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Synopsis

A communication is impulsive whenever the information-bearing signal is burst-
like in time. Examples of the impulsive concept are: impulse-radio signals, that is,
wireless signals occurring within short intervals of time; optical signals conveyed
by photons; speech signals represented by sound pressure variations; pulse-position
modulated electrical signals; a sequence of arrival/departure events in a queue;
neural spike trains in the brain. Understanding impulsive communications requires
to identify what is peculiar to this transmission paradigm, i.e., different from
traditional continuous communications.

In order to address the problem of understanding impulsive vs. non-impulsive
communications, the framework of investigation must include the following aspects:
the different interference statistics directly following from the impulsive signal
structure; the different interaction of the impulsive signal with the physical medium;
the actual possibility for impulsive communications of coding information into the
time structure, relaxing the implicit assumption made in continuous transmissions
that time is a mere support.

This thesis partially addresses a few of the above issues, and draws future lines
of investigation.

The starting point of our analysis (Chapter 1) is a multiple access scheme
where users adopt time-hopping spread-spectrum signals to communicate towards
a common receiver. In time-hopping spread-spectrum, a symbol period is divided
into chips, and just a subset of chips is actually used to transmit the radio
signal; in other words, the spreading sequence is modeled with a sparse vector,
with s nonzero entries. Different degrees of sparsity imply different degrees of
impulsiveness. In particular, two regimes may be studied as grows to infinity,
corresponding s finite or s . When s , we obtain direct-
sequence spread-spectrum. The energy concentration in time-hopping is, therefore,
achieved by the uneven use of the degrees of freedom in time. The analysis is
conducted in terms of mutual information (with Gaussian inputs) or, whenever
feasible, spectral efficiency, in the so-called “large-system limit,” where the num-
ber of users is proportional to the number of dimensions of the spreading
sequence, i.e., with fixed load as both and . In order
to understand the role of multiuser interference, different receiver structures are
considered, namely optimum and linear receivers. The key outcome of the analysis
is the following. Spectral efficiency with optimum decoding is higher with direct-
sequence than with time-hopping. We show that, in the large-system limit, spectral
efficiency increases as s increases, even when s remains finite, and thus s .
It does not matter that, as s increases, interference tends to be Gaussian, and,
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therefore, more detrimental—optimum multiuser detection shall cope with that.
This is no longer true if we adopt a far simpler receiver, e.g. a bank of single-
user matched-filters or MMSE filters. In this case, the interference distribution
plays a key role, and the case s (maximum energy concentration) shows the
advantages of impulsive modulation formats: in particular, in a low load, high

0 setting, sparsity allows to achieve a spectral efficiency that is strictly higher
than that achievable with direct-sequence.

In the above scheme, transmitted energy is concentrated in bursts, that is
the basic idea of impulse-radio communications. Although this characteristic can
be attained irrespectively of bandwidth, that defines the “effective duration” of
the transmitted pulse, impulse-radio signals have been extensively applied with
ultrawide bandwidths. In the opposite case, that is, with narrow bandwidths,
the transmission rate would be, indeed, severely affected. The ultra-wideband
characteristic of the transmitted signal makes the multipath components of the
wireless channel resolvable, whereas the impulse-radio characteristic permits to
use simple receiver structures since the signal format avoids intersymbol inter-
ference. To further simplify reception, without any performance loss, one must
use prefiltering at the transmitter, and specifically a transmit matched filter, also
known as time reversal in the ultra-wideband literature. Although prefiltering,
and in general precoding, can be used with signals of any bandwidth, transmit
matched filter was traditionally used in connection with ultrawide bandwidth. In
Chapter 2, the main reason for this is traced back in the statistical behavior of
wireless channels. Indeed, the energy of the effective channel, i.e., the channel
formed by the cascade of the prefilter and the multipath channel, is monotonically
increasing with the bandwidth with usual multipath channels. Since the prefiltering
structure requires the knowledge of the multipath channel, Chapter 3 addresses the
important issue of the impact of imperfect channel state information on rate and
error probability with simple receiver structures, where each user is detected and
decoded independently. The investigation links the accuracy needed for the channel
estimation with the maximum mutual information achievable with Gaussian inputs.
Extension to multiple antennas at the transmitter is considered in Chapter 4, where
it is shown that the signal-to-noise ratio achieved with time reversal is not affected
by the lack of correlation between channels relative to different antennas, and that
multiple antennas increase the energy focusing of time reversal. Chapter 5 compares
time reversal with other prefiltering schemes, as a function of the number of fingers
of the Rake receiver.

