Energy coupling mechanisms in pulsed surface discharges for flow control

par Philippe Castera

Thèse de doctorat en Energétique et physique

Sous la direction de Christophe Laux.

Le président du jury était Emmanuel Odic.

Le jury était composé de Christophe Laux, Sergey Macheret, Jean Larour, Dunpin Hong, Gilles Zalamansky, Patrick Gnemmi, Paul-Quentin Elias.

Les rapporteurs étaient Sergey Macheret, Jean Larour.

  • Titre traduit

    Mécanismes de couplage énergétique dans les décharges de surface pulsées pour le contrôle d'écoulement


  • Résumé

    Ce travail s'intéresse aux effets mécaniques créés par les décharges de surface et à leur efficacité comme actionneur. Une géométrie particulière d'électrodes permet de créer de manière pulsée un filament linéaire de plasma et de le chauffer très rapidement par effet Joule (à raison de plusieurs Joules en moins d'une microseconde). Ce chauffage rapide entraîne la formation d'ondes de choc qui peuvent interagir avec l'écoulement ambiant.Nous étudions le comportement électrique de la décharge de surface afin d'évaluer l'énergie déposée dans le filament de plasma par effet Joule. Pour ce faire, nous réalisons une étude paramétrique sur la configuration du circuit et nous déterminons les principaux paramètres qui pilotent la dynamique de la décharge. Différents modèles de résistance sont utilisés dans un code de simulation du circuit électrique, et leurs prédictions du courant et du dépôt d'énergie sont confrontées aux mesures expérimentales.Des mesures spectroscopiques dans différentes configurations de circuit donnent accès à certaines propriétés de la décharge comme la densité électronique, qui atteint des valeurs de 2x1018 cm-3. Le rayon du canal est également mesuré par imagerie rapide. Les ondes de chocs créées par la décharge de surface sont visualisées en imagerie Schlieren pour plusieurs configurations de circuit. Ces ondes de chocs créent une impulsion proportionnelle à l'énergie déposée dans la décharge. Nos développons un modèle de choc pour décrire la trajectoire du choc et pour calculer l'impulsion communiquée par la décharge de surface. Le modèle est en bon accord avec les mesures expérimentales et la décharge de surface a une efficacité mécanique de 0.12mNs/J pour notre configuration d'étude. Nous terminons cette étude en comparant cet actionneur potentiel avec d'autres actionneurs courants et proposons plusieurs pistes pour de futurs travaux.


  • Résumé

    In this study, we investigate the mechanical effects generated by pulsed surface discharges and their efficiency as an actuator. Using a specific electrode configuration, it is possible to create a short-lived, pulsed, rectilinear plasma channel and to heat it up rapidly (several Joules in less than a microsecond) through Joule heating. This fast energy deposition causes the formation of shock waves that can then interact with the surrounding flow.We study the electrical behavior of the pulsed surface discharge to assess the energy deposited in the plasma channel through Joule heating. To do so, we perform a parametric study on the circuit configuration and identify the main parameters driving the discharge dynamics. Several resistance models are implemented in a numerical description of the electrical circuit and their predictions of the current and deposited energy are compared with experimental measurements.Spectroscopic measurements in different circuit configurations give access to some of the plasma properties such as the electron number density that can reach values up to 2x1018 cm-3. Fast imaging also gives insight into the plasma channel radius. The shock waves generated by the pulsed surface discharge in different circuit configurations are visualized through Schlieren imaging. These shock waves generate an impulse that increases linearly with the energy deposited in the discharge. We develop a shock model to describe the shock trajectory and to compute the impulse imparted by the pulsed surface discharge. The model is in good agreement with our measurements and the pulsed surface discharge is found to have a mechanical efficiency of 0.12 mNs/J for our setup configuration. We conclude this study by comparing the proposed pulsed surface discharge actuator with other common designs and offer some directions for future studies.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : CentraleSupélec. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.