed be restored in the dense phase of the latter by the introduction of more

general interactions of the type (~Sk · ~Sl)2, associated geometrically with the crossing of
loops. One of the conclusions of this analysis, pushed further in [53], was that several
properties of the non compact CFT for Brownian walks can be recovered in, for instance,
a compact model of dense loops allowed to cross on the bidimensional square lattice. Over
the years, several further examples of such a phenomenon were then discovered :

• In 2005, the integrable vertex model built out of the product of the (three dimen-
sional) fundamental and dual representations of the superalgebra sl(2|1) was shown
[54] to be described in the continuum limit by the SU(2|1) Wess-Zumino-Witten
model at level k = 1, which can be equivalently be defined on some non compact
target space by trading the indefinite metric to a positive definite one.

• The following year, the antiferromagnetic Potts model [55] and related staggered
six-vertex model [56, 57] were shown to be described in the continuum limit by
a theory involving a non compact boson, which was later identified [58] as the
SL(2,R)/U(1) black hole sigma model, introduced by Witten in the context of
string theory [59] (see section 3.2.3 for more details). Recently, this model as well

5We note in passing that from the CFT point of view this is a trivial theory, in the sense that all its
primary fields have conformal dimension zero. To construct a non trivial CFT from the bosonic field ϕ,
one should consider instead the Liouville theory with action S =

∫
d2x (∂µϕ)

2
+ µeβϕ [11]
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as the sl(2|1) one mentioned above were also identified as some particular points in
the phase diagram of the Uq(sl((2|1)) model [60], which has been shown to allow
for a whole critical phase described by the black hole theory [61] .

Due to their very peculiar setup, for instance a supergroup symmetry or delicate
staggering of the spectral parameter, these few counterexamples have however for long
been considered to be quite exotic, and it did remain widely believed that non compact
continuum limits (other than the somewhat trivial free euclidean boson -related theories)
could not emerge from ‘ordinary’ compact spin chains or lattice models, for instance
related to statistical mechanics problems with local interactions and positive Boltzmann
weights. The results we present in this thesis go quite against the latter argument. In
[62, 63], we first observed that the integrable a

(2)
2 model, candidating for the description of

polymer collapse and in particular involving a loop representation with physical, positive
Boltzmann weights, has a non compact continuum limit with a continuous spectrum of
critical exponents which identifies precisely as the SL(2,R)/U(1) black hole. A similar
observation was made in the case of a dense two-colours loop model [64], which can be
seen as a representation of two coupled Potts models or as a dense counterpart of the
truncated IQHE model of interest here. This raises immediately several questions : how
frequent are in fact such non compact limits ? How can we know a priori whether a given
model will or will not give rise to a non compact limit, which interpretation can we give
to the non compact degrees of freedom, and what will these change in practice ? Might
the truncated model for the IQHE actually be itself of a non compact nature, and if so,
what can we gain from it in the understanding of the plateau transition ?

1.6 Plan of the rest of the manuscript

The rest of this manuscript is organized as follows. In chapter 2, we introduce the notion
of integrable lattice models and show that those related to a tentative description of
the collapse of two-dimensional polymers and the (truncated) IQHE transition can be

identified as the so-called a
(2)
2 and b

(1)
2 vertex models, respectively. The algebraic Bethe

ansatz is introduced in the beginning of chapter 3, and used to understand the continuum
limit of the whole a

(2)
n hierarchy of integrable models. In all cases the continuum limit is

observed to be non-compact, some of the dramatic consequences of which are presented
in chapters 4 and 5. In the former, we use our results on a

(2)
2 and Monte-Carlo checks to

draw conclusions on the phase diagram of two-dimensional polymers, and in particular on
the controversial Θ point critical exponents. The detailed analysis of the two-dimensional
polymers phase diagram meanwhile serves us as a guide to inverstigate the nature of non-
compact degrees of freedom emerging from the corresponding lattice model. In chapter 5,
which can be considered largely open, we give an exact solution of the b

(1)
2 (as well as hints

on the whole b
(1)
n hierarchy) and conclude on the non-compact nature of the truncated

model of [39]. This allows to explain several puzzling observations initially made in [39],
and present conjecture on how the corresponding critical properties might be related to
those of the IQHE transition.
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Chapter 2

Exactly solvable models for polymers
and the IQHE plateau transition

As announced in the previous chapter, both the problems of calculating correlation func-
tions of two-dimensional polymers and studying transport observables at the Quantum
Hall plateau transitions, as well as many other two-dimensional statistical mechanics or
one-dimensional quantum mechanics problems, can be reformulated in the framework of
loop or vertex models on a bidimensional lattice.

The first section of the present chapter aims at introducing the tools and concepts
related to the physics of integrable, exactly solvable lattice models. For pedagogical
reasons the presentation is mostly based on the well-known six-vertex model, from which
we introduce the notions of quantum integrability, Yang–Baxter equation and quantum
groups. In section 2.2, we introduce in detail the notion of loop model as well as the
related algebraic concepts, and work out the precise relationship between the six-vertex
model and the related fully packed loop model on the square lattice. The mappings from
the problem of polymer collapse and the computation of transport observables at the
IQHE transition to integrable loop and vertex models are then detailed in sections 2.3
and 2.4 respectively.

2.1 Introduction to integrability and exactly solvable

models

This presentation is very much inspired from the lectures of H. Saleur and J-B. Zuber
[66], which we recommend for more details and references on the subject. We also discuss
the connection with integrable quantum field theories and factorizable S-matrices, and
refer for this matter to the original work of Zamolodchikov and Zamolodchikov [67] and
the more recent review [68].

2.1.1 Vertex models, integrability, and the Yang–Baxter equa-
tion

Let us first give a proper definition of what a vertex model is: the degrees of freedom are
attached to the links of a given lattice, which for us will always be the two-dimensional
square lattice, and interactions take place at the vertices as each configuration of four
links incident to a vertex is assigned a Boltzmann weight
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w(α, β, γ, δ) = α

δ

γ

β
.

A configuration of the system living on a lattice of size L × M with some given
prescription on the boundary conditions is specified by the corresponding values of the
degrees of freedom {αi} on every edge, and the associated Boltzmann weight is the
product of all corresponding vertex contributions. The degrees of freedom αi may be
of a rather general nature: in the cases we will be dealing with, they will be vectors in
some given complex vector space (more precisely, in representations of some q-deformed
(super)algebras, a notion which will be introduced further).

The toy-model we will be using throughout this section is Lieb’s six-vertex model
(1967), in which the degrees of freedom live in the vector space C2 whose basis {| ↑〉, | ↓〉}
can be represented as arrows on the links of the square lattice. The possible configurations
of arrows are restricted by demanding that at each vertex the number of incoming arrows
equals the number of outgoing ones (ice rule), restricting to 6 the number of admissible
vertex configurations,

w1 w2 w3 w4 w5 w6 .

Moreover requiring that these weights be invariant under a global reversal of all arrows
restricts to 3 the number of independent weights, w1 = w2 ≡ a, w3 = w4 ≡ b and
w5 = w6 ≡ c. Such a model was first introduced for describing crystal lattices with
hydrogen bonds such as ice (the position of the hydrogen atom on each bond, closer to
one or the other of the lattice atoms, is indicated by the corresponding arrow, and the ice
rules indicates that each of the lattice atoms has a valence number equal to two), but is
of central importance in the world of spin chains, loop models and quantum integrability.

Going back to the general case, it will turn convenient to temporarily assume that
the degrees of freedom on horizontal and vertical edges can be of different nature, and we
therefore call V and Va the finite-dimensional vector space of degrees of freedom living
on each vertical (resp. horizontal) link. A lattice of horizontal width L sites can be
viewed in the Hamiltonian picture as a one-dimensional quantum system of Hilbert space
H = V ⊗L evolving in discrete imaginary time. The discrete time evolution corresponds
to the addition of one horizontal row, and the corresponding matrix elements between
the state {α1, α2, . . . αL} at time t and the state {α′1, α′2, . . . α′L} at time t+ 1 is encoded
by the so-called row-to-row transfer matrix

〈α′1, α′2, . . . α′L|T |α1, α2, . . . αL〉 ≡ T
α′1,α

′
2,...α

′
L

α1,α2,...αL =

α1 α2 αL

α′1 α′2 α′L
a0 a1 a2 aL−1 aL

,

where the labels aj denote the states on the horizontal links, and must accordingly be
traced over in accordance with the boundary conditions. In the graphical representation
we have pictured the space Va by a double line, to insist on its a priori different nature
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than that of V . The horizontal A ≡ Va space is refered to as the auxilliary space, whereas
H ≡ V ⊗L is refered to as the quantum space. Choosing for instance periodic boundary
conditions in the horizontal direction imposes a0 = aL, and we have

T
α′1,α

′
2,...α

′
L

α1,α2,...αL =
∑

a0,...aL−1

w(a0, α1, α
′
1, a1)w(a1, α2, α

′
2, a2) . . . w(aL−1, αL, α

′
L, a0) (2.1)

=
∑
a0

a0 a0
(2.2)

= TrVa ≡ TrVaT , (2.3)

where the sums are over some basis of Va. The matrix T in (2.3), which acts on Va⊗V ⊗L,
is called the monodromy matrix, and we can for instance express the partition function
of the L×M system with periodic boundary conditions in both directions as

ZL×M = TrV ⊗L
(
T M

)
. (2.4)

Integrable vertex models, the R-matrix and the Yang–Baxter equation

We are now ready to turn to the definition of integrability for such a system. Quite
naturally, we associate it with the existence of an infinite set of conserved quantities
(although in practice only dimH independent of them are needed; we note however
that this definition actually allows for some loopholes, and alternative definitions can
be proposed, see [69]), or in other terms, of quantities commuting with the transfer
matrix. This can be realized quite easily if we actually seek for a one-parameter family
of Boltzmann weights w(a, α, α′, a′|u), hence a one-parameter family of transfer matrices
T (u), such that

[T (u), T (v)] = 0 , (2.5)

for any u and v. Indeed, if this is the case, each coefficient in the Laurent expansion of
T (u) furnishes one observable commuting with T (u) for any u, moreover these observables
are mutually commuting. The physical interpretation of the parameter u, which is called
the spectral parameter, will be discussed shortly. One sufficient condition for (2.5) to hold
is the existence of a Va ⊗ Va → Va ⊗ Va two-parameter dependent matrix Ř(u, v) such
that the following ‘RTT relation’ holds :

Ř(u, v) · (T (u)⊗ T (v)) = (T (v)⊗ T (u)) · Ř(u, v) , (2.6)

where the tensor product denotes a matrix multiplication over the quantum space, and
the dot denotes a matrix multiplication over the product of the two auxilliary spaces.
Defining the braiding matrix R = PŘ, where P is the permutation operator of the two
auxilliary spaces in Va ⊗ Va, we have the following graphical representation of (2.6) :

u

v =

v

u

,

where we have adopted the notations

R(u, v) =
u

v
, R(u, v)−1 =

u

v
. (2.7)
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It can be shown that the R-matrix satisfying this ‘RTT’ requirement is subject to a
consistency condition, which is fulfilled if we take R to satisfy the Yang–Baxter equation,

R23(v, w)R13(u,w)R12(u, v) = R12(u, v)R13(u,w)R23(v, w) . (2.8)

This equation, which of course holds in a similar form for Ř, is defined in the tensor
product Va ⊗ Va ⊗ Va, and for instance the notation R23 indicates the product of the
identity operator acting on the first space times the braiding of the second and third
spaces. It allows for the following simple pictorial representation

12
3

=
w

u
v

32
1

v
u

w

.

In most cases of physical interest, the dependence of Ř(u, v) in the spectral parameters
will be through the difference u− v. It is usual to require the unitarity condition on the
R-matrix,

R(u)R(−u) ∝ 1 , (2.9)

in particular all the solutions we will get to consider are regular solutions, in the sense
that they satisfy Ř(0) = 1, R(0) = P .

We can now go back to the case where the vertical and horizontal spaces are of the
same nature, V = Va : assuming that a solution of the Yang Baxter has been found, the
RTT relation is readily solved provided the Boltzmann weights are taken to be

w(α, β, γ, δ|u) = Rγ,δ
α,β(u) = Řδ,γ

α,β(u) . (2.10)

In particular, w(α, β, γ, δ|0) = δδαδ
γ
β , which can be represented pictorially as

w(α, β, γ, δ|0) =α

δ

γ

β
,

and from which follows that the transfer matrix T (0) is nothing but the discrete transla-
tion operator in the horizontal direction. More generally, we can consider the operators

Hn =
dn log T (u)

dun

∣∣∣∣
u=0

, (2.11)

which form the family of mutually commuting operators we were in quest for. Interpreting
H ≡ −H1 as the Hamiltonian of the quantum system, we therefore indeed have for this
system an infinite number of conserved quantities.

We now go back to the six-vertex model, and investigate the solutions of the Yang–
Baxter equation in this case, which will allow us to make contact with a general geo-
metrical interpretation of the spectral parameter. The corresponding R-matrix acts on
C2 ⊗ C2 and reads

R =


a 0 0 0
0 b c 0
0 c b 0
0 0 0 a

 (2.12)
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in the basis {↑↑, ↑↓, ↓↑, ↓↓}. A family of solutions is found, parametrized by a complex
number γ, as

a =
sin(γ − u)

sin γ
b =

sinu

sin γ
c = 1 . (2.13)

For u = γ
2

one has a = b, and more generally the weights of the model are in this case
isotropic, namely, invariant under discrete rotations of the lattice. The spectral parameter
u is thus understood as introducing an anisotropy, which can be thought of as a spatial
anisotropy of the lattice and as such is not supposed to affect the critical behaviour of the
model, if any. This statement should however be made more precise, since for instance at
a real value of γ the geometrical interpretation does not hold anymore for complex values
of u. It turns out that for the six-vertex model the phase structure can be described in
terms of the parameter ∆ = a2+b2−c2

2ab
= cos γ : for ∆ ≥ 1 or ∆ < −1, that is for imaginary

γ the system is in a non-critical, massive phase, whereas for −1 ≤ ∆ < 1, that is for
real non zero γ the system is in a critical, massless phase. In the latter case, the critical
behaviour does not depend on the spectral parameter if real, whereas complex values of
u perturb the system to a massive phase.

These observations can be related to the more general statement : there are, in general
(and forgetting about some higher-genus solutions in some cases), three types of regular
solutions of the Yang–Baxter equation. These are said to be rational, trigonometric (or
hyperbolic) or elliptic according to their dependence in the spectral parameter, and all the
trigonometric solutions found to this date have turned out to be critical. The solution
(2.13) for the six-vertex model is trigonometric for generic real γ, rational for γ → 0
and γ → π, and hyperbolic for imaginary γ. The eight-vertex model [36] gives in turn
an example of elliptic solution of the Yang–Baxter equation. From now on, and unless
specified, we will therefore restrict to real values of the spectral parameters, keep in mind
the geometrical interpretation and use indistinctly the following graphical notations

w(α, β, γ, δ|u− v) = Řδ,γ
α,β(u− v) = α

δ

γ

β
u− v

= α

δ

γ

β

u

v

.

We close this paragraph by deriving the quantum Hamiltonian related to the integrable
six-vertex model. For a system of horizontal size L with periodic boundary conditions, it
is given by

H =
1

2 sin γ

L∑
i=1

hi,i+1 , (2.14)

where we set L+ 1 ≡ 1, and the Hamiltonian density hi,i+1 acts on sites i, i+ 1 as

hi,i+1 = σxi σ
x
i+1 + σyi σ

y
i+1 + cos γ(1i1i+1 + σzi σ

z
i+1) (2.15)

and as the identity on the other sites. Up to an irrelevant additive constant and propor-
tionality factor, we therefore have

H =
1

2

L∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

)
, (2.16)

which is the Hamiltonian of the so-called periodic XXZ chain. This denomination is
transparent, as the coupling is anisotropic in the spin space (this anisotropy must not
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be confused with the lattice anisotropy introduced by u), and the parameter ∆ = cos γ,
sometimes even γ, is often called the anisotropy of the model. At γ = 0 (∆ = 1), H
reduces to the Hamiltonian of the Heisenberg antiferromagnetic spin-1

2
chain, or XXX

chain.
For later reference, we introduce generators

ei,i+1 =
q + q−1

4
− 1

2

(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

)
− q − q−1

4
(σzi − σzi+1)

= 11 ⊗ 12 ⊗ . . .⊗


0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0


i,i+1

⊗ . . .⊗ 1L , (2.17)

in terms of which we can rewrite the XXZ Hamiltonian (2.16) as

H = −1

2

L∑
i=1

ei,i+1 , (2.18)

up to some immaterial additive constant.

Relation with integrable field theories in 1+1 dimensions

We close this section with a word on 1+1-dimensional integrable quantum field theories
(IQFTs), and how their study is related to the notions we have just encountered, namely
the Yang–Baxter equation, and ultimately, quantum spin chains. As announced in the
beginning of the section, this follows the approach of Zamolodchikov and Zamolodchikov
in [67].

Consider a 1+1-dimensional quantum theory of relativistic particles of massesma1 , . . .maN
1, whose on-shell light-cone momenta are parametrized by

pa = p0
a + p1

a = mae
θa , p̄a = p0

a − p1
a = mae

−θa . (2.19)

The real parameters θa are the so-called rapidities, and we assume that these actually
denote narrow momenta wavepackets such that each particle can be assigned an ap-
proximate position at any time. Assuming for simplicity that the theory is massive (in
the case of a CFT we consider an infinitesimal massive deformation) and therefore that
the interactions are finite-ranged, one can view the N -particle states as a collection of
free particles when these do not overlap. In particular, one can define the in- and out-
asymptotic states

|Aa1(θ1) . . . AaN (θN)〉in,out , (2.20)

characterized respectively by there being no further interactions at t → −∞ and +∞
(the symbol Aai(θi) denotes a particle of type ai with rapidity θi). In the former case the
particles’ rapidities must be increasing from left to right, whereas in the latter case they
must be decreasing, so both states can be represented by thinking of the symbols Aai(θi)
as non-commuting operators written in the same order as the corresponding particles,
namely

|Aa1(θ1) . . . AaN (θN)〉in = Aa1(θ1) . . . AaN (θN) θ1 > . . . > θN (2.21)

|Ab1(θ1) . . . AbN (θN)〉out = Ab1(θ1) . . . AbN (θN) θ1 < . . . < θN . (2.22)

1In such a relativistic theory the number N of particles can vary. We will see however that integrability
in 1+1 dimensions forbids particle production and annihilation, and that therefore N is fixed.
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The assumption of asymptotic completeness translates into the fact that any state at inter-
mediate time can be expanded over the basis of in or out states equivalently. Considering
for instance a two-particle in state, we can write

Aa1(θ1)Aa2(θ2) =
∞∑
N=0

∑
θ′1<...<θ

′
N

Sb1,...bNa1,a2
(θ1, θ2; θ′1, . . . θ

′
N)Ab1(θ′1) . . . AbN (θ′N) , (2.23)

where the sum over momenta is actually an integral constrained by the conservation of
the total momentum, and the object Sb1,...bNa1,a2

is the so-called 2→ N S-matrix.
Quite naturally once again, we define an integrable quantum field theory by the exis-

tence of an infinite set of conserved charges. We consider to this end operators of Lorentz
spin s,

QsAa(θ) = q(s)
a esθAa(θ) , (2.24)

(the energy-momentum operator (P, P̄ ), is one of these, with Lorentz spin 1 : P (P̄ )Aa(θ) =
mae

±θAa(θ)), which can be written as integrals over particle densities and therefore act
additively on N -particle states,

QsAa1(θ1) . . . AaN (θn) =
(
q(s)
a1

+ . . . q(s)
aN

)
esθAa1(θ1) . . . AaN (θn) . (2.25)

Such operators are mutually commuting, and we will now see that imposing an infinite set
of such conserved charges (the so-called conserved local charges) puts severe constraints
on the S-matrix, and how these constraints are so particular in 1+1-dimensional theories.

The first constraint imposed by the existence of local charges for arbitrarily large
values of s is an infinite number of conservation laws of the form

q(s)
a1

eθ1 + . . . q(s)
aM

eθM = q
(s)
b1

eθ
′
1 + . . . q

(s)
bN

eθ
′
N (2.26)

between the in and out momenta of any scattering process, implying the equality between
the initial and final sets of momenta, and in particular, forbidding particle production of
annihilation.

The second constraint comes from the fact that for any scattering process we can
use the conserved charges to reorder the incoming or outgoing particles at will. Assume
indeed, for a sketchy demonstration [68], that the set of charges Ps ≡ (P1)s are conserved,
where P1 is the spatial part of the energy-momentum. Acting with eiαPs on a particle
of momentum pa yields a phase factor αps, and so amounts to shift the position of this
particle by sαps−1. In more than one spatial dimensions the particles of any scattering
process can therefore be translated so that they simply avoid each other without changing
the corresponding scattering amplitude, which forces the S-matrix to be trivial, or, in
other terms, the theory to be non interacting (this is a very unrigorous justification of the
Coleman-Mandula theorem in three spatial dimensions). This however does not apply
to 1+1 dimensions where obviously interactions cannot be avoided, yet these are severly
constrained: consider for instance the 3 → 3 scattering process between the in state
Aa1(θ1)Aa2(θ2)Aa3(θ3) (θ1 > θ2 > θ3) and the out state Aa3(θ3)Aa2(θ2)Aa1(θ1). Shifting
the in particles as described above shows that the two following processes are equivalent,

a1 a2

a3

and

θ3

θ1

θ2

a3a2

a1

θ2

θ1

θ3

,
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from which we can deduce that the 3 → 3 S-matrix, and similarly any N → N , can be
factorized as the product of 2→ 2 scattering processes. Even once factorizability of the
S-matrix is assumed, the equality between the two above diagrams is not trivial as soon
as the 2→ 2 S-matrix is not entirely diagonal in the space of different possible kinds of
particles (or if these particles have, say, a non zero spin). Assuming (as imposed from
Lorentz invariance) that the latter depends on the rapidities only through their difference,
this equality translates into the following matrix equation

S23(θ3 − θ2)S13(θ3 − θ1)S12(θ2 − θ1) = S12(θ2 − θ1)S13(θ3 − θ1)S23(θ3 − θ2) , (2.27)

which is nothing but the Yang–Baxter equation (2.8) for the 2→ 2 S-matrix, where the
rapidities θi play the role of the spectral parameters. The connection with integrable
vertex models is now quite clear, for instance the integrable Ř matrix found for the six-
vertex model (or, equivalently, for the XXZ Hamiltonian) has its equivalent in quantum
field theory as the S-matrix of the deformed SU(2) Nambu-Jona-Lasinio model (also
called deformed chiral Gross-Neveu model), which is a 1+1 dimensional relativistic theory
of Dirac fermions with action

SNJL =

∫
dx
(
iψ̄a 6 ∂ψa − gj3

µj
3µ − f(j1

µj
1µ + j2

µj
2µ)
)
, (2.28)

where ~jµ is the SU(2) current (jµx,y,z = 1
2
ψ̄aσ

x,y,z
ab γµψb), and the correspondence with

XXZ is cos γ ↔ cos g
cos f

(for a review see [70], and references therein). For future reference,

we point out that this model can (up to some subtleties [70]) be related to the Sine-Gordon
model, which is a theory of a free bosonic field Φ with action

SSG =

∫
dx
(
(∂µΦ)2 + g cos(βΦ)

)
, (2.29)

In summary, the task of finding the eigenstates of an integrable quantum field the-
ory has been reduced to that of finding the corresponding 2 → 2 S-matrix solution of
the Yang–Baxter equation, which then allows for an exact resolution by the method of
algebraic Bethe ansatz to be presented in detail in the next chapter.

2.1.2 The quantum group Uq(sl2)

The integrable R-matrix found for the six-vertex model belongs to the class of quasi-
classical solutions of the Yang–Baxter equation, in the sense that it can be expanded in
terms of some ~ (= γ here) parameter as follows

R(~, u) ∝ 1 + ~ r(u) +O(~2) . (2.30)

The matrix r(u) is called the classical limit of R(γ, u) and satisfies the so-called classical
Yang–Baxter equation

[r12(u), r13(u+ v)] + [r12(u), r23(v)] + [r13(u+ v), r23(v)] = 0 , (2.31)

which appears in the context of classical integrable systems, and has for characteristic
feature that it involves only commutation relations. As a consequence, if r(u) can be
decomposed as

r(u) =
∑
µ,ν

rµν(u)Xµ ⊗Xν (2.32)
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over a basis of generators {Xµ} of some Lie algebra µ represented in End(V ) (with V = C2

here), we now have the very strong result that any representation of the generators
{Xµ} in some vector space V ′ yields a solution of the classical Yang–Baxter equation
in V ′ ⊗ V ′ ⊗ V ′. For instance, the solution r(u) found for the six-vertex case can be
decomposed over the products of spin 1

2
generators of the algebra sl2, hence any higher

spin j representation of sl2 yields a solution of the classical Yang–Baxter equation in
C2j+1 ⊗ C2j+1 ⊗ C2j+1.

From sl2 to the quantum group Uq(sl2)

It is now natural to look for a similar construction for the R(γ, u) matrix, or in other
terms, to wonder whether the classical R-matrices we have just built may be the classical
limit of some new solutions R(γ, u) of the Yang–Baxter equation.

We therefore start back from the six-vertex solution R(u) ≡ R(γ, u), and write it as

R(u) =
∑
i=0,...3

ρi(u)si ⊗ si , (2.33)

where si are the spin-1
2

generators of sl2, subject to the usual commutation relations

[s+, s−] = 2sz (2.34)

[sz, s±] = ±s± . (2.35)

It yields a solution of the RTT equation (2.6), which we can represent, taking L = 1 for
simplicity, as

u

v

V = C2

Va = C2

Va = C2
=

v

u

,

where the monodromy matrix has the exact same expression as R(u), namely T (u) =∑
i=0,...3 ρi(u)si ⊗ si. What now, if we decide to replace the quantum space V by some

higher-dimensional V ′ = C2j+1, and try to solve the resulting RTT equation

u

v

V ′

Va = C2

Va = C2
=

v

u

,

with the same R(u) matrix ? It turns out that a natural solution can be written under
the form [66]

T (u) =
∑
i=0,...3

ρi(u)si ⊗ Si , (2.36)

where now Si are matrices of End(V ′) obeying a different set of commutation relations :

[S+, S−] =
q2Sz − q−2Sz

q − q−1
(2.37)

[Sz, S±] = ±S± , (2.38)
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where q = eiγ and we have introduced the q-deformed numbers

[x] ≡ qx − q−x

q − q−1
=

sin γx

sin γ
. (2.39)

These commutation relations define the quantum group Uq(sl2) which can be viewed as
a deformation of the universal enveloping algebra U(sl2) of sl2 and should therefore be
more appropriately called a quantum algebra. In particular the usual sl2 commutation
relations are recovered in the limit q → 1 (γ → 0). We also note that in the spin 1

2

representation (for the moment we can have in mind the simple picture, valid for q not
a root of unity, in which the representation theory of Uq(sl2) is similar to that of sl2),
the commutation relations (2.37, 2.38) reduce to those of sl2, and the monodromy matrix
(2.36) recovers its original six-vertex model form. Let us now put these findings in a more
general perspective.

2.1.3 General framework

Dealing with integrable systems, one encounters generically quantum groups Uq(g) asso-
ciated with various Lie algebras g. What we call a quantum group in general is essentially
a quasitriangular Hopf algebra, that is an associative algebra A equipped with a coprod-
uct ∆ : A → A ⊗ A, a co-unit ε : A → C and an antipod η : A → A subject to some
conditions. In particular, the coproduct is an algebra homomorphism, and its expression
in the Uq(sl2) case is 2

∆(Sz) = 1⊗ Sz + Sz ⊗ 1 (2.41)

∆(S±) = qS
z ⊗ S± + S± ⊗ q−Sz . (2.42)

As we can see in this particular case, the coproduct treats the two copies of A in A⊗A
in an asymetric way, and another coproduct can be defined as ∆′ = τ ◦∆, where τ is the
permutation operator between the two copies. This construction is general, and quantum
groups are also equipped with a so-called universal R matrix that intertwines the two
coproducts

R∆ = ∆′R . (2.43)

The name ‘universal’ stems from the fact that R is defined algebraically, independently
of any particular representation. In the Uq(sl2) case in particular, the explicit expression
of R in terms of the S±, Sz generators is known. One essential property of the universal
R matrix is that it satisfies the following equation

R23R13R12 = R12R13R23 , (2.44)

which is nothing but the Yang–Baxter equation without spectral parameter. Remember-
ing about the six-vertex model, this brings along two conclusions :

2 Note that the coproduct is not the usual tensor product. As a consequence the tensor product
Si ⊗ Si of two Uq(sl2) generators is not itself a Uq(sl2) generator, and the idea of extending (2.33) to
higher-dimensional solutions of the Yang–Baxter equation of the form

R(u) =
∑

i=0,...3

ρi(u)Si ⊗ Si , (2.40)

does not work.

34



• Specializing to the spin 1
2

representation of Uq(sl2), the R matrix R 1
2

1
2 in this

representation should relate to the original integrable R-matrix of the six-vertex
model R(u). This is indeed the case, as R 1

2
1
2 is obtained as the u → i∞ (braiding

limit) of a gauged transformed version of R(u).

• Reciprocally for any spin j, j′ representations, we expect the Rjj′ matrix to be the
braiding limit of some solution R(u) of the Yang–Baxter equation acting on C2j+1⊗
C2j′+1. The general task of promoting the universal R matrix of some quantum
group in its different representations to spectral parameter-dependent R-matrices
(‘baxterisation’) has a well-defined algebraic meaning, which requires promoting the
notion of quantum group to a spectral parameter-dependent algebraic object. This
is what we want to describe now.

To each simple Lie algebra g can be associated an affine Lie algebra ĝ, which can
be understood as a central extension of the loop algebra ĝ0 ' g ⊗ C[x, x−1], and whose
Dynkin diagram is obtained from that of g by the addition of a node corresponding to an
imaginary root. Similarly, for a quantum group Uq(g) one can define the corresponding
affine quantum group Uq(ĝ). The complex parameter x is intimately related to the notion
of spectral parameter, more precisely we set x ≡ qu and will be interested in the so-called
evaluation representations of Uq(ĝ), which can be built as affinizations of the quantum
group representations and are therefore characterized by some Uq(g) spin j and a spectral
parameter u. For two such representations Vj1(u1), Vj2(u2), we can define as for the finite-
dimensional case a matrix R12(u1−u2) intertwining Vj1(u1)⊗Vj2(u2) and Vj2(u2)⊗Vj1(u1)
3, which satisfies the Yang–Baxter equation (2.8) and can therefore be used as a building
block for constructing the associated integrable model. For instance, we see that the six-
vertex model studied previously can be defined as the integrable model associated with the
affine algebra Uq(ŝl2) in products of its fundamental (spin-1

2
) evaluation representations.

More generally we can consider transfer matrices acting on the product V1 ⊗ . . . ⊗ VL
of evaluation representations for any affine quantum algebra. Whereas for usual, finite
dimensional Lie algebras the products or irreducible representations are usually fully
reducible, this is not the case anymore in the affine case and products of the form V1 ⊗
. . . VL are themselves irreducible. Note that all this persists in the q → 1 limit, where
instead of recovering the algebra ĝ the affine quantum group Uq(ĝ) degenerates into the
so-called Yangian, Y(g), with similar properties as the affine quantum group itself.

This construction can be further extended in the case where the Dynkin diagram of
ĝ allows for a rank k group of automorphisms (in practice k = 1, 2, or exceptionally
k = 3). We can then consider the twisted algebra ĝ(k) obtained as a folding of the original
Dynkin diagram with respect to these automorphisms, and similarly we can construct
the corresponding twisted affine quantum algebras Uq(ĝ

(k)), which can in turn be used to
construct integrable lattice models.

The baxterized trigonometric R-matrices associated with various evaluation represen-
tations of the (un)twisted quantum groups are given in references [71] and [72] respec-
tively. In all the following, we will use the notations g(1) ≡ ĝ, g(k) ≡ ĝ(k), and will refer
to models associated with the quantum algebra Uq(g

(k)) as simply the ‘g(k) models’.

3From now on we will commonly use the shorthand notation ⊗ to refer to the quantum group co-
product, when appropriate.
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a

≡

x1

b

≡

x2

c1

≡

x2 ω
2

+

x1 ω
−2

c2

≡

x2 ω
−2

+

x1 ω
2

Figure 2.1: Mapping from the six-vertex model on the square lattice to a model of
completely packed oriented loops. Similar relations hold when reverting all the arrows.

2.2 Loop models and algebraic aspects

Whereas we have been dealing so far with (integrable) vertex models, we will now see,
focusing on the example of the six-vertex model, that some of these can be reformulated
in a geometric fashion, namely as (integrable) statistical mechanics models whose degrees
of freedom can be represented by loops. This reformulation is a natural step towards the
study of physical problems such as those related with polymers or transport observables
at the IQHE transition, and will give us the chance for a first encounter with a few
important algebraic objects, among which the Temperley–Lieb algebra.

2.2.1 Loop formulation of the six-vertex model and the Temperley–
Lieb algebra

The configurations of the six-vertex model map to those of a model of completely packed,
oriented loops living on the edges of the square lattice, as described in figure 2.1 (see also,
for instance, [40]). As indicated in the figure, we can then parametrize the Boltzmann
weights as a product of two contributions, namely xΩ where x depends only on the
geometrical loop configuration at the vertex, x = x1 for , x = x2 for , and Ω is
an angular contribution counting the total winding angle of the oriented loops at the
vertex, ω, ω−1 for each left and right turn respectively. Note that this parametrization
gives a different weight c1 and c2 to vertices which were attributed the same weight c so
far. This apparent paradox can actually be resolved by the following argument : taking,
say, periodic boundary conditions in the horizontal direction and following this direction
around the cylinder, the vertices with weight c1 and those with weight c2 act respectively
as sources and sinks of vertical arrow flux, as in the second two vertical arrows leave
the vertex, whereas in the first case two vertical arrows enter it. Due to conservation
of the net arrow flux inside the region encompassing the row under consideration, the
number of vertices of the first and second kind must be the same on each horizontal line,
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Figure 2.2: Configuration of the completely packed loop model emerging from the six-
vertex model. Each closed loop goes with a weight n = ω4 + ω−4. To yield back the
six-vertex arrow configurations, one has to sum over the two possible orientations of each
loop and reformulate the local weight n as local, angular contributions to the Boltzmann
weights.

Figure 2.3: Configuration of the completely packed loop model on the rotated square
lattice. Time flows in the upward direction, and periodic boundary conditions in the
horizontal direction are indicated by dashed lines.

which allows to replace the weights c1 and c2 by c ≡ √c1c2. This parametrization of the
weights a, b, c in terms of x1, x2 and ω allows for a reformulation of the six-vertex model
in terms of a model of pure, unoriented loops, where the weights at the vertices are simply
x1 and x2 and each closed loop corresponds to a sum over its two possible orientations,
with a weight n = ω4 + ω−4 coming from the corresponding angular contributions. A
configuration of the corresponding loop model is given in figure 2.2.