Finally, Chapter 6 discusses interference patterns typically arising with impul-
sive signals. In particular, two interference distributions seen in Chapter 1 and 3
are shown to belong to a more general family, and a novel interference model arising
from binary-valued signals is discussed.

As presented above, the general framework of our analysis permits to address
several issues connected with, and implied by, the impulsiveness of transmitted
signals. In particular, we are able to markedly separate two characteristics of
impulsive signals, namely the time and amplitude statistics, and the bandwidth.
On the one hand, the statistics may be measured in several ways; however, the key

2



feature is the sparsity of the signal into the degrees of freedom occupied in time,
i.e., impulsiveness. This peculiar statistics has several implications on fundamental
limits of impulsive communications. Under this perspective, we address this issue
for a flat-fading multiple access channel with random time-hopping, which implies
sparsity of the single-user signal. Simple modifications of the model serve towards
the analysis of interesting extensions: fading and multipath channels, non-uniform
power constraint over users, frequency-hopping (time-hopping dual), and partial
channel knowledge at receiver. On the other hand, the bandwidth has implication
on the interaction with the medium where the signal propagates: for example, in
the wireless communications setting analyzed, the more the bandwidth, the more
the number of resolvable paths—up to the number of multipath components of the
channel. We traced back to this interaction the reason for the traditional choice of
the time reversal prefilter in connection with ultra-wideband communications. We
set the basis for a thorough study of the interplay between the bandwidth of the
signal, the multipath channel, the sparsity in time, and the transceiver structure,
in both the coded and uncoded regimes, as well as for the robustness analysis of the
communication system, that could also be regarded in the bigger picture where the
net-ergodic rate of the network and the analog and digital feedback for the channel
knowledge acquisition are optimized.

There are several topics that could be envisioned by, but are not specifically
addressed in this thesis. In particular, two of the most promising areas of investiga-
tion comprises the role of compressive sampling, and in particular super-resolution
theory, in the recovery of the sparse signal, and the possibility to encode information
directly in time, for example in the interarrival time between pulses, or in their rate.
We believe that both investigations may have considerable impact, in particular in
the communication and neuroscience communities.
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Résumé (français)

Une communication est impulsive chaque fois que le signal portant des informa-
tions est intermittent dans le temps et que la transmission se produit à rafales.
Des exemples du concept impulsife sont : les signaux radio impulsifs, c’est-à-
dire des signaux très courts dans le temps; les signaux optiques utilisé dans les
systèmes de télécommunications; certains signaux acoustiques et, en particulier, les
impulsions produites par le système glottale; les signaux électriques modulés en
position d’impulsions; une séquence d’événements dans une file d’attente; les trains
de potentiels neuronaux dans le système neuronal. Ce paradigme de transmission
est différent des communications continues traditionnelles et la compréhension des
communications impulsives est donc essentielle.

Afin d’affronter le problème des communications impulsives, le cadre de la
recherche doit inclure les aspects suivants : la statistique d’interférence qui suit
directement la structure des signaux impulsifs; l’interaction du signal impulsif avec
le milieu physique; la possibilité pour les communications impulsives de coder
l’information dans la structure temporelle. Cette thèse adresse une partie des
questions précédentes et trace des lignes indicatives pour de futures recherches.

