Fluctuations and Interactions of Brownian particles in multiple Optical Traps

par Antoine Bérut

Thèse de doctorat en Physique

Sous la direction de Sergio Ciliberto.

Soutenue le 07-07-2015

à Lyon, École normale supérieure , dans le cadre de École doctorale de Physique et Astrophysique de Lyon , en partenariat avec Laboratoire de physique (Lyon) (laboratoire) .

  • Titre traduit

    Interactions et fluctuations de particules browniennes dans un réseau de pièges optiques


  • Résumé

    Nous avons étudié expérimentalement les fluctuations de micro-particules browniennes piégées à l'aide de pinces optiques dans un réseau de puits de potentiels voisins. Nous donnons un descriptif général du montage expérimental, puis détaillons quatre utilisations différentes du système. Nous avons d'abord utilisé une unique particule dans un double puits de potentiel pour modéliser un système mémoire à deux niveaux, avec lequel nous avons vérifié le principe de Landauer sur le coût minimal en énergie pour l'effacement d'un bit d'information. Nous avons également appliqué une version détaillée d'un théorème de fluctuation à la procédure d'effacement de l'information pour retrouver la limite énergétique attendue. Nous avons ensuite étudié l'interaction hydrodynamique entre deux particules dont l'une est soumise à une température effective. Nous avons montré qu'il n'y a pas de fluctuations anormales lors de la transition sol-gel de la gélatine, contrairement à ce qui avait été observé précédemment, et que ce système ne pouvait donc pas être utilisé pour étudier des températures effectives. En revanche, nous avons montré que l'ajout d'un forçage aléatoire bien choisi sur la position d'un piège créait une température effective. Nous avons montré que le forçage d'une des particules résultait en une corrélation instantanée entre les mouvements des deux particules, et s'accompagnait d'un échange de chaleur de la particule virtuellement chaude à la particule froide en équilibre avec le bain thermique. Nous avons obtenu un bon accord entre les données expérimentales et les prédictions d'un modèle de couplage hydrodynamique. Enfin, nous décrivons l'utilisation de canaux micro-fluidiques pour réaliser un écoulement cisaillé à l'échelle micrométrique, et nous discutons de la possibilité d'interpréter un cisaillement en terme de température effective en testant une relation de fluctuation-dissipation.


  • Résumé

    We experimentally study the fluctuations of Brownian micro-particles trapped with optical tweezers arranged in various spatial configurations. We give a general description of the set-up and detail four different experiments we conducted. We first use a single particle in a double-well potential to model a two-state memory system. We verify the Landauer principle on the minimal energetic cost to erase one bit of information, and we use a detailed version of a fluctuation theorem to retrieve the expected energetic bound. We then use two particles in two different traps to study the hydrodynamic interactions between two systems kept at different effective temperatures. Contrary to what was previously observed, we show that the sol-gel transition of gelatine does not provide any anomalous fluctuations for the trapped particle when the sample is quenched below gelification temperature. However, we show that an effective temperature is created when a well chosen random noise is added on one trap position. We demonstrate that the random forcing on one particle induces an instantaneous correlation between the two particles motions, and an energy exchange from the virtually hot particle to the cold one, which is in equilibrium with the thermal bath. We show a good agreement between the experimental data and the predictions from an hydrodynamic coupling model. Finally, we describe the use of micro-fluidic channels to create a shear flow at the micron size, and we discuss the possibility to interpret the force due to the shear-flow in terms of an effective temperature by testing a fluctuation-dissipation relation.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Bibliothèque Diderot . Bibliothèque électronique (Lyon).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.