To study this model further, we temporarily choose to rotate the lattice by 45◦, or
equivalently, to consider the time direction to be along a diagonal of the square lattice, as
depicted in figure 2.3. The evolution along this diagonal time is encoded by the so-called
diagonal transfer matrix, which we can represent as

TD = ≡ ≡
,

where from left to right we have shifted from the original square lattice to a representation
in terms of square plaquettes, each plaquette being associated with a vertex of the original
lattice. This yields for the diagonal transfer matrix a natural decomposition, as it is
obtained by summing independently every plaquette over the two possible configurations

= x1 + x2 . (2.45)

The transfer matrix acts on states which can be represented as the sets of connectivi-
ties between L strands. We assume (for simplicity) that L ≡ 2N is even, and rewrite the
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transfer matrix as a product over its building blocks, namely

TD =
(
ŘL−2,L−1 . . . Ř2,3ŘL,1

) (
ŘL−1,L . . . Ř3,4Ř1,2

)
, (2.46)

where Ři,i+1 corresponds to the plaquette where strands i and i+ 1 meet. The notation
is not a coincidence, as Ř is formally the same object as the Ř matrix building up the
row-to-row transfer matrix. We can further write

Ři,i+1 = x1I + x2ei,i+1 , (2.47)

where I is the identity operator whereas ei,i+1 concatenates strands i and i+ 1 and acts
as the identity on the other strands. Pictorially,

I =
. . . . . .

123 L
(2.48)

ei,i+1 =
. . . . . .

123 i L
(2.49)

The composition rules of the operators ei,i+1 can readily be deduced from their picto-
rial representation, bearing in mind that strands can be stretched and that each closed
loop corresponds to a weight n. For instance,

(ei,i+1)2 = . . . . . .

123 i L

= n . . . . . .

123 i L

= n ei,i+1 , (2.50)

and similarly,

ei,i+1ej,j+1 = ej,j+1ei,i+1 for |i− j| > 1 (2.51)

ei,i+1ei+1,i+2ei,i+1 = ei,i+1ei−1,iei,i+1 = ei,i+1 (2.52)

Equations (2.50), (2.51) and (2.52) define the so-called Temperley–Lieb (TL) algebra
TLL(q) . This is an example of a lattice algebra, which plays a role of great importance in
the context of loop models and beyond. Other such algebras can be defined for instance
by allowing crossings between loops (Brauer algebra), braiding (braid-monoid algebras),
vacant sites carrying no loops (dilute TL), several species or colours of loops (multi-
coloured TL algebras), etc. . . , several of which will be encountered in the following sections
of this manuscript.

The TL algebra has many different representations, each of which is related to a
particular statistical mechanics model, such as the Potts and Ising models as well as
height models for rough interfaces. Since it has here been introduced from the loop
formulation of the six-vertex model, it is now natural to look for vertex formulation of
its generators. This is achieved by taking the weights a, b, c to be the integrable weights
(2.13), which determines the parameters x1, x2, ω as

a = x1 =
sin(γ − u)

sin γ
(2.53)

b = x2 =
sinu

sin γ
(2.54)

c =
√
c1c2 =

√
x1ei γ

2 + x2e−i γ
2

√
x1e−i γ

2 + x2ei γ
2 = 1 , (2.55)

38



that is, n = 2 cos γ = q+ q−1 (we point out, however, that unlike the row-to-row transfer
matrices, the diagonal transfer matrices TD(u) do not form a commuting family). As it
turns out, not exactly the integrable Ř matrix

Ř(u) = PR =


a 0 0 0
0 c b 0
0 b c 0
0 0 0 a

 (2.56)

can be decomposed as (2.47), rather we use the gauge transformation

Ř(u) '


a 0 0 0
0 eiuc −b 0
0 −b e−iuc 0
0 0 0 a

 =
sin(γ − u)

sin γ
1 +

sinu

sin γ
e , (2.57)

where we indeed recognize the decomposition (2.13), and the Temperley–Lieb generator
e has the same expression as that introduced in equation (2.17). Note that the latter can
further be written in terms of the projectors of the product V 1

2
⊗ V 1

2
of Uq(sl2) spin 1

2

representations over irreducible spin 0 and 1 representations,

P0 =
1

[2]


0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0

 , P1 = 1− P0 =
1

[2]


[2] 0 0 0
0 q 1 0
0 1 q−1 0
0 0 0 [2]

 , (2.58)

namely
e = [2]P0 = (q + q−1)P0 = 2 cos γP0 = nP0 . (2.59)

2.2.2 Representation theory of the TL algebra

As was mentioned earlier, the Temperley–Lieb algebra allows for different kinds of repre-
sentations. In this section we shall restrict to the loop representation, which is known to
be faithful, and restrict to the case where q is generic i.e. not a root of unity. Even though
this rules out most cases of physical interest (for instance the cases q = eiπ

2 , q = eiπ
3 and

q = eiπ
4 describe respectively problems of dense polymers, percolation and Ising model),

this is enough for our purpose and will allow us to derive general conclusions. In this case
the TL algebra is known to be semi-simple, namely all reducible representations are fully
reducible [73]. These representations are called standard modules, and we will introduce
them by looking first at the case of open boundary conditions.

Open boundary conditions

The loop Hilbert space Hloop on which the TL generators act can be viewed as the set of
connectivities between L strands, allowing for an even (if L even, to which we will restrict
for now on) number j of through-lines, also called strings, or legs, propagating from the
infinite bottom of the cylinder. Taking as an example L = 4, the space of states reads

2j = 0 2j = 2 2j = 4

.

39



Since through-lines can be contracted with one another under the action of the TL gen-
erators but cannot inversely be formed back, any transfer matrix built out of the latter
clearly has a block-diagonal structure and we can, as long as the corresponding eigenvalue
problem is concerned, focus on the diagonal part and therefore forbid through-lines to
be connected with one another. We therefore decompose the loop space of states as a
direct sum of spaces Sj[L] with 2j = 0, 2, . . . L through lines, which are now thought
as propagating from the infinite bottom to the infinite top of the cylinder. These have
dimension

dj(L) = dimSj[L] =

(
L

L/2− j

)
−
(

L

L/2− j − 1

)
, (2.60)

which indeed recovers for instance d1(4) = 3.

Periodic boundary conditions

We now move on to the case where the L strands lie on the surface of a cylinder. Strictly
speaking, the Temperley–Lieb algebra is the set of all the words written with the gen-
erators ei,i+1, i = 1, . . . L (with L + 1 ≡ 1), and is therefore easily seen to be infinite
dimensional from the existence of diagrams consisting of loops winding around the peri-
odic boundary conditions an arbitrary number of times. To cure this we rather consider
a quotient of the latter, the so-called Jones–Temperley–Lieb algebra JTLL(q) [74], which
specfies that non contractible loops winding around the cylinder are given the same
weight n as contractible ones and that isotopic diagrams connecting the same sites are
to be identified (in particular this allows to unwind through-lines around the periodic
condition). The representation theories of TLL(q) and JTLL(q) slightly differ only in a
way that will not alter our understanding of their correspondence with Uq(sl2), so in the
following we will restrict to the periodic version which we will nevertheless call TLL(q).

In this case the standard modules are labeled as Wj[L]. For L = 4 we represent them
as follows

2j = 0 2j = 2 2j = 4

.

For j = 0 the corresponding dimension is the same as in the open case, whereas for 2j > 0

ďj(L) = dimWj[L] =

(
L

L/2− j

)
. (2.61)

2.2.3 Periodic loop and vertex models

We now discuss the mapping between loop and vertex periodic transfer matrices and the
corresponding spaces of states. Once again we shall focus essentially on the example of
the six-vertex model, but our results will adapt easily to the various cases of interest
throughout the rest of this manuscript. As a matter of fact most of the discussion also
applies to the case of models with open boundary conditions, where it is actually slightly
simpler.
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Our goal here is to compare precisely the loop row-to-row transfer matrix,

T = Tr Řa1 . . . ŘaL

=
. . .

, (2.62)

where each plaquette is the rotated version of (2.45) and can therefore be written in terms
of the Temperley-Lieb generators ea,i and the geometric trace over the auxilliary space
has to be taken with some care such as to give non contractible loops the same weight n
as contractible ones, and the vertex transfer matrix

T (u) = TrVa

= TrVaŘa,1(u) . . . Řa,L(u) , (2.63)

acting on the Hilbert space H = (C2)
⊗L

. The latter commutes with the total magnetiza-
tion

m =
L∑
i=1

S
(z)
i = −L

2
,
L

2
+ 1, . . . ,

L

2
, (2.64)

so it is tempting to give a vertex interpretation to the spaces Wj[L] by associating them
with sectors of fixed magnetization. Consider once again as an example the system of
size L = 4. Whereas in the loop model the sector 2j = 0 has the 2 states represented
above, namely and , the vertex model in the sector m = 0 has obviously(

L
L
2
−m

)
= 6 states. The difference is that the loop model gives the same weight n to any

loop, contractible or not, whereas in the vertex model non contractible loops that circle
around the horizontal direction of the cylinder are easily seen to be given a different
weight, namely ñ = 2. To endow the loop model with the capability of distinguishing
between contractible and non contractible loops, we must enlarge its space of states with
another 4 states, which can be represented graphically as , , , and ,
where a mark on an arc now means that it has traversed the periodic boundary condition,
and the number of marks add up modulo 2 upon multiple traversals and concatenation.
Shifting to the sectors with 2j 6= 0, it is clear that non contractible loops cannot exist,
so the corresponding loop states do not need to be augmented. In general, it is easy to
prove that the extended modules W̃j, which coincide with the Wj for 2j > 0, have a
dimension given by (2.61) for all j.

Let us now prove rigorously that the enlarged spaces W̃j[L] of loop states are isomor-
phic to the sectors of, say, magnetizations m = j (equivalently one could have chosen
m = −j) of the vertex model. Starting from the loop model and reading the states from
left to right, replace each opening of an unmarked (resp. a marked) loop by an up-spin
(resp. a down-spin), each closing by a down-spin (resp. an up-spin), and each through-line
by an up-spin. In this way, the first two states given above in the sector 2j = 0 become
↑↓↑↓ and ↑↑↓↓, while the latter four states become ↓↑↑↓, ↑↓↓↑, ↓↑↓↑, and ↓↓↑↑. Re-
versely considering any initial spin configuration and starting from a given site, compute
the accumulated magnetization upon moving rightwards (crossing the periodic boundary
condition if necessary) until it becomes zero, or until the same spin is reached again. In
the former case, the spin where the magnetization becomes zero is linked by an arc to
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the initial spin. The corresponding spins are obviously opposite, and if the down-spin is
to the left of the up-spin (and only if we are in the j = 0 sector) the arc is marked. In
the latter case, there is no corresponding spin and the initial spin is a through-line.

Having studied in detail the space of states, we need in order to make the two transfer
matrices (2.62, 2.63) equivalent to take proper account of the weight of non contractible
(or marked) loops. For this sake, we replace the vertex transfer matrix (2.63) by a twisted
version,

T (u, eiϕ) = TrVa e2iϕS(z)

= TrVaŘa,1(u) . . . Řa,L(u) e2iϕS
(z)
a , (2.65)

which results in tuning the weight of non contractible loops to

ñ = 2 cosϕ . (2.66)

The twist parameter ϕ is chosen in a way depending on the magnetization sector, namely

• In the sector m = 0, we choose ϕ = γ so that ñ = n. Non contractible loops
are then treated on the same footing as contractible ones, and the spectrum of
the original loop transfer matrix in the sector W0[L] is therefore recovered up to

enlarged multiplicities (those of W̃0[L]).

• In sectors m 6= 0, non contractible loops are absent, and we choose instead ϕ = 0
so that through-lines do not accumulate extra phase factors while winding around
the periodic direction of the cylinder.

Note that compared to the usual periodic XXZ Hamiltonian (2.16) the quantum
Hamiltonian obtained from the twisted transfer matrix (2.65) is modified as follows

H =
1

2

L−1∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

)
+

eiϕ

4
σ+
Lσ
−
1 +

e−iϕ

4
σ−Lσ

+
1 . (2.67)

2.2.4 Schur-Weyl duality

We will now discuss an important feature of the relationship between the TL algebra and
the quantum group Uq(sl2). For simplicity, we will restrict ourselves to the open chain of
L strands, and refer to [33] for a complete discussion.

As we have seen in detail in the periodic case, but as can similarly be reviewed in the
open case, the Hilbert space H = (C2)

⊗L
can be considered as acted on by two different

algebras :

• The Temperley–Lieb algebra TLL(q), which can be decomposed in the open case
in terms of the standard modules Sj[L].

• The quantum group Uq(sl2), for which the space H is a product of spin 1
2

modules,
and therefore a (reducible) module itself. Similarly to the sl2 case, we expect it to
be decomposed in the case of generic q as a sum over irreducible modules Vj with
dimensions Dj = 2j + 1.
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In this sense, the space H enjoys the structure of a (TLL(q), Uq(sl2)) bimodule. More-
over, the TL generator ei,i+1 acting on strands i and i+1 was seen in equation (2.59) to be
nothing but (up to some proportionality factor) the projector P0 over the trivial, spin 0
representation of the corresponding product of Uq(sl2) spin 1

2
representations. As a direct

consequence ei,i+1 commutes with the action of Uq(sl2) on the product V 1
2

(i) ⊗ V 1
2

(i+1),

and this result is straightforwardly extended to its commutation with the Uq(sl2) action
on the full chain. This sums up as

[TLL(q), Uq(sl2)] = 0 , (2.68)

and we are now ready to use the double-commutant theorem: let A a semisimple algebra
with a fully reducible representation on some finite-dimensional space V . Let B = Z(A),
the centralizer of A in V (the algebra of V endomorphisms commuting with A). The
following results hold :

1. B also acts semisimply on V

2. Z(B) = A

3. The irreducible representations RA
j and RB

j on V are in one-to-one correspondence,
and V has the multiplicity-free decomposition V =

⊕
j R

A
j ⊗RB

j .

Part of these results when applying the double-commutant theorem to V = H, A =
Uq(sl2) and B = TLL(q) (which is clearly the centralizer of Uq(sl2) in H) were already
known, as we have taken for granted that the action of TLL(q) is semisimple for q generic
and that the corresponding modules Sj are irreducible. The fundamentally new result
here, known as a variant of the Schur-Weyl duality, is the decomposition

H =

L/2⊕
j=0

Vj ⊗ Sj , (2.69)

from which follow the decompositions of H over Uq(sl2) or TLL(q) irreducibles:

H|Uq(sl2) =

L/2⊕
j=0

djVj (2.70)

H|TLL(q) =

L/2⊕
j=0

DjSj , (2.71)

where we see that the dimension of irreducible modules for one algebra play the role of
multiplicities for the second.

‘Quantum group symmetry’ of integrable vertex models

It is readily deduced from (2.68) that the whole Ř matrix (2.57) commutes with Uq(sl2).
However, one must keep in mind that this Ř matrix was obtained from the original one
(2.55) through some gauge transformation, and therefore that the latter does itself com-
mute with Uq(sl2). Turning to, say, the original row-to-row transfer matrix T (u) built out
of (2.55), transforming the gauge-transformed weights a, b, c1 = eiuc, c2 = e−iuc back to
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the original weights a, b, c amounts to the unescapable introduction of imaginary bound-
ary terms. Therefore, the quantum group Uq(sl2) is not a symmetry of the integrable
six-vertex model, only does it become the case in the infinite-size limit, or for some par-
ticular choice of open boundary conditions [32]. In the open case, one indeed sees that
whereas the usual XXZ Hamiltonian

HXXZ = −1

2

L−1∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

)
(2.72)

does not commute with Uq(sl2), the Uq(sl2) invariance is restored when considering the
following Hamiltonian with a particular choice of boundary terms [32]

H = −1

2

L−1∑
i=1

ei,i+1 (2.73)

= −1

2

L−1∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

)
+
q − q−1

4
(σz1 − σzL) . (2.74)

These observations can essentially be generalized to any other integrable model. Re-
member from the previous sections that the R-matrix associated with the (twisted)
affine quantum Uq(g

(k)) intertwines between two evaluation representations V1 and V2

of Uq(g
(k)). Similarly, the monodromy matrix T (u) acting on the product Va(u) ⊗H of

an auxilliary space Va and a quantum space H = V1 ⊗ . . . ⊗ VL intertwines between the
corresponding affine quantum group actions,

T (u) Uq(g
(k))
∣∣
Va⊗H

= Uq(g
(k))
∣∣
H⊗Va

T (u) . (2.75)

Therefore, the action of Uq(g
(k)) or any of its finite-dimensional quantum subalgebras

on H can be considered as commuting with T (u) only ‘modulo boundary terms’, in the
sense that it does so provided one forgets abouts the auxilliary space Va. In particular,
the periodic transfer matrix obtained by tracing over Va does not restore any of these
symmetries whatsoever.

2.3 From polymers to the O(n) model, to the a
(2)
2

model

Let us sum up what we have found so far : for a vertex model with a definite set of degrees
of freedom, the condition of integrability can be re-expressed as a set of equations for
the spectral parameter-dependent Boltzmann weights. These take the form of a matrix
equation, the Yang–Baxter equation, for the Ř-matrix encoding these weights.

Now, given some physical two-dimensional statistical model or some one-dimensional
quantum spin chain, there is no reason a priori that the physical Boltzmann weights obey
these equations, more precisely that they correspond to one of the solutions of the Yang–
Baxter equation taken at some fixed, isotropic value of the spectral parameter. However,
most critical models turn out to have an integrable model in the same universality class.
Facing to, say, the problems of polymers and IQHE formulated in terms of some critical
lattice models, the first part of our program (to which this chapter is devoted) will
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p

K

τ

Figure 2.4: Configuration of the two-dimensional vertex interacting self-avoiding walk
(VISAW). The Boltzmann weights K, p and τ are associated to each edge, each straight
segment and each doubly visited site respectively.

therefore be to seek for integrable trigonometric deformations of these models’ Boltzmann
weights while leaving their universality class unchanged.

As described in the introductory chapter (section 1.2), the large scale properties of
polymer chains in a good solvent are successfully described by self-avoiding walks (SAW).
In order to describe the collapse transition, we however need to improve this model further
and consider the so-called vertex interacting self-avoiding walks (VISAW), where short
range-interactions are taken in account by an energy −εt for each site of the lattice where
two pieces of the polymers meet and nearly collide, see figure 2.4. Additionally, it is
convenient to also allow for some stiffness, and thus associate with two parallel consecutive
monomers an energy −εs. 4 Introducing the corresponding Boltzmann weights τ ≡ eβεt

and p ≡ eβεs , the partition function of a polymer made of N edges is thus given by

ZN(τ, p) =
∑

V ISAW

τ# doubly visited sites p# straight segments , (2.76)

however we will more commonly deal with the grand canonical partition function

G(K, τ, p) =
∞∑
N=0

KNZN(τ, p) , (2.77)

which is a sum over VISAWs of arbitrary lengths.
In order to work further the connection with lattice models as formulated in the

previous section, we reformulate the model in terms of elementary plaquettes around
each vertex. The allowed local configurations and corresponding Boltzmann weights are

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ,

where

ρ1 = 1 (2.78)

ρ2 = ρ3 = ρ4 = ρ5 = K (2.79)

ρ6 = ρ7 = K p (2.80)

ρ8 = ρ9 = K2 τ . (2.81)

4In the lattice description we will commonly use the term ‘monomer’ for each elementary step of the
self-avoiding-walk, namely for each bit of polymer covering one lattice edge, even though these may have
not much to do with the chemical units of the origial problem.
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This model can be considered as the particular n = 0 case of a more general one, where
closed loops are allowed and each results in a fugacity n. This corresponds precisely
to the geometrical formulation of some square lattice O(n) vector model, with a more
general spin-spin interaction than that considered in section 1.2. The corresponding phase
diagram of this model will be studied in detail in chapter 4, and we focus for the moment
on integrable solutions, namely spectral parameter-dependent weights ρ1(u), . . . , ρ9(u)
solution of the Yang–Baxter equation.

As found by Nienhuis and collaborators in [75, 76], two types of solutions have to be
distinguished :

• In the p = 0 plane, an integrable solution (which we give directly for isotropic values
of the weights) is found at K = 1

2
, τ = 2, namely

ρ1 = 1 , ρ2 = ρ3 = ρ4 = ρ5 = ρ8 = ρ9 =
1

2
, ρ6 = ρ7 = 0 . (2.82)

This solution, is usually labeled ‘branch 0’, can be obtained from the integrable
completely packed loop model (2.45) at loop fugacity n + 1 by coloring each loop
either in black (with fugacity n) or in white, as ’empty’ (with fugacity 1).

• Another solution is found by parametrizing the loop fugacity as n = −2 cos 2γ, and
reads

ρ1(u) = 1 +
2 cos(u+ 3γ

2
) sinu sin γ

2

(2 cos γ − 1) sin2 γ

ρ2(u) = ρ3(u) =
cos(u+ 3γ

2
)

cos 3γ
2

ρ4(u) = ρ5(u) = − sinu

cos 3γ
2

ρ6(u) = ρ7(u) =
2 cos(u+ 3γ

2
) sinu sin γ

2

(2 cos γ − 1) sin2 γ

ρ8(u) =
sin(2u+ 5γ

2
)− sin γ

2

2(cos γ + cos 2γ)

ρ9(u) =
cos(u+ γ

2
) sinu

2 cos2 γ
2

sin γ
2
(2 cos γ − 1)

. (2.83)

For each value of n, there are four different integrable points corresponding to values
of γ in the intervals [0, π

2
], [π

2
, π], [π, 3π

2
] and [3π

2
, 2π] respectively, traditionnaly

labeled as ‘branch 1’, ‘branch 2’, ‘branch 3’ and ‘branch 4’. In this thesis, we will
take a slightly different convention where γ only runs between 0 and π and one has
to consider the two signs of the quantum Hamiltonian, or equivalently two different
isotropic value of the spectral parameter u.

Whereas the nature of the first solution is well understood from its mapping onto a
completely dense model (ultimately it can be rewritten in terms of the integrable six-
vertex model [77]), it is yet not as clear how the second fits into the classification of
integrable models sketched in the previous sections. To proceed further, we reformulate
the loop model as a vertex one, in a very similar fashion as what was done for the six-
vertex model in section 2.2.4 (see figure 1.12, and [63] for details). Oriented loops and
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empty sites give rise to three possible states, which we label as −1, 0, 1, and 19 possible
vertex configurations. In the corresponding C3 ⊗ C3 basis, the R ≡ PŘ matrix can be
written after some immaterial gauge changes as

R =



c 0 0 0 0 0 0 0 0
0 b 0 e 0 0 0 0 0
0 0 d 0 g 0 f 0 0
0 ē 0 b 0 0 0 0 0
0 0 ḡ 0 a 0 g 0 0
0 0 0 0 0 b 0 e 0
0 0 f̄ 0 ḡ 0 d 0 0
0 0 0 0 0 ē 0 b 0
0 0 0 0 0 0 0 0 c


, (2.84)

where

a = sin

(
u− 3γ

2

)
− sin

5γ

2
+ sin

3γ

2
+ sin

γ

2

b = sin

(
u− 3γ

2

)
+ sin

3γ

2

c = sin

(
u− 5γ

2

)
+ sin

γ

2

d = sin
(
u− γ

2

)
+ sin

γ

2

e = −2e−iu/2 sin γ cos

(
u

2
− 3γ

2

)
ē = −2eiu/2 sin γ cos

(
u

2
− 3γ

2

)
f = −2e−iu+iγ sin

γ

2
sin γ − e−i γ

2 sin 2γ

f̄ = 2eiu−iγ sin
γ

2
sin γ − ei γ

2 sin 2γ

g = 2e−iu
2

+iγ sin
u

2
sin γ

ḡ = −2eiu
2
−2 γ

2 sin
u

2
sin γ . (2.85)

These are exactly the weights of the Izergin–Korepin model [79], which in the classifica-
tion of integrable models sketched in the earlier sections corresponds to that associated
with the algebra a

(2)
2 ≡ Uq(sl

(2)
3 ) in the product of its fundamental, three dimensional

representations.

2.4 From the IQHE to the b
(1)
2 integrable model

2.4.1 The Chalker–Coddington model

The construction of a network model which recovers the universality class of the IQHE
plateau transition makes use of the following semi-classical picture, valid at very strong

magnetic field: when this is the case, namely when the magnetic length `B =
√

~
eB
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Figure 2.5: (Left) Disordered potential landscape whose thick level lines denote for a
critical energy corresponding to the IQHE plateau transition (figure taken from [81]).
The electrons flow clockwise (resp. counterclockwise) around the potential minima (resp.
maxima). (Right) Description as an oriented network by Chalker and Coddington [81],
whose vertices correspond to the saddle points of the disordered potential.

is much smaller than the characteristic length scale `c of the random potential V , the
electrons in the disordered Landau levels can be seen as following a cyclotron motion of
radius `B, with their center of motion drifting along the equipotentials lines of V . More
precisely, the eigenfunctions associated to a given equipotential line can be considered
as the superposition of the Landau states with the same energy. Looking at a typical
potential landscape, see figure 2.5, we see that the levels at low (resp. high) energy are
localized around the minima (resp. maxima) of the potential, whereas at intermediate
energies the corresponding levels can meander through the whole system, giving rise to
the delocalized states responsible for the plateau transition.

This very simple view reduces the problem of localization-delocalization transitions
in the Integer Quantum Hall Effect to the problem of finding the equipotential lines in
a random potentiel landscape, or, in other terms, to a percolation picture. Owing to
this formulation, we expect that only at a certain critical energy Ec corresponding to the
percolation treshold will the semiclassical wavefunctions percolate through the whole,
infinite system. From the theory of critical percolation [80], we expect the localization
length, which can here be associated to the typical spatial extent of the wavefunction, to
diverge as

ξ ∼ |E − Ec|−ν , (2.86)

where ν = 4
3
. That this value is quite far from the usually expected values for the

IQHE (see section 1.3) indicates that this percolation model misses one crucial ingredient,
namely the quantum tunneling process that occurs between equipotential lines that get
close to each other near the saddle points of the potential landscape.

The lattice model introduced by Chalker and Coddington (CC) in 1988 [81] aims at
gathering all these ingredients. It models the discrete-time dynamics of a single elec-
tron along the equipotential lines, incorporating tunneling at the potential saddle points.
Choose to model the potential landscape by an oriented square network, where the edges
are the equipotential lines at a given energy and the nodes are the saddle points where
two equipotential lines meet, see figure 2.5. A single electronic wavefunction is defined
by its amplitude ψ(e) over each edge e of the CC lattice, and its dynamics under an
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Figure 2.6: Limits θ → 0 and θ → π of the CC eigenwavefunctions. At θ = 0, the system
is in an insulating phase corresponding to the ν = 0 Hall plateau. At θ = π, edge states
have appeared carrying current in the y direction, the system is in a phase corresponding
to the ν = 1 Hall plateau. In between the two, at θ = π

2
, the plateau transition occurs.

elementary time increment ∆t is described by an unitary evolution operator U ,

ψt+∆t(e
′) = U(e′, e)ψt(e) . (2.87)

U encodes both the effect of disorder, which we can model as random Bohm-Aharonov
phases ϕe over each edge, and the tunneling at nodes, namely we can write

U(e′, e) = eiϕeSe′,e , (2.88)

where the random phases ϕe are chosen to be independent and uniformly distributed
over [0, 2π] and S is a scattering matrix whose nonzero elements are associated with pairs
of edges respectively incoming and outgoing to a common vertex, with matrix elements
given by

t

r

−t

r

r

t

r

−t

,

where r2+t2 = 1, so we parametrize t = sin θ
2
, r = cos θ

2
, θ ∈ [0, π]. It is now instructive to

look at the wavefunction dynamics in the θ → 0 and θ → π limits, see figure 2.6. When
θ → 0, left turns are suppressed and the electron trajectories are closed loops around
the potential minima. This corresponds to the low energies in the percolation picture
adressed in the beginning of this paragraph, and no current is carried. When θ → π, right
turns are suppressed, and the electron trajectories in the bulk of the system are closed
loops around the potential maxima, corresponding to the high energies in the percolation
picture. At the intermediate, symmetric value θ = π

2
(that is t = r = 1√

2
), we expect the

electron trajectories to cover the whole sample, corresponding to the plateau transition.
The fact that the Hall conductivity has increased by one unit across the transition is due
to the fact that on the θ → π side, the edge states close to the boundary are now running
from one end of the sample to the other [22].

Several numerical tests of the Chalker–Coddington dynamics have comforted the idea
that the latter indeed reproduces the exponents of the IQHE plateau transition [23]. It
is therefore a good starting point for analytical or more numerical studies, or, as will be
the object of the rest of this paragraph, for the reformulation of the IQHE transition as a
classical statistical mechanics lattice model. We point out that it is also a starting point
for generalization to other classes of lattices and/or of disorder, leading to various random
network models aimed at describing other symmetry classes of Anderson transitions. This
aspect will be come back over in the conclusion of this thesis.
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Figure 2.7: Setup of the contacts for the definition of the point-contact conductance in
the CC model.

2.4.2 A loop model for transport observables

In [82], a set of transport observables suitable for analytical developments and numerical
investigations was introduced, and defined rigorously on the CC lattice. These are the
so-called point-contact conductances (PCC), namely the conductances between two small
interior probes separated by a distance r.

On the (closed) CC lattice, these are constructed by selecting two distant links e1 and
e2 and cutting them in halves, which defines two incoming links i1 and i2 entering the
system and two outgoing links o1 and o2 exiting the system (see figure 2.7). The current
injection through i1 is modeled as follows : at each time step, inject one unit of probability
flux through i1, and apply the time evolution operator U once. After a sufficient amount
of time, the system will have reached a stationary state where the equivalent amount of
current exits through the drains o1 and o2, and it can be shown that the dimensionless
conductance g(i1, o2) is obtained by the Landauer-Büttiker formula as

g = |to2,i1 |
2 , (2.89)

where to2,i1 is the transmission amplitude between i1 and o2, obtained as

to2,i1 =
〈
o2

∣∣(1− U)−1
∣∣ i1〉 = G(o2, i1, 1) , (2.90)

and the boundary conditions at the contacts are fixed by U|o1〉 = U|o2〉 = U †|i1〉 =
U †|i2〉 = 0. These have for consequence a unitarity deficit, ensuring the definiteness of
the operator (1− U)−1. In (2.90) we have also used the definition of the Green’s function,

G(e2, e1, z) =

〈
e2

∣∣∣∣ 1

1− z U

∣∣∣∣ e1

〉
, (2.91)

which is the discrete time analog of the usual Green’s function (E−H)−1, where z ∼ eiE

and E is measured from the center of the Landau band.

Path integral formulation and disorder averaging

The Green’s function G(o2, i1, z) can be written [39] as a Gaussian path integral over a
set of bosonic fields φ(e), as

G(o2, i1, z) =

∫
[Dφ]φ(o2)φ∗(i1)e−S[φ]∫

[Dφ]e−S[φ]
, (2.92)
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where [Dφ] denotes a Gaussian measure over the fields φ(e), and the action S is written
as a sum over the lattice nodes ,

S[φ] =
∑
e,e′

z φ∗(e′)U(e′, e)φ(e) =
∑
e,e′

eiϕez φ∗(e′)Se′,e φ(e) . (2.93)

Similarly, the conjugate G∗(o2, i1, z) is written as a Gaussian path integral over another
set of bosonic fields φ̄(e). It is customary to call the fields φ and φ̄ retarded and advanced
fields respectively, and we will stick to this denomination whenever necessary. In order to
perform disorder averaging, we now use the supersymmetry trick introduced in section 1.3
: introduce a set of retarded and advanced fermionic (anticommuting) variables ψ(e) and
ψ̄(e), and a corresponding Gaussian integration measure. We use the following property
of Gaussian integration over fermionic variables,

1∫
[Dφ]e−S[φ]

=

∫
[Dψ]e−S[ψ] , (2.94)

which enables us to rewrite

|G(o2, i1, z)|2 =

∫
[Dφ][Dψ][Dφ̄][Dψ̄]φ(o2)φ∗(i1)φ̄(i1)φ̄∗(o2) e−S[φ]−S[ψ]−S∗[φ̄]−S∗[ψ̄] ,

(2.95)

or, in terms of the superfields Ψ =

(
φ
ψ

)
, Ψ̄ =

(
φ̄
ψ̄

)
,

|G(o2, i1, z)|2 =

∫
[DΨ][DΨ̄] Ψ(o2)Ψ∗(i1)Ψ̄(i1)Ψ̄∗(o2) e−S[Ψ]−S∗[Ψ̄] . (2.96)

The quantity of interest is ultimately the disorder-averaged

g = |G(o2, i1, 1)|2 , (2.97)

where, we denote by overbars quenched averages over the disorder variables ϕe. As for
the two open contacts, we fix the random phases on the two halves of one same edge to
be equal, that is, ϕi1 = ϕo1 ≡ ϕe1 and ϕi2 = ϕo2 ≡ ϕe2 .

From (2.96), averaging over disorder now reduces to the following integration

e−S[Ψ]−S∗[Ψ̄] =

∫ ∏
e

dϕe
2π

exp
∑
e,e′

(
z eiϕeΨ†(e′)Se′,eΨ(e) + z∗ e−iϕeΨ̄†(e)Se′,eΨ̄(e′)

)
=

∏
e

∞∑
me=0

(z∗z)me

(me!)
2

∑
e′,ē′

(
Ψ†(e′)Se′,eΨ(e)

) (
Ψ̄†(e)Sē′,eΨ̄(ē′)

)
, (2.98)

where the scattering matrix S has been endowed with a matrix action in the boson/fermion
superspace in a natural way. The disorder-averaged point-contact conductance g(z),
whose definition has been extended on the lattice to generic values of z, has therefore the
following expression

g(z) = |G(o2, i1, z)|2 (2.99)

=

∫
[DΨ][DΨ̄] Ψ(o2)Ψ∗(i1)Ψ̄(i1)Ψ̄∗(o2)

∏
e

∞∑
me=0

(z∗z)me

(me!)
2

∑
e′,ē′

(
Ψ†(e′)Se′,eΨ(e)

) (
Ψ̄†(e)Sē′,eΨ̄(ē′)

)
. (2.100)
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Figure 2.8: Term contributing to the loop representation of the disorder-averaged point-
contact conductance.

The first line in equation (2.98) is the basis for a reformulation of the point-contact
conductance as a correlation function of a vertex model with GL(2|2) symmetry, a point
on which we shall come back shortly. Instead, we here follow [39] and use the expansion
given by the second line of (2.98) as starting point for a diagrammatic interpretation.

Reformulation as a loop model

As explained in [39], each term in the product (2.98) can be interpreted as a sum over a
pair of paths γ and γ̄, where γ and γ̄ follow respectively the orientation of the CC lattice
and the reverse orientation, and must use each edge e the same number of times me

(a precise mathematical signification will be associated to this constraint later). Paths
configurations are weighted by the elements of the scattering matrix S, and an additional
factor (zz∗)me , which can be interpreted geometrically as a fugacity per monomer, namely
a weight |z| associated to each path segment. The weight of closed loops is obtained by a
supertrace over the boson/fermion superspace, and is accordingly equal to zero for both
types of paths. Turning to the expression (2.100) for the conductance g(z), we can now
interpret the latter as the sum over paths configurations obtained after inserting two γ
path ends starting and ending at i1 and o2 respectively, and two γ̄ path ends starting
and ending at o2 and i1 respectively. From now on we assign the colours red and blue
to the γ and γ̄ paths respectively. The point-contact conductances on the CC lattice
have therefore been reformulated exactly, that is, with no approximation, as two-point
correlation functions of a classical two-colour loop model on the square lattice, see figure
2.8.