Chapitre 1
Le point de départ de notre analyse est un système d’accès multiple où les

utilisateurs adoptent des signaux avec étalement de spectre par saut temporel
(time-hopping spread spectrum) pour communiquer vers un récepteur commun.
Dans l’étalement de spectre par saut de temps, une période de symbole est divisée
en chips, et seulement un sous-ensemble des chips est effectivement utilisé
pour transmettre le signal radio; en d’autres termes, la séquence d’étalement est
modélisée avec un vecteur , avec s entrées non nulles. Deux régimes de faible
densité sont étudiés quand tend vers l’infini, correspondant à s

ou s finis. Lorsque s , nous avons un étalement du spectre à séquence directe.
La concentration d’énergie dans le temps est donc obtenue par l’utilisation inégale
des degrés de liberté disponibles. L’analyse est effectuée en termes d’information
mutuelle avec entrées gaussiennes ou, lorsque cela est possible, l’efficacité spectrale,
dans la dénommée limite de grand système, où le nombre d’utilisateurs est
proportionnel au nombre de dimensions de la séquence d’étalement, c’est-à-
dire avec fixée avec et . Afin de comprendre le rôle
de l’interférence, plusieurs structures de récepteur sont considérées, à savoir la
structure optimale et les structures linéaires. Les principaux résultats de l’analyse
sont les suivants: l’efficacité spectrale avec décodage optimal est supérieure avec
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séquence directe qu’avec saut temporel, en particulier pour 0 et . Peu
importe que, quand s croît, l’interférence tend à être gaussienne et, par conséquent,
plus nuisible : la détection optimale doit faire face à cela. Cela n’est plus vrai si
les récepteurs sont linéaires. Dans ce cas, la distribution de l’interférence joue un
rôle clé, et le cas s (concentration maximale d’énergie) montre pleinement
les avantages des formats de modulation impulsive. En particulier, avec et
haut 0, la sparsité temporelle permet d’atteindre une efficacité spectrale qui
est strictement supérieure à celle obtenue avec séquence directe.

Les résultats de cette section ont été publiés dans les articles suivants :

G. C. Ferrante, M.-G. Di Benedetto, “Spectral efficiency of Random Time-
Hopping CDMA,” IEEE Trans. Inf. Theory, soumis en Nov. 2013; révisé
en Nov. 2014.

Chapitres 2–5
Dans les étalements de spectre par saut temporelle ci-dessus, l’énergie trans-

mise est concentrée en intervalles de courte durée, ce qui forme l’idée de base de
communications radio impulsionnelle. Bien que cette propriété peut être vérifiée
indépendamment de la bande, qui définit la “durée effective” de l’impulsion trans-
mise, les communications radio d’impulsion ont été largement appliquées dans la
bande ultra large. Dans le cas contraire, c’est-à-dire avec des bandes passantes
étroites, le taux de transmission serait, en effet, fortement affectée. L’ultra large
bande caractéristique du signal transmis permet la résolution de trajets multiples
qui caractérise le canal, cette caractéristique impulsive permet l’utilisation des
structures de réception simples car le format de signal évite l’interférence entre
symboles. Pour simplifier la réception, sans perte de performance, un préfiltre
à l’émetteur peut être utilisé, et plus précisément un transmit matched filter,
également connu comme retournement temporel (time reversal) dans la littérature
de systèmes à bande ultra large. Bien que le préfiltrage peut être appliqué à
des signaux avec largeur de bande quelconque, le transmit matched filter a été
traditionnellement utilisé dans le cadre de la bande ultra large. Dans le Chapitre 2,
la principale raison de l’utilisation de ce filtre pour bande ultra large est reconduit
à certaines propriéts statistiques du canal. En effet, l’énergie du canal indiqué
comme efficace, c’est-à-dire le canal formé par la cascade du préfiltre et du canal à
trajets multiples, est croissante de manière monotone avec la largeur de bande
pour les canaux à trajets multiples ordinaires. Puisque le préfiltrage à besoin
de connaître le canal à trajets multiples à l’émetteur, le Chapitre 3 aborde la
question importante de l’impact de l’information imparfaite du canal sur le taux et
la probabilité d’erreur avec des structures de réception simples, où chaque utilisateur
est détecté et décodé indépendamment. Nous avons également étudié l’impact de
la précision de l’estimation du canal sur l’information mutuelle maximale réalisable
avec des entrées gaussiennes. L’extension à plusieurs antennes à l’émetteur est
considérée dans le Chapitre 4, où il est montré que le rapport signal-sur-bruit obtenu
avec time reversal n’est pas affecté par l’absence de corrélation entre les canaux de
différentes antennes, et que les antennes multiples augmentent l’énergie concentrée
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par time reversal au récepteur. Le Chapitre 5 compare le time reversal avec
d’autres préfiltres, en fonction du nombre de fingers du récepteur Rake.