Let us contemplate this model and pause for a few remarks :

• Since closed loops vanish, the partition function is made of only one term, that
is, the one with no paths at all. We therefore have the trivial identity Z = 1, as
expected for systems with quenched disorder.

• The matrix elements of S are not necessarily positive, as resulting from quantum
mechanical amplitudes. The resulting classical loop model is therefore not unitary,
and does not bear as such a probabilistic interpretation in terms of classical Boltz-
mann weights. In [83], in contrast, Bettelheim, Gruzberg and Ludwig were able to
partly resum paths configurations and obtain a geometrical formulation in terms
of ‘pictures’ with positive definite Boltzmann weights. This allowed these authors
to identify the boundary point-contact conductances with primary CFT operators
and to deduce conjectures about the corresponding conformal weights. The way
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we follow here, aiming at the description of the IQHE transition by an integrable
model, does not make use of such an approach.

Another yet crucial aspect is the possibility for arbitrarily many loop segments cov-
ering each edge. In other terms, the model has infinitely many degrees of freedom, in
contrast to the models we have been dealing with so far. In particular, the methods of
exactly solvable models and most of the numerical techniques at hand cannot apply here.
To hopefully make some progress with our usual statistical mechanics tools, we will here
follow the truncation procedure of [39]. Before doing so, we however wish to convince
the reader that the construction we have presented has a very rich and general algebraic
underlying. This will be our object until the end of this section.

Algebraic structure of the IQHE transition

In [84], the Chalker–Coddington dynamics was reformulated in terms of a transfer matrix
acting in the vertical direction on a Fock space of advanced and retarded bosons and
fermions. On even (odd) sites the infinite Fock space F (F̄) is spanned by monomials of
bosonic and fermionic, advanced or retarded oscillators b±(e), f±(e) (b̄±(e), f̄±(e)), which
corresponds mathematically to the symmetric algebra S(C⊗C2|2). There are two algebras
(or the corresponding Lie groups) acting naturally on this Fock space :

• the algebra u(1, 1|2), whose generators can be written as quadradic monomials of the
advanced and retarded oscillators and can be shown to commute with the transfer
matrix. The algebra u(1, 1|2) is a non compact real form of the superalgebra gl(2|2),
and from now on we will not distinguish between the two.

• the algebra u(1) associated with the random phases, whose exponentiated action is
b±(e)→ e±iϕeb±(e), f±(e)→ e±iϕef±(e).

These act respectively on the C and C2|2 parts of the product S(C ⊗ C2|2), and are
therefore mutually commuting. A stronger statement is that this property is maximal,
namely u(1) and gl(2|2) are each other’s centralizers, making (u(1), gl(2|2)) a dual pair
in the sense of Howe [85]. This is very similar to the Schur-Weyl duality introduced
in section 2.2.4, in particular an important consequence of this property is that each
of the Fock spaces F and F̄ admits a multiplicity-free decomposition into irreducible
representations as a (u(1), gl(2|2)) bimodule :

F =
⊕
λ∈Z

vλ ⊗ Vλ (2.101)

F̄ =
⊕
λ∈Z

v̄λ ⊗ V̄λ , (2.102)

where vλ and Vλ (v̄λ and V̄λ) are respectively the irreducible representations of u(1) and
the corresponding infinite-dimensional representations of gl(2|2), labeled by the value of
the u(1) charge λ = b†+b+ + f †+f+ − b†−b− − f

†
−f− or λ = b̄†+b̄+ − f̄ †+f̄+ − b̄†−b̄− + f̄ †−f̄− on

even (resp. odd) sites.
We can now understand in a simple way the effect of disorder averaging: integrating

over each random phase ϕe corresponds to projecting the corresponding Fock space onto
the u(1) singlet, that is the v0 ⊗ V0 (v̄0 ⊗ V̄0) bimodule of zero u(1) charge. Since the
corresponding u(1) modules are trivial, we simply rename these bimodules V ≡ V0 and
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V ? ≡ V̄0. These are known from Howe duality to be irreducible, and are spanned by
all the states with the same number of advanced and retarded particles (in the second
quantization language). We recover here the constraint formulated previously in the loop
language after disorder averaging. Another consequence is that the modules V and V ?

can be used as the building blocks of a superspin chain describing the IQHE. The latter
acts on the alternate tensor product . . . V ⊗ V ? ⊗ V ⊗ V ? . . ., and the corresponding
Hamiltonian can be shown directly from the transfer matrix of [84] to be the quadratic
Casimir invariant of gl(2|2). In a more physical language, the spin chain is a Heisenberg
antiferromagnet with gl(2|2) symmetry. Note that its space of states is, as that of the
loop model derived earlier, infinite dimensional on each edge.

We close this section by reviewing, as in [86], that this spin chain or the corresponding
vertex model can be obtained by several other ways :

• Starting from the first line in (2.98), [82] used the so-called colour-flavour transfor-
mation to trade the U(1) random phases ϕe for a set of supermatrix fields Z and
Z̄, in terms of which the supersymmetric action can be decomposed as a sum over
vertices, and is therefore that of a supersymmetric vertex model. The symmetries
of this model are investigated by defining in a natural way an action of the Lie
supergroup GL(2|2) on the fields Z and Z̄, under which the action is shown to be
invariant. This result is used [82] for decomposing the average PCC and its mo-
ments as integrals over GL(2|2) irreducibles, hence conjectures on the form of the
corresponding correlators. We will come back to these conjectures in chapter 5.

• Another way [87] was to start directly from Pruisken’s non linear sigma model
(1.22) and to discretize the spatial direction under the form of a one-dimensional
quantum lattice Hamiltonian. The strong-coupling limit of this Hamiltonian, which
is believed to describe the plateau transition, was shown to be that of the antifer-
romagnetic superspin chain described above.

• Less abstractly, the route taken by [88] (see [89] for an earlier analog using repli-
cas) consists in deriving a quantum one-dimensional Hamiltonian directly from a
spatially anisotropic version of the Chalker–Coddington model, which is a sequence
of counterpropagating ‘edges’ coupled by random complex tunneling amplitudes.
With no surprise, the resulting Hamiltonian is once again the antiferromagnetic
g(2|2) quadratic Casimir.

2.4.3 The truncation procedure

In order to introduce the idea behind the truncation procedure, we make a short detour
via the physics of the O(n) models on the honeycomb lattice, following the approach
presented by Nienhuis in [90] (see also [91] for a review). As introduced in the context
of polymers (section 1.2), the n-component Heisenberg model is defined by assigning n-

dimensional spin variables ~Si of unit length to each site of a given lattice, subject to the
following interaction Hamiltonian with O(n) symmetry,

H = −J
∑
〈i,j,〉

~Si. ~Sj , (2.103)
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where
∑
〈i,j,〉 denotes a sum over pairs of neighbouring sites. The partition function is

written as

Z =

∫
DS eβJ

∑
〈i,j〉

~Si. ~Sj =

∫
DS

∏
〈i,j〉

eβJ
~Si. ~Sj , (2.104)

(where the integration measure is normalized such that
∫
DS = 1 and

∫
DS ~Si. ~Si = n)

and can in the case of the honeycomb lattice be formally mapped to a sum over polygon
configurations by series expanding the exponentials in the last formula and assigning a
polygon segment between sites 〈i, j〉 to every factor ~Si. ~Sj present in the expansion. The
partition function corresponds to the sum over all configurations of closed polygons, with
weight n for each of them (thus enabling the analytical continuation to non integer values
of n), and spin-spin correlation functions between two sites can be written as polygon
correlation functions, namely sum over the configurations with polygons starting and
ending at the corresponding sites (the square lattice analog of this construction has been
used earlier in the context of polymer models, see section 1.2). The resulting loop model
is however infinite, as each edge can be covered by an arbitrary number of loop segments.
To overcome this difficulty, the proposition of Nienhuis was to restrict the exponentials’
series expansions to their two first terms, namely

Z =

∫
DS

∏
〈i,j〉

(1 + βJ ~Si. ~Sj) , (2.105)

leading to a polygon model where each edge can be visited only once and intersections
are absent, while preserving the original model’s O(n) symmetry. For n ≤ 2 this model
has a low-temperature phase and a high-temperature phase (for n > 2 only the latter
exists), and the transition between the two is of second order, hence shows universal
behaviour, for −2 ≤ n ≤ 2 [90] (that the model is not critical for too large |n| can be
easily understood geometrically, as it is then dominated by configurations with many
short loops, hence with a finite correlation length). From the universality principles and
the fact that the large scale behaviour of (2.104) and (2.105) should essentially depend
on the lattice dimensionality and their O(n) symmetry, it is legitimate to hope that both
models may have the same critical behaviour provided that the multiple occupancy of
edges and the presence of intersections, considered as perturbations of the latter, are
irrelevant. The irrelevance of multiply occupied edges can be deduced from the heuristic
argument that looking at the system from far away these cannot be distinguished from
singly occcupied parallel bonds. The irrelevance of loop intersections, interpreted in the
continuum limit as resulting from a perturbation by the four-leg operator, is in contrast
only guaranteed in the dilute, high-temperature phase, where it follows from the value
of the corresponding scaling dimension x4 = 35

12
> 2 (see the results of chapter 4). As a

conclusion of this analysis, the universal critical behaviour of the Heisenberg O(n) model
in its high-temperature phase has been left intact by the symmetry-preserving truncation
(2.105).

Similarly, we follow the attempt of [39] for a similar construction in the case of the
two-colour model derived for the IQHE transport observables. As was discussed earlier,
what appears to be the fundamental symmetry of this model is a U(1) symmetry, as
averaging the first line in (2.98) over the random phases on each edge corresponds to
a projection over the corresponding U(1) singlets. In the geometrical formulation this
corresponds to the fact that we constrain the number of advanced and retarded paths
to be the same on each edge, or, equivalently, that each edge carries the same number
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Figure 2.9: Term contributing to the loop representation of the truncated disorder-
averaged point-contact conductance g1(z).

of red and blue loop segments. The truncation introduced in [39] is the first non trivial
truncation respecting this symmetry, namely, we restrict the numbers me on each edge
in (2.98) to be either 0 or 1. Obviously this truncation also preserves the boson/fermion
supersymmetry, and the closed loops of any colour still carry a weight 0. We denote by
g1(z) the truncated analog of (2.100), namely where the sums

∑∞
me=0 on each edge have

been replaced by
∑1

me=0. More generally, this can be extended to truncations of higher
order, which we will not consider for the moment. A loop configuration contributing to
the expansion of g1(z) is shown in figure 2.9.

We are therefore left with a model of dilute, two-colours loops on the square lattice. As
was introduced in section 2.2.1 in the case of the completely packed single-coloured loops,
we can encode the corresponding (non positive) ‘Boltzmann’ weights in the geometrical
Ř matrix, which at the isotropic point θ = π

2
reads

Ř = +
z2

2

(
+ + +

)
+
z4

4

(
+ − −

)
.

(2.106)
Of course, hoping that the brutal truncation we just performed might recover the original
model’s critical point does not go without a fine-tuning of the corresponding weights. In
[39], it is indeed found by varying the parameter z and studying numerically the ratio

between the two largest eigenvalues of the transfer matrix, Λ
(L)
0 and Λ

(L)
1 , for different

system sizes L (away from criticality, the corresponding free energies f
(L)
i = −log Λ

(L)
i

are separated by a finite gap, so the ratio L log(Λ
(L)
1 /Λ

(L)
0 ) is expected to vary linearly

with L, whereas at a critical point conformal invariance predicts L log(Λ
(L)
1 /Λ

(L)
0 ) ' 2πxt,

where xt is the so-called thermal exponent) that the truncated model is not critical at
z = 1, but rather at some slightly larger value zc ' 1.03 which can be understood from
the fact that restricting the number of loop segments on each edge is compensated by
augmenting the fugacity of each of these segments.

A few critical exponents were estimated in [39] from direct diagonalization of the
transfer matrix and will be reviewed in chapter 5, however these present many unexplained
features and any substantial progress requires looking for integrable deformations in the
universality class of the critical truncation (2.106). In the next section we present such
a construction, following essentially [39] but extending our scope to both the families of
dilute and completely packed two-colour loop models on the square lattice. In section
2.4.5, we will reformulate the resulting models in a vertex language, allowing for their
identification as the integrable models associated with (twisted) affine quantum algebras.
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2.4.4 Dense and dilute two-colour loop models

The truncated model introduced in the previous section can be further augmented by
allowing straight-line vertices, so that the set of possible configurations at each vertex is
now

t u1 u2 v w1 w2 x .

Whereas this manifestly breaks the oriented structure of the original CC lattice, we will
argue, following [39] that this does not prevent from recovering the original truncated
universality class, or in other terms that the introduction of straight vertices is an ir-
relevant perturbation in the RG sense. Moreover, we now take the more general point
of view where the weight n of closed loops is left as a free parameter, and set for the
following n = q + q−1 = 2 cos γ, q = eiγ.

The integrable fully packed two-colour model

It will turn out instructive to study at first stage the completely packed counterpart of this
model, where no edges of the square lattice are left empty, namely t = u1 = u2 = v = 0.
In the same way as a model of single-coloured fully packed loops with weight n per closed
loop can be related to the Fortuin-Kasteleyn expansion of a Q = n2-states Potts model
[40], this model can be related [64, 92] to a problem of two Potts models coupled by the
product of their energy operators. In the latter case, we are left with the vertices

≡ id1 ⊗ id2 , ≡ e1 ⊗ e2 , ≡ e1 ⊗ id2 , ≡ id1 ⊗ e2 , (2.107)

where e1 (resp. e2) are Temperley–Lieb generators similar to those introduced in section
2.2.4, acting on the red (resp. blue) strands, with (ei)

2 = nei. Setting now for each pair
of strands

Id ≡ id1 ⊗ id2 (2.108)

E ≡ e1 ⊗ e2 (2.109)

B ≡
(
q−

1
2 id1 − q

1
2 e1

)
⊗
(
q−

1
2 id2 − q

1
2 e2

)
, (2.110)

it is easy [93, 92] to recognize these as the generators of the so-called SO(4) Birman–
Wenzl–Murakami (BWM) algebra. For general integer N the SO(N) BWM algebra
[94, 95] is built from the generators I, Bi, Bi

−1 and Ei (i = 1, . . . L) subject to the relations

BiBi+1Bi = Bi+1BiBi+1 , BjBi = BiBj for |i− j| > 1

EiBi = BiEi = q1−NEi

EiBi+1
±1Ei = q∓(1−N)Ei

Bi −Bi
−1 = (q − q−1)(1− Ei) , (2.111)

from which it stems in particular that the Ei ≡ Ei,i+1 generate a Temperley–Lieb algebra,
with

(Ei)
2 = (1 + [N − 1])Ei , [N − 1] =

q1−N − qN−1

q−1 − q
. (2.112)

57



Acting on L strands, the BWM algebra has a geometrical interpretation generalizing that
of TL (2.49),

I =
. . . . . .

123 L
(2.113)

Ei =
. . . . . .

123 i L
(2.114)

Bi =
. . . . . .

123 i L
(2.115)

Bi
−1 =

. . . . . .

123 i L
, (2.116)

where, pictorially,

= 1 + [N + 1] , = q1−N , = qN−1 . (2.117)

Interestingly for our purpose, the construction of integrable trigonometric Ř matrices
built out of the SO(N) BWM generators is well known [96]. Using the parametrization
q = ei π

N+k−2 , these can be written as

Ř(N,k)(u) = I(N,k) +
[u]
[
2− N

2
+ u
][

N
2
− 1− u

]
[1− u]

E(N,k) +
[u]

[1− u]
X(N,k) , (2.118)

where X(N,k) = q−1I(N,k) + qE(N,k) −B(N,k).
Following [92], we observe that takingN = 4 in (2.118) yields a completely factorizable

Ř matrix, and hence a model where the two colours of loops are fully decoupled. This fact
could have been expected from the factorizability of SO(4) as a product of two SU(2)
algebras. More precisely one can think of the strands in SO(N) BWM as behaving in the
vector representation of the quantum-group algebra Uq(soN), which in the case N = 4
decomposes as in the case of ordinary Lie algebras into two copies of Uq(sl2) (see for
instance [93]). In order to find an integrable model which couples the two colours non
trivially, we follow the idea of [92], namely we use an interesting property of the BWM
algebras that is the so-called level-rank duality [97], relating for q = ei π

N+k+2 , k integer,
the generators of SO(N) to those of SO(k) (more precisely, one checks from the simple
fact that qN−1qk−1 = −1 that if the Bi satisfy the SO(N) algebra, then the −B−1

i satisfy
the SO(k) algebra). One can therefore consider the Ř(k,N=4) matrix in equation (2.118),
and transform back the SO(k) generators into SO(4) generators to obtain, up to some
normalization, the following Ř matrix.

Ř(u) = +
sin
(
πu

2+k

)
sin
(
π 1+u

2+k

) [(2 cos

(
π

2 + k

)
+

cos
(
π 1+u−k

k+2

)
cos
(
π 2+u

2+k

) ) −
(

+

)]
.

(2.119)

The integrable dilute two-colours model

Back to the dilute case, we can follow a similar route, still along the lines of [39]. The
two-colours generators are now written in terms of the dilute BWM algebra (dBWM),
which is a version of the BWM algebra augmented by the presence of empty edges. In [98]
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trigonometric integrable Ř matrices based on this algebra were found, among which the
one relevant to our interests (the only one which might capture the original universality
class of the truncated critical point) has weights given by [39]

t(u) = − cos (2u− 3θ)− cos 5θ + cos 3θ + cos θ

u1(u) = −2 sin 2θ sin (u− 3θ)

u2(u) = 2 sin 2θ sinu

v(u) = −2 sinu sin (u− 3θ)

w1(u) = 2 sin (u− 2θ) sin (u− 3θ)

w2(u) = 2 sinu sin (u− θ)
x(u) = 2 sinu sin (u− 3θ) , (2.120)

where θ parametrizes the loop weight as n = −2 cos 2θ (this change of notation compared
to the completely packed case will become clear in the following).

2.4.5 The a
(2)
3 and b

(1)
2 integrable chains

Having found two integrable set of weights for both the completely packed and dilute
two-colours loop models, the next step towards an exact solution of these models is to
express them in a vertex formulation.

In both cases the procedure follows from the results in [100], where the Ř matrices
based on the generators of (d)BWM algebras are rewritten as those associated with
certain affine quantum (super)algebras. From this reference it is straightforwardly seen
that the fully packed solution (2.119) is algebraically equivalent to the integrable Ř
matrix associated with the quantum superalgebras Uq(sl(4 + r|r)(2)). We will focus on

the r = 0 (purely bosonic) case, namely the Uq(sl4
(2)) = a

(2)
3 model in its fundamental,

four-dimensional representation. As was explained in the case of the single-coloured
loop model in section 2.2.3 the corresponding (twisted) transfer matrix and space of
states can be shown to be exactly isomorphic to those of the loop model augmented by
the possibility of giving independent weights to contractible and non contractible loops.
Details about the a

(2)
3 Ř matrix and an explicit mapping back to the two-colours model can

be found in [64]. Similarly in the dilute case, we find that the integrable Ř matrix (2.120)
corresponds to those associated with the Uq(osp(2m + 5|2m)(1)) superalgebras, where
q = e−2iθ. Once again we will focus on the purely bosonic case, namely the Uq(so5

(1))
model in its fundamental, five-dimensional representation, which can be exactly mapped
onto the loop model in its augmented formulation.

Let us recapitulate : for both the dilute two-colours loop model and its fully packed
counterpart, we have found integrable Ř matrices leading to a possibly interesting physics,
in the sense that these couple the two colours in a non trivial way, and, in the dilute
case, that the corresponding model might recover the universality class of the critical
truncation (2.106) (the question of whether this critical truncation itself might recover
the universality class of the IQHE plateau transition is of course of utmost importance,
and will be the object of the chapter 5).

• The integrable solution for the fully packed model with loop weight n = q + q−1 is
associated with the Uq(sl

(2)
4 ) (a

(2)
3 ) model in its fundamental representation.
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• The integrable solution for the dilute model with loop weight n = −2 cos 2θ is
associated with the Uq(so

(1)
5 ) (b

(1)
2 ) model in its fundamental representation, where

the quantum group parameter is given by q = e−iθ.

As will be reviewed in chapters 3 and 5, the physics governing the continuum limit
of these models have quite a few features in common. For the moment let us simply
advertise, without any further comment, that in general the algebras a

(2)
2n−1 and b

(1)
n are

dual to each other, in the sense that the dual roots system of one identifies with the root
system of the other (for algebraic notions about the classification of simple or affine Lie
algebras, we refer to the chapters 13 and 14 of [101]). This can be seen directly from the
corresponding Dynkin diagrams, namely

α1 α2 αn−1

αn

αn+1 ,

for a
(2)
2n−1, and

α1 α2 αn−1

αn

αn+1

for b
(1)
n , which are obtained from each other by an arrow reversal (we recall that the Dykin

diagram of a simple or affine Lie algebra associates a node to each simple root, non-
mutually orthogonal roots are joined by one or several links according to their respective
angle in the root lattice and links between roots of inequal length are oriented from the
longer to the shorter).
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Chapter 3

From exactly solvable models to
non-compact CFTs

In the previous chapter, we have introduced a variety of integrable models, some of which
were related to the physical problems of two-dimensional polymers (a

(2)
2 ) and the IQHE

plateau transition (b
(1)
2 , and the related a

(2)
3 ). The aim of the present chapter is now to

find the corresponding exact solutions. By ‘exact solutions’, we mean the following : in
each case, we will be dealing with a periodic (or twisted) spectral parameter-dependent
transfer matrix

T (L)(u) =
u

, (3.1)

or the corresponding quantum Hamiltonian, both parametrized by some real anisotropy γ
or the associated quantum group deformation q = eiγ. Varying the parameter γ, several
critical regimes can be encountered, and it will be our main goal to understand the
nature of the conformal field theories associated with these regimes, namely to deduce
the field content of these theories from the transfer matrix’s leading eigenspectrum at
large L. The latter is obtained from the algebraic Bethe ansatz, which we introduce in
section 3.1. In section 3.2 we discuss in detail the derivation of the continuum limit of
the a

(2)
2 model in its different regimes, allowing for a first encounter with the numerical

and analytical methods used to deal with the continuum limit and finite-size scaling of
Bethe ansatz solutions. In section 3.3 we move on to the a

(2)
3 case, and put our results

in the more general perspective of the whole a
(2)
2n and a

(2)
2n−1 series in section 3.4, leaving

for chapter 5 the study of the b
(1)
n case. All these models will be shown to have in

common surprising features, namely a non compact continuum limit, some fundamental
and practical consequences of which we will try to expose in section 3.5.

3.1 The algebraic Bethe Ansatz

The diagonalization of transfer matrices of Hamiltonans for integrable models is achieved
through the algebraic Bethe Ansatz construction, which we will now review starting from
the six-vertex model introduced in section 2.1 and then switching to the more general
case of higher-rank models. In all cases the setup is the following : we consider the
inhomogeneous transfer matrix acting on the space V1(v1) ⊗ . . . ⊗ VL(vL), where the
Vl(vl) ' Cn are representation spaces of the (quantum) affine algebra under study, each
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attached to a different, a priori complex, spectral parameter. Namely,

T (u|{vl}l=1,...L) = TrVaŘa1(u− v1) . . . ŘaL(u− vL) (3.2)

= TrVa

u

v1 v2 vL

(3.3)

(we focus here on the purely periodic case, but the discussion can easily be adapted to
the various twisted transfer matrices we will be interested in). The homogeneous case is
recovered for v1 = . . . = vL = 0, and the Hamiltonian of the corresponding quantum spin
chain is defined as

H = − d log T (u|{0}l=1,...L)

du

∣∣∣∣
u=0

, (3.4)

see section 2.1. To make notations lighter we will rewrite the transfer matrix T (u|{vl}l=1,...L)
as T (u) (keeping in mind the values of the spectral parameters vl in each specific case)
and the corresponding eigenvalues as Λ(u), and will use the notation E for the eigenvalues
of the quantum Hamiltonian.

3.1.1 Algebraic Bethe Ansatz for the six-vertex model

We start with the case of the (inhomogeneous) six-vertex model, that is the model built

from the spin-1
2

representation of the algebra a
(1)
1 ≡ Uq(ŝl2). A basis of the quantum

space (C2)
⊗L

is obtained by specifying the orientation of arrows on each site, which we
will note as, for instance, |↑↑↓↑ . . . ↓〉.

The monodromy matrix T (u) acting on the auxilliary space (C2)a is a 2 × 2 matrix
which we can write in the basis {↑a, ↓a} under the following form

T (u) =

(
A(u) B(u)
C(u) D(u)

)
, (3.5)

where each of the entries A(u), B(u), C(u), D(u) is a linear operator acting on the quan-

tum space. Due to the commutation of each Řa,i matrix with the magnetization S
(z)
a +S

(z)
i ,

non-diagonal elements of the monodromy matrix corresponding to a change of S
(z)
a are

associated with an opposite change in the quantum space magnetization S(z) =
∑L

i=1 S
(z)
i :

A(u) and D(u) are therefore spin-conserving operators in the quantum space, whereas
B(u) and C(u) are spin-lowering and spin-raising, respectively.

The essence of the Bethe Ansatz construction is the existence of a pseudovacuum,
namely an eigenstate of both A(u) and D(u) which is annihilated by C(u). These re-
quirements are readily seen to be fulfilled by the state |Φ0〉 ≡ | ↑〉⊗L ≡ |↑↑ . . . ↑〉, as we
have

A(u)|Φ0〉 =

(
L∏
l=1

a(u− vl)

)
|Φ0〉 , D(u)|Φ0〉 =

(
L∏
l=1

b(u− vl)

)
|Φ0〉 , C(u)|Φ0〉 = 0 ,

(3.6)
where we recall that a(u), b(u) and c(u) are given by (2.13). |Φ0〉 is an eigenstate of
the transfer matrix T (u) = TraT (u) = A(u) + D(u) with magnetization S(z) = 1

2
L, and

can be used to build other eigenstates by repeated action of the spin-lowering operators.
In a more algebraic language, the algebraic Bethe Ansatz construction relies on the fact
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that the quantum space (C2)
⊗L

is a highest-weight representation of the algebra Uq(ŝl2),
namely all states in this representation can be obtained by repeated actions of the creation
operators B( ) on the highest-weight state |Φ0〉.

We therefore look for eigenstates in the sector of magnetization S(z) = 1
2
L−m of the

form

|Φm〉 =
m∏
i=1

B(ui)|Φ0〉 . (3.7)

The complex parameters u1, . . . um are the so-called Bethe roots, and we will now see
how these are constrained by the requirement that |Φm〉 be an eigenvector of the transfer
matrix, which we write as

[A(u) +D(u)] |Φm〉 = Λ(u)|Φm〉 . (3.8)

Since the action of A(u) + D(u) on |Φ0〉 is well known, all one has to do in order to
compute the left-hand side of (3.8) is to commute A(u) and D(u) with the successive
B(ui) factors. This is achieved using the commutation relations between the operators
A,B,C,D, which are straightforwardly read off the RTT relation (2.6). The result bears
the following form

A(u)|Φm〉 =

(
L∏
l=1

a(u− vl)

)
m∏
i=1

a(u− ui)
b(u− ui)

|Φm〉+
m∑
i=1

Λi|Φj
m(u)〉 (3.9)

D(u)|Φm〉 =

(
L∏
l=1

b(u− vl)

)
m∏
i=1

a(ui − u)

b(ui − u)
|Φm〉+

m∑
i=1

Λ̃i|Φj
m(u)〉 , (3.10)

where |Φj
m(u)〉 is obtained from the expression (3.7) of |Φm〉 by replacing B(uj) by B(u),

and

Λi =

(
L∏
l=1

a(ui − vl)

)
c(ui − u)

b(ui − u)

∏
j( 6=i)

a(ui − uj)
b(ui − uj)

(3.11)

Λ̃i =

(
L∏
l=1

b(ui − vl)

)
c(u− ui)
b(u− ui)

∏
j(6=i)

a(uj − ui)
b(uj − ui)

. (3.12)

The right-hand sides of both (3.9) and (3.10) are the sum of one wanted term propor-
tional to |Φm〉 and one unwanted term not proportional to |Φm〉. The cancellation of the
unwanted terms in [A(u) +D(u)] |Φm〉 is ensured by requiring Λi + Λ̃i = 0, which leads
to the Bethe equations

L∏
l=1

sin (ui − vl + γ)

sin(ui − vl)
=
∏
j(6=i)

sin (uj − ui + γ)

sin (uj − ui − γ)
, i = 1, . . .m . (3.13)

The corresponding transfer matrix eigenvalue reads

Λ(u) =

(
L∏
l=1

a(u− vl)

)
m∏
i=1

a(u− ui)
b(u− ui)

+

(
L∏
l=1

b(u− vl)

)
m∏
i=1

a(ui − u)

b(ui − u)
(3.14)

=

(
L∏
l=1

sin(γ + u− vl)
sin γ

)
m∏
i=1

sin(u− ui + γ)

sin(u− ui)

+

(
L∏
l=1

sin(u− vl)
sin γ

)
m∏
i=1

sin(u− ui − γ)

sin(u− ui)
, (3.15)
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and the associated energy is

E = − d log Λ(u)

du

∣∣∣∣
u=0

= −
m∑
i=1

2 sin γ

cos(2ui − γ)− cos γ
. (3.16)

3.1.2 Algebraic Bethe ansatz for higher rank models

For models of higher rank, namely in cases where the representations Vl(vl) are of dimen-
sion n larger than two, the method described above cannot be directly applied. Instead,
one has to use the so-called nested Bethe ansatz, which we now want to describe in its
main lines. We will keep the presentation generic (and very much inspired from [102]),
and therefore will not go into the details of any particular model. Specifically, the case
of models built on twisted affine algebras requires slight adaptations which will not be
discussed.

The monodromy matrix, now acting on the auxilliary space (Cn)a is a n × n matrix
which we block-decompose as

T (u) =

(
τ11(u) B(1)(u)
C(1)(u) T (2)(u)

)
, (3.17)

where τ11(u) is the first row, first column matrix element of T , while B(1)(u), C(1)(u) and
T (2)(u) are respectively a (n − 1)-row, column vector and a (n − 1) × (n − 1) matrix of
operators acting on the quantum space.

As in the six-vertex case, the Bethe ansatz solution relies on the existence of a highest
weight vector |Ω(1)〉 for the affine algebra under study in the space V1(v1)⊗ . . .⊗VL(vL) '
(Cn)⊗L. More precisely, unlike in the case of finite-dimensional simple Lie algebras, the
tensor product V1 ⊗ . . . ⊗ VL of irreducible representations is itself irreducible (see the
discussion in section 2.1.3), and we can then use the near to general theorem presented
in [103], stating that any such finite-dimensional irreducible representation is highest-
weight, and contains an unique highest weight vector. The action of the monodromy
matrix elements τij on |Ω(1)〉 reads, by definition,

τii(u)|Ω(1)〉 = Λi(u)|Ω(1)〉 , τij(u)|Ω(1)〉 = 0 if i > j . (3.18)

In particular C(1)(u)|Ω〉 = 0, and we can use B(1)( ) as a creation operator to build the
transfer matrix eigenstates. Because of the (n − 1)-dimensional nature of B1, we now
have to set

|Φm1〉 = B(1)
a1

(u
(1)
1 ) . . . B(1)

am1
(u(1)

m1
)F (1)a1...am1 , (3.19)

where Einstein’s summation convention is used over the indices a1, . . . am1 , and F (1) is
now a vector of (Cn−1)

⊗m1 built up from operators τi,j(u), 2 ≤ i ≤ j ≤ n. As in the six-

vertex case studied previously the complex numbers u
(1)
1 , . . . u

(1)
m1 are the so-called Bethe

roots. Acting on |Φm1〉 with the diagonal elements of T (u), one finds a result of the form

τ11(u)|Φm1〉 = Λ1(u)

m1∏
i=1

f1(u− u(1)
i )|Φm1〉+

m1∑
j=1

Λ′i|Φj
m1

(u)〉 (3.20)

T (2)(u)|Φm1〉 =

m1∏
i=1

f2(u− u(1)
i )|Φ̃m1〉+

m1∑
j=1

Λ̃′i|Φ̃j
m1

(u)〉 (3.21)
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where |Φj
m1

(u)〉 is obtained from |Φm1〉 by replacing B(1)(u
(1)
j ) by B(1)(u) and |Φ̃m1〉,

|Φ̃j
m1

(u)〉 are defined as

|Φ̃m1〉 = B(1)
a1

(u
(1)
1 ) . . . B(1)

am1
(u(1)

m1
)T̃ (2)(u)F (1)a1...am1 (3.22)

|Φ̃j
m1

(u)〉 = B(1)
a1

(u
(1)
1 ) . . . B(1)

aj
(u) . . . B(1)

am1
(u(1)

m1
)T̃ (2)(uj)F

(1)a1...am1 , (3.23)

where the auxilliary transfer matrix T̃ (2)(u) acts on the space (Cn−1)
⊗m1 and the asso-

ciated monodromy matrix obeys a relation of the RTT type, with an R-matrix R(2) :
Cn−1 ⊗ Cn−1 → Cn−1 ⊗ Cn−1 obtained from the original one by keeping only the indices
≥ 2. In this sense T̃ (2) can be viewed as the integrable transfer matrix associated with an
affine algebra of lesser rank, for a chain of size m1 with inhomogeneous spectral parame-
ters u

(1)
1 , . . . u

(1)
m1 . To proceed further, one assumes that F (1) is an eigenvector of T̃ (2)(u),

namely T̃ (2)(u)F (1) = Λ(2)(u)F (1), such that (3.21) can be rewritten as

T (2)(u)|Φm1〉 = Λ(2)(u)

m1∏
j=1

f2(u− u(1)
j )|Φm1〉+

m1∑
j=1

Λ(2)(u
(1)
j )Λ̃′j|Φj

m1
(u)〉 . (3.24)

The cancellation of unwanted terms between equations (3.20) and (3.24) therefore leads
to a first set of Bethe equations,

Λ(2)(u
(1)
j )Λ̃′j = −Λ′j , j = 1, . . .m1 , (3.25)

whereas the eigenvalue Λ1 can be fully reexpressed in terms of Λ(2).
One is therefore left with the auxilliary eigenvalue problem

T̃ (2)(u)F (1) = Λ(2)(u)F (1) , (3.26)

which is in turn solved by a similar procedure, introducing a set of m2 auxilliary Bethe
roots u

(2)
1 , . . . u

(2)
m2 , etc... The program is complete after n − 2 of such steps, the last

of which reducing simply to the usual algebraic Bethe ansatz presented earlier. The
eigenvalues of the transfer matrix T (u) are written in terms of n− 1 levels of Bethe roots

sets, u
(k)
1 , . . . u

(k)
mk , subject to a set of nested Bethe ansatz equations, which we will now

be giving without an explicit derivation for the different models of interest (all can be
found in [99]).

3.2 Continuum limit of the a
(2)
2 model

In this whole section, we consider the (twisted) periodic, homogeneous, a
(2)
2 (Izergin–

Korepin) row-to-row transfer matrix

T (u) = Tra

(
Řa1(u) . . . ŘaL(u)eiϕS

(z)
a

)
, (3.27)

where each space carries the fundamental, three-dimensional representation of Uq(sl
(2)
3 )

which can also be interpreted as the spin one representation of an underlying Uq(sl2)

subalgebra (q = q
1
2 ), the Ř matrix is (up to some proportionnality factor) that written

explicitly in (2.84), and the boundary twist factor eiϕS
(z)
a acts on the auxilliary space (the

model is invariant under ϕ → −ϕ, so we will restrict ourselves to positive values of this
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parameter). We recall the notations q = eiγ, and x = eiu. The transfer matrix commutes
with the total magnetization

m =
L∑
i=1

S
(z)
i , (3.28)

and its eigenvalues can therefore be classified according to the value of m, with a m→ −m
symmetry allowing us to restrict our study to m ≥ 0. These are characterized by a set of

m1 = L−m (3.29)

roots λj (related to the usual uj by λj = i
2
uj), solution of the Bethe ansatz equations

[78, 99](
sinh

(
λj − iγ2

)
sinh

(
λj + iγ

2

))L

= eiϕ
∏
i(6=j)

sinh(λj − λi − iγ)

sinh(λj − λi + iγ)

cosh
(
λj − λi + iγ

2

)
cosh

(
λj − λi − iγ2

) . (3.30)

That these equations involve only one type of roots (instead of two, as we should expect

from the rank of the algebra) can be related to the twisted nature of a
(2)
2 . From this point

of view, the Bethe equations for a
(2)
2 can be seen as a folding of those for a

(1)
2 , obtained

from the latter by a one-to-one identification of the two types of roots.
There are two isotropic values of the spectral parameter u, namely u± = 3γ

2
± π

2
,

corresponding to local maxima of the transfer matrix eigenvalues, and which are described
by a different physics in the sense that they are not dominated by the same transfer matrix
eigenstates. From the Hamiltonian point of view, these correspond to opposite signs in
the definition of the energy, namely

E± = ±
m∑
i=1

sin γ

cosh 2λi − cos γ
. (3.31)

Varying the parameter γ through [0, π] and considering both signs of the energy (or,
equivalently, the two isotropic points u±), one actually encounters three regimes corre-
sponding to distinct structural properties of the Bethe Ansatz solution and fundamentally
different critical behaviours :

• Regime I corresponds to the isotropic point u = u+, or equivalently the sign + in
the energy (3.31)

• Regime II corresponds to the isotropic point u = u− (sign − in (3.31)), and γ ∈[
π
3
, π
]

• Regime III corresponds to the isotropic point u = u− (sign − in (3.31)), and
γ ∈

[
0, π

3

]
.

In [78], these three regimes were studied by means of numerical resolution of the
BAE and powerful analytical methods. Whereas the latter yielded the respective central
charges c = 1, c = 3

2
and c = 2 at zero twist, numerical results in regime III showed an

unusually poor convergence of the central charge and critical exponents, together with
unusual effects related to the addition of a twist and which will be the object of paragraph
3.2.4.

Treating regimes I and II as a warmup, which will also allow for a first encounter with
the numerical and analytical tools and concepts proper to the resolution of Bethe Ansatz
equations, we shall here revisit the study of the continuum limit in regime III which will
lead us to interpret the unusual observations of [78] as the sign for a non-compact boson.
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3.2.1 Continuum limit in regimes I and II

Before entering the details of Bethe ansatz solutions, let us describe in a few lines the
general procedure that we will be using for all regimes and all models of interest in this
thesis.

Given a certain regime, namely a certain value of the model’s parameters (γ, u here),
the natural first step is to compute and diagonalize directly the corresponding Hamilto-
nian or transfer matrix for small system sizes, typically less than L = 10, and to identify
the leading eigenstates (Hamiltonian’s ground state and first excitations, leading transfer
matrix eigenvalues). These eigenstates are associated with some definite sets of Bethe
roots, whose location in the complex plane can be found in two ways :

• The first way is to directly solve the Bethe equations in the complex plane by some
numerical, Newton–Raphson like method. Such methods proceed iteratively from
given starting values of the unknown roots, and well-chosen or random starting
points should in principle be able to yield any possible solution. Shuffling between
different solutions and computing the corresponding Bethe eigenvalues, one should
after some time end up with the set of roots recovering any eigenvalue of interest
in the transfer matrix spectrum.

• The second, more systematic way, is to directly compute the Bethe roots as solutions
of a set of linear equations. This method, which is often refered to as the McCoy
method [104], uses the fact that the coefficients of the Ř matrix under consideration
are all polynomials of degree 2 in the variable x up to some global rescaling, and that
integrability of the system ensures that the considered eigenvector can be chosen
independently of x. Once given its coordinates (v)i in some basis of the space of
states for the L sites chain, chosen such that (v)1 6= 0, we can therefore write the
corresponding (properly rescaled) eigenvalue as

Λ(x) =
(T (x) · v)1

(v)1

, (3.32)

which is a polynomial of degree 2L in x, that can be computed numerically from
the knowledge of v. The task is then to rewrite the Bethe expression of Λ(x) in a
polynomial form, whose coefficients are expressed in terms of the Bethe roots. The
term-by-term identification with the numerical expression (3.32) builds up a system

of equations on the Bethe roots, which in the a
(2)
2 case is linear-triangular and can

be solved easily 1.

Using the above methods to compute the Bethe roots associated to one state of
interest for a few small system sizes, it is usually quite straightforward to see patterns
emerge, namely the roots can for instance spread on the real axis, gather in complex
multiplets, etc... In any case, the understanding of these structures allows to turn the
Bethe equations into a set of real equations, paving the way for a systematic resolution
at large system sizes as well as for analytical results. For reference, we note that most
of the numerical techniques asociated with the resolution of Bethe ansatz equations were
pioneered by the 1988 paper of Batchelor, Barber and Alcaraz [105]. Many important
analytical developments are presented in the book by Korepin, Bogoliubiov and Izergin
[37].

1In higher-rank cases involving more than one type of Bethe roots, the system is in general non-linear
and requires to be solved numerically.
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Regime I

We now get specific and turn to the regime I, where it is seen that the ground state is
made of L roots λi with imaginary part π

2
. Setting λi = xi+ iπ

2
, we can rewrite the Bethe

equations as(
cosh

(
xj − iγ2

)
cosh

(
xj + iγ

2

))L

= eiϕ
∏
i(6=j)

sinh(xj − xi − iγ)

sinh(xj − xi + iγ)

cosh
(
xj − xi + iγ

2

)
cosh

(
xj − xi − iγ2

) . (3.33)

A real form of the BAE can be achieved by taking the logarithm of (3.33), and using the
function

ψ(x, y) =
i

2
ln

sinh(x− iy)

sinh(x+ iy)
= arctan (tan y cothx) , (3.34)

namely

πIj = Lψ
(
xj,

γ

2
− π

2

)
+
ϕ

2
−
∑
i(6=j)

[
ψ (xj − xi, γ) + ψ

(
xj − xi,−

γ

2
− π

2

)]
, (3.35)

where the Ij are distinct (half)-integers (Ij− L+1
2
∈ Z), the so-called Bethe integers, which

can be interpreted to account for the fermionic statistics of the Bethe roots. These are
found to be symmetrically packed around zero for the ground state, which we usually
describe as a Fermi sea, and allow for a description of part of the spectrum of low-lying
excitations, namely

• hole excitations, which are obtained by creating vacancies in the distribution of Ij,
hence accessing sectors of nonzero magnetization m.

• backscattering excitations, which are obtained by shifting all Bethe integers by a
finite amount w, hence creating states with momentum w.

Solving numerically the Bethe equations (3.35) for the various sets of integers Ij of interest
allows access to the corresponding excitation spectrum. In practice, the equations are
easily solved for L up to a few hundreds using a MathematicaTM script based on the
Newton–Raphson method. We augment L iteratively by steps of 2, and use at size L+ 2
starting points for the roots close to the solution found at size L. As an alternative way,
the density of roots over the real axis can directly be guessed in the continuum limit (see
discussion below; in particular, the density of roots in the L→∞ limit can be obtained
from the Fourier transform of equation (3.39) for ρh1 = 0), and can be used to derive good
approximations of the distribution of the roots in finite size, hence providing efficient
starting points for the numerical resolution of the Bethe equations. The corrections to
the estimation of the conformal spectrum are of the order of O(L−2), and we recover
without any ambiguity the central charge

c = 1− 3ϕ2

πγ
(3.36)

of [78] and the conformal weights

∆(∆̄) =
γ

8π

(
m± 2π

γ
w

)2

, (3.37)
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which are those of a free bosonic field with a charge at infinity, as will be explained in
the following.

Before doing so, let us depict how the spectrum (3.37) can be recovered analytically
from the the continuum limit of equations (3.35). As L → ∞ the real parts xj form a
continuous distribution modeled by the density

ρ(x) =
1

L

dIj
dxj

, (3.38)

and we similarly introduce the density of holes ρh(x) to account for vacancies in the
distribution of the Ij’s. Differentiating equation (3.35) with respect to xj and rewrting
the result in Fourier space leads to

ρ+ ρh =
sinh ωγ

2

sinh ωπ
2

+
sinh ω(π−γ)

4
cosh ω(π−3γ)

4

sinh ωπ
2

ρ , (3.39)

which has the general form
ρ+ ρh = s+K ρ . (3.40)

From there, one can obtain the density of roots for the ground state by letting ρh =
0, namely ρ0 = (1 − K)−1s in Fourier space. Translating this expression back to the
real space, we can use it to derive an integral expression for the free energy in the
thermodynamic limit. In turn, ρ0 can be used to choose appropriate starting values of
the xj’s in numerical resolutions, as advertised above. The conformal spectrum itself can
be directly extracted from (3.40) by various analytical methods such as the resolution of
a Wiener-Hopf equation [37], and we should here only remember the generic result,

∆ + ∆̄ =
1−K

4
m2 +

1

1−K
w2 , (3.41)

where for K the zero-frequency limit has to be taken, namely K = 1− γ
π
. Using the fact

that ∆ − ∆̄ counts the conformal spin ∆ − ∆̄ = wm this recovers the compact boson
spectrum (3.37).

The physical interpretation of the continuum limit of the a
(2)
2 model in regime I as a

free bosonic field can easily be understood in the geometrical setup via the Coulomb gas
formalism (see [35] for a review). In this framework, the oriented loops of the underlying
O(n) model are interpreted as the domain walls encircling the valleys or hills of a real
compactified height variable h(x) defined on each site of the dual square lattice 2, and
which in the continuum limit becomes described by a smooth field Φ(x) (with Φ ≡
Φ + 2πR) (see figure 3.1) with action

S =
g

4π

∫
d2x (∂µΦ)2 . (3.42)

This action is that of a free compactified boson, whose radius R can be fixed to R = 1
and where the coupling g accounts for the rigidity of the height interface and is in this
sense an increasing function of the loop fugacity n, namely

n = −2 cosπg , (3.43)

that is g = 2γ
π

. The central charge and conformal weights of the ‘bare’ (untwisted) theory

2The compactification arises from the fact that, on a torus, periodicity of the heights cannot be
guaranteed.
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Figure 3.1: Mapping from an oriented configuration of O(n) loops on the square lattice
to a configuration of heights on the dual lattice.

read

c = 1

∆E,M + ∆̄E,M =
E2

2g
+ g

M2

2

∆E,M − ∆̄E,M = EM , (3.44)

where M and E are the so-called electric and magnetic charges. The effect of the twist
parameter, which gives a weight ñ = 2 cosϕ to non-contractible loops circling around the
torus, is accounted for by the introduction of a background charge, namely an electric
charge e0 = ϕ

π
at infinity. The central charge is accordingly modified into

c = 1− 6e0
2

g
, (3.45)

which recovers the Bethe ansatz result (3.36), and the electric charge in the expression
of the conformal weights has to be shifted by an amount of e0. In order to obtain the
conformal weights measured with respect to the screened central charge (3.45) these need

to be further shifted by an amount − e02

4g
, hence leading to

∆E,M + ∆̄E,M =
E(E − 2e0)

2g
+ g

M2

2
. (3.46)

Relating E and M to the lattice excitations by M = m
2

, e = 2w then recovers at zero
twist (e0 = 0) the spectrum (3.37). Note that a continuum limit made of one free bosonic
field is the same as what can be found for the integrable six-vertex model, introduced
earlier. A Coulomb gas construction holds in that case too [40], the only difference being
that there no lattice edges are left vacant. From this perspective, the presence of empty
sites in the a

(2)
2 case does not modify the field content of the continuum limit in regime

I, instead it amounts simply a renormalization of the coupling constant g.

Regime II

The L Bethe roots describing the ground state in regime II are this time organized as a
set of L

2
complex conjugate pairs with imaginary parts slightly larger (in absolute value)

than ±
(
π
4
− γ

4

)
, the so-called 2-strings. The existence of such complex solutions can be

understood using the following standard argument : consider a solution of the Bethe
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equations, where one root λj has a non trivial imaginary part δ (that is, not a multiple
of π

2
). From the equality (3.34), the left-hand side of (3.30) then has a modulus > 1

or < 1 (depending on the sign of δ), and therefore should either diverge or go to zero
exponentially as the L→∞ limit is taken. Accordingly, the same singularity should be
present on the right-hand side, or in other terms there should be another root λ′j, such

that λ′j−λj ' ±iγ, or λ′j−λj ' ±i
(
π
2
− γ

2

)
, where the ' indicates corrections decreasing

exponentially with L. The same argument can in turn be applied to λ′j, leading to another
singularity which can itself be corrected by either another root λ′′j , or by λj itself. The
structures emerging from this construction are the so-called n-strings (where n stands
for the number of complex roots involved), and we should in all the following use two
separate denominations, namely n*-strings and n-strings, for strings made of roots distant
by ' ±iγ or ' ±i

(
π
2
− γ

2

)
, respectively.

A real form of the Bethe equations is obtained for each 2-string λ
(±)
j = xj±i

(
π
4
− γ

4
+ ε
)

by combining the equations associated with λ
(+)
i and λ

(−)
i , namely by considering the

product and quotient of these two equations. Bethe integers can be associated with the
former, hence equipping the centers xj with fermionic statistics. Numerical resolution of
the corresponding set of Bethe equations leads to

c =
3

2
− 3ϕ2

π(π − γ)

∆(∆̄) =
π − γ

2π

(
m

2
± π

2(π − γ)
w

)2

, (3.47)

where now m
2

and w are the number of holes and backscattering index in the sea of
2-strings.

Similarly to what was done in regime I, this result can be recovered by looking at the
Bethe equations for the densities of 2-string centers xj, namely 3

ρ+ ρh =
2 sinh ω(π−γ)

2
cosh ω(π−γ)

4

sinh ωπ
2

−
sinh ω(π−2γ)

2
+ sinh ω(2π−3γ)

2
+ sinh ωπ

2

sinh ωπ
2

ρ . (3.48)

The corresponding kernel K is at zero frequency K = 4γ
π
− 3, recovering indeed (3.47).

This spectrum has long been understood as that of a screened compact boson, supple-
mented by an Ising degree of freedom, giving respectively a contribution 1− 3ϕ2

π(π−γ)
and

1
2

to the central charge [78]. This interpretation, which we will discuss further when
considering the corresponding massive perturbations (see section 3.2.6), also bears a nice
geometrical formulation similar to that presented in [106] (see also [107] for a compre-
hensive Coulomb gas description). Alternatively to the usual geometrical construction
obtained by drawing oriented loop segments on edges occupied with ±1 states, one can
choose to put bonds on each edge carrying a 0 state as represented in figure 3.2 and forget
about the remaining arrows, hence leaving one with the graphs of the low-temperature
expansion of some Ising model on the dual square lattice. The Ising degree of freedom
emerging from this construction, which did not contribute to the critical behaviour in
regime I (it was then apparently massive), is therefore critical and fully decoupled in the
continuum limit of regime II.

3In the limit L → ∞, the corrections ε to imaginary parts become zero, and we are only left with
equations over the centers of Bethe strings.
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Figure 3.2: Configuration of graphs in the low-temperature expansion of the Ising model
arising from configurations of the 19-vertex model on the square lattice.

3.2.2 First observations in regime III

Whereas the description of regimes I and II in terms of a compact boson and an Ising
degree of freedom has been well known for quite a long time [78], a proper understanding
of regime III has long been lacking. We will expose in this paragraph the reasons for
the difficulties encountered in this case, mixing the early results of [78] together with our
recent observations presented in [62].

As in regime II, the ground state of regime III is described by a set of L
2

2-strings,
whose imaginary part are however now slightly smaller (in absolute value) than π

4
− γ

4
. Due

to analyticity properties of the kernels, the corresponding Bethe equations for densities
in Fourier space have a different structure than those found in regime II, namely

ρ+ ρh =
2 sinh ωγ

2
coshω

(
π+γ

4

)
sinh ωπ

2

−
sinhω

(
π
2
− γ
)
− sinh 3ωγ

2
+ sinh ωγ

2

sinh ωπ
2

ρ . (3.49)

At vanishing frequency K = 1− 4 γ
π
, so from the now usual formula (3.41) we have

∆(∆̄) =
γ

2π

(
m

2
± π

2γ
w

)2

, (3.50)

while the central charge was found [78], after considerable analytical and numerical work,
to be described by two different analytical formulae depending on the value of the twist
parameter (see figure 3.3), namely

c =

{
2− 3ϕ2

πγ
for ϕ ≤ γ ,

−1 + 3(π−ϕ)2

π(π−γ)
for γ ≤ ϕ .

(3.51)

Several observations are in order

• Looking at the numerical results of figure 3.3, one gets struck at the unusually large
corrections to scaling in the ϕ ≤ γ region, whereas in most integrable systems study
of the energy spectrum for system sizes of order L = 10 sites is usually enough to
obtain the corresponding conformal content with good precision.

• The expression for the central charge for ϕ ≤ γ and the and conformal weights
are quite reminiscent of what could be obtained from a one-component Coulomb
gas (3.45), except for an extra +1 term contributing in the central charge and
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Figure 3.3: Central charge for the a
(2)
2 model, measured as a function of the twist pa-

rameter for system sizes ranging up to 92. The analytical predictions are plotted in
comparison.

which remains to be elucidated. As for the ϕ ≥ γ expression of the central charge,
it is manifestly different from anything one might expect from an usual free field
construction.

• The single fact that the central charge (3.51) is described by another analytical
formula for ϕ ≥ γ, is itself quite extraordinary, as it has no counterpart in the
finite lattice spectrum. Indeed, the two different analytical behaviours of the central
charge are obtained from the same ground state followed continuously when varying
the twist, and which in particular does not undergo any crossover, nor is degenerate
at ϕ = γ.

As we will now see, these observations are of very profound origin. To gain under-
standing in the nature of the continuum limit in regime III, we turn to a meticulous
analysis of the low-lying spectrum. As was previously stated, the ground state lies in the
sector of zero magnetization and can be described by a set of L

2
2-strings. It is observed

that low-lying excitations with momentum zero and magnetization zero on top of this
ground state can be formed by replacing an arbitrary number j of 2-strings by the same
number of ‘antistrings’, namely pairs of roots with imaginary part π

2
(see figure 3.4). A

similar construction holds in the sectors of non zero magnetization, allowing us to label
all the low energy levels in regime III by three integers, (m,w, j). For clarity we will from
now on restrict to the states with no backscattering and will commonly use the notation
(m, j) ≡ (m, 0, j). The spectrum at finite size (and w = 0) therefore looks as follows :
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j = 1
j = 2 m = 1

j = 0
j = 1
j = 2

m = 2

j = 0
j = 1
j = 2

For all the states (m, j) the Bethe equations can be solved at large sizes, leading,
from the finite size scaling formulae (1.30) and (1.31) (or rather, equivalent formulae for

the eigenenergies E
(L)
m,j), to finite size estimations of the conformal dimensions xm,j =

∆m,j + ∆̄m,j = 2∆m,j (since, in the w = 0 sector, ∆ = ∆̄) or associated effective central
charges cm,i ≡ c − 12xm,i. After a considerable numerical analysis with system sizes
ranging up to L ∼ 5000 (this time using a C++ script), we end up with the following
conjecture at zero twist :

− cm,j
12

= − 2

12
+m2 γ

4π
+ (Nm,j)

2 A(γ)

[Bm,j(γ) + logL]2
, (3.52)

where Nm,j = 3+(−1)m+1

2
+ 2j = 1 + number of Bethe roots λi with =λi = π

2
, and

A(γ) =
5

2

γ (π − γ)

(π − 3γ)2 , (3.53)

whereas the functions Bm,j(γ) (which extend to the more general family of functions
Bm,j,w when considering sectors of non zero momentum) could not be accessed numer-
ically, but are believed to be indeed universal functions with no L dependence at this
order (namely, the only further corrections to (3.75) come from the ‘usual’ terms of order
O(L−2)).

Some conclusions can readily be drawn from these results

• The central charge (at zero twist) is of the form

c(L) = c0,0(L) = 2− 12A(γ)

[B + logL]2
, (3.54)

with logarithmic corrections accounting for the lack of convergence observed in the
low twist regime.

• The magnetic dependence of the conformal weights is in agreement with the earlier
formula (3.50), which we intepreted as the excitation spectrum of a compact bosonic
degree of freedom.

Let us now look at the remaining part of the conformal weights, namely, that depending
on j. As the continuum limit L → ∞ is taken, we may replace the discrete index j

by some continuous index s =
√

5
2
π−γ
π−3γ

(2j)
Bj+logL

∼ 2j
logL

(the normalization is somewhat

arbitrary at this stage), leading to conformal weights of the form

xm,s =
γ

4π
m2 +

γ

π − γ
s2 . (3.55)
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Qualitatively, the spectrum of conformal dimensions is therefore made of a continuous
part and a discrete part:

∆, ∆̄

m = 0

s
m = 1

s

m = 2

s

,

which could very possibly be interpreted as the signature of a theory made of two bosonic
fields, one compact and one non compact, namely, of infinite compactification radius.
Going back to the Coulomb gas results presented in the analysis of regime I and fixing
the coupling constant g rather than the radius R to some fixed normalization, it is indeed
straightforwardly seen that taking the limit R → ∞ results in a vanishing of the gaps
associated to different values of the magnetic charge, analogously to what we are observing
here.

3.2.3 The black hole CFT

So far, all our results in regime III are very reminiscent of those obtained in the case
of the staggered six-vertex model [56, 57], whose continuum limit was identified [58] as
the coset SL(2,R)k/U(1). This CFT was introduced by Witten in the context of two
dimensional black holes in string theory [59], and will turn out to be of central importance
for our work, so we shall now spend a little time reviewing how it comes about.

Strings in an empty flat, d-dimensional Minkowski space-time with metrics Gµ,ν = ηµ,ν
are described by the action

S0 = − 1

4πα′

∫
d2σ
√
hhαβ∂αX

µ∂βX
νGµν , (3.56)

where α′ is the string coupling constant (small α′ corresponds to the classical limit),
the integration is over the world-sheet of the string with metric hαβ, and the variables
Xµ(σ), µ = 1, . . . d, are scalar fields embedding the string world-sheet into the space-
time. The action is imposed to be conformally invariant with respect to fluctuations
of the world-sheet metric hα,β, which, in more complicated cases of strings interacting
with various backgrounds, imposes consistency conditions on the theory. One of the
particularly important challenges of string theory as a candidate for describing quantum
gravity is to give a correct review of the physics at very strong gravitational fields, for
which the classical description of gravity fails. In particular, much effort has been put in
the task of building up consistent string theories in presence of metrics Gµν of the black
hole type in two dimensions of space-time, which have proven an efficient laboratory for
building up solvable toy-models. In [59], Witten considers the SL(2,R)k Wess-Zumino-
Witten model with action of the form

SWZW =
k

8π

∫
d2σ
√
hhαβtr

(
g−1∂αgg

−1∂βg
)

+ ikΓ(g) , (3.57)
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Figure 3.5: The half-infinite cigar shaped target space of the black hole CFT.

where g is some field taking values in SL(2,R), and k some positive integer called the
level of the theory, whereas the Wess-Zumino term Γ(g) ensures the conformal invariance
of the action. An abelian U(1) symmetry can be gauged out, at the price of introducing
some gauge field A. The gauge is fixed by parametrizing g in terms of two fluctuating
fields, r and θ, as

g = cosh r + sinh r

(
cos θ sin θ
sin θ − cos θ

)
, (3.58)

and the gauge field can be integrated out, yielding the SL(2,R)k/U(1) model with action

S =
k

4π

∫
d2σ
√
hhαβ (∂αr∂βr + tanh r∂αθ∂βθ) + . . . . (3.59)

This corresponds, up to corrections which involve some dilaton field ensuring the confor-
mal invariance of the model, to an action of the type (3.56) with a metric

ds2 = GµνdX
µdXν = dr2 + tanh2 rdθ2 . (3.60)

The metric (3.60) corresponds to the geometry of a semi-infinite cigar (see figure 3.5),
and presents, in its Minkowski formulation (θ → it), all the required characteristics of
a Schwarzschild black hole. In the limit r → ∞ the cigar is asymptotic to R × S1, and
the fields θ and r behave like two decoupled bosonic fields, compact and non compact
respectively. For future reference, we point out that the action (3.59) can be rewritten
in terms of the complex field Ψ = sinh r eiθ as

S =
k

4π

∫
d2x

∂µΨ∂µΨ̄

1 + |Ψ|2
+ . . . . (3.61)

The spectrum of string modes on the cigar background can be put in correspondence
with the spectrum of primary fields of the SL(2,R)/U(1) CFT, and we are led to look
for eigenwavefunctions Ψ(r, θ) of the Hamiltonian associated to the action (3.59). These
wavefunctions depend on the configurations of the fields r and θ at a given time on the
string worldsheet, and some intuition can be gained by first looking at the mini-superspace
approximation [108], where the spatial dependence of these fields is neglected (in other
terms the strings become point-like). As already discussed in the introductory chapter
(see section 1.1) the Hamiltonian becomes then a function on the target space itself, more
precisely it corresponds to the Laplacian

∆ = −2

k

[
∂2
r + (coth r + tanh r) ∂r + coth2r∂2

θ

]
. (3.62)

The corresponding (δ function normalizable) eigenwavefunctions are parametrized by two
quantum numbers, namely the momentum J = −1

2
+ is, s ∈ R along the axis of the cigar
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and the angular momentum n ∈ Z of rotations around this axis. Going back to the full
theory, one has to consider in addition strings that wind around the compact direction
of the cigar, hence introducing a winding quantum number w. The conformal weights of
the associated primaries therefore read

∆(∆̄) = −J(J + 1)

k − 2
+

(n± kw)2

4k
. (3.63)

Importantly, the true ground state of the Hamiltonian (identity field of the CFT, with
central charge cBH = 2 + 6

k−2
), with quantum numbers J = n = w = 0, corresponds

to a non normalizable wavefunction and is therefore not expected to be observed in the
spectrum 4. Instead, the effective ground state has J = −1

2
(s = 0), leading to a central

charge
c = cJ=− 1

2
,n=0,w=0 = 2 , (3.64)

that is the central charge observed in the untwisted regime III a
(2)
2 model. With respect

to this effective ground state, the conformal weights (3.63) get shifted, and we find in the
sector w = 0

xn,s,w=0 = ∆ + ∆̄ =
n2

2k
+

2s2

k − 2
, (3.65)

which is precisely the expression (3.55) found for the conformal weights in regime III after
the identification γ = 2π

k
.

3.2.4 The density ρ(s) and the discrete states

As it has been hinted from the comparison between (3.55) and (3.65), the conformal
spectrum in the regime III with γ = 2π

k
looks in many respects very much like that

obtained for the SL(2,R)k/U(1) ‘black hole’ CFT. Remember, however, that in (3.55)
an arbitrary normalization has been chosen for the definition of the continuous number
s. In order to unambiguously identify the spectrum (3.55) with that of the black hole,
one would actually need to compute the corresponding density of states ρ(s), which is
the main quantity allowing one to distinguish one theory with a non compact degree
of freedom from another. The latter is defined from the relation introduced previously
between the discrete quantum number j and the continuous quantum number s in a given
magnetization sector, which we recast as

2j =

√
2

5

π − 3γ

π − γ
(B(s) + logL) s , (3.66)

leading to

ρ(s) ≡ δj

δs
=

√
2

5

π − 3γ

π − γ
[logL+ ∂s(sB(s))] , (3.67)

to be compared with the known expression of the density of states for the black hole
[109],

ρBH(s) =
1

π
[log Λ + ∂s(sBBH(s))] (3.68)

BBH(s) =
1

2s
Im log

[
Γ

(
1− n+ wk

2
− is

)
Γ

(
1− n− wk

2
− is

)]
. (3.69)

4This issue will be put in a more general perspective in section 3.5.2
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The different normalizations between (3.67) and (3.68) can of course be reabsorbed in
the definition of B. More importantly, ρBH is made of a finite part and a cutoff Λ,
which stems from the introduction of a Liouville wall in the cigar target space, and gets
straightforwardly translated on the lattice as the finite system size L.

In the staggered six-vertex model, the function B(s) (rather, an analog version thereof,
differing from ours by normalization conventions) was estimated [58] in the large s, large
m regime from the resolution of Wiener-Hopf equations derived from the Bethe ansatz
equations, recovering the asymptotic behaviour of (3.69). This was pushed further in
[110], where a set of non-linear integral equations (NLIE) were derived and solved nu-
merically, leading to a perfect agreement between the resulting estimation of B(s) and
the black hole prediction. In the case of interest here, unfortunately, such a procedure
seems much more difficult to achieve. This is due mostly to the nature of the Bethe roots,
whose imaginary parts exhibit strong finite size corrections in regime III while for the
staggered six-vertex model they are aligned on real lines. Building up the corresponding
set of non-linear integral equations, though feasible, clearly looks like a considerable piece
of work, and we here will, in order to identify the continuum limit in regime III as the
black hole CFT, use instead an alternative strategy.

A crucial result of the black hole analysis is that on top of the continuous spectrum
derived earlier, the latter also allows for discrete states, which can be considered as
bound states localized near the tip of the cigar and do not show up in the minisuperspace
analysis. As a matter of fact these are observed only in w 6= 0 sectors, and are associated
with the quantum numbers [108, 109]

J ∈
[

1− k
2

,−1

2

]
∩
(
N− 1

2
|kw|+ 1

2
|n|
)
. (3.70)

The question for us is therefore to check whether these discrete states appear also in the
a

(2)
2 model. As it turns out, this issue is related to the appearance of the twist, which can

be justified in the sigma model approach to fix the value of w to

w ≡ ϕ

2π
. (3.71)

Let us consider, to start with, the case n = 0, and focus on the upper bound of the
interval in (3.70). Increasing the twist from ϕ = 0, we see that a new discrete state
appears whenever there exists an integer p ∈ N such that

p− 1

2

∣∣∣∣kϕ2π
∣∣∣∣ ≤ −1

2
. (3.72)

The associated conformal weight leads to the effective central charge

c2p+1 ≡ cJ=p− 1
2 | kϕ2π |,n=0,w= ϕ

2π

= c∗ +
6

π2(k − 2)

[
(2p+ 1)π − kϕ

2

]2

, (3.73)

where c∗ ≡ cJ=− 1
2
,n=0,w= ϕ

2π
= 2−6k

(
ϕ
π

)2
is the generalization of (3.64) to non zero values

of the twist. Going back to the observed results in the a
(2)
2 case and in particular to

equation (3.51) and figure 3.3, this is precisely what we observe : for small ϕ the state
with p = 0 is not normalizable, and the lowest energy states of the lattice model are
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instead the effective ground state with central charge c∗ and the continuum above it.
The former becomes normalizable at ϕ = 2π

k
= γ, where indeed the central charge of

the lattice model is observed to ‘pop’ out on the continuum. We could not insist too
much on the fact that these two regimes for the central charge are described by the same
eigenlevel of the lattice model (namely that associated with (m, j) = (0, 0)), in particular
there are no level crossings or degeneracies involved in the process 5. The same process
is observed for further values of p, namely the state (m, j) = (0, p) becomes discrete, and
described by the central charge cp, for ϕ ≥ (2p + 1)γ. Taking the lower bound of the
interval (3.70) back into consideration, we actually see that the discrete level with central
charge cp should disappear when

ϕ

2π
≥ 1 +

2p− 1

k
, (3.74)

that is, precisely when it intersects the first ‘excited winding mode’ where in c∗, instead
of taking just ϕ, we can take ϕ±2πw, where w = 1 is the winding number (corresponding
to the electric charge in the Coulomb gas analysis). This whole structure is summed up
in figure 3.6, and generalizes easily to nonzero values of the magnetization (or n, in the
black hole language), still in perfect agreement with the earlier observations of Nienhuis
et al [78]. For future reference we write the effective central charges associated with the
states (m, j) for ϕ ≤ π, that is, forgetting about the excited winding modes, as

cm,j(ϕ) =

{
c∗m = 2− 3ϕ

2

πγ
− 3γm2

π
for ϕ ≤ (|m|+ 2j + 1)γ

c∗m + 3
γ(π−γ)

[ϕ− (|m|+ 2j + 1)γ]2 for ϕ ≥ (|m|+ 2j + 1)γ .
(3.75)

3.2.5 The parafermions

Rather than from the (unachieved) identification of the continuum density of states ρ(s),
we have used the discrete states structure of the black hole SL(2,R)/U(1) theory as

the evidence for its identification as the continuum limit of the a
(2)
2 model in regime III.

In finite size, the width L of the lattice serves as a cutoff for the sigma model, and the
precise expression of the conformal weights (3.75) can be understood from a semi-classical
analysis [62].

As we will now see, the discrete states originate for a complementary description of the
continuum limit of regime III in terms of a whole different theory, this time related to a
coset of the SU(2)/U(1) type. The algebraic intuition for this can be be traced back to a
duality argument, which we will present in a more general context in section 3.4.1. For the
moment, let us simply focus on the conformal spectrum associated with the discrete states
for values of the twists where discrete states appear, namely ϕ = (2p+ 1)γ = (2p+ 1)2π

k
,

p integer. The lowest of these conformal weights corresponds to the state (0, 0) at ϕ = γ,
that is p = 0, and defines the so-called ‘central charge’

c̃ ≡ c0,0

(
ϕ

2π
=

1

k

)
= 2− 3

γ

π
= 2− 6

k
. (3.76)

The other conformal weights, measured with respect to this central charge, are obtained
at further values of p from the states j = 0, . . . p, namely

∆̃2p
2(p−j) ≡ −

c0,j

(
ϕ
2π

= 2p+1
k

)
− c̃

24
=
p(p+ 1)

k
+

(p− j)2

k − 2
. (3.77)

5This is in fact guaranteed by the Perron-Frobenius theorem, as, for instance in the loop representa-
tion, the transfer in the sector with zero through-lines is irreducible and has positive real entries.
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Figure 3.6: Discrete states structure observed in the sector of magnetization m = 0 of
the a

(2)
2 model upon varying the twist. Shaded in blue is the continuum of states. The

dashed lines correspond to non normalizable states, not present in the spectrum of the
lattice model. As ϕ is increased, the states corresponding to increasing values of j ’pop’
out of the continuum and become discrete. Increasing ϕ further these intersect the modes
of excited electric charge and go back to the corresponding continuum.
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For integer k, it is easy to recognize the central charge (3.76) and conformal weights (3.77)
as those of the Zk−2 parafermionic theory [111], which can equivalently be described as

the SU(2)k−2/U(1) coset CFT. In particular the exponents ∆̃2p
0 = p(p+1)

k
correspond to

the so-called parafermionic thermal fields.
We therefore conclude from this analysis that the continuum limit of the a

(2)
2 model in

regime III contains in some sense both the properties of the black hole and parafermionic
CFTs, associated respectively to conformal cosets of the type SL(2,R)/U(1) (non com-
pact) and SU(2)/U(1) (compact). Even though the precise connection between the two
theories lacks a clear explanation, it is interesting to notice that these allow for closely
related sigma model descriptions, with respective classical actions

SBH ∝
∫

d2x
∂µΨ∂µΨ̄

1 + |Ψ|2
, SPF ∝

∫
d2x

∂µΨ∂µΨ̄

1− |Ψ|2
, (3.78)

(see equation (3.61) and reference [112] respectively; by ‘classical action’ we mean that
in the black hole case the dilaton term is not included) or metrics

(ds2)BH ∝
dρ2 + ρ2dθ2

1 + ρ2
, (ds2)PF ∝

dρ2 + ρ2dθ2

1− ρ2
, (3.79)

(see equation (3.60) and reference [113] respectively), where we have used the parametriza-
tion Ψ = ρeiθ, so the correspondence with the black hole coordinates used in the previous
section is ρ = sinh r.