Les résultats de cette section ont été publiés dans les articles suivants :

G. C. Ferrante, “Is a large bandwidth mandatory to maximally exploit the
transmit matched-filter structure?” IEEE Commun. Lett., vol. 18, no. 9,
pp. 1555-1558, 2014.

G. C. Ferrante, J. Fiorina, M.-G. Di Benedetto, “Statistical analysis of the
SNR loss due to imperfect time reversal,” in Proc. IEEE Int. Conf. Ultra-
Wideband (ICUWB), Paris, France, Sep. 1-3, 2014, pp. 36-40.

G. C. Ferrante, J. Fiorina, M.-G. Di Benedetto, “Time Reversal beamforming
in MISO-UWB channels,” in Proc. IEEE Int. Conf. Ultra-Wideband
(ICUWB), Sydney, Australia, Sep. 15-18, 2013, pp. 261-266.

G. C. Ferrante, M.-G. Di Benedetto , “Optimum IR-UWB coding under power
spectral constraints,” in Proc. ISIVC 2012, Valenciennes, France, Jul. 4-6,
2012, pp. 192-195.

G. C. Ferrante, “Time Reversal against optimum precoder over frequency-
selective channels,” in Proc. 18th European Wireless Conf., Poznan,
Poland, Apr. 18-20, 2012, pp. 1-8.

G. C. Ferrante, J. Fiorina, M.-G. Di Benedetto, “Complexity reduction by
combining Time Reversal and IR-UWB,” in Proc. IEEE Wireless Commun.
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Chapitre 6
Le Chapitre 6 analyse les modèles d’interférence pour des signaux impulsifs. En

particulier, nous montrons que deux distributions d’interférence, dejà obtenues aux
chapitres 1 et 2, appartiennent à une famille plus générale, et nous trouvons une
nouvelle distribution pour l’interférence produit par accès aléatoire à une ressource
commune, quand les signaux des utilisateurs sont de forme binaires antipodaux.

Les résultats de cette section ont été publiés dans les articles suivants :

G. C. Ferrante, M.-G. Di Benedetto, “Closed form asymptotic expression of a
random-access interference measure,” IEEE Commun. Lett., vol. 18, no. 7,
pp. 1107-1110, 2014.

Discussion et travaux futurs
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Le cadre général de notre analyse permet de traiter plusieurs problèmes liés
à l’impulsivité de signaux. En particulier, nous sommes maintenant en mesure
de séparer nettement les deux caractéristiques principales des signaux impulsifs,
à savoir faible densité dans le temps et largeur de bande. Nous avons modélisé
la faible densité avec le codes des time-hopping, ce qui a plusieurs implications
sur les limites fondamentales de communications impulsives. Grâce à de simples
modifications, le modèle proposé peut être utilisé pour analyser certaines extensions
intéressantes : fading et canaux à trajets multiples, contrainte de puissance non
uniforme sur les utilisateurs, frequency-hopping, et connaissance partielle du canal
au récepteur. La largeur de bande a des implications sur l’action réciproque avec
le milieu dans laquelle le signal se propage : par exemple, dans le cadre analysé des
communications sans fil, plus grande sera la bande, plus nombreux seront le chemins
résolubles—jusqu’au nombre de chemins multiples composants le canal. Nous avons
ainsi expliqué la raison du choix traditionnel du préfiltre time reversal dans le
cadre de communications ultra large bande. Nous avons posé la base d’une étude
approfondie de l’interaction entre la largeur de bande du signal, le canal à trajets
multiples, la faible densité dans le temps, et la structure d’émetteur-récepteur, dans
les deux régimes codés et non codés, ainsi que pour l’analyse de la robustesse du
système de communication. Il y a plusieurs sujets qui pourraient être envisagées à
la suite de notre étude, et ne sont pas abordées dans cette thèse. En particulier,
deux des domaines les plus prometteurs sont : le rôle de la théorie de l’acquisition
comprimée (compressed sensing) et la possibilité de coder l’information directement
dans le temps, par exemple dans l’intervalle temporel entre deux impulsions. Ces
deux enquêtes pourraient avoir un impact considérable, en particulier dans la
compréhension des problèmes de base et la génération de modèles de phénomènes
physiques qui sont typiques des domaines des communications et des neurosciences.
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CHAPTER 1
Spectral Efficiency of Random