3.2.6 Conclusion: the continuum limit of the a
(2)
2 model

Let us recapitulate our results (recalling that the conclusions on both regimes I and II
have been known for a long time [78]) :

• In regime I, the a
(2)
2 model is described by the conformal field theory of a free

compact bosonic field, with a natural interpretation as emerging from the height
model defined by the O(n) loops on the square lattice.

• In regime II, this free boson gets supplemented by a decoupled critical Ising degree
of freedom (Majorana fermion), interpreted geometrically as living on the empty
edges of the square lattice.

• The continuum limit of the far more intriguing regime III is described by the black
hole SL(2,R)/U(1) CFT, which involves two coupled bosonic fields, respectively
compact and non compact. Whereas it should be possible to relate the former to
the one involved in the continuum limit of regimes I and II, the latter has a much
more mysterious origin. The question of how to interpret this exotic degree of
freedom geometrically will be adressed in a general perspective in section 3.5, and
in more detail in the next chapter.

At the same time, we have observed that the continuum limit in regime III can be
described in terms of a parafermionic, SU(2)/U(1) CFT, whose precise connection
with the former still lacks a precise explanation.

Needless to say, the emergence of a non compact continuum limit in a model where
all that remained to be elucidated was mostly thought of in the community as technical
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issues rather than fundamental ones comes out quite as a big surprise. As a matter of fact,
this big surprise will be for us the beginning of a long story. In the further sections of this
chapter, we will study a wealth of different integrable models where similar observations
hold. Along with the fundamental importance of these results, we will also see how
dramatic the practical consequences of non compact continuum limits can be regarding
the experimental or numerical measures of critical exponents or correlation functions.

Going back to the a
(2)
2 case, there is yet more to the story than what we have pre-

sented so far. Indeed, integrable spin chains or vertex models whose continuum limit are
identified as a certain CFT are only one particular case of a more general family of models
which on the lattice are obtained by an imaginary staggering of the spectral parameters,
and in the continuum limit correspond to integrable, massive perturbations around that
CFT. One should therefore look at the staggered transfer matrices

T (L)(u, iα) =

iα −iα iα −iα
u , (3.80)

(where we insist on the fact that imaginary spectral parameters do not bear the same
geometrical interpretation as real ones), and try to understand, in each regime, the nature
of the corresponding integrable field theory, that is find in each case an integrable action
of the form

S = SCFT + g

∫
d2x [Φ] , (3.81)

where SCFT can be seen as the UV limit of the perturbed action and [Φ] denotes an
integrable perturbation by one or several relevant operators, whose associated coupling
constant g shall ultimately be related to α. In each regime, the effect of an imaginary
staggering is directly seen in the integral equations for the Bethe roots densities, where
it amounts to a perturbation of the source term and can be related to the mass of the
perturbed theory. The nature of the latter can in most cases further be guessed by
looking at the scattering kernel involved in the Bethe equations and identifying it with
the (derivatives of the) S-matrices of known integrable field theories. We refer to [62, 65]
for details and simply present here the results obtained from this analysis.

Integrable perturbations in regime I

In regime I, the action of the perturbed theory is idenfied as that of the (imaginary)
Bullough-Dodd model [114] with action

SI =

∫
d2x(∂µΦ)2 + g

∫
d2x

(
e−2iβΦ + eiβΦ

)
, (3.82)

where β2

8π
= γ

2π
, and the coupling g is found to be related to the staggering α by g ∝ e−

4
3
α

(the latter relation remains valid in the other regimes). Remember that the CFT part,
namely the free bosonic action, is also obtained as the continuum limit of the integrable
six-vertex model or the associated XXZ spin chain. We are now able to see where does lie
the essential difference between the two models, namely that they correspond to different
integrable perturbations around the same CFT (as was mentioned in the previous chapter,

the continuum limit of the integrable six-vertex/XXZ/a
(1)
1 model is described by the Sine-

Gordon model, with action (2.29)).
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For future reference, we note that the action (3.82) can also be identified as that of

the (imaginary coupling) affine a
(2)
2 Toda theory [19].

Integrable perturbations in regime II

In regime II, the perturbed action is identified as

SII =

∫
d2x(∂µΦ)2 +

∫
d2xψ̄γµ∂µψ + g

∫
d2x

(
ψψ̄e−2iβ′Φ/2 + eiβ′Φ

)
, (3.83)

where (β′)2

8π
= 2π−γ

π
. Φ is still a compact bosonic field, while (ψ, ψ̄) is a Majorana fermion

corresponding to the Ising degree of freedom. For future reference, we note that this
identifies with the so-called (imaginary) b(0, 1)(1) Toda theory [115].

Integrable perturbations in regime III

The case of regime III is expectedly quite richer. Since the continuum limit of the
lattice model in this regime was shown to present both the features of the SL(2,R)/U(1)
black hole and of the SU(2)/U(1) parafermions, we naturally expect that its integrable
deformations should bear an interpretation as integrable deformations of both cosets.
Meanwhile, the staggered six-vertex model studied in [56, 57, 58] is also described, in
the continuum limit, by these two theories. Once again, the two models are therefore
expected to correspond to different integrable deformations of these CFTs.

Starting with the parafermionic description, the staggered six-vertex model and the
a

(2)
2 model in regime III are observed [55, 62] to correspond respectively to deformations

of the SU(2)k−2/U(1) coset by its first and second thermal operators, of respective di-

mensions ∆̃2
0 = 2

k
and ∆̃4

0 = 6
k
. In the sigma model description, these are known from

[112] and [V. Fateev, private communication] to be described respectively by the first and
second version of the complex sine-Gordon model, with actions [116]

SCSG0 =

∫
d2x

[
∂µΨ∂µΨ̄

1− |Ψ|2
−m2|Ψ|2

]
, (3.84)

SCSG1 =

∫
d2x

[
∂µΨ∂µΨ̄

1− |Ψ|2
−m2

(
|Ψ|2 − |Ψ|4

)]
. (3.85)

Interestingly, the similarity between the SU(2)/U(1) and SL(2,R)/U(1) sigma model
descriptions, which are formally mapped onto one another by the transformation |Ψ|2 →
−|Ψ|2, extends to the integrable deformations of these cosets. There are indeed two
known integrable deformations of the black hole CFT [117], associated respectively with
the first and second complex sinh-Gordon models with actions

SCShG0 =

∫
d2x

[
∂µΨ∂µΨ̄

1 + |Ψ|2
+m2|Ψ|2

]
, (3.86)

SCShG1 =

∫
d2x

[
∂µΨ∂µΨ̄

1 + |Ψ|2
+m2

(
|Ψ|2 + |Ψ|4

)]
, (3.87)

and we therefore find natural to associate these two perturbations with the staggered six-
vertex model and the a

(2)
2 model in regime III, respectively. This conjecture is strength-

ened by the observation that the CShG0 model has local conserved quantities at all
grades, both odd and even, a fact deeply related with the underlying symmetry of the
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Z2 staggered 6-vertex model, whereas CShG1 has only local conserved quantities at odd
grades, in agreement with the fact that there is no extra symmetry to distinguish regime
III from the other regimes.

Next, we would be interested in finding a free field formulation of the perturbed action
in regime III, as we did in regimes I and II. This can most easily be done starting from
the parafermions, which are well known [118] to allow for a Coulomb gas formulation in
terms of two bosonic fields Φ and φ, respectively compact and non compact. Note that
such a free field formulation of the black hole also exists [119], whose precise relationship
with the original, cigar-shaped target space is however not perfectly clear (naively, a free
field theory made of one compact boson and one non compact boson amounts to a target
space ' R × S1, and should therefore be supplemented by particular rules satisfied by
the fields in order to recover the tip of the cigar). Back to parafermions, it is actually
possible [V. Fateev, private communication] to write the SU(2)/U(1) action perturbed
by the pth thermal operator as

S =

∫
d2x(∂µΦ)2 +

∫
d2x(∂µφ)2 + g

∫
d2x

(
(∂µφ)2e−iβ′′Φ/2 + eip β′′Φ

)
, (3.88)

so in particular the bosonized form of the perturbation corresponding to the a
(2)
2 model

in regime III simply reads

SIII =

∫
d2x(∂µΦ)2 +

∫
d2x(∂µφ)2 + g

∫
d2x

(
(∂µφ)2e−iβ′′Φ/2 + ei2β′′Φ

)
, (3.89)

where (β′′)2

8π
= 2γ

π
= 4

k
.

3.3 Continuum limit of the a
(2)
3 model

We now move on to the case of the a
(2)
3 model, which was shown in section 2.4 to be related

to a model of fully-packed loops of two colours on the square lattice. As explained in
[92, 64] and reviewed in section 2.4.4, this loop model can in turn be seen as emerging from
the geometrical reformulation of a problem of two Q = n2-states Potts models coupled by
the product of their energy operators. Some of the corresponding critical properties have
been previously studied in [92], yet leaving behind many unexplained aspects. Similarly

to the a
(2)
2 case the Bethe ansatz analysis which we present in this section (see also [64])

will associate these unexplained features with the exotic, non compact nature of the
corresponding continuum limit.

The a
(2)
3 transfer matrix acts on the tensor product of four-dimensional Uq(sl

(2)
4 ) eval-

uation representations, which may be interpreted as the product of two Uq(sl2) spin-1
2

associated to the two colours of loops. We therefore introduce on each site of the quantum
space, as well as on the auxilliary space, two sets of spin-1

2
generators S

(x,y,z)
i,(1) , S

(x,y,z)
i,(2) , and

write the transfer matrix as

T (u) = Tra

(
Řa1(u) . . . ŘaL(u)e

i
(

2ϕ1S
(z)
a,(1)

+2ϕ2S
(z)
a,(2)

))
, (3.90)

where the Ř matrix (2.119) is given in its vertex formulation in reference [64], and we
have introduced two independent twist parameters ϕ1, ϕ2 associated respectively with the
two colours (the model is invariant under ϕ1 → −ϕ1, or ϕ2 → −ϕ2, so we will restrict to
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positive values of these twists). For further reference we point out that the Ř matrix has

a symmetry Uq(c2) = Uq(sp(4)), which is a subalgebra of Uq(a
(2)
3 ). The transfer matrix

(3.90) commutes independently with the two magnetizations

m(1) =
L∑
i=1

S
(z)
i,(1)

m(2) =
L∑
i=1

S
(z)
i,(2) , (3.91)

(with two symmetries m(1) → −m(1), m(2) → −m(2), allowing us once again to restrict
ourselves to m(1) ≥ 0, m(2) ≥ 0) and its eigenvalues in the sector (m(1),m(2)) are described

a set of roots of two types {λ(1)
j , λ

(2)
k }j=1,...,m1; k=1,...,m2 , whose numbers m1,m2 are related

to the magnetizations through

m(1) =
L

2
−m1 +m2

m(2) =
L

2
−m2 , (3.92)

and which are solution of a set of nested Bethe ansatz equations

e2iϕ1

(
sinh(λ

(1)
i − iγ

2
)

sinh(λ
(1)
i + iγ

2
)

)L

=

m1∏
j=1,j 6=i

sinh(λ
(1)
i − λ

(1)
j − iγ)

sinh(λ
(1)
i − λ

(1)
j + iγ)

m2∏
k=1

sinh(2(λ
(1)
i − λ

(2)
k + iγ

2
))

sinh(2(λ
(1)
i − λ

(2)
k − iγ

2
))

e2i(ϕ1−ϕ2)

m1∏
j=1

sinh(2(λ
(2)
k − λ

(1)
j − iγ

2
))

sinh(2(λ
(2)
k − λ

(1)
j + iγ

2
))

=

m2∏
l=1,l 6=k

sinh(2(λ
(2)
k − λ

(2)
l − iγ))

sinh(2(λ
(2)
k − λ

(2)
l + iγ))

. (3.93)

The corresponding energies read

E = ±
m1∑
i=1

2 sin γ

2 cosh 2λ
(1)
i − cos γ

. (3.94)

Similarly as what was observed for the a
(2)
2 model, there are once again two isotropic

values of the spectral parameter u± = 2γ ∓ π
2

corresponding to local maxima of the
Bethe ansatz eigenvalues and which we expect to be described by a different physics. We
however have here an extra symmetry, as equations (3.93) and (3.94) are invariant under

the simultaneous change γ → π − γ and shift of the roots {λ(1)
j } by iπ

2
, together with a

change of the global sign in front of (3.94). This restricts the range of values of γ to be
studied to

[
0, π

2

]
together with the two signs of the energy (or the two isotropic values of

u), and it turns out that as in a
(2)
2 three regimes have to be considered

• Regime I corresponds to the isotropic point u = u+, or equivalently the sign + in
the energy (3.94)

• Regime II corresponds to the isotropic point u = u− (sign − in (3.94)), and γ ∈[
π
4
, π

2

]
• Regime III corresponds to the isotropic point u = u− (sign − in (3.94)), and
γ ∈

[
0, π

4

]
.

These three regimes can be studied in the same fashion as what we did in the a
(2)
2

case, and will be presented here with less emphasis on the technical details.
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3.3.1 Continuum limit in regimes I and II

Regime I

The ground state in regime I lies in the zero magnetization sector, and is described by
a set of L roots λ(1) on the axis of imaginary part π

2
and L

2
roots λ(2) on the axis of

imaginary part π
4
. The scattering equations for the corresponding densities of real parts

read (
ρ(1) + ρ

(1)
h

ρ(2) + ρ
(2)
h

)
=

(
s(1)

s(2)

)
+K

(
ρ(1)

ρ(2)

)
, (3.95)

where in the zero frequency limit

1−K =
2γ

π

(
1 −1
−1 2

)
, (3.96)

which is proportional to the Cartan matrix of c2 = sp(4). From numerical study and
analysis of (3.95), we get the central charge

c = 2− 6 (ϕ1
2 + ϕ2

2)

πγ
(3.97)

and conformal weights

∆ + ∆̄ =
π

2γ

[
(w1 + w2)2 + w1

2
]

+
γ

2π

[
(n1 − n2)2 + n2

2
]
, (3.98)

where n1 = m(1) + m(2) and n2 = m(2) are the changes in the number of roots λ(1) and
λ(2) and w1, w2 are the corresponding backscatterings with respect to the ground state
distribution. Therefore we can rewrite

∆ + ∆̄ =
π

2γ

(
(m(1))2 + (m(2))2

)
+

γ

2π

(
(w(1))2 + (w(2))2

)
, (3.99)

so the conformal spectrum in regime I is simply that of two decoupled free compact
bosons with the same radius. These bear a simple geometrical interpretation as emerging
from the two Coulomb gas constructions associated with the two colours of fully packed
loops.

Turning to the massive deformations obtained by switching on an imaginary staggering
±iα further identifies the corresponding perturbed field theory as the a

(2)
3 Toda field

theory [19], which is a theory of two compact bosonic fields Φ1,Φ2 with action

SI =

∫
d2x(∂µΦ1)2 +

∫
d2x(∂µΦ2)2 + g

∫
d2x

(
e−iβ

√
2Φ1 + eiβ

√
2(Φ1+Φ2) + eiβ

√
2Φ2

)
,

(3.100)

where β2

8π
= γ

2π
, and g ∝ e−

4
3
α (same relation as in a

(2)
2 ).

Regime II

In regime II, the ground state is now described by a set of L
2

two-strings of roots λ(1)

with imaginary parts close to (slightly smaller in absolute value than) ±
(
π
4
− γ

2

)
and L

2

roots λ(2) on the axis of imaginary part π
4
. We write λ

(1)
j = xj ± i

(
π
4
− γ

2
+ ε±

)
, with

ε± decreasing exponentially with L, and λ
(2)
k = yk + iπ

4
. The second set of Bethe ansatz
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equations (3.93) shows that ε+ = ε−, which allows to simplify in the large L limit the
product of conjugate equations of the first set into

e4iϕ1

sinh
(
λ

(1)
i + i

(
π
4
− γ
))

sinh
(
λ

(1)
i − iπ

4

)
sinh

(
λ

(1)
i − i

(
π
4
− γ
))

sinh
(
λ

(1)
i + iπ

4

)
L

=

m1∏
j=1,j 6=i

cosh(λ
(1)
i − λ

(1)
j − iγ)

cosh(λ
(1)
i − λ

(1)
j + iγ)

cosh(λ
(1)
i − λ

(1)
j + 2iγ)

cosh(λ
(1)
i − λ

(1)
j − 2iγ)

sinh(λ
(1)
i − λ

(1)
j + iγ)

sinh(λ
(1)
i − λ

(1)
j − iγ)

.(3.101)

We are therefore left in the continuum limit with a scalar equation over the density ρ(1)

of 2-strings centers, namely
ρ(1) + ρ

(1)
h = s+K ρ(1) , (3.102)

where in the zero frequency limit K = 4γ
π
− 3, hence the conformal spectrum

∆ + ∆̄ =
(

1− γ

π

)
n1

2 +
1

4
(
1− γ

π

)w1
2 , (3.103)

where n1 and w1 respectively count the number of holes and backscatterings of the sea
of 2-strings. In particular, n1 holes means 2n1 holes of λ(1) roots and n1 holes of λ(2)

roots, so we expect m(1) = m(2) = n1. Since on the other hand the model is symmetric
under the exchange of two colours (m(1) ↔ m(2)), and using a similar reasoning for the
backscattering part, we therefore expect

∆ + ∆̄ =
π − γ

2π

(
(m(1))2 + (m(2))2

)
+

π

2(π − γ)

(
(w(1))2 + (w(2))2

)
. (3.104)

Meanwhile, the central charge is given by

c = 2− 6 (ϕ1
2 + ϕ2

2)

π(π − γ)
, (3.105)

so this is simply the analytic continuation of regime I through γ → 1 − γ, and we
similarly expect that the same conclusions can be made about the corresponding massive
deformations.

3.3.2 Continuum limit in regime III

Parallelly to what was observed in the a
(2)
2 model, the Bethe roots structure describing

regime III is analogue to that describing regime II, except for the sign of the two-strings
imaginary parts deviations, with important consequences on the analyticity properties of
the Bethe equations kernels. The discussion on the scattering equations is similar as that
in regime II, and the scattering kernel now has a zero frequency limit K = 1− 4γ

π
, hence

the conformal spectrum

∆ + ∆̄ =
γ

π
n1

2 +
π

4γ
w1

2 , (3.106)

which can be rewritten in terms of the two colours quantum numbers as

∆ + ∆̄ =
γ

2π

(
(m(1))2 + (m(2))2

)
+

π

2γ

(
(w(1))2 + (w(2))2

)
. (3.107)
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While the conformal weights (3.107) have once again the form of those of a theory of two
compact bosons, the central charge in regime III is found to be at zero twist c = 3, hence
leaving room for another, unidentified, degree of freedom.

As in the a
(2)
2 case, we search for an interpretation of this missing part in the analysis

of the low-lying excitations, and the story turns out to look very much the same: in
each (m1,m2) sector excited states can be formed by replacing 2-strings of λ(1) roots
by ‘antistrings’, namely pairs of λ(1) roots with imaginary part π

2
. Restricting to the

sector with w1 = w2 = 0 we therefore label the low-lying eigenstates by three integers
(m(1),m(2), j), and find from numerical resolution of the Bethe equations the following
spectrum of effective central charges at zero twist

−
cm(1),m(2),j

12
= − 3

12
+

γ

2π

(
m(1) +m(2)

)2
+
(
Nm(1),m(2),j

)2 A(γ)[
Bm(1),m(2),j(γ) + logL

]2 ,
(3.108)

with quite strong numerical support for the following conjectures:

A(γ) = 10
γ(π − γ)

(π − 4γ)2
, (3.109)

Nm(1),m(2),j = 1 +
[
number of λ(1)-roots with imaginary part π

2

]
. (3.110)

The numerical support for the functional dependence of A(γ) on γ is very strong, whereas
the determination of the proportionality factor 10 is slightly more hazardous, and as in
the a

(2)
2 case precise determination of the Bn1,n2,j(γ) functions is beyond the scope of our

numerical accuracy. The conformal spectrum in the L → ∞ limit is therefore made of
two discrete and one continuous components, and should then expectedly described by
some field theory invoving two compact and one non compact bosonic fields. Following
the lines of what was done in the a

(2)
2 case, it should be guessed at this stage that a lot

of insight can now be gained by investigating the effect of turning on the twists on the
conformal weights.

For simplicity let us first look at the ground state, namely the state with (m(1),m(2), j) =
(0, 0, 0). Investigating numerically the central charge, we find the following result

c = c0,0,0 =

{
3− 6 (ϕ1)2+(ϕ2)2

πγ
+ o(1) for ϕ1 + ϕ2 ≤ γ ,

3− 6 (ϕ1)2+(ϕ2)2

πγ
+ 3 (ϕ1+ϕ2−(2j+1)γ)2

γ(π−γ)
for ϕ1 + ϕ2 ≥ γ ,

(3.111)

where o(1) indicates for the logarithmic corrections explicited in (3.108), and which dis-
appear in the ϕ1 + ϕ2 ≥ γ regime. Needless to say, this is higly similar to what was
observed in a

(2)
2 case. Extending this study to the full low-lying spectrum yields

cm(1),m(2),j =


c∗
m(1),m(2) + o(1) = 3− 6

(
(m(1))

2
+(m(2))

2
)
γ

π
− 6 (ϕ1)2+(ϕ2)2

πγ
+ o(1)

for ϕ1 + ϕ2 ≤
(
m(1) +m(2) + 2j + 1

)
γ ,

c∗
m(1),m(2) + 3

(ϕ1+ϕ2−(m(1)+m(2)+2j+1)γ)
2

γ(π−γ)

for ϕ1 + ϕ2 ≥
(
m(1) +m(2) + 2j + 1

)
γ .

This spectrum can be conveniently interpreted by setting m± ≡ m(1) ± m(2), ϕ± ≡
ϕ1 ± ϕ2, such that we can write cm(1),m(2),j = cm− + cm+,j, where

cm−(ϕ−) = 1− 3
(ϕ−)2

πγ
− 3

γ(m−)2

π
, (3.112)
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which is straightforwardly associated with the contribution from a free compact boson,
and

cm+(ϕ+) =

{
c∗m+

+ o(1) = 2− 3 (ϕ+)2

πγ
− 3γ(m+)2

π
+ o(1) for ϕ+ ≤ (m+ + 2j + 1) γ

c∗m+
+ 3 (ϕ+−(m++2j+1)γ)2

π(π−γ)
for ϕ+ ≥ (m+ + 2j + 1) γ ,

(3.113)
which has exactly the structure of the discrete levels found for the black hole CFT in the
continuum limit of the a

(2)
2 model in regime III, see equation (3.75).

As a conclusion, the continuum limit of the a
(2)
3 model in regime III is therefore the

association of one SL(2,R)/U(1) black hole, and one decoupled compact boson. Note
that the dependence of the effective central charges in the quantum numbers m− and
m+ is the same, which means that the two compact bosons (that involved in the black
hole, and the decoupled one) have moreover the same radius. We can now go further and
look for a free field action associated with integrable massive deformations of this model,
labeling the compact fields Φ+ and Φ− and the non compact one φ+, in a natural way.
Analysis of the Bethe ansatz equations suggests that the perturbed action should be of
the form

SIII =

∫
d2x(∂µΦ−)2 +

∫
d2x(∂µΦ+)2 +

∫
d2x(∂µφ+)2 (3.114)

+g

∫
d2x

(
(1, 1)e−iβ′′Φ+ + (1, 1)eiβ′′Φ− + eiβ′′(Φ+−Φ−)

)
, (3.115)

where (β′′)2

4π
= γ

π
, and each (1, 1) denotes for a field of dimensions (∆, ∆̄) = (1, 1) with a

non vanishing two point function. It should be possible to write such fields as combina-
tions of the derivatives of the fields Φ±, φ+, the precise form of which is fixed by imposing
perturbatively the integrability of the theory. We will, however, not go any deeper into
this matter here.

3.4 General solution of the a
(2)
n chains

The a
(2)
2 and a

(2)
3 models are part of the more general series of a

(2)
n integrable models,

which we want to introduce now.
For this sake, we look back at the Birman–Wenzl–Murakami (BWM) algebra intro-

duced in section 2.4.4, and in particular at the integrable trigonometric Ř matrices that
can be built out of the SO(N) BWM generators, (2.118). Using the level-rank duality
there are actually two of them, which we write in terms of the multiplicative spectral
parameter x ≡ eiu as

Ř(1) ∝ 1 +
x− 1

x+ 1

qN−2 + x

qN−2 − x
E +

x− 1

x+ 1

1

q − q−1

(
B +B−1

)
Ř(2) ∝ 1 +

x− 1

x+ 1

qN − x
qN + x

E +
x− 1

x+ 1

1

q − q−1

(
B +B−1

)
. (3.116)

We can consider these Ř matrices as acting on the product of the fundamental, N -
dimensional representations of SO(N). The cases N even and N odd then have to be
distinguished :
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• for N = 2n even, both Ř matrices commute with the action of the quantum group
Uq(cn) = Uq(sp(2n))

– Ř(1) is associated with the integrable c
(1)
n model

– Ř(2) is associated with the integrable a
(2)
2n−1 model (we recall that Uq(cn) is the

maximal finite dimensional subalgebra of Uq(a
(2)
2n−1))

• for N = 2n + 1 even, both Ř matrices commute with the action of the quantum
group Uq(bn) = Uq(so(2n+ 1))

– Ř(1) is associated with the integrable b
(1)
n model

– Ř(2) is associated with the integrable a
(2)
2n model (we recall that Uq(bn) is the

maximal finite dimensional subalgebra of Uq(a
(2)
2n ))

We here consider the series of a
(2)
N−1 models, inspired by our earlier observations on

the N = 3 and N = 4 cases. The Bethe equations for the a
(2)
2n−1 and a

(2)
2n models involve

n families of roots, {λ(1)
i1
, . . . λ

(n)
in
}, and the associated eigenvalues take the form

E± = ±
∑
i1

sin γ

cosh 2λ
(1)
i1
− cos γ

. (3.117)

As in the a
(2)
3 case, in all the a

(2)
2n−1 models a transformation γ → π − γ combined with a

global shift of the λ
(1)
i1

roots by iπ
2

is equivalent to a change the sign in front of the energy
(3.117), hence restricting the range of values of γ to study to

[
0, π

2

]
, together with the

two possible signs of the Hamiltonian. In contrast, no such symmetry is present in the
a

(2)
2n models, where we instead have to consider γ ∈ [0, π] together with the two possible

signs of the Hamiltonian.
In each case, we will get to consider three regimes, whose definition generalizes those

of the a
(2)
2 and a

(2)
3 models: for a

(2)
N−1 with N = 2n even,

• Regime I corresponds to a plus sign in the energy(3.117), and γ ∈
[
0, π

2

]
.

• Regime II corresponds to a minus sign in the energy, and γ ∈
[
π
N
, π

2

]
.

• Regime III corresponds to a minus sign in the energy, and γ ∈
[
0, π

N

]
,

while for a
(2)
N−1 with N = 2n+ 1 odd,

• Regime I corresponds to a plus sign in the energy, and γ ∈ [0, π].

• Regime II corresponds to a minus sign in the energy, and γ ∈
[
π
N
, π
]
.

• Regime III corresponds to a minus sign in the energy, and γ ∈
[
0, π

N

]
.

The analysis of the Bethe equations similar to that presented in the N = 3 and N = 4
cases in the previous sections has been extended to N = 5 and N = 6, and we refer to
[65] for details. Before presenting the resulting conjectures in each regime, a few general
observations can be made.
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3.4.1 Duality arguments for a non compact regime

Setting q = e
i π
N+Ñ−2 , N, Ñ integers, the level-rank duality allows for a mapping between

the Ř matrices built respectively from the SO(N) and SO(Ñ) algebras, namely

Ř(2), SO(N), x ←→ Ř(1), SO(Ñ), x−1 . (3.118)

This mapping is only algebraic, as the two models for N 6= Ñ do not involve the same
representations of the BWM generators, and therefore do not act on the same space
of states. Moreover the Ř matrices correspond to a very particular choice of ‘gauge’
in the Yang–Baxter equation, which should result in a particular choice of the twist
angle when considering the periodic integrable models built out of them. As it turns
out, and as we will check explicitly in the N = 3 case, the equivalence can however
be made rigorous by shifting to the quantum group restricted, solid-on-solid (RSOS)
formulations of the corresponding models (see for instance [41]). These are built using
the underlying quantum group structure by attaching heights encoding the quantum
group representations to faces of the square lattice (or sites of the dual square lattice),
so that the global choice of heights around each face of the dual lattice is coherent with
the quantum group fusion rules and the corresponding face weights are obtained by a
quantum analog of the 6j symbols [120]. In the a

(2)
2 case for instance we use the fact

that each edge carries a spin one representation of the Uq(sl2) subalgebra (q2 = q), and
rephrase the decomposition of the Ř matrix over projectors over the representations of
spin 0, 1 and 2 in the height language. Because of the peculiar features of the Uq(sl2)
representation theory at q root of unity [32], the set of possible heights on each site for

q2 = e
i π
N+Ñ−2 = e

i π
Ñ+1 is restricted to the set of (half-) integers ranging between 0 and Ñ .

Note that this algebraic construction differs from the geometrical one proposed in [129].
There, the loops of the equivalent O(n) model are oriented and heights are assigned
to the faces of the square lattice such that the heights of faces separated by a loop
segment differ by ±1, according to the orientation of the latter. Whereas the algebraic
and geometric constructions are equivalent in the spin-1

2
(fully packed loops) case, they

differ in more general cases. The latter actually requires a loop weight n = 2 cos(π/p),
where p = 3, 4, . . . is an integer, so in particular n ≥ 1, which is clearly not the case in
the regime III of a

(2)
2 (where we recall that n = −2 cos 2γ < 1). In particular, we insist on

the fact that the weight of the algebraic RSOS constructoin for the a
(2)
2 model in regime

III are all positive.
In the general case we will simply assume that a similar algebraic construction holds,

and that the corresponding subset of eigenvalues does not lie too deep in the spectrum of
the vertex model. All in all, we will use the RSOS equivalence (3.118) mainly as a hint
for the vertex models’ continuum limit.

As it turns out, the quantum group restricted models associated with Ř(1), that is,
the SO(Ñ)(1) models for q = e

i π
N+Ñ−2 , are believed to be described in the continuum limit

by the diagonal conformal cosets

SO(Ñ)1 × SO(Ñ)N−1

SO(Ñ)N
, (3.119)

with central charge

c =
Ñ

2

(N − 1)(N + 2Ñ − 4)

(N + Ñ − 2)(N + Ñ − 3)
(3.120)
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We therefore conjecture that, in some regime, the (quantum group restricted) a
(2)
N−1 mod-

els should also be described by such cosets. Since for all this to make sense we need
Ñ ≥ 2, it is natural to believe that the regime in question should actually correspond to
γ ∈ [0, π

N
], which seems to identify with the regimes III observed previously in the N = 3

and N = 4 cases.

The N = 3 case: a
(2)
2 and parafermions

Before going any further, let us check all this guesswork against numerical investigation
of the N = 3 case. The a

(2)
2 transfer matrix is implemented in its RSOS formulation

numerically, and diagonalized for sizes ranging up to L = 14, for q = eiπ
k , k = 6, 7, 8, 9, 10.

Without any numerical ambiguity, we find in the region corresponding to regime III the
central charge

c = 2− 6

k
, (3.121)

which is the central charge of the Zk−2 parafermionic theories and coincides with the
case N = 3 of (3.120) once made the identification k = 2(Ñ + 1). Although the duality
argument only applies to Ñ integer, so k even, it is natural to expect that there is nothing
special with parafermionic theories with even index, which is indeed confirmed numer-
ically. The equivalence with parafermions is actually made complete by checking that
the low-lying levels of the RSOS model indeed reproduce all the parafermionic conformal
dimensions. These levels can alternatively be obtained as a subset of the vertex model
eigenlevels for specific values of the twist, more precisely we observe that these coincide
with the discrete levels (m = 0, j = 0, . . . p) for twists of the form ϕ = (2p + 1)2π

k
(p

integer), which we showed in section 3.2.5 that they indeed reproduce the parafermionic
conformal spectrum.

The N = 4 case: a
(2)
3 and the SU(2)×SU(2)

SU(2)
coset

A RSOS formulation can similarly built for the a
(2)
3 model, and we expect that its con-

formal spectrum should similarly be described by the coset

SO(Ñ)1 × SO(Ñ)3

SO(Ñ)4

, (3.122)

which, anticipating on next paragraph’s general discussion, we can reformulate as the
coset

SO(4)Ñ
SO(3)Ñ

=
SU(2)Ñ × SU(2)Ñ

SU(2) ˜2N

, (3.123)

whose central charge and conformal weights are given in [130]. The relation between the

a
(2)
3 model (in its loop formulation) and the cosets (3.123) was already pointed out in [92].

Rather than studying the details of the RSOS model, let us simply use our Bethe ansatz
analysis of the conformal spectrum, and study, to start with, the effective central charge
resulting from the (discrete) state (m(1) = 0,m(2) = 0, j = 0) for twists ϕ1 = ϕ2 = γ.

Recalling the parametrization q = e
i π
Ñ+2 the latter reads from (3.112)

c̃ = c0,0,0(ϕ1 = ϕ2 = γ) =
3Ñ2

(Ñ + 1)(Ñ + 2)
, (3.124)
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which is precisely the central charge of the (3.123) coset, also obtained from (3.120).
Going further, all the conformal weights of this coset, given by [130]

hr,s =

[
2r(Ñ + 1)− r(Ñ + 2)

]2

− Ñ2

8Ñ(Ñ + 1)(Ñ + 2)
+

t(Ñ − t)
2Ñ(Ñ + 2)

,


1 ≤ r ≤ Ñ + 1

1 ≤ s ≤ 2Ñ + 1

t = |(r − s) mod 2|, 0 ≤ t ≤ Ñ

,

(3.125)

can be obtained from the appropriately twisted discrete states of the a
(2)
3 model, measured

with respect to the central charge (3.124), namely we find

hr,s =

{
∆r,r−s+1,r−s for s ≤ r

∆r,s−r+1,0 for s ≥ r
, (3.126)

where ∆p1,p2,j ≡ − 1
24

(c0,0,j(ϕ1 = p1γ, ϕ2 = p2γ)− c̃). That this particular set of states

for this very set of particular indeed constitutes the spectrum of the a
(2)
3 model in its

RSOS formulation, although not checked explicitly, leaves very little doubt.

The general case: conformal duality, and Coulomb-gas description

Having checked the duality of quantum restricted models in the N = 3 case (and more
superficially in the N = 4 case), we can now move back to the general case and assume this
equivalence still holds. As it is usually the case, it is natural to look for representations
of the corresponding continuum limits in terms of a set of free bosonic and/or fermionic
fields. Such a Coulomb gas description, which we already have described in detail in the
N = 3 and N = 4 cases (involving one non compact boson and respectively one and two
compact bosons), should also transpire in the continuum limit of the restricted models
and may therefore be partly guessed at this stage. The little knowledge we need for the
moment can be stated as follows :

The Coulomb gas description of conformal field theories based on an algebra of rank
p usually involves p bosons
(see the review by Fateev and Lukyanov [126]; explicit construction of Coulomb gases
for p = 2 and p = 3 can be found in [127] and [107] respectively). Following this
rule, whereas Coulomb gas descriptions of the coset (3.119) are expected to involve a
Ñ -dependent number of fields, a fact which is not only unpleasant since it would involve
a γ-dependent field content for the a

(2)
N , but for which there is also no numerical evidence

(see later discussions), we can profitably use the conformal duality

SO(Ñ)1 × SO(Ñ)N−1

SO(Ñ)N
←→ SO(N)Ñ

SO(N − 1)Ñ
, (3.127)

which is seen clearly from the equality of the central charges. For N = 2n (resp. 2n+ 1)
SO(N) has rank n and corresponds to n bosons, whereas dividing by SO(N − 1) of rank
n − 1 (resp n) corresponds to substracting the contributions of n − 1 (resp. n) bosons
to the conformal weights. More precisely the conformal weights are expected to bear the
form

∆ =
CSO(N)

N + Ñ − 2
−
CSO(N−1)

N + Ñ − 2
, (3.128)

where CSO(N) and CSO(N−1) are the values of the Casimir of SO(N) and SO(N −1) in the
corresponding representations. To interpret these contributions, note that in the theory
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of a free bosonic field ϕ the scaling operators are the so-called vertex operator

Vα ≡ : eiαφ : , (3.129)

with conformal weights ∆ = α2. In compactified theories φ ≡ φ + 2πR such operators
are properly defined only for real values of α. In non compact theories, however, nothing
forbids purely imaginary values of α, hence negative conformal weights. From this very
heuristic argument, we deduce that the bosons contributing negatively to the conformal
weights (3.128) should be non compact ones. Once again this can seen more concretely
in the N = 3 case, where two Coulomb gas descriptions of the Zk−2 parafermions are
known, one [128] involving a k- (hence γ-) dependent number of fields, and the other [118]
involving independently of k two bosonic fields, respectively compact and non compact.

The conclusion of this long chain of arguments therefore generalizes our observations
of sections 3.2 and 3.3 to any value of N , namely for each a

(2)
N−1 model we expect a

‘regime III’ corresponding to γ ∈ [0, π
N

], whose continuum limit should be described for
N = 2n + 1 (resp. N = 2n) in terms of n compact bosons and n (resp. n − 1) non
compact bosons.

3.4.2 The regimes I and II

The a
(2)
2n−1 models in regimes I and II

From our analysis of the Bethe ansatz equations, we conjecture that the continuum limit
of the a

(2)
2n−1 model in regime I is described by a set of n compact bosons Φ1, . . .Φn,

leading to a central charge c = n in the purely periodic case. Further, the integrable
massive deformations associated with imaginary staggering of the spectral parameter are
conjectured to be described by the (imaginary) a

(2)
2n−1 Toda field theory, with action

SI =
n∑

α=1

∫
d2x(∂µΦα)2

+ g

∫
d2x

(
e−2iβΦ1 + 2

n−2∑
α=1

eiβ(Φα−Φα−1) + eiβ(Φn−1−Φn) + eiβ(Φn−1+Φn)

)
,(3.130)

where the coupling β is related to γ by β2

4π
= γ

π
.

Analogously to what we have observed in the particular a
(2)
3 case, the conjecture is

that such a theory also governs the continuum limit of the a
(2)
2n−1 model in regime II,

where the relation between β and γ has to be changed to β2

4π
= π−γ

π
.

The a
(2)
2n models in regimes I and II

The continuum limit of the a
(2)
2n model in regime I is similarly described by a set of

n compact bosons Φ1, . . .Φn, leading to a central charge c = n in the purely periodic
case, and the integrable perturbations are associated with the (imaginary) a

(2)
2n Toda field

theory, with action

SI =
n∑

α=1

∫
d2x(∂µΦα)2

+ g

∫
d2x

(
e−2iβΦ1 + 2

n−1∑
α=1

eiβ(Φα−Φα+1) + 2eiβΦn

)
, (3.131)
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where the relation between coupling β and γ is the same as in the regime I of a
(2)
2n−1

models, namely β2

8π
= γ

2π
.

In contrast to the a
(2)
2n−1 case, the n bosons get coupled in the regime II of a

(2)
2n to one

Majorana fermion (ψ, ψ̄), and the corresponding action is conjectured to be that of the
so-called b(0, n)(1) Toda theory (see [115] for conventions), namely

SII =
n∑

α=1

∫
d2x(∂µΦα)2 +

∫
d2x ψ̄γµ∂µψ

+ g

∫
d2x

(
e−2iβ′Φ1 + 2

n−1∑
α=1

eiβ′(Φα−Φα+1) + ψ̄ψeiβ′Φn

)
, (3.132)

where, as in the a
(2)
2 case (3.83), (β′)2

8π
= 2π−γ

γ
. Although not entierely clear from a field-

theoretical point of view, the appearance of a fermionic degree of freedom in the a
(2)
2n

models and not in the a
(2)
2n−1 ones can most likely be traced back to the fact that the

former deal with odd-dimensional representations on each site of the lattice, for which
states of ‘zero’ spin can be defined. As in the a

(2)
2 case, the edges carrying such states can

be thought of as the domain walls of some Ising degree of freedom, which we therefore
conjecture to become critical in the regime II of every a

(2)
2n−1 model.

3.4.3 The regimes III

We now turn to the regimes III of either a
(2)
N−1 = a

(2)
2n−1 or a

(2)
2n models, which we have

argued from duality that they should be described by a set of n compact and n−1 (resp.
n) non compact bosons, with a resulting central charge c = N − 1 in the purely periodic
case.

In order to investigate the nature of the corresponding integrable perturbations, we
use the conjectured equivalence of the a

(2)
N−1 models in their regime III, for q = e

i π
N+Ñ−2 ,

with the diagonal conformal cosets SO(Ñ)1×SO(Ñ)N−1

SO(Ñ)N
(see section 3.4.1), and the well-

established fact [131] that imaginary staggering of the spectral parameter in integrable
spin chains based on a group G whose continuum limit is the diagonal coset Gk×Gl

Gk+l
leads

to an adjoint perturbation with conformal weight

∆ = 1− h∗

k + l + h∗
, (3.133)

where h∗ is the dual Coxeter number for the groupG. In our caseG = SO(Ñ), h∗ = Ñ−2,
and we find

∆ = 1− Ñ − 2

N + Ñ − 2
=

N

N + Ñ − 2
. (3.134)

Because of the conformal duality, the latter can as well be considered as a perturbation

of the coset
SO(N)Ñ
SO(N−1)Ñ

. In the N = 3 case corresponding to the a
(2)
2 model, we recover,

seting q = ei 2π
k (so k = 2Ñ + 2) the conformal weight ∆ = 6

k
associated with the second

thermal operator of Zk−2 parafermions, in agreement with the conclusions of section 3.2.
From there, two remarks can be made :

• As in the other regimes, we expect that the integrable perturbation corresponding
to (3.134) may be written in a free field formulation in terms of the compact and non
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compact bosonic fields Φ1, . . . ,Φn, φ1, . . . φn−1, (φn). The corresponding perturbed

action was written explicitly in the N = 3 (a
(2)
2 ) case, see equation (3.89), and in

a partly achieved form in the N = 4 (a
(2)
3 ) case (3.115). A general form of the

perturbed action of the a
(2)
N−1 models in regime III, if tractable, would request a

considerable amount of work.

• In the a
(2)
2 case, we were lead to consider two different perturbations of the coset

SU(2)
U(1)

' SO(3)
SO(2)

, associated respectively with the first and second thermal operators
of the parafermionic theory. As it turns out, the existence of two integrable per-
turbations is generic to any N , and can be traced back to the so-called ‘Pohlmeyer
reduction’ [132, 133], which relates the equations of motion for the fields on some
sigma model to the conserved quantities associated with the integrable perturba-
tion of a different, ‘reduced’ sigma model action. The first historical example of
such a construction is that of the O(3) sigma model, whose equations of motion
were shown in [132] to map onto the conservation laws for the local charges of the

sine-Gordon model. In the case of interest here, it is seen [133] that the SO(N+1)
SO(N)

and
SU(N+1)
SO(N+1)

sigma models lead respectively to two different integrable perturbations of

the coset SO(N)
SO(N−1)

, each associated with a different set of conserved charges. For

N = 3 these correspond to perturbations of the SO(3)
SO(2)

parafermions by the first and
second thermal operators respectively, which we write as

SO(4)Ñ
SO(3)Ñ

−→ SO(3)Ñ
SO(2)Ñ

+

(
∆ =

1

Ñ + 1

)
(3.135)

SU(4)Ñ
SO(4)Ñ

−→ SO(3)Ñ
SO(2)Ñ

+

(
∆ =

3

Ñ + 1

)
. (3.136)

For general N , we similarly expect to identify the two different Pohlmeyer reduc-

tions as perturbations of the
SO(N)Ñ
SO(N−1)Ñ

coset by operators associated with given

representations of SO(N), for which the conformal weights read generically

∆ =
CSO(N)

N + Ñ − 2
. (3.137)

Comparison with the case N = 3 and close examination of the case N = 4 suggests
that for both N odd and even, the perturbations generalizing (3.135, 3.136) should
be associated respectively with the vector representation for which CSO(N) = N−1

2
,

and the representation corresponding to CSO(N) = N . In the latter case this is
in agreement with the independent conjecture (3.134), and we therefore write in
summary

SO(N + 1)Ñ
SO(N)Ñ

−→ SO(N)Ñ
SO(N − 1)Ñ

+

(
∆ =

N − 1

2(N + Ñ − 2)

)
(3.138)

SU(N + 1)Ñ
SO(N + 1)Ñ

−→ SO(N)Ñ
SO(N − 1)Ñ

+

(
∆ =

N

N + Ñ − 2

)
, (3.139)

where we recall that the second perturbation is the one we have associated to the
continuum limit of the a

(2)
N−1 models in their regime III. The pending issue of which

integrable lattice models could possibly correspond to the first perturbation will in
fact reappear in chapter 5.
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3.5 The non compact world

In the previous sections, we have derived without further comments the continuum limit of
an infinite hierarchy of exactly solvable lattice models, which turns out to be, in a certain
regime, of a non compact nature. Looking back at our discussion of section 1.5, this is now
quite surprising: whereas the models found in the past to have a non compact continuum
limit were characterized by several peculiar features such that supergroup symmetry or
delicate staggering of the spectral parameters, the ones we have been dealing with in this
presentation seem to be instead rather generic, as the only common feature they share is
non unitarity. For instance, in the a

(2)
2 case, the quantum Hamiltonian can be written in

terms of the Uq(sl2) spin-1 generators ~Sj = (Sxj , S
y
j , S

z
j ) as

H = ±
L∑
i=1

cos
3γ

2
τj + cos

γ

2
(τj)

2 + 4 sin2γ

4
sin

γ

2
sin γ

(
τ⊥j τ

z
j − τ zj .τ⊥j

)
−4 sin2 γ

4
cos

3γ

2

(
Szj
)2

+ 2 sin3 γ

2
sin γ

(
τ zj −

(
τ zj
)2
)

+
i

4
sin 2γ

[
τ⊥j
(
Szj+1 − Szj

)
+
(
Szj+1 − Szj

)
τ⊥j + 2 cos

γ

2
τ zj
(
Szj+1 − Szj

)]
,(3.140)

(where τj = ~Sj · ~Sj+1 = τ⊥j + τ zj , and the boundary twist is encoded by SzL+1 = Sz1 ,
S±L+1 = e±iϕS±1 ), which is clearly non hermitian because of the imaginary factor in the
last group of terms. Whereas this is most likely crucial in order to obtain a non compact
continuum limit, it does however not prevent our models from having a perfectly physical
interpretation: again in the a

(2)
2 case, we have seen and will see again that the loop for-

mulation leads to a statistical mechanics model with positive definite Boltzmann weights,
suitable to the description of two-dimensional polymers with various interactions.

This raises a couple of questions. First, it is now legitimate to wonder how frequent
such examples of compact spin chains or lattice models with a non compact continuum
limit actually are, and how the emergence of non compact degrees of freedom can be
understood fundamentally. Second, we have not yet investigated what a non compact
continuum limit might change in practice, for instance in experiments or numerical sim-
ulations.

3.5.1 A look at the Bethe ansatz kernels

In the previously known cases of non compact continuum limits, the best understood of
which is probably the staggered six-vertex model, the emergence of a continuum spectrum
of exponents could be understood simply by looking at the integral form of the Bethe
equations in the thermodynamic limit (although a good qualitative understanding of such
spectra requires more complicated tools such as non linear integral equations [110, 61]).
As was exposed for specific cases in earlier sections, these are generally written as

ρ+ ρh = s+K ρ , (3.141)

where in cases involving several species of roots s, ρ, ρh are column vectors and K is a
square matrix. The generalization of (3.41) for conformal weights reads

∆ + ∆̄ =
1

4
m†(1−K)m+ w†(1−K)−1w , (3.142)
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where for 1−K the zero-frequency limit has to be taken. In all cases [54, 55], the kernel
K was found to be singular, namely 1−K has one or several zero eigenvalues, resulting
in conformal weights of the form

∆ + ∆̄ = 0×m2 +∞× w2 + . . . , (3.143)

where the 0 × m2 part can be interpreted as an infinite degeneracy of the gaps, or,
equivalently, as the trace for a continous spectrum of exponents.

The cases we have been studying here differ fundamentally, in that the emergence of
continous spectra cannot apparently be traced back to any singularity of the scattering
kernels. Taking for instance the regime III of a

(2)
2 , we have seen that the ’non compact’,

j 6= 0 levels were obtained by allowing roots with imaginary part π
2

and it seems therefore
natural to augment the scattering equations (3.49) with a finite density σ of such roots,
leading to

ρ =
1

2 cosh ω
4
(π − 3γ)

−
sinh ωπ

2

4 sinh ωγ
2

cosh ω
4
(π + γ) cosh ω

4
(π − 3γ)

ρh +
1

2 cosh ω
4
(π + γ)

σ ,

(3.144)
and

σ + σh =
1

2 cosh ω
4
(π + γ)

ρh +
cosh ω

4
(π − 3γ)

cosh ω
4
(π + γ)

σ . (3.145)

These equations seem, at first sight, perfectly innocuous, and suggest that the range
of possible mechanisms leading to the emergence of non compact degrees of freedom in
compact spin chains may be much richer than initially expected.

A possible suggestion might be to augment the scattering equations (3.144, 3.145) by
considering the small deviations of the 2-strings imaginary parts with respect to their
asymptotic value. From there, some singular coupling between, say, these deviations and
the density σ might be observed. How to treat these corrections precisely is however not
clear for the moment, and might require anyway to move further to non linear integral
equations. [TODO: give it a try?]

3.5.2 The search for non compact degrees of freedom

Looking back at our conclusions of section 3.2.6 on the continuum limit of the a
(2)
2 model,

one blatant aspect is that we have not been able, so far, to give any physical interpretation
to the continuous quantum number s or its lattice counterpart j. More precisely, just
as the discrete quantum number m at each imaginary time step is the integral over the
quantum space of the local magnetization m = 1

L

∑L
i=1 S

(z)
i , we could legitimatly hope

to find a lattice local observable σi such that j = 1
L

∑L
i=1 σi, or at least a local density

σ(x, t) in the continuum limit such that

s =
1

L

∫ L

0

dxσ(x, t) . (3.146)

In the next chapter, we will use a detailed analysis of the polymer phase diagram
around the Izergin–Korepin integrable points to convince ourselves that the compact
degree of freedom of regime III is in some sense closely related to the dynamics of empty
edges. However, this is enough to provide us with a clear interpretation of the nature
of this quantum number. Several attempts in this direction can be made. For instance,
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we can consider an extended integrable O(n) model where the empty edges (carrying
S(z) = 0) are now represented as carrying white loops, which now have a dynamics of their
own. Different magnetization (‘through-lines’) sectors can be defined for these loops, and
the corresponding critical (‘watermelon’) exponents may be hoped to recover the scaling
exponents associated with different values of the quantum number j. Unfortunately, this
does not seem to be the case. Alternatively, we can follow the lines of [121], where the

a
(1)
2 model is mapped onto a O(n) model on the square lattice. The latter can in turn

be interpreted in terms of a model of fully packed loops on the honeycomb lattice, and
from this mapping stems an additional symmetry of the model, namely an additional
conserved quantum number Q = 1

L

∑L
i=1(−1)i|S(z)

i |. m and Q together correspond to

the two Cartan generators of a
(1)
2 , and we could wonder whether Q, or some modification

thereof, might be conserved in the a
(2)
2 model too. Neither these ideas however seem to

provide satisfactory results.
After this series of unfortunate attempts, we now want to present some arguments

which, hopefully, should convince the reader that finding an interpretation of the con-
served charge s as the integral of some local density is in fact an impossible task.

(Non-)normalizable states and (non-)local operators

Let us first consider the simple case of the free compact boson theory, Φ ≡ Φ + 2π,
namely a quantum field theory whose target space is the compact group U(1). As was
introduced previously in the Coulomb-gas formalism, the primary fields of the theory can
be put in correspondence with the unitary representations of the group, namely the vertex
operators Vm =: eimΦ :, m ∈ Z, as can straightforwardly be seen in the mini-superspace
analysis where the primary fields are the eigenfunctions of the Laplacian on U(1). In
radial quantization (which is not here meant to be proper to CFTs), inserting a vertex
operator Vm at the origin yields the state |m〉 = Vm(0) |0〉, and the locality of the former
gets translated in the torus as the locality of the magnetization density.

A fundamental difference occuring in quantum field theories with a non compact target
space symmetry (such as Lorentz invariant theories) is that non compact groups do not
allow for non-trivial finite-dimensional unitary representations. This raises an apparent
paradox, as the action for such theories is usually written in terms of physical variables
(the position, angular momentum, energy momentum tensor, etc. . . ) and fields (the
electromagnetic potential, the Dirac spinor, etc. . . ) all transforming as finite-dimensional,
hence non-unitary representations, whereas the physical Hilbert space is expected to carry
an unitary and thus infinite-dimensional representation of the group. The answer to this
paradox is that the physical spinors or other local fields are typically written as

Ψα(x) =
∑
λ

∫
dp uα(p, λ)eipxa(~p, λ) , (3.147)

where the a(p, λ) operators, which transform under unitary, infinite-dimensional repre-
sentations, make up the actual observable content of the theory. In particular, these
include the primary fields of the theory, which contrary to the vertex operators of the
free compact boson theory, are not necessarily local anymore.

In the context of CFTs, any state |m〉 in the physical Hilbert space spectrum can be
formally associated with an operator Om = |m〉 〈0|, and we can in the radial quantization
setup run imaginary time backwards so that the operator is inserted at the origin, and
thus necessarily local, which seems in contradiction with the previous observations. The
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answer in this puzzle actually has to deal with normalizability, as it may very well be
that some operators inserted at the origin actually lead to non normalizable, hence non
observable states. More precisely, the reversed mapping from an operator O back to a
state of the Hilbert space is made by performing partial functional integration over a
circle with an insertion of O at the center, and we are here considering the case where
this functional integral may diverge, hence leading to a non-normalizable wave function.

The conclusion of all this is therefore that local operators such as the fields Ψα(x)
correspond to non-normalizable states, not observed in the physical Hilbert space of the
theory. Conversely, the Hilbert state is made of normalizable states, which correspond
to non-local operators, or in other terms do not allow for a nice interpretation in terms
of the basic fields Ψα(x) of the theory.

Let us see how this applies to the Black-Hole theory, whose primaries can be inter-
preted as representations of the non-compact group SL(2,R). For our purpose it is enough
to work in the mini-superspace description, namely r(x, t) → r(t) and θ(x, t) → θ(t),
therefore to forget about the additional discrete states introduced in section 3.2.4. As
already explained in section 3.2 the natural local fields r and θ can be recast in terms of
the complex field Ψ = sinh reiθ, in terms of which we recall that the classical action (that
is, without the dilaton term) has the simple expression

S =
k

4π

∫
d2x

∂µΨ∂µΨ̄

1 + |Ψ|2
, (3.148)

and the mini-superspace eigenwavefunctions are parametrized by the momenta n and J
in the angular and axial directions of the cigar, namely

φJn(r, θ) = −
Γ2(−J + |n|

2
)

Γ(|n|+ 1)Γ(−2J − 1)
einθ

sinh|n| rF (J + 1 +
|n|
2
,−J +

|n|
2
, |n|+ 1,− sinh2 r) . (3.149)

One can now distinguish between different series of SL(2,R) representations, namely

• The principal (continuous) series J = −1
2

+ is, s ∈ R, which gives rise to the

continuous spectrum observed as the continuum limit of the a
(2)
2 regime III. The

corresponding wave-functions are (δ function-) normalizable, but can however not
be associated with simple expressions of the field Ψ.

• The discrete series J = 1
2
, 1, . . ., for which the hypergeometric functions truncate.

The corresponding wave-functions have therefore a polynomial expression in terms
of Ψ, but are however non normalizable 6.

This is in perfect agreement with the general predictions above, we can finally conclude
that it should not be possible to relate primaries of the continuous series to local operators
acting on the Hilbert space, or in other terms that there actually no point in looking for
a nice, local interpretation of the continuous quantum number s.

6In the same way that the sigma model classical actions for the SL(2,R)/U(1) black hole and for the
SU(2)/U(1) parafermions are obtained from one another by formally mapping |Ψ|2 → −|Ψ|2, the eigen
wavefunctions for the parafermions are obtained from the non-normalizable black hole wavefunctions
through the same mapping.
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In spite of this conclusion, several interesting directions can still be investigated. In
particular, it might be possible to describe instead the quantum number s by some non-
local, or quasi-local densities on the Izergin–Korepin lattice or in the continuum limit.
In this spirit we mention the recent works on the spin 1

2
XXZ (a

(1)
1 ) chain [122, 123],

where auxilliary spaces carrying complex-spin representations of Uq(sl2) were for a whole
different purpose used to construct a continuous family of quasi-local conserved charges,
additional to the set of local charges corresponding to the successive derivatives of the
usual transfer matrix. Since the construction seems to relie essentially on the existence of
an underlying quantum group structure, it looks like it could without too much difficulty
be adapted to other models such as those studied in this chapter.

3.5.3 Non compact theories in practice

We now turn to the practical effects going along with a non compact continuum limit
for a given spin chain or lattice model. This general overview will be supplemented by
concrete examples in the next two chapters.

Measures of correlation functions

The observables measured experimentally can be usually traced back to various (fixed
time or dynamical) correlation functions. In condensed matter physics, particularly de-
tailed information is provided by inelastic neutron scattering experiments, where neutrons
are sent over a sample and the resulting scattering cross section is measured, which can
be shown to be proportional to a particular retarded correlation function in the sample,
the so-called dynamical structure factor.

Let us consider for instance the fixed-time correlation function 〈O(x)O(y)〉 of some
observable, either defined on the lattice or as some physical observable in the continuum
limit. In the critical case, such O never in practice corresponds exactly to one pure scaling
field, but rather can be decomposed over an infinite sum of scaling fields. As a result,
the correlation 〈O(x)O(y)〉 is usually written in ordinary CFT as

〈O(x)O(y)〉 =

(
ε

|x− y|

)2x1

+ C

(
ε

|x− y|

)2x′1

+ . . . , (3.150)

with x′1 > x1, so that its large distance behaviour is governed, at leading order, by a
power-law with exponent x1. Turning now to non compact theories, we expect the sum
(3.150) to be replaced by an integral coming from a continuum of subleading exponents,
namely

〈O(x)O(y)〉 =

∫
χ>x1

dχ
f(χ)

|x− y|2χ
+ . . . . (3.151)

The function f(χ), which is typically the product of the density of conformal states
ρ(χ) times some matrix element, is in general quite hard to know precisely (even once
the density of states is known, the computation of form factors associated with the
operators O is in general a very complicated task, see for instance [134]), however it can
be readily guessed that an expression of the form (3.151) should result in some asymptotic
behaviour really different than the power-law expected in the discrete case. In Chapter
4, we will consider such an example by making some reasonable analytic assumptions on
the function f(s), and will see how the result can be used to explain the so far unresolved
output of Monte Carlo simulations.
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Critical exponents from transfer matrix diagonalization

As discussed in the early sections of this manuscript, precise estimations of critical ex-
ponents for various statistical mechanics models or spin chains can usually be obtained
from the diagonalization of finite size transfer matrices or Hamiltonians. Let us focus
here on the example of the a

(2)
3 model, whose regime III, as reviewed previously, describes

a particular critical point of a problem of two Potts model coupled by the product of their
energy operators, or equivalently of a geometrical model involving two colours of loops.
In this formulation, the central charge and so-called two-colour watermelon exponents
x`1,`2 were defined and estimated numerically by Jacobsen and Fendley [92] 7. These are
obtained as

x`1,`2 =
c− c`1,`2

12
, (3.152)

where c = 3k2

(k+1)(k+2)
is the central charge of the loop model (obtained from the ground

state of the vertex model at twists ϕ1 = ϕ2 = γ, and we use the parametrization γ = π
k+2

),
and c`1,`2 is the effective central charge in the sector with (`1, `2) legs. Whereas c is
described by a discrete state, the central charges c`1,`2 for both `1 and `2 non zero are
obtained from the vertex model at ϕ1 = ϕ2 = 0 and therefore belong to the continuum
of states. In particular, we expect in this case finite size corrections of the form

x`1 6=0,`2 6=0(L) = x`1,`2(∞) +
A

(B + logL)2 , (3.153)

where the x`1,`2(∞) ≡ x`1,`2 are found from our Bethe ansatz analysis (see in particular

equation 3.112) to be given by x`1,`2 = 1
k+2

( `1
2+`2

2

8
− 1) + 1

4(k+1)
.

As an example, let us look at the exponent x2,2 for k = 3, whose finite size estimates
obtained from numerical resolution of the Bethe ansatz equations for L ≤ 90 are displayed
in figure 3.7. The values accessible from direct diagonalization, namely L ≤ 16, are
plotted in red and we reproduce the extrapolation used by the authors of [92] (obtained
by fitting the last few points to a second order polynomial in 1/L), yielding the estimate
x2,2 = 0.200(2). Taking larger sizes (blue points) in consideration however makes it
evident that this extrapolation is incorrect, as the logarithmic corrections in (3.153)
should be taken in account. As a matter of fact the exactly determined value of the
exponent is in this case x2,2 = 1

16
, which highly differs from the earlier estimation. This

may be recovered using numerical fits as follows: using three successive sizes (L,L+2, L+
4) we first fit to the form x2,2(L) = xext

2,2(L) + A
(B+logL)2 to obtain a series of extrapolants

xext
2,2(L). Plotting those against 1/L we observe a residual finite-size dependence which

is almost linear for L ≥ 50. Fitting therefore xext
2,2(L) = x2,2 + C/L we obtain finally

x2,2 = 0.071(6), which is in moderately good agreement with the exact conjecture.
This spectacular discrepancy between ’naive’ small-size fitting and exact asymptotics

can be generalized to other exponents and other values of k, as summed up in table 3.1. Is
it important to point out that for all of the exponents reproduced here the estimations of
[92] were given with a precision of three digits or more, which means that polynomial fits in
1
L

might very well have given satisfactory, though highly mislead, results for small system
sizes. This raises the question of whether other such cases of numerically misestimated
critical exponents might be hidden in the litterature.

7See the beginning of chapter 4 for a definition of the watermelon exponents for another model, which
can however be straightforwardly generalized to any of the loop models under consideration in this thesis.
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Figure 3.7: Finite-size estimates of the exponent x2,2 of the a
(2)
3 model for k = 3, plotted

against 1/L. The red points are the data for L ≤ 16 that were found in [92] by direct
diagonalisation of the transfer matrix. The blue points, extending this to L ≤ 90, were
obtained here by numerical solution of the Bethe Ansatz equations. The extrapolation to
L→∞ that led [92] to the erroneous value x2,2 = 0.200(2) is shown as a red dashed curve.
The extrapolation represented by a blue dashed curve takes into account logarithmic
corrections to scaling and leads to x2,2 = 1

16
.

k = 3 k = 4 k = 5
x2,2 0.200(2) 0.0625 0.130(2) 0.05 0.095(2) 0.0417
x4,2 0.774(1) 0.3625 0.510(5) 0.3 0.392(4) 0.2560
x4,4 0.926(4) 0.6625 0.677(2) 0.55 0.555(5) 0.4702
x6,2 1.70(5) 0.8625 1.15(5) 0.7167 0.84(5) 0.6131
x6,4 1.85(5) 1.1625 1.28(5) 0.9667 1.00(5) 0.8274
x6,6 2.08(7) 1.6625 1.54(5) 1.3833 1.26(6) 1.1845

Table 3.1: Watermelon exponents x`1,`2 of the a
(2)
3 model for different values of γ = π

k+2
.

In each case two numerical values are given: first the numerical estimation of [92] (the
error bar on the last quoted digit is given in parentheses), second, in italic, the exact
value obtained from Bethe ansatz analysis.
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Chapter 4

Polymer collapse and non compact
degrees of freedom

In this whole chapter we shall focus on the vertex interacting self-avoiding walk (VI-
SAW) introduced in section 2.3 for the description of two-dimensional polymers, and
whose phase diagram contains in particular integrable points associated with the differ-
ent regimes of the a

(2)
2 model. The aim of this study is twofold :

• First, the VISAW furnishes us with the first known example of a statistical mechan-
ics model with positive Boltzmann weights and a non compact regime. Besides the
fundamental importance of this observation, we would like to study more concretely
the ‘experimental’ consequences of the non compact continuum limit, as advertized
at the end of the last chapter.

• Second, we would like to investigate the nature of the polymers phase diagram
around the regime III integrable point in order to understand better the physics
associated with the non compact degree of freedom.

The plan of the presentation is the following. In section 4.1 we first introduce the
VISAW phase diagram, and relate the integrable points found in section 2.3 to the uni-
versality classes of the different phases. In section 4.2 we specialize to the non compact
point associated with the Izergin–Korepin model in regime III and investigate how the
corresponding non compact continuum limit affects the observation of some physical
properties. We then study numerically the (non integrable) perturbations around this
point, and gain from there some understanding of the nature of the non compact degree
of freedom (section 4.3). Besides these aspects, it comes rather as a by-product that our
results can be applied to a better understanding of the two-dimensional collapse transi-
tion. In section 4.4, we present what we believe to be a close-to-complete answer to this
long standing puzzle.

Preamble: polymer critical exponents from the transfer matrix

It has been shown previously in the framework of the six-vertex model how to relate the
different sectors of a loop transfer matrix to the sectors of fixed magnetization of the
corresponding twisted vertex transfer matrix.

In this short preamble, we define a set of interesting critical exponents, the watermelon
exponents, that can be computed from the diagonalization of either of these transfer
matrices, insisting on the fact that this procedure does not necessarily rely on integrability.
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x

y

x = −∞

Figure 4.1: The `-leg watermelon exponent is defined on the infinite plane from the
correlation function 〈O`(x)O−`(y)〉 (left). By a conformal mapping, the plane is mapped
on the cylinder, x is mapped to t = −∞, and amounts to considering a transfer matrix
acting on the sector with ` through-lines (right).

Let us temporarily assign an arbitrary orientation to each polymer in the model, destined
to be summed over to eventually recover the original model. The `-legs watermelon (or
fuseau) exponent x` are defined from the correlation function between the operator O`(x)
inserting ` oriented legs in the vicinity of a point x and the operatorO−`(y) that conversely
acts as a sink for ` legs in the vicinity of another point y (see figure 4.1). The operators
O±` are expected to be described in the continuum limit by an infinite sum of scaling
fields, and the corresponding correlation function should therefore be dominated at large
distance by the most relevant term, namely

〈O`(x)O−`(y)〉 ∝ |x− y|−2x` + . . . (4.1)

(the precise form of the corrections, already evoked in the previous chapter, is of course
of great importance, and will be the object of section 4.2; for the moment we however
wish to stay generic).

As explained on the figure as well as in the introductory section 1.4, a conformal
mapping from the infinite plane onto a cylinder of width L shows that the exponents
x` correspond precisely to those describing the scaling of transfer matrix eigenvalues in
the sector with ` through-lines with respect to those in the ground state sector (with
no through-lines propagating). In the language of a twisted spin-1 vertex model such
as the Izergin–Korepin model, where closed loops are given a weight n = −2 cos 2γ =
2 cos(π − 2γ) (=0 for polymers), we therefore measure the watermelon exponents as

x` = ∆` + ∆̄` = −c`(ϕ = 0)− c0(ϕ = π − 2γ)

12
, (4.2)

where c`(ϕ) is the effective central charge in the sector of magnetization sector ` for a
transfer matrix with twist parameter ϕ.

4.1 The VISAW phase diagram

We recall that the VISAW Boltzmann weights are obtained as products of the local
weights K, p and τ , associated respectively to each edge (‘monomer’), each straight seg-
ment and each doubly visited site. These can be recombined in terms of the weights asso-
ciated with local plaquettes for some O(n = 0) model, which in turn can be generalized to
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anisotropic, spectral parameter-dependent expressions 1. From there, the Yang–Baxter
equations can be solved, leading, back to the isotropic case, to five integrable points (see
section 2.3):

• The first one, usually labeled ‘branch 0’, corresponds to p = 0, K = 1
2
, τ = 2. For

reasons that should appear clear later, we will also call this point ΘDS, refering to
Duplantier–Saleur [140].

The four others are associated with the n = 0 points of the four integrable branches of
the Izergin–Korepin model (2.83), namely

• The point in branch 1 corresponds to γ = π
4
, u = u+ (in the notations of section

3.2), namely K = 1.00315..., p = 1.38704..., τ = 0.783227.... From our earlier study

of the a
(2)
2 model it is known to be described by the so-called regime I, more precisely

in the dense phase of the latter (to be defined shortly).

• The point in branch 2 corresponds to γ = 3π
4

, u = u+, namely K = 0.408391..., p =
0.785695..., τ = 0.675577..., and is described by another point in regime I, more
precisely in the dilute phase of the latter (to be defined shortly).

• The point in branch 3 corresponds to γ = π
4
, u = u−, namely K = 0.446933..., p =

0.275899..., τ = 2.63099..., and is described by the exotic regime III. We will also
call this point ΘBN, refering to Blöte–Nienhuis [75].

• The point in branch 4 corresponds to γ = 3π
4

, u = u−, namely K = 15.4476..., p =
1.17588..., τ = 0.0897902..., and is described by the regime II.

The phase diagram of the VISAW in the p,K, τ space is depicted in figure 4.2, and
we start discussing it for small values of the interaction parameter τ .

Weakly interacting case (small τ): the dilute and dense phases

For small values of the interaction parameter τ , the physics is essentially the same as
for usual (non interacting) SAWs: for small values of the fugacity K the polymer is in
a massive phase and remains of finite total length as the size of the system is sent to
infinity, whereas for high values of K the polymer is in a critical, dense phase where it
covers a finite fraction of the lattice edges in the thermodynamic limit; the two phases
are separated at intermediate K by a different, dilute critical phase (represented by a red
surface on the figure).