Time-Hopping CDMA

Traditionally paired with impulsive communications, Time-Hopping CDMA (TH-
CDMA) is a multiple access technique that separates users in time by coding
their transmissions into pulses occupying a subset of s chips out of the total
included in a symbol period, in contrast with traditional Direct-Sequence CDMA
(DS-CDMA) where s . The object of this work was to analyze TH-CDMA with
random coding, by determining whether peculiar theoretical limits were identifiable,
with both optimal and sub-optimal receiver structures. Results indicate that TH-
CDMA has a fundamentally different behavior than DS-CDMA, where the crucial
role played by energy concentration, typical of time-hopping, directly relates with
its intrinsic “uneven” use of degrees of freedom.

While Direct-Sequence CDMA (DS-CDMA) is widely adopted and thoroughly
analyzed in the literature, Time-Hopping CDMA (TH-CDMA) remains a niche
subject, often associated with impulsive ultra-wideband communications; as such,
it has been poorly investigated in its information-theoretical limits. This paper
attempts to fill the gap, by addressing a reference basic case of synchronous, power-
controlled systems, with random hopping.

Time-hopping systems transmit pulses over a subset of chips of cardinality s

out of the chips composing a symbol period. In contrast to common DS-CDMA,
where each chip carries one pulse, and therefore the number of transmitted pulses
per symbol is equal to the number of chips, i.e., s , time-hopping signals
may contain much fewer chips in which pulses are effectively used, i.e., s .
Asymptotically, if the number of used chips is fixed, as the number of chips in a
symbol period grows, the fraction of filled-in chips in TH vanishes, i.e., s ,
making TH intrinsically different, the performance of which cannot be derived from
that of DS. TH vs. DS reflect “sparse” vs. “dense” spreading, where degrees of
freedom, that is, dimensions of the signal space, are “unevenly” vs. “evenly”
used [1–5]. In our setting, as further explored in the paper, degrees of freedom
coincide with chips; while DS “evenly” uses chips, TH adopts the opposite strategy.
In this regard, it is evident that DS and TH represent two contrasting approaches,
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that will be compared, under the assumption of same bandwidth and same per-
symbol energy, in terms of spectral efficiency.

Although we will show that there exist peculiar theoretical limits for TH-CDMA,
their derivation can be carried out within the framework developed by Verdú
and Shamai [6] and Shamai and Verdú [7], providing a methodology that is valid
for investigating general CDMA with random spreading in the so-called large-
system limit (LSL), where , , while finite; in particular,
[6] provides expressions of spectral efficiency for DS power-controlled systems using
optimum as well as linear receivers, while [7] removes the power-control assumption
and introduces fading. Other seminal contributions towards the understanding
of random DS-CDMA, although limited to linear receivers, are those of Tse and
Hanly [8], and Tse and Zeitouni [9]. Aside from DS-CDMA, the same framework is
aptly used for analyzing other CDMA channels, such as multi-carrier CDMA [10].

The analysis of optimum decoders relies, in general, on the study of the eigen-
value distribution of random matrices describing random spreading. Consolidated
results on the statistical distribution of such eigenvalues of DS matrices [11] form
the basis for a tractable analysis of theoretical limits in terms of spectral efficiency.
In particular, it is shown in [6] that a fixed loss, that depends upon the load, i.e.,
the ratio between the number of users and chips , is incurred with DS vs.
orthogonal multiple-access. This loss becomes negligible with optimum decoding
when while, for , even a linear receiver such as MMSE is sufficient
for achieving this negligible loss; however, this is no longer the case for simpler
linear receivers, such as the single-user matched filter (SUMF), that is shown to be
limited in spectral efficiency at high SNR. As a matter of fact, the above findings
on spectral efficiency of DS-CDMA strongly depend on the statistical properties
of the eigenvalue distribution, and as such on the cross-correlation properties of
the spreading sequences. By changing the spreading strategy from DS to TH, it
can be predicted that different theoretical limits will hold, as will be investigated
below. In particular, TH matrices, as rigorously defined in this paper, are a
special subset of sparse matrices, where the number of nonzero entries is small
compared to the total number of elements. Previous work on sparse CDMA relies
on non-rigorous derivations based on replica methods, which are analytical tools
borrowed from statistical physics, as pioneered by Tanaka [12], who provides an
expression of capacity when inputs are binary. Montanari and Tse [13] propose
a rigorous argument for s , proving Tanaka’s formula, that is valid up to a
maximum load, called spinodal . Above the spinodal load, Tanaka’s
formula remains unproved. Binary sparse CDMA is also analyzed in terms of
detection algorithms, in particular in the so-called belief propagation [13–15]. More
recently, capacity bounds for binary sparse CDMA are derived in [16, 17]. Still
relying on replica methods, [18] and [19] analyze two different regimes, where s is
either finite or random with fixed mean.

The main contribution of the present work is to provide rigorous information-
theoretical limits of time-hopping communications, by inscribing this particular
time-domain sparse multiple access scheme into the random matrix framework
developed by Verdú and Shamai in [6], for analyzing random spreading. The
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present analysis allows comparing TH vs. DS with same energy per symbol and
same bandwidth constraints, and, therefore, highlights the effect of the energy
“concentration,” that is typical of TH. A first contribution consists in providing a
closed form expression for spectral efficiency of TH with optimum decoding when

s . A second contribution is to prove that the spectral efficiency formula for
a bank of single-user matched filter obtained by Verdú and Shamai in [6] for DS
systems s remains valid if s , , and s . A third
contribution is to provide understanding of when TH performs better than DS.

Based on the above contributions, we are able to present a novel interpretation
of TH-CDMA against DS-CDMA, that offers a better understanding of the effect
of sparsity in time.

The chapter is organized as follows: in Section 1.1 we describe the model of the
synchronous CDMA channel adopted throughout the chapter, and particularized
to the special case of time-hopping. Section 1.2 contains the derivation of spectral
efficiency of TH-CDMA for different receiver structures, in particular optimum
decoding as well as sub-optimal linear receivers, and a comparison with traditional
DS-CDMA limits [6]. Conclusions are drawn in Section 4.4.

1.1 Reference Model

We consider the traditional complex-valued multiple access channel model with
“no-fading” where the received signal y is:

y A b s n (1.1)

where is the number of users, b is the set of transmitted symbols,
n the complex Additive White Gaussian Noise process with real and imaginary
parts modeled as independent white Gaussian processes both characterized by
double-side power spectral density 0 , and s is the unit-energy spreading
waveform of user . Based on the “no-fading” hypothesis, coefficient A in
(1.1) is common to all users and for simplicity normalized to one. Under the
synchronous hypothesis, the above model that considers only one symbol b per
user, is sufficient, that is, it can provide a sufficient statistic for optimum detection
of b [20].