From the CFT point of view, the dense and dilute phases can be understood as the
‘dense’ and ‘dilute’ branches of the free compact boson theory, in the universality classes
described by the respective branches 1 and 2 of the integrable regime I. In the Coulomb
gas formulation of section 3.2.1 these correspond respectively to g = 1

2
and g = 3

2
, and

the corresponding central charges, obtained by giving non contractible loops the same
weight as contractible ones, hence choosing a twist ϕ = π− 2γ (so e0 = 1− g), are given
by

c = 1− 6(1− g)2

g
, (4.3)

1In all this presentation we will restrict to the n = 0 case which is the one relevant for the description of
polymers, but most of the discussion of the phase diagram can be generalized to other values −2 ≤ n ≤ 2.
As a matter of fact, we will sometimes use the denominations ΘDS and ΘBN in a looser sense, namely
extended to the respective branches 0 and 3 for different values of n.
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dense (Ising disordered)

dense (Ising ordered)

Figure 4.2: Phase diagram of the two-dimensional VISAW. The nature of the different
phases and transitions between them is explained in the main text. The two candidates
for the theta point universality class are represented by orange (DS) and green (BN) dots.

that is c = −2 in the dense phase and c = 0 in the dilute phase. The watermelon expo-
nents are similarly obtained as magnetic exponents of the Coulomb gas, or alternatively
by applying (4.2) to our Bethe ansatz results of section 3.2.1. We find respectively

x` =
`2

16
− 1

4
(4.4)

in the dense phase, and

x` =
3`2

16
− 1

12
(4.5)

in the diluute phase.

Increasing τ : the Ising ordering transition

In order to investigate the effect of larger values of τ , it is instructive to consider back
the Ising degrees of freedom introduced in section 3.2.1 (see also figure 3.2), that is Ising
living on the faces of the square lattice, such that two spins on adjacent faces share the
same orientation iff they are separated by a polymer bit. Whereas this Ising degree of
freedom is disordered in the usual SAW dense phase, it is clearly ordered in the ‘fully
packed’ limit of large K, nonzero τ , and therefore some critical Ising surface should be
expected in the phase diagram (in blue on the figure). Unsurprisingly, the universality
class of this critical surface is precisely described by the integrable point of branch 4,
namely the regime II of the a

(2)
2 model, which we know since our analysis of section

3.2.1 that it is described by a the dense branch of the free boson supplemented by a free
Majorana fermion, with a total central charge

c = −2 +
1

2
= −3

2
, (4.6)

while the watermelon exponents keep the same value as in the rest of the dennse phase,
namely (4.4). Note however that whereas the Ising-ordered and Ising-disordered dense
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phases are described by the same conformal field theory, they slightly differ on the lattice,
namely the odd (resp. even) magnetization sectors (sectors with an odd (resp. even) num-
ber of through-lines) for lattices with an even (resp. odd) number of sites are massive in
the ordered phase, while critical in the disordered phase. In the latter, the corresponding
critical exponents reproduce precisely the dense spectrum (4.4).

Above the Ising critical surface, the transition between the massive and dense (or-
dered) phases is now of first order, represented by a dashed surface on the figure.

The multicritical line

Whereas all the phases described so far are by now well understood, it is not the case of
the multicritical line joining the dilute, Ising critical, and first order surfaces, represented
in violet on the figure.

On this line lie the two remaining integrable points, ΘDS and ΘBN, represented re-
spectively by orange and green dots. As introduced in section 2.3, the physics at ΘDS,
and more generally in the whole branch 0, is conveniently described through a mapping
of the dilute loop model at loop weight n onto a model of completely packed loops with
weight n′ = n+ 1. The latter is critical for −2 ≤ n < 2, and described by a compact free
boson theory. Parametrizing n′ = −2 cosπg, the central charge and critical exponents
are obtained from the now usual Coulomb-gas analysis (see section 3.2.1), in particular
choosing the twist e0 = 1 − g (in the language of equation (3.45)) such as to give non
contractible loops the same weights as to contractible ones, we find

c = 1− 6
(1− g)2

g

xe0,M = −(1− g)2

2g
+
gM2

2
, (4.7)

which in particular yields at ΘDS (n = 0, n′ = 1, g = 2
3
) the central charge c = 0 and

watermelon exponents

x` = xe0, `2
=
`2 − 1

12
, (4.8)

as we have checked numerically from transfer matrix diagonalization. It should be pointed
[75] that a subtelty occurs in this case, namely on a lattice of even size L only the
dimensions corresponding to even values of ` are observed, as for instance one through-
line in the dilute model implies the existence of a second through-line in its fully-packed
reformulation.

Much differently, the point ΘBN is described by the black hole CFT, of a non compact
nature. The corresponding central charge is found by adjusting the twist in (3.51) to
ϕ = π − 2γ, so c = 0 once again, while the watermelon exponents are computed, taking
much care of the discrete states structure, as [63]

x` =
`2

16
− 1

6
. (4.9)

Investigating the effects of such a non compact CFT on the physical quantities will be one
of our important concerns in the course of this chapter. Another fundamental question
will be for us to understand the nature of the critical theory along the multicritical line
between ΘDS and ΘBN, and beyond.
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4.2 Physical properties at the non compact point

In this section we focus on the point ΘBN, where recent Monte-Carlo simulations by
Bedini et. al. [135] yielded numerical estimations of some critical exponents disturbingly
far-off the values derived from the Bethe ansatz solution.

These exponents are the correlation length exponent ν and the partition function ex-
ponent γ, both introduced in section 1.2, and which can be obtained from the watermelon
exponents using the well known set of scaling relations [140],

η = 2x1 , ν =
1

2− x2

,
γ

ν
= 2− η , (4.10)

namely, using (4.9),

ν =
12

23
' 0.522 , γ =

53

46
' 1.152 , (4.11)

as already computed by Nienhuis et. al. [78], whereas the simulations of [135] yielded

ν ' 0.576(6) , γ ' 1.045(5) . (4.12)

The discrepancy between (4.11) and (4.12) is something essentially unheard of in the
field of exactly solvable models and conformal field theory, where, usually, theory and
‘experiment’ match almost perfectly. One could legitimately argue that the simulations of
[135] involve a canonical ensemble of polymers with fixed lengths whereas the (integrable)
models we have been considered throughout this thesis involve a grand canonical ensemble
of walks with fluctuating lengths, however this point is usually easily taken care of by
considerations of Legendre transform, and has never, in all the other cases studied so far,
led to any particular difficulty.

As we will see now, these mysterious features can be traced back to the peculiar, non
compact nature of the continuum limit at ΘBN. Rather than the canonical simulations
of [135] we will here focus on grand canonical Monte-Carlo estimations of the exponent
η, from which we will be able to deduce qualitative predictions about the discrepancies
in ν and γ.

4.2.1 Grand-canonical Monte-Carlo simulations

Throughout this whole section we focus on the n = 0 version of the spin-spin correlation
function, namely the correlation function

G1(e, e′) =
∑

V ISAW : e→e′
K# monomers τ# doubly visited sites p# straight segments , (4.13)

between two lattice edges e, e′ which, in the continuum limit, becomes precisely the
watermelon correlation function 〈O1(r)O−1(r′)〉.

The polymer configurations are sampled on square lattices of sizes L×L with periodic
boundary conditions in both directions, with one polymer end fixed at the center. The
second end evolves according to an improved version of the so-called ‘backbite algorithm’
[136] (see also the extensive review on Monte Carlo simulations for polymers, [137]) such
that it properly takes in account the Boltzmann weight of doubly visited sites and straight
segments. The trivial, empty configuration which is just represented as a point-like
polymer at the center of the L×L lattice is assigned the winding numbers wx = 0, wy = 0.
Whenever the polymer crosses one vertical or horizontal boundary the corresponding
winding number is increased by ±1. We proceed as follows
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1. start from the trivial, point-like configuration

2. run 500× L× L time steps to decorrelate from this initial configuration

3. then run 107 ×L×L time steps, and sample the configurations with wx = wy = 0,
measuring the end-to-end distance r between the two ends of the polymer.

This produces an histogram of r2 of the form

H(r) =
∑

|e′−0|2=r2

G1(0, e′) + . . . , (4.14)

where the dots indicate for finite size corrections related to the fact that the polymer
interacts with itself if part of it goes around the torus in either direction. In practice
we produce for each size several of such histograms (between 10 or 20 depending on the
size), and compute the corresponding average and error bars. The function G1(0, e′) can
be extracted from H(r) by either some binning procedure, or for each integer value of
r2 by dividing the H(r) by the number of different possible e′ such that |e′ − 0|2 = r2,
eliminating those for which no such e′ exist (for instance r2 = 3 cannot be obtained
on the lattice; more generally we are in presence of one application of Jacobi’s two-
squares theorem, a simple proof of which can be given in [138]). After normalizing
G1(one lattice spacing) = 1 the function we eventually consider is G1(r) measured for
r given by a fixed ratio of L, r = αL with α � 1. In practice α = 0.25 will turn out
convenient. This ensures that with respect to the total size of the lattice the polymer
is almost closing on itself, and therefore that the corrections coming from walks going
around the torus and back should scale as L−2x2 , where the two-legs watermelon exponent
x2 is positive all the critical phases of interest.

We will in particular look at the points ΘBN and ΘDS. The latter, which is described
by a compact CFT, will serve us as a check of the efficiency of our algorithm and as a
comparison for the odd results obtained in the former.

Compact case: the point ΘDS

The point ΘDS is described by an ordinary, compact CFT, and we typically expect that
G1(r) should be given by an expression of the form

G1(r) ∝
(

ε

rIJ

)2x1

+ C

(
ε

rIJ

)2x′1

+ . . . , (4.15)

where x′1 > x1. This guarantees that the contributions of the various terms to G1 can
be well separated at large distance, and that the asymptotic behavior is fully determined
at leading order by x1, which is here known from (4.8) to be equal to 1

4
. From there, we

expect that the measure of G1(αL) as a function of L should behave as

logG1(αL) = −2x1 logL+ A+ C
( ε

αL

)2x′1
+ . . . . (4.16)

As shown in figure 4.3 (where it turns out sufficient to simplify the corrections in (4.16)
by setting x′1 = 1, and where we further note Cε

α
≡ B), these expectations are nicely

corroborated by our results, and yield an estimation x1 ' 0.245 which is close to the
expected x1 = 1

4
. Note that this does not correspond to the ` = 1 case in the previously

given equation (4.8), but rather to ` = 2, as stems from the previously mentioned argu-
ment that imposing one path between two sites on the square lattice with straight lines
forbidden (p = 0) is actually equivalent to imposing two of them.
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LogG = -2 x1 Log L + A - B / x

2.5 3.0 3.5 4.0 Log L

- 2.0

- 1.5

- 1.0

- 0.5

Log G(L/ 4)

Figure 4.3: Fit of logG1 (0.25L) against logL measured from Monte-Carlo sampling at
the point ΘDS for L = 10, . . . 100 (the error bars are also plotted, yet relatively small).
A fit of the form (4.16) seems in good agreement with the numerical data, and yields
x1 ' 0.245.

Non compact case: the point ΘBN

Things are different in the non compact case, where we expect that the operators O±1

should be described by the whole continuum of exponents contributing to the ` = 1
sectors, parametrized by an exponent of the form (3.55)

x1,s = x1 + κs2 . (4.17)

We therefore expect that G1(r) should have the form

G1(r) ≈
∫ ∞

0

ds
f1(s)

r2(x1+κs2)
, (4.18)

where the amplitude f1(s) is determined by several factors, including the matrix elements
between the lattice spin observable and the eigenstates with quantum numbers (m =
1, j = 0, 1, . . .) as defined in section 3.2 and the (properly defined) density of states of
the correpsponding continuum. Even though the theory is non unitary, we expect the
function f1 to be positive, as was checked on cylinders of sizes L = 4, 6, 8, 10, where we
explicitly computed the matrix elements 〈1, j|

∑L
i=1 S

(+)
i |0, 0〉.

The practical point of an expression such as (4.18) is that the term going as r−2x1 ,
which is the only one identified by the naive determination of the 1-leg operator, de-
termines the leading behavior of the correlation function at extremely large r only. It
is difficult to say much more without having a better idea of the function f1, but it is
nonetheless clear to start, that any match of an expression such as (4.18) to a pure power
law r−2x should lead to an effective exponent x > x1. Let us try to go a bit further, by
noting that writing

G1(r) = r−2x1

∫ ∞
0

dsf1(s)e−2a1s2 ln r , (4.19)

there are known techniques [139] to extract an asymptotic expansion for G1 based on the
analyticity properties of f1 near the origin. We will restrict ourselves to the leading term
here, and simply observe that, if

f1(s) = sz [b0 + sb1 + . . .] , s→ 0 , (4.20)
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LogG = -2 x1 Log L + A - B Log Log L

LogG = -2 x1 Log L + A - B / x
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- 1.0
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Figure 4.4: Fit of logG1 (0.25L) against logL measured from Monte-Carlo sampling at
the point ΘBN for L = 10, . . . 100 (the error bars are also plotted, yet relatively small).
In this case a fit of the form (4.16) is clearly not appropriate (orange curve), and we find
much better agreement with (4.22) (blue curve).

we will have

G1(r) = r−2x1(ln r)−(1+z)/2

[
c0 +

c1√
ln r

+ . . .

]
, (4.21)

so that the measure of G1(αL) as a function of L should behave as

logG1(αL) = −2x1 logL+ A− 1 + z

2
log logL+

c1√
logL

+ . . . . (4.22)

Looking at our numerical results (see figure 4.4), the least we can say is that these seem
much better accounted for by formula (4.22) than by the one we used in the compact
case. The blue curve in the figure is obtained by keeping only the three first terms in
the right-hand side of (4.22), and plugging at hand the known value of x1 = − 5

48
. This

yields the estimation z ' 1.7, which is however very sensitive to the presence of higher
corrections in the fit, and shall therefore not be trusted too quantitatively.

Even though the numerical results presented in this section seem rahter satisfactory,
it could be of course that f1 has some very different behavior: at this stage, very little is
unfortunately known about this problem. It is in any case quite striking that, even though
x1 < 0 (and therefore at very large distances the function G1(r) should be an increasing
function of r), at the distances that could be achieved here G1(r) is a decreasing function
of r, hence an effective x1 > 0 at intermediate distances.

4.2.2 The ν and γ exponents

We now come back to the canonical case, which the object of most of the lattice Monte
Carlo simulations presented in the litterature [135]. Instead of the correlation function
G1(e, e′) (4.13), the quantity usually studied is rather the fixed length partition function,

Z1(e, e′) =
∑

V ISAW : e→e′
τ# doubly visited sites p# straight segments , . (4.23)
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so even if the function f1(s) was known, going from G1(e, e′) to Z1(e, e′) would require
making hypotheses on the scaling form of the correlation function in the vicinity of the
critical point K 6= KBN, and inverting the corresponding expressions of G1 considered as
a Laplace transform of Z1.

Although there seems little point in speculating about what may happen until more
detail is available for the function f1, we can use a short cut to the estimations of the
exponents ν and γ the set of scaling relations (4.10). Indeed, the canonical function Z1

and its two-legs analog Z2 should be expected to involve, as do their grand-canonical
counterparts, a continuous mix of exponents resulting in effective values of x1 and x2

larger than their exact expectations (corresponding to the bottoms of the continua), and
we therefore set x1 = − 5

48
+ε, x2 = 1

12
+ε. To first order in ε we thus find γ = 53

46
− 234

529
ε < 53

46

and ν = 12
23

+ 144
329
ε > 12

23
, so namely the measured ν and γ should be respectively larger

and smaller than their ‘true’ values, which is indeed the case in the simulations of [135],
where we recall that γ = 1.045 < 53

46
and ν = 0.576 > 12

23
.

As far as the γ and ν exponents are concerned, the strange discrepancy observed
between the numerics of [135] and exact results from integrability is therefore compatible
with our scenario.

4.2.3 Discrete states and polymer attraction

We now turn to further observations relating the discrete states structure at the ΘBN

point to unusual physical properties. For this sake, let us recall the expression of the
central charge of the regime III Izergin–Korepin at γ = π

4
, namely, from (3.51),

c(ϕ) =

{
2− 12ϕ2

π2 for ϕ ≤ π
4
,

−1 + 4
π2 (π − ϕ)2 for ϕ ≥ π

4
,

(4.24)

which is related to the scaling of the leading transfer matrix eigenvalue Λ
(L)
0 by

− log Λ
(L)
0

L
= f∞ −

πc(ϕ)

6L2
+ o(L−2) . (4.25)

As discussed earlier, the point ΘBN is recovered by taking ϕ = π
2

, which leads to c = 0.
It is now interesting to consider what happens near ϕ = π

2
, and we set ϕ = π

2
− ε

2
so that

non-contractible loops are now allowed, with a weight ñ = ε + O(ε3). Setting f∞ = 0
in (4.25), which is the natural normalization where the partition function at n = ñ = 0
is unity (the only contributing configuration is the empty one, with weight 1), we can
expand the central charge at this order, and thus

log Λ
(L)
0 =

1

L

(
ñ

3
+
ñ2

6π

)
(4.26)

Imagine now taking a long cylinder of length L′: as explained in section section 1.4, the
partition function to leading order in L′ is given by

lnZ ≈ L′ log Λ
(L)
0 ≈ L′

L

(
ñ

3
+
ñ2

6π

)
(4.27)

At the same time, this partition function can be expanded in powers of ñ as

Z = 1 + ñz1 + ñ2z2 + . . . (4.28)
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where z1 is the partition function with one non contractible loop anywhere on the cylinder,
z2 the one with two such loops, etc... From this it results

lnZ = ñz1 + ñ2

(
z2 −

1

2
z1

2

)
+ . . . , (4.29)

and comparing (4.27) and (4.29), we find

z2 −
1

2
z1

2 =
L′

L

1

6π
. (4.30)

Clearly, the positive sign of the right-hand side of (4.27) has to do with the positive
curvature of the second expression in (4.24), and is therefore intimately related with
the discrete state structure, whereas for ‘usual’ critical phases for polymers the central
charge is generally a quadratic function of the twist with negative curvature, resulting in
a negative value of (4.27). Let us now see what this means physically. The terms in z2

and 1
2
z1

2 corresponding to pairs of non contractible loops distant from each other clearly
cancel, as shown by the following diagram,

z2

− 1

2


z1 · z1

+

 = 0 . (4.31)

On the contrary terms in z1
2 where the two non contractible loops intersect each other

are not allowed in z2, and are therefore responsible for negative contributions to z2− 1
2
z1

2.
In the case where polymers attract one another (that is, typically, τ > 1), we however
expect that this effect should be at least partially compensated by the mutual attraction
energy between pairs of non contractible loops coming close to each other, which should
increase the contributions of terms in z2 without affecting those in z1

2. Whereas this
countereffect is expected to remain rather small in usual cases such as the ΘDS or the
dense phase, it is noticeable that in the ΘBN case the attraction seems strong enough to
make those a priori small contributions in fact dominant.

4.3 Probing the non compact degrees of freedom

Having investigated in detail the physical properties at the peculiar point ΘBN, we now
wish to investigate the phase diagram in the vicinity of this point. As we will see, this
will help us consolidate the intuition that the non compact degree of freedom s is closely
related to the dynamics of empty lattice edges.

4.3.1 Relationship between the black hole and dense phase

We start with the simple but crucial observation that the radius (or, in the conventions
of equation 3.46, the coupling constant g) of the compact boson in regime III is the same,
for a given value of γ (that is, for a given values of the loop weight n), as that of the
compact boson describing the corresponding dense phase. Specializing to the polymer
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case (n = 0), we see for instance that the watermelon exponents in the dense phase (4.4)
and at ΘBN (4.9) are related by

xD
m = xBN

m −
1

12
, (4.32)

which can be easily interpreted as the identical m2 term arises from the fact that both
theories involve the same compact boson, whereas the shift of − 1

12
is associated with a

shift of the central charge coming from the non compact boson. More precisely, we can
‘undo the twist’ and rewrite the scaling of the transfer matrix eigenvalues in both cases,

−
log Λ

(L)
`,BN

L
= f∞ +

2π

L2

(
`2

16
− 1 + 1

12

)
,

−
log Λ

(L)
`,D

L
= f∞ +

2π

L2

(
`2

16
− 1

12

)
, (4.33)

which shows that taking the leading eigenvalues in the `-legs sectors at the ΘBN point and
making the non-compact boson massive, hence replacing the (untwisted) central charge
c = 1 + 1 by c = 1, should recover the scaling behaviour of the dense phase.

Switching back to the twisted case, we expect that making the non compact boson
massive while leaving the compact one untouched should make the discrete level disap-
pear, letting the central charge be determined by the first expression of (4.24) at twist
ϕ = π − 2γ = π

2
(that is c = −1), minus the c = 1 central charge of the free compact

boson, so all in all c = −2, which is precisely the central charge of the dense polymers.
These observations made at n = 0 (γ = π

4
) can be easily generalized, so the point

ΘBN, and more generally the critical point in regime III, therefore look in many respects
like a dense polymer supplemented by a non compact degree of freedom. To illustrate
this point, we refer to figure 4.5, where we study the evolution of the levels (m = 0, j)
as we perturb the monomer fugacity K away from its value at ΘBN. From there it is
apparent that the non compact (j 6= 0) levels with become massive on both K < KBN

and K > KBN sides, corresponding respectively to the massive and dense phases.

4.3.2 Probing degrees of freedom

We now turn more particularly to the study the average density of monomers −∂f0

∂K

evaluated numerically from the ground state free energy f0 = − 1
L

log Λ0 as a function of
the monomer fugacity K. Both in the twisted and untwisted cases we find very clearly
that there is a first order phase transition, with a discontinuity in monomer density.
Whereas in the massive K < KBN phase the average density of monomers is simply equal
to zero in the thermodynamic limit, in the dense K > KBN phase it assumes a finite
value with non critical fluctuations, namely the physics of the model is simply the one of
the six-vertex model or ordinary fully packed loops.

These observations strongly suggest that the non compact degree of freedom is as-
sociated with fluctuations of monomer density, as these fluctuations become non critical
precisely when the non compact degree of freedom disappears. Since the total number of
edges on the lattice is of course constant, the number of empty edges and the monomer
density are directly related, and we therefore propose that the empty edges of the loop
model (or, the edges carrying a state 0 in the vertex model) have a dynamics described
in the continuum limit by a non compact boson, in a similar way as they do, at the point
associated with regime II, have a dynamics described by a critical Ising degree of freedom.
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Figure 4.5: Eigenlevels fi = − 1
L

log Λi in the sector ` = 0, measured for L = 8 as a
function of the monomer fugacity K around the point ΘBN, in the ’untwisted’ case where
non contractible loops are assigned a weight ñ = 2. Overlined in black are the levels
(0, j) (j = 0, 1, 2 from bottom to top). For j 6= 0, these levels become massive away
from K = KBN. Similar results are observed in other magnetization sectors and for other
values of the weight ñ of non contractible loops.

4.3.3 A model for K ≈ KBN

In order to refine the connection between the non compact boson and the dynamics of
empty edges (or alternatively, the fluctuations of the monomer density), we now search
for the operator content driving the transition from the black hole CFT to that of the
dense compact boson. Namely, we look for a perturbation of the black hole action (3.61)
of the form

S =
k

4π

∫
d2x
|∂µΨ|2

1 + |Ψ|2
2

+ (K −KBN)

∫
d2x [Φ] (4.34)

which, contrary to the perturbations (3.81) associated with imaginary staggerings of the
spectral parameter, is this time not integrable. Resulting from a perturbation of the form
(4.34), we expect on dimensional grounds that the divergence of the correlation length
as K → KBN should be described by an exponent ν = 1

2−x , where x is the dimension of
the most relevant operator Φ 2. Numerically, we obtain the latter by studying the ratios
Λ

(L)
i

Λ
(L)
0

between of the leading and some given excited transfer matrix eigenvalues at various

system sizes L and looking for the value of ν for which the data at various sizes satisty
a collapse of the form

log
Λ

(L)
i

Λ
(L)
0

= −2π

L
F
(

(K −KBN)L
1
ν

)
. (4.35)

As discussed in the previous chapter the black hole theory allows for operators as-

2There is not much experience in statistical mechanics dealing with theories with a non normalizable
ground state, as it is the case for the black hole. As a consequence, it is not clear whether the exponents
x entering the definition of ν should be measured with respect to the true c = 2 + 6

k−2 central charge or
the effective central charge c = 2.
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sociated with both normalizable and non normalizable states, and the operator(s) [Φ]
coupled to K −KBN may be of either nature. The former correspond to the non unitary
series of SL(2,R), with negative conformal weights both over the true c = 2 + 6

k−2
and

effective c = 2 central charges, and therefore would lead to exponents ν < 1
2
. This case

is easily discarded from the numerical estimation of ν, as we find at various twists and
values of γ numerical estimations of ν which, although not very precise, are all definitely
larger than 1

2
. This means that the operator coupled to K −KBN must be normalizable,

hence belongs to the continuous, principal series j = −1
2

+ iR, whose exponents we recall
to be of the form

∆(∆̄) = −j(j + 1)

k − 2
+

(n± kw)2

4k
. (4.36)

It is reasonable, in the absence of other indications, to consider the bottoms of the
continua given by j = −1

2
. Since monomer pieces involve moreover two links, the most

conservative operators one can think of are associated to j = −1
2
, n = 0 and j = −1

2
, n =

2, with respective dimensions ∆(∆̄) = 1
4(k−2)

and ∆(∆̄) = 1
4(k−2)

+ 1
k

with respect to

the true central charge of the model, and therefore of effective dimensions ∆(∆̄) = 0
and ∆(∆̄) = 1

k
with respect to the effective central charge c = 2. (we see in particular

that operators with w 6= 0 have too large a dimension to be relevant). The perturbation
we consider is therefore written as a linear combination of these two operators, whose
corresponding wavefunctions in the mini-superspace approximation are obtained from the
formula (3.149), so in the action (4.34) we have to use

[Φ] = αF (1/2, 1/2; 1,−|Ψ|2) + β(Ψ2 + Ψ̄2)F (3/2, 3/2; 3,−|Ψ|2) (4.37)

We refer to [63] for a detailed analysis of the perturbation (4.37), where it is shown in
particular that α = 0 would lead to both fields r and θ becoming massive on both sides
of the transition. Since this is clearly not the case we have α 6= 0, so the action is
dominated by the corresponding term, which is the most relevant, and we can simplify
our analysis by taking β = 0. In this case the hypergeometric function is monotonically
decreasing from F = 1 for z = 0 to F ∼ 1

|z| when |z| → ∞, so we are lead to the following
conclusions.

• For K < KBN, the action is minimized when F is at its maximum, so |Ψ| = 0. This
corresponds to a massive theory, with no critical degrees of freedom left.

• For K > KBN, the action is minimized when F is as small as possible, so |Ψ| → ∞,
or r → ∞. This corresponds precisely to the cylinder limit of the cigar, and the
only remaining fluctuating field is θ, namely the free compact bosonic part of the
black hole, which we have besides identified as describing precisely the dense phase.

Note that this mechanism also nicely explains the first order transition observed in the
previous section: for K < KBN, Ψ = 0 yields an action S ≈ SCFT +

∫
d2x(K −KBN)α,

while for K > KBN we find S ≈ SCFT + 0, hence a discontinuity in the derivative of the
action, that is, a first order transition.

We point out a nice possible physical interpretation of K > KBN phase as a broken
symmetry phase, and of the compact boson describing the dense phase as a Goldstone
boson. Note that one has to be careful with the Coleman Mermin Wagner theorem,
stating that there is no long range order for a system with a broken continuous symmetry
in two dimensions or less, at any non zero temperature, but which stops being valid in the
unitary case we are dealing with here. In fact, the phenomenology we propose is similar
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in spirit to the first order phase transition occurring in systems described by a complex
boson, with action

S =

∫
d2x|∂µΨ|2 + (K −KBN)|Ψ|2(1− |Ψ|2) (4.38)

a model known to describe the superfluid transition.

Partial conclusion

This is probably enough to convince us that indeed the transition when K crosses KBN

is driven by the field j = −1
2
, n = 0, of dimension 0 with respect to the effective central

charge ceff = 2, and ∆ = 1
4(k−2)

with respect to the true central charge of the theory, even
though neither of these expressions could be securely observed from numerical estimations
of the exponent ν. Turning now to the loop model, it is generally believed – and we have
checked this numerically – that the ground state energy of the theory (or the free energy
per site in the 2d statistical point of view) is independent of the boundary conditions.
This means that the scaling should be described by the operator with weight ∆ = 1

4(k−2)

again, unless - as happens in the case of the 6 vertex model and its loop formulation for
instance - the change of boundary conditions leads to the cancellation of some terms, and
another, related but different, scaling dimension. In our case however, the corresponding
value

ν =
2(k − 2)

4k − 9
(4.39)

seems to fit numerics reasonably well, and is moreover definitely the correct value for
k = 8, n = 0, as in this case one can directly identify the operator coupled with K−KBN

with the two-leg operator O2 of dimension ∆ = 1
24

at this point.

4.4 The collapse transition

We now turn back to the study of the collapse transition, or theta point. As introduced
in section (1.2), this point is of a tricritical nature [18], and much effort has been put
forward during the past 25 years to identify the corresponding exponents. In their 1987
paper [140], Duplantier and Saleur (DS) have studied a model proposed originally by
Coniglio et. al. [141], where the polymer is represented by a SAW on the honeycomb
lattice, the faces of which are absent with a probability p. The phase configurations are
annealed, and result in a self-attraction of the polymer leading to a tricritical point at the
percolation treshold p = 1

2
. The percolation clusters (the perimeters of the absent faces)

form a gas of loops with weight n = 1 and monomer fugacity K = 1, and the approach
of [140] uses the fact that the SAW describing the polymer can be considered on the
same footing as the those loops, although of a different origin. As a result, the critical
properties of the annealed SAW can be described in terms of a O(n) model in its dense
phase, for which the central charge and conformal exponents we have already studied in
equations (4.7) and (4.8), and are therefore in the same universality class as the branch
0 in the VISAW phase diagram, explaining a posteriori the ΘDS denomination. From
there, Duplantier and Saleur yield the exponents

νDS =
4

7
, γDS =

8

7
, (4.40)
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which were then shown [142] to be stable against the addition of further interactions,
as well as against a change of the lattice. The equivalence with the universality class
of the ΘDS point in the VISAW phase diagram was established further from numerical
investigation in [143] through a mapping onto kinetic growth walks on the Manhattan
lattice. It is worth noting that, although in the same universality class, the branch 0
yields ν0 = 4

7
, γ0 = 6

7
, as results from the already explained fact that for the corresponding

square lattice model the exponent x1 is constrained to take the same value as x2, namely
x1 = 1

4
.

In spite of this promising results, a severe objection can be formulated to the claimed
universality of the ΘDS point. Indeed the latter is a point of particular ‘p = 0’-related
symmetry, which is otherwise broken whenever p 6= 0. Labeling by 1, . . . L the sites of
the loop row-to-row transfer matrix it is indeed easily seen that for p = 0 the action of
the latter sends each loop segment occupying an odd (even) site on an even (odd) site, or
alternatively contracts a pair of neighbouring segments or creates pairs on neighbouring
sites, and therefore all in all anticommutes with the total m̃ =

∑L
i=1(−1)i|S(z)

i | which
counts a term ±1 for each loop segment on a given row with a site parity-dependent sign.
In each through-lines sector the transfer matrix therefore breaks into smaller sectors,
which get mixed together as soon as p = 0. It can therefore reasonably argued, as it was
in [75] the symmetry breaking at p = 0 might lead the system to another, more generic
theta point describing the true nature of the collapse transition, whereas ΘDS would then
be of some higher multicritical nature. This observation lead Nienhuis and collaborators
to naturally assume that the real theta point physics should correspond to the integrable
ΘBN point [75, 78], whose exponents ν and γ we recall to be given by

νBN =
12

23
' 0.522 , γBN =

53

46
' 1.152 . (4.41)

Contrary to these expectations, evidence has been gathered over the last several years
[144, 145] that the exponents (4.40) of the DS model are indeed those of the generic theta
point. This however still did not complete the answer to the puzzle of understanding the
full VISAW phase diagram, as it remained to be solved the fundamental question of which
kind of physics did the ΘBN point describe, if not the O(n = 0) ϕ6 theory expected for the
tricritical theta point (see equation (1.12)). As we have reviewed at length throughout
this manuscript the answer to this question is at the least quite surprising, as the ΘBN

point is in fact described by a CFT of a non compact nature, namely the SL(2,R)k/U(1)
black hole, with k = 8 at the polymer point. That this CFT has obviously nothing
to do with some O(n = 0) ϕ6 field theory arguably rules it out as a candidate for the
description of the theta point, and we have moreover been able in the previous sections to
relate the odd outcome of numerical experiments at this point to the continuous features
of the corresponding CFT spectrum.

In order to make the picture complete, we now would like to understand the nature
of the renormalization group flow along the multicritical line joining ΘDS to ΘBN, and
beyond. Indeed, the conclusion that the former does correspond to the generic theta
point suggests that it might be stable in the K, p, τ plane despite its apparent peculiar
symmetry, and therefore that there should be a flow ΘBN → ΘDS in both directions of
the multicritical line. This conjecture moreover agrees with Zamolodchikov’s c–theorem,
stating that the central charge decreases along the renormalization group flow 3, however
checking it numerically is a very difficult task, as in particular the precise location of

3Note that the c–theorem only applies to unitary theories, and therefore not to the twisted ΘBN
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the multicritical line away from the points ΘBN and ΘDS is unknown, and numerical
estimations of critical exponents slightly off it are badly plagued by the flow towards
the dense or massive phases as well as the proximity with the Ising or dilute critical
surfaces. We can, however, make interesting observations by investigating what happens
of the non compact boson when following continuously the levels (m, j) from ΘBN to ΘDS.
Whereas perturbations of the former point in the direction of the dense or dilute phases
was shown to result in making the non compact boson massive (see for instance figure
4.5 ), we observe that the levels j 6= 0 appear to remain critical at ΘDS, and therefore
most likely on the whole multicritical line. From the study of the first few of these levels
in the sectors of zero magnetization, it seems further these become degenerate with the
magnetic excitations of the compact boson at ΘDS, namely

xDS0,j = g
j2

2
, (4.42)

to be compared with (4.7).
To conclude, the conjecture we therefore make is that the critical behaviour on the

multicritical line, except at the ΘBN point, is described by the physics of the ΘDS point,
namely a free compact boson CFT with exponents given by (4.8), while the non compact
levels of ΘBN become exactly degenerate with the corresponding magnetic spectrum.

theory, which allows for negative conformal weights. However, it is natural to expect that the RG flow
between twisted theories should be the same as the flow between their untwisted versions. In the latter
case the theories can be considered as unitary provided one restricts to the normalizable states, and the
c–theorem predicts a flow from the theory with c = 2 to the theory with c = 1, that is, from the ΘBN

black hole to the ΘDS compact boson.
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Chapter 5

Application to the Integer Quantum
Hall Effect

In this final chapter we come back to what we initially gave as one of the main motivations
for studying non compact CFTs, namely, the quest for an exact solution Integer Quan-
tum Hall Effect plateau transition. In chapter 2 we have, following the work of Ikhlef
et. al. [39], devised a truncated exactly solvable model for the computation of trans-

port observables at the transition, the so-called b
(1)
2 model, and left pending the issue of

whether such a truncation might or might not recover the untruncated universality class.
Regarding the results of chapter 3, where several compact statistical mechanics models
were shown to allow for an unsuspected non compact continuuum limit, the more general
question, to which a negative answer would have commonly been given until recently,
of whether such a truncation might at all have for continuum limit a non compact field
theory is now to be considered with some respect. After a review of the results by Ikhlef
et. al. [39] in section 5.1, we will present in section 5.2 a complete solution of the b

(1)
n

model, borrowing heavily from our earlier analysis of the cousin a
(2)
3 model. It will not

come as much surprise anymore that once again, the result is a CFT of a non compact
nature, hence giving the latter question a positive answer. This will allow us to correct
some of the results in [39], and to reconsider the former question of whether this CFT
truly describes the plateau transition. Even though this may not be precisely the case,
we will present in section 5.3 an appealing qualitative understanding of how the operator
content of the IQHE transition might partly understood from its truncated counterpart.