Each spreading waveform, s , can be written as the superposition of
orthonormal functions , that is:

s s

Typically, a single unit-energy function generates the whole set of orthonormal
functions by translation; In this case, denoting with s the symbol period, any
waveform with autocorrelation function satisfying the Nyquist criterion for a time
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Figure 1.1: DS-CDMA vs. TH-CDMA time-axis structure. The symbol period is divided
into chips in both figures. In DS-CDMA (Fig. 1.1a), each chip is used for
transmitting one pulse, hence eight pulses are transmitted per symbol period.
The signature sequence shown on figure is T. In
TH-CDMA (Fig. 1.1b) the symbol period is divided into s subgroups
of h contiguous chips: one pulse only per subgroup is transmitted,
that is four pulses in total. The signature sequence shown on figure is

T. Total energy per symbol is identical in both cases,
and equal to one.

shift c s , i.e..any waveform that is orthogonal to its translated version
by multiples of c, may generate this set, meanwhile producing ISI-free symbol
sequences at the receiver. A typical generating function set is thus:

c

where c is called chip time, chip waveform, and is the number of chips.
In the present analysis, is, for the sake of simplicity, the minimum band-

width, that is, zero-excess bandwidth waveform, with unit-energy, and bandlimited
to W W with W c. This choice is common although specific, since
there may be infinite possible bandlimited waveforms exceeding the minimum band-
width and still appropriate, vs. infinite possible unlimited bandwidth waveforms,
time-limited with duration lower than c (see for example Pursley [21] in particular
for DS-CDMA with time-limited chip waveforms). The choice of a minimum
bandwidth waveform implies in our case that is not time-limited.
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By projecting the received signal y onto the set of orthonormal functions
, a sufficient statistic for optimum detection is obtained:

(1.2)

where C , and R is the spreading matrix,

s s s

s s s

...
...

. . .
...

s s s

In addition, b b T C , and C is a circularly symmetric Gaussian
vector with zero mean and covariance 0 . Since the spreading waveforms have
unit-energy, the signature sequences have unit norm: .

Matrix structure is appropriate for describing spread-spectrum systems in
general.

In DS-CDMA, the spreading sequences are typically modeled as binary, where:

s

is drawn with uniform probability, or spherical, where is a Gaussian random
vector with unit norm [6].

In order to cast TH-CDMA in the model described by eq. (1.2), let s h,
that is the chips are divided into s subgroups, and each of these s subgroups
is made of h contiguous chips. In this case, elements of the signature sequence
can take the following values:

s s s

and the structure of the sequence is such that there is one and only one non-zero
s within each of the s subgroups. Therefore, the number of non-zero elements
of each signature sequence is fixed to s. Note that, for s , TH-CDMA reduces
to DS-CDMA.

We formally introduce the new structure of spreading sequences by the two
following definitions.

Definition 1 (Sparse vector). A vector T C is -sparse if the
subset of its nonzero elements has cardinality , i.e., .

Definition 2 ( s h -sequence, TH and DS sequences and matrices). A vector
T C is a s h -sequence when:

1. s h, with s N and h N;

2. for all s, the vector h h
T is -sparse, where the

nonzero element is either s or s with equal probability.
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A s h -sequence with s is a Time-Hopping (TH) sequence; the special
case s , i.e., -sequences corresponds to binary DS sequences, that will
be referred to below simply as DS sequences. A matrix is called TH vs. DS
matrix when its columns correspond to TH vs. DS sequences. The set of all
possible TH vs. DS matrices is indicated as TH vs. DS ensemble.

Figure 1.1 shows the organization of the time axis for DS-CDMA (Fig. 1.1a)
and compares this time pattern against TH-CDMA (Fig. 1.1b).

The unit-norm assumption on spreading sequences implies that comparison
of TH-CDMA vs. DS-CDMA is drawn under the constraint of same energy
per sequence. Note that the s case models a strategy of maximum energy
concentration in time, while maximum energy spreading in time corresponds to
making s , as in DS. Also note that, the two systems operate under same
bandwidth constraint given the hypothesis on .

1.2 Spectral Efficiency of TH-CDMA