5.1 Review of the results by Ikhlef et. al.

The construction of Ikhlef et. al. of an integrable model for the truncated geometrical
description of transport observables at the Quantum Hall transition was presented in
detail in section 2.4.

We will here review some of the results of [39] for this model, recast in the notations of

the b
(1)
2 model. Namely, we rewrite the integrable weights (2.120) in terms of the quantum

group anisotropy γ and the spectral parameter u, related to θ and ϕ by

γ = 2π − 2θ , u = ϕ , (5.1)

so that in particular the loop weight is n = −2 cos 2θ = −2 cos γ. The (loop) transfer
matrix is 2π-periodic as a function of γ, and the study of its different regimes can be
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restricted to the study of γ ∈ [0, π] and the two isotropic values of the spectral parameter
u± = 3γ

2
(+π). The different regimes identified in [39] are then

• Regime I, for u = u+ and γ ∈
[
0, 2π

3

]
. The central charge of the loop model is found

numerically to be of the form,

c = 2

[
1− 6γ2

π(π − γ)

]
+

1

2
, (5.2)

and the physics of the model is identified as that of two decoupled compact bosons
associated with the two colours of loops, plus some additional Ising degree of free-
dom which we presume to have the same origin as that appearing in the regime II
of the a

(2)
2 model.

• Regime II, for u = u+ and γ ∈
[

2π
3
, π
]
. The central charge of the loop model is

c = 2

[
1− 6(π − γ)2

πγ

]
, (5.3)

so this regime is described simply by the two decoupled bosons, without an addi-
tional degree of freedom.

• Regime III, for u = u− and γ ∈
[

2π
3
, π
]
. The central charge is of the form

c =
3(π − 2γ)2

πγ
+

1

2
, (5.4)

and the physics is presumably that of the regime IV, which will be studied in detail
in the following, supplemented by a critical Ising degree of freedom.

• Regime IV, for u = u− and γ ∈
[
0, 2π

3

]
, with a central charge of the puzzling form.

c =
3(π − 2γ)2

π(π − γ)
. (5.5)

There are two points corresponding to n = 0, namely γ = π
2
, which can be considered as

candidates for recovering the universality class of the non integrable critical truncation
(2.106). Among these two, the point in regime I is immediatly discarded: first the two
colours are trivially decoupled, which we would not expect from the strong coupling
resulting from the averaging over random phases, second we have at this point c = −7

2
,

which is clearly not in agreement with the c = 0 value expected in the case of disordered
systems, as can be seen from the trivial partition function Z = 1 or by numerical study
of the non integrable truncation. In contrast, the point in regime IV seems to show a non
trivially coupled physics and yields indeed c = 0, so gives presumably a good description
of the original critical truncation. This motivates us to study regime IV further.

Parametrizing γ = π
k+2

, the central charge in this regime reads

c =
3k2

(k + 1)(k + 2)
, (5.6)

and is for integer values of k identified with that of the coset

SU(2)k × SU(2)k
SU(2)2k

=
SO(4)k
SO(3)k

, (5.7)
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Interestingly, this coset theory also appeared in the description of the a
(2)
3 model in regime

III, see for instance equations (3.123) and following. Using the same parametrization of
γ in that case and setting ϕ1 = ϕ2 = γ such as to give non contractible loops the same
weight n as contractible ones, we recover precisely the central charge (5.6) from the Bethe
ansatz result (3.111), as was already observed by Fendley and Jacobsen in [92]. In this
sense, the dilute model we are considering here and its fully packed counterpart in their
respective regimes IV and III and for integer k can be considered as the ‘dilute’ and
‘dense’ branches of the same SO(4)k

SO(3)k
coset theory 1. This, however, is not enough of an

answer for our purpose, as the coset description at integer k does not say anything about
the nature of the CFT describing regime IV for continous values of γ, and in particular in
the k = 0 case of relevance in the Quantum Hall problem. Whereas it could be naturally
believed that all critical exponents are given throughout the whole regime by an analytic
continuation of their coset expressions, at it is the case for instance for the central charge,
it is observed in [39] that in particular the thermal exponent xt defined as the conformal
dimension for the first excited state in the zero-leg sector deviates from the continued
value 2k

k+1
for r . 1

2
, a fact left unexplained by the authors of [39].

In order to fill these gaps, we therefore turn to a detailed analysis of the Bethe ansatz
equation for the b

(1)
n in the particular case of regime IV.

5.2 Continuum limit of the b
(1)
n model

5.2.1 Bethe ansatz solution in regime IV

The b
(1)
2 transfer matrix acts on the tensor product of five-dimensional Uq(so

(1)
5 ) evaluation

representations, to which we can assign the two colours interpretation by indexing the
states as

{↓↓ , ↑↓ , 00 , ↓↑ , ↑↑} , (5.8)

and defining the two sets of spin one operators S
(z)
i,(1), S

(z)
i,(2), so that we write the transfer

matrix as

T (u) = Tra

(
Řa1(u) . . . ŘaL(u)e

i
(
ϕ1S

(z)
a,(1)

+ϕ2S
(z)
a,(2)

))
, (5.9)

where the Ř matrix is given in its vertex formulation in [99], and as in the fully-packed,

a
(2)
3 counterpart we have introduced two independent twist parameters ϕ1 and ϕ2. The

transfer matrix (5.9) commutes independently with the two magnetizations

m(1) =
1

2

L∑
i=1

S
(z)
i,(1)

m(2) =
1

2

L∑
i=1

S
(z)
i,(2) , (5.10)

(where the 1
2

factors have been introduced to parallel the quantum numbers of a
(2)
3 ,

where the eigenvalues of S
(z)
i,(1,2) are ±1

2
rather than ±1, 0) and its eigenvalues in the

1One should however keep in mind that, whereas the regime IV of the dilute model is defined for
γ ∈

[
0, 2π

3

]
, the regime III of the dense model is defined for γ ∈

[
0, π4

]
, so in particular does not contain

the n = 0 point, at which the two colours are therefore decoupled.
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sector (m(1),m(2)) are described a set of roots of two types {λ(1)
j , λ

(2)
k }j=1,...,m1; k=1,...,m2 ,

whose numbers m1,m2 are related to the magnetizations through

m(1) =
L

2
− m1

2
− m2

2

m(2) =
L

2
−m2 , (5.11)

and which are solution of a set of nested Bethe ansatz equations [99]

e2iϕ1

(
sinh(λ

(1)
i − iγ

2
)

sinh(λ
(1)
i + iγ

2
)

)L

=

m1∏
j=1,j 6=i

sinh(λ
(1)
i − λ

(1)
j − iγ)

sinh(λ
(1)
i − λ

(1)
j + iγ)

m2∏
k=1

sinh(λ
(1)
i − λ

(2)
k + iγ

2
)

sinh(λ
(1)
i − λ

(2)
k − iγ

2
)

ei(ϕ1−ϕ2)

m1∏
j=1

sinh(λ
(2)
k − λ

(1)
j − iγ

2
)

sinh(λ
(2)
k − λ

(1)
j + iγ

2
)

=

m2∏
l=1,l 6=k

sinh(λ
(2)
k − λ

(2)
l − iγ

2
)

sinh(λ
(2)
k − λ

(2)
l + iγ

2
)
. (5.12)

The corresponding energies read

E = ±
m1∑
i=1

2 sin γ

2 cosh 2λ
(1)
i − cos γ

, (5.13)

whose two signs can be related, as for the previously studied models, to the two choices
u± of the spectral parameter. In particular the regime IV corresponds to a minus sign
and γ ∈

[
0, 2π

3

]
. There, the ground state is seen to be described by L

2
2-strings of λ(1)

roots with imaginary part slighly smaller than ±
(
π
2
− γ

4

)
. and L

2
2-strings of λ(2) roots

with imaginary part slighly bigger than ±
(
π
2
− γ

4

)
2. The scattering equations for the

corresponding densities read

ρ1 + ρh1 =
sinh ωγ

4
+ sinhω 3γ

4

sinh ωπ
2

+ ρ1

sinhω
(
π
2
− 3γ

2

)
+ sinhω

(
π
2
− γ

2

)
+ 2 sinhω

(
π
2
− γ
)

sinh ωπ
2

+ρ2

−2 sinhω
(
π
2
− γ

2

)
− sinhω

(
π
2
− γ
)

sinh ωπ
2

(5.14)

0 = ρ1

−2 sinhω
(
π
2
− γ

2

)
− sinhω

(
π
2
− γ
)

sinh ωπ
2

+ρ2

2 sinhω
(
π
2
− γ

2

)
+ sinhω

(
π
2
− γ
)

sinh ωπ
2

, (5.15)

that is ρ1 = ρ2 ≡ ρ, which is already apparent from the look of finite size solutions. The
scattering equation for the density ρ is written in the now usual form (3.40), whose kernel
at zero frequency reads K = 1− 4γ

π
, so the conformal weights follow as

∆ + ∆̄ =
γ

π
n1

2 +
π

4γ
w1

2 , (5.16)

2A technical subtelty occurs with the latter for γ close to zero, as the imaginary parts ±
(
π
2 −

γ
4 + ε

)
reach ±π2 for finite values of γ, leading to singular roots configuration where the two roots of a 2-string
are arbitrarily close to each other, since Bethe roots differing by shifts of iπ are identified. When this
happens, the merged 2-string gets replaced by a pair of roots close to each other on the axis of imaginary
part π

2 . Here we will not need to bother about this difficulty, and considering γ far enough from zero
will be enough for a general purpose.
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where n1 and w1 are respectively the number of holes and backscatterings of the of 2-
strings in the ground state distribution, so in particular each hole corresponds to 2 holes
of λ(1) roots and 2 holes of λ(2) roots. Using similar arguments as in the regimes II and
III of the a

(2)
3 model, this can be rewritten into

∆ + ∆̄ =
γ

2π

(
(m(1))2 + (m(2))2

)
+

π

2γ

(
(w(1))2 + (w(2))2

)
, (5.17)

which is precisely the same as the conformal weights (3.107) obtained for the regime

III of the a
(2)
3 model, while the central charge is found numerically to be c = 3 at zero

twist. As in the a
(2)
3 case only two compact bosons appear in the conformal spectrum

(5.17), and we look for the missing part by a detailed analysis of the excitations in each
(m(1),m(2)) sector. These can once again be indexed by some integer j, and correspond
to removing simultaneously j 2-strings of λ(1) roots and j 2-string of λ(2) roots, to be
replaced respectively by j pairs of anticonjugate λ(1) (resp. λ(2)) roots with imaginary
parts π

2
(resp. on the real axis). Numerical resolution of the Bethe equations up to sizes

L ∼ 100, gives rather solid confidence the following spectrum of effective central charges
at zero twist

−
cm(1),m(2),j

12
= − 3

12
+

γ

2π

(
m(1) +m(2)

)2
+
(
Nm(1),m(2),j

)2 A(γ)[
Bm(1),m(2),j(γ) + logL

]2 ,
(5.18)

where this time none of the functions A(γ) and Bm(1),m(2),j(γ) could however be measured
with suitable precision. Extending our study to non zero values of the twist, we observe
that the effective central charge are described by the same exact same expressions as in
the a

(2)
3 case, namely by equation (3.112). In particular the central charge reads

c = c0,0,0 =

{
3− 6 (ϕ1)2+(ϕ2)2

πγ
+ o(1) for ϕ1 + ϕ2 ≤ γ ,

3− 6 (ϕ1)2+(ϕ2)2

πγ
+ 3 (ϕ1+ϕ2−(2j+1)γ)2

γ(π−γ)
for ϕ1 + ϕ2 ≥ γ ,

(5.19)

so taking the values ϕ1 = ϕ2 = π− γ which gives non contractible loops the same weight
n = −2 cos γ as contractible ones, we recover the expression (5.5). The watermelon
operators x`1,`2 , which can be defined in the same fashion as they were for the one-colour
model in the beginning of the previous chapter, are obtained from the scaling of the
leading transfer matrix eigenvalues on the sector of magnetizations (m(1),m(2)) = ( `1

2
, `2

2
),

so in particular for both `1 and `2 non zero we expect

x`1,`2 = −c2`1,2`2,0(ϕ1 = ϕ2 = 0)− c0,0,0(ϕ1 = ϕ2 = π − γ)

12
, (5.20)

that is,

x`1,`2 =

(
(`1)2 + (`2)2

8
− 1

)
γ

π
+

γ

4(π − γ)

=

(
(`1)2 + (`2)2

8
− 1

)
1

k + 2
+

1

4(k + 1)
, (5.21)

(for either `1 or `2 equal to zero subtelties occur due to crossovers between levels; these

occur analogously in the a
(2)
3 case and are analyzed in detail in [64], however such water-

melon sectors will not be of any use for applications to the IQHE and we will not discuss
them here).
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From our analysis, we conclude that the regime IV of the b
(1)
2 model is described by

the exact same CFT as the regime III of the a
(2)
3 model, namely a theory involving two

compact and one non compact boson, or more precisely the product of the SL(2,R)/U(1)
black hole and one decoupled compact boson, which can alternatively related to a coset
CFT of the type SO(4)/SO(3). A particularly important point is that this geometrical
truncation of the plateau transition has itself a non compact continuum limit, and there-
fore, if not equivalent to the original IQHE universality class, may at least share several
important features of the latter.

Before looking in this direction, we would like to give a deeper field-theoretical inter-
pretation to the equivalence between the continuum limits of the a

(2)
3 and b

(1)
2 models in

their respective regimes III and IV.

5.2.2 b
(1)
2 , a

(2)
3 , and Pohlmeyer reduction

Let us first note that the similarity between the continuum limits of the a
(2)
3 and b

(1)
2

models had already been hinted from the duality of the associated Dynkin diagrams in
the end of chapter 2. In general, the algebras a

(2)
2n−1 and b

(1)
n are dual to each other, while

the algebra a
(2)
2n is self-dual. Let us also recall our conjecture from chapter 3, equations

(3.138-3.139), namely that two integrable perturbations can be built from the
SO(N)Ñ
SO(N−1)Ñ

coset, the latter of which (associated with the Pohlmeyer reduction of the SU(N+1)
SO(N+1)

coset)

was identified in section 3.4 as the continuum limit of the a
(2)
N−1 model in regime III.

Gathering these two observations together with the results of the previous section, it
seems reasonable to conjecture that the continuum limit of the b

(1)
2 model in regime IV

corresponds precisely to the deformation of the SO(4)
SO(3)

coset resulting from the Pohlmeyer

reduction of SO(5)
SO(4)

, namely to a perturbation by an operator of dimension ∆ = 2
Ñ+2

(where

Ñ = k in the notations of the previous sections). More generally, we conjecture that all

the b
(1)
n models have four different regimes, and that their continuum limit in regime IV

can be related to the integrable perturbation (3.138) of the coset SO(N)
SO(N−1)

, where N = 2n.
In conclusion,

• For N = 2n even, the two deformations of the coset SO(N)
SO(N−1)

are associated re-

spectively with the b
(1)
n model in regime IV and with the a

(2)
2n−1 model in regime

III.

• For N = 2n + 1 odd, the deformation of the coset SO(N)
SO(N−1)

corresponding to the

Pohlmeyer reduction of SU(N+1)
SO(N+1)

is associated with the a
(2)
2n model in regime III. The

remaining integrable deformation was related in the particular N = 3 case to the
continuum limit of the staggered six-vertex model [55], but a possible generalization
to higher values of N is left as an open problem.

We now leave these general considerations aside, and specialize to the case of the b
(1)
2

model in the regime IV of interest, for which we now have at hand a complete exact
solution. In the next paragraph, we revisit some of the puzzling results presented in
[39], and find in particular the exact expression of several interesting critical exponents.
Recalling the discussion of section 3.5.3, it should not be a surprise for us that some
of these expressions may show appreciable differences with the numerical estimations of
[39]. This motivates the urge to seriously put back in question the main conclusion of
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Figure 5.1: Effective central charge c0,0,1(ϕ1, ϕ2 = ϕ1) as a function of ϕ1 at γ = π
2
,

obtained from numerical resolution of the Bethe ansatz equations for sizes up to L = 58.
For ϕ1+ϕ2 < 3γ (left part of the curve), the corresponding state lies in the continuum, and
the convergence is logarithmic. For ϕ1+ϕ2 > 3γ the state is a discrete, and no logarithmic
corrections to the central charge are expected. The reason for the bad convergence
towards the expected result (purple curve) is that at ϕ1 = π the level jumps to an excited
electric mode, hence a cusp in the central charge which is badly accomodated in finite
size.

the latter work, namely that the geometrical truncation does not recover the universality
class of the IQHE plateau transition.

5.2.3 Critical exponents of the truncated model

The thermal exponent of the truncated, model which we already mentioned in the end
of section 5.1 is the conformal weight associated with the first excited state in the sector
with no legs, that is, with the state (m(1),m(2), j) = (0, 0, 1). From the results of the
previous section we expect the central charge for this state is

c0,0,1 =

{
3− 6 (ϕ1)2+(ϕ2)2

πγ
+ o(1) for ϕ1 + ϕ2 ≤ 3γ ,

3− 6 (ϕ1)2+(ϕ2)2

πγ
+ 3 (ϕ1+ϕ2−3γ)2

γ(π−γ)
for ϕ1 + ϕ2 ≥ 3γ .

(5.22)

(see figure 5.1), so taking ϕ1 = ϕ2 = π − γ we see that the relevant expression is the
first one for 2π

5
≤ γ ≤ π and the second one for 0 ≤ γ ≤ 2π

5
, yielding

xt = −c0,0,1(π − γ, π − γ)− c0,0,0(π − γ, π − γ)

12
=

{
k + 1

4
1

1+k
for k ≤ 1

2
,

2k
1+k

for k ≥ 1
2
,

(5.23)
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which explains the change of regime observed in [39]. In particular, the SU(2)k×SU(2)k
SU(2)2k

thermal exponent xt = 2k
k+1

is obtained in the branch where (0, 0, 1) corresponds to a
discrete state, and does not account for the issues of normalizability occuring at low twist
in the non compact CFT. On the contrary, the point k = 0 of interest for applications to
the IQHE lies in the region where (0, 0, j) is part of a continuum, and we expect at this
point

xt =
1

4
, (5.24)

which is quite far from the numerical estimation of [39], hence giving another example
of how unsuspected non compact CFTs can give rise to strongly misestimated critical
exponents. As already noted in [39], the exponent (5.24) coincides at k = 0 with the
watermelon x2,2 (5.21), which means that as in the case of dilute polymers it is associated
with a perturbation of the monomer fugacity.

We now turn to the correlation length exponent ν (1.18), which describes the power-
law divergence of the correlation length when perturbing the energy level E away from the
center of Landau bands Ec, and which is expected from various numerical experiments to
lie somewhere between 2.3 and 2.6 at the IQHE transition (see the discussion in section
1.3). On the CC lattice, this perturbation is reproduced by introducing a staggering of
the spectral parameter between the even and odd sublattices, which is not the same as
the usual staggering between the vertical spaces in the row-to-row transfer matrix, and
in particular does not preserve integrability, if any. Turning to the integrable truncated
model, the latter remains exactly solvable under such a perturbation at the particular
point γ = π

3
, where it is mapped [39] onto a theory of a free Majorana fermion with a

mass scale going like the squared magnitude of the staggering perturbation, which leads
using scaling arguments to the relation

ν =
2

2− xt
(5.25)

differing from the usual formula (see, for instance, section 4.3.3) by a factor 2. The
authors of [39] further assume that this relation should hold throughout the whole regime
IV, which would yield, using our now exact value of the operator xt,

ν =
8

7
. (5.26)

The latter assumption may be criticized in several ways. First, it is possible that the
relation (5.25) between ν and xt, which is exact at k = 1, remains valid only in the
‘discrete state regime’ k ≥ 1

2
. In the k ≤ 1

2
regime, the perturbation of the conformal

action associated with the shift |E−Ec| may indeed be described by a continuum of fields
rather than by a single one, which would presumably result in a different expression for
the exponent ν. Second, it is by no means guaranteed that the operator coupled to
|E − Ec| is truly what we identified as (0, 0, j).

In the absence of any solid alternative proposition we therefore rely on the numerical
estimations of ν by data collapse, which lead Ikhlef et. al. to ν ' 1.1. The rather good
agreement with (5.26) may be considered as an indication that despite the above criticism
equation (5.25) or a closely related version thereof might hold at the n = 0 point, and
we therefore reproduce the main conclusion of [39], namely, that the truncated model is
not in the universality class of the original IQHE plateau transition. However, while it
is concluded in [39] that the truncation should be considered as the first of a series of
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models whose limit (corresponding to the untruncated case) should eventually recover
the IQHE universality class, we claim here that it is, by itself, a lot more interesting than
initially thought. Namely, we now want to convince the reader that several highly non
trivial features of the plateau transition can be interpreted in the light of our analysis of
the b

(1)
2 truncation.

5.3 Continuous exponents at the IQHE transitions

In section 2.4.2, we have sketched, following [82], the description of the Chalker–
Coddington model in terms of a supersymmetric vertex with GL(2|2) symmetry. These
algebraic considerations were beautifully put to profit in the respective papers [82] and
[147], in a way we shall now briefly review and try to interpret geometrically.

5.3.1 GL(2|2) interpretation of point-contact conductances

To proceed, we recall our discussion of section 2.4.2, where it was explained, following
[82], how the computation of disorder-averaged transport observables on the Chalker–
Coddington network can be reexpressed in terms of a vertex model for supermatrix fields
Z and Z̄, symmetric under the naturally induced action of the GL(2|2) Lie supergroup.
Without going into too much detail, we shall only recall [86] that the latter includes the
action of the a SU(1, 1)×SU(2) bosonic subgroup, whose property of being non compact
will be essential for the following. In particular, we distinguish between the (infinite-
dimensional) unitary irreducible representations of SU(1, 1) the (positive and negative)
discrete series labeled by a spin j = −k

2
, k ∈ N and the continuous series, labeled by a

spin j = −1
2

+ i s, s > 0. The corresponding quadratic Casimir has the same form as that
of SU(2), namely

C2 = j(j + 1) . (5.27)

In [82], this framework is used to study the moments of the point-contact conductance,
defined in section 2.4.2, where it served as a setup for the definition of the now familiar
two-colour loop model. On the Chalker–Coddington network, a subset of edges (e1, e2)
is opened by introducing a on each a source and a drain, namely

o2
i2

o1
i1

.

The moments of the PCC, written in terms of the discrete time Green’s function
(2.91) as

gq = |G(o2, i1, 1)|2q , (5.28)

can be reformulated in the GL(2|2) vertex model as

gq =
〈
vq(o2)v∗0(i2)× v0(o1)v∗−q(i1)

〉
, (5.29)

where the operators v (resp. v∗) transform under the irreducible GL(2|2) representa-
tions V, V ? already introduced in section 2.4.2. Importantly, the action of the subgroup
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SU(1, 1)×SU(2) on these representations is unitary, and these are seen in [82] to belong
to the (respectively positive and negative) SU(1, 1) discrete series. The fact that the
tensor product V ⊗V ? decomposes over the continuous series of SU(1, 1) representations
is then used to write

vq(o2)v∗0(i2) =

∫ ∞
0

ds µ(s) 〈V, q × V ?, 0|s, q〉ϕs,q(e2)

v0(o1)v∗−q(i1) =

∫ ∞
0

ds′ µ(s′) 〈V, 0× V ?,−q|s′, q〉ϕs′,−q(e1) , (5.30)

where in the continuum limit the functions ϕs,±q are described by sum of scaling fields,
whose most relevant we denote by its dimension ∆s. From GL(2|2) invariance the correla-
tion functions 〈ϕs,qϕs′,−q〉 are independent of q, and are non zero iff the product ϕs,qϕs′,−q
contains in its decomposition the trivial, singlet GL(2|2) representation, namely iff s = s′.
In other terms [82],

〈ϕs,q(r)ϕs′,−q(r′)〉 =
δ(s− s′)
µ(s)

|r − r′|−2∆s ,+ . . . (5.31)

which leads to

gq =

∫ ∞
0

µ(s)ds 〈V, q × V ?, 0|s, q〉 〈V, 0× V ?,−q|s, q〉 |r − r′|−2∆s + . . . , (5.32)

where the exponents ∆s are then conjectured to be exactly quadratic, namely [82]

∆s =
Xt

8
(s2 + 1) , Xt = 0.613± 0.012 . (5.33)

Such a form of the conformal weights owes to the fact that the CFT primaries should
correspond to representations of the GL(2|2) symmetry group, and that the conformal
weighhts should have GL(2|2)-invariant expressions, the simplest of which is given by the
quadratic Casimir (5.27). A refined analysis [147] of the scaling exponents has shown
recently that corrections to this parabolic dependence should be included, which one
can interpret as coming from higher power terms such as (C2)4 or the quartic Casimir
invariant C4.

5.3.2 Loop interpretation

The appearance of a continuous spectrum of critical exponents is, of course, related to
the plateau transition CFT being non compact. More specifically, the expression (5.32)
involving such a continuum is nothing else than another example of the generic formula
for correlation functions in non compact CFTs, (3.151).

Let us now consider, as in as in section 2.4.2, the loop formulation of the q = 1 PCC
moment between two edges e1, e2, namely g(e1, e2), which we recall to be given as a the
sum over disorder-averaged configurations of pairs of weighted paths joining the source
i1 to the drain o2 in the above figure. In the continuum limit this is simply described as
a correlation function

g(r, r′) = 〈O1,1(r)O−1,−1(r′)〉 , (5.34)

where the operators O`1,`2 are the two-colour equivalent of the watermelon operators
defined earlier for polymers, see figure 4.1. Specializing to the truncated model, we
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expect that such operators should correspond to continuous sums of conformal fields
corresponding to the continua in the (`1, `2) sectors. The exponent associated to the
bottom of the continua in the `1 = `2 = 1 sectors reads from (5.21) as x1,1 = −1

8
, and we

therefore write for the truncated case, following the lines of section 4.2,

g(r, r′) =

∫ ∞
0

ds
f1,1(s)

|r − r′|− 1
4

+κs2
, (5.35)

where, as in the case of polymers, f1(s) is expected to be some complicated function
multiplying the black hole density ρ(s) (3.68) by form factors of the watermelon oper-
ators. However, it is noticeable that the qualitative form (5.32) expected for the PCC
at the quantum Hall transition can be recovered by the very first of the corresponding
geometrical truncations (in particular, the expressions (5.32) involve the contribution
from only one continuous quantum number s, as does (5.35)). A better understanding
of this correspondence is certainly needed. In particular, the density µ(s) introduced by
Janssen, Metzler and Zirnbauer is found to be

µ(s) =
s

2
tanh

πs

2
, (5.36)

and obviously does not coincide with (3.68). In this sense the role of further truncations,
if not to add other non compact directions to the theory, might be thought as correcting
the density of states and the precise s, `1, `2 dependence of conformal exponents.

Leaving here this very speculative considerations, we now turn to an interesting con-
clusion that can be drawn for the more recent work of Bondesan and Zirnbauer, [147].

5.3.3 Pure scaling observables

There, inspired by the more general work [148], the authors construct correlation functions
on the lattice which are argued to be described in the continuum limit this time not by
a continuum of scaling fields, but rather by a pure power law. We will here consider the
simplest of such functions, namely open only one edge e1 ≡ c on the CC lattice, and
consider an observation region on some untouched edge e2 ≡ r,

r

o1
i1

c

.

As for the computation of the PCC current is injected through i1 at the rate of one unit
of probability flux per discrete time unit, and after a sufficient amount of time the system
has reached a stationary state |ψk〉 where the equivalent amount of probability flux exits
through o1. Following [147], we then consider the moments of the probability amplitude
at the observation points r, namely |ψc(r)|2q, which in the supersymmetric vertex model
should be written as a correlation function of the form

|ψc(r)|2q =
〈
Φq(r)× vo(o1)v∗−q(i1)

〉
. (5.37)

While vo(o1)v∗−q(i1) has the same interpretation as for the computation of the PCC mo-
ments and therefore decomposes as a continuous sum over SU(1, 1) representations (5.30),
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Φq(r) is argued to be a highest-weight under the action of the latter group (actually for
the whole GL(2|2) action), and therefore to correspond, in the continuum limit, to a
pure scaling conformal field. As a simple consequence of the orthogonality principle for
two-point functions of conformal fields with different dimensions only one term of the
continuous sum (5.30) contributes to the correlation function (5.37), which is therefore
seen to decay with a pure power law, namely [147]

|ψc(r)|2q ∼ |c− r|−2∆q , (5.38)

where
∆q ≡ q(1− q) (5.39)

As in the PCC case, we look for an interpretation of this fact from the loop model
perspective by restricting to q = 1, which is however quite a particular case in the sense
that (5.39) yields ∆ = 0. More precisely the function |Ψc(r)|2 is shown to be exactly = 1
for any r [R. Bondesan, private communication], a fact which will however not prevent us
from making a few interesting observations 3. In the loop language, it is easy to recognize
|Ψc(r)|2 as the sum over path configurations going from i1 to o1 and passing through the
edge r (see figure 5.2) which we expect that they might be described in the continuum
limit by a correlation function of the type

|ψc(r)|2 =
〈
O2,2(c)Õ2(r)

〉
. (5.41)

While the operator O2,2(c) is of the same nature as the watermelon operators O±`1,±`2(c)
considered in the computation of the PCC, we are tempted not to give the same interpre-
tation to the operator Õ2(r). In terms of paths summations the two indeed differ slightly
in that the former opens edges which loops are therefore forbidden to go through, whereas
the other does not. While in the continuum limit such a difference is irrelevant and the

3In particular, there is no combinatorial argument enforcing the function |Ψc(r)|2 to be trivial. We
note in passing that a trivial observable is obtained from the computation of a ‘conductance’ on a lattice
with only one source and one drain, as can be interpreted from a probability conservation. This can be
seen for instance by considering the following simple lattice

s

d
eiϕ1

eiϕ3

eiϕ2
,

(where ϕ1, ϕ2, are random phases ϕ3). Introduce two ‘cuts’ ω1 and ω2 on edges with phases ϕ1 and ϕ2,
and label the different paths connecting s to d by the sequence of their crossings ω1 and ω2. We then write
G(s, d, 1) = G1 +G2, where G1 = ω1(1+ω1 +(ω1)2 + . . .)(1+ω̃2 +(ω̃2)2 + . . .), ω̃2 = ω2(1+ω1 +(ω1)2 + . . .),
and similarly for G2 with 1↔ 2. It is then easy to see that

G1 =
t2eiϕ1

1− r2ei(ϕ1+ϕ3)

1−
r2
(

1− t2ei(ϕ1+ϕ3)

1−r2ei(ϕ2+ϕ3)

)
ei(ϕ2+ϕ3)

1− t2
(

1
1−r2ei(ϕ1+ϕ3)

)
ei(ϕ2+ϕ3)

 , (5.40)

and similarly for G2 with r ↔ t, ϕ1 ↔ ϕ2. The sum G1 + G2 can be simplified, and is seen to be of
modulus one for any realization of the disorder.

In [39], it is stated that such a property can be related with the fact that a zero watermelon exponent
x1,1 should be expected in the vertex model. In contrast, we find for the truncated model x1,1 = − 1

8 ,
hence giving a meaning to the latter as a measure for the ‘quality’ of the truncation.
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o1
i1

c

Figure 5.2: Loop configuration contributing to the pure scaling function |ψc(r)|2 at the
IQHE transition.

,

watermelon operators can be defined without any particular precaution, it could be here
that the operator Õ2(r) ‘cuts’ the continuum of exponents in the `1 = `2 = 2 sector, hence
accounting for the pure scaling behaviour of the correlation function |ψc(r)|2. Needless to
say, this proposition would deserve to be extended to observables other than the trivial
|ψc(r)|2 in order to gain any sort of credit, and at present it is not clear whether or how
the the q 6= 1 moments |ψc(r)|2q could be interpreted in the loop model formulation. In
parallel, it would be interesting to look for the field content of the operators O`1,`2 and
Õ`1,`2 without any reference to particular correlation function. For instance, a greatly
satisfactory result would be that the former involve the whole continua of fields in the
(`1, `2) sectors, while the latter only select the bottom of these continua. Investigating
this direction however still requires quite a lot of progress and sends us back to the general
problem of giving a clear meaning to the non compact degrees of freedom, starting with
the simpler case of the a

(2)
2 model (see section 3.5.2).
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Conclusion

TODO
Conclude
Perspectives

• One of the most intriguing questions opened by the models studied in this thesis is
probably the understanding of the nature of their non compact degrees of freedom.
As explained in section 3.5.2, we believe that these cannot be interpreted in terms
of local operators, however much hope is put in the recent approach of [122, 123]
(although derived in a whole different perspective), which construct semi-local con-
served quantities for the spin-1

2
XXZ chain and seem like they may be generalized

to other integrable models.

• Noticeable in all this work has been the major role played the black hole CFT.
While this fascinating theory was already know to describe the continuum limit
of the staggered 6v model [56, 58, 58](and further, of a larger phase in the phase
diagram of the Uq(sl(2|1)) integrable model [60]), we have seen in this thesis that it

is also obtained as the continuum limit of the a
(2)
2 model, and plays a fundamental

role in that of the a
(2)
3 and b

(1)
2 models.

To my knowledge, not many non compact CFTs are as well known as the black
hole, and it seems like an appealing perspective that we now could be able to gain
knowledge in this field from a lattice approach. In particular, it would be interesting
to understand better what are the non compact CFTs that we have identified as
the continuum limit of further a

(2)
n models. Series of integrable models associated

with the other perturbation of the SO(N)/SO(N − 1) coset ?

It is also quite surprising that despite all of these results no compact lattice model
is known to give rise in the continuum limit to the Liouville field theory. This seems
definitely like an interesting direction to look to.

• Of course, the rich physics unveiled for the truncated model of the IQHE plateau
transition brings on many interesting perspectives. As we have explained in section
5.3, several highly non trivial properties of the plateau transition might be under-
standable from the identified CFT of the first truncation. This definitely requires
to be clarified algebraically, and also motivates the study of further truncations,
even though this appears to be a difficult task. Big problems difficult numerically,
no integrable solution.

Another key point in the study of this model is indecomposability. Measure b
explain. Easier now that we have exact critical exponents cite work Romain.

Mapping to SQHE, flow in the space of different LCFTs.
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Further, extend this to other symmetry classes of Anderson transitions. Work in
progress with R Bondesan. For all class network formulation, for which we can
build a loop model.

• paper de Moore sur polymers et IQHE 0104033. A lire. Connection ?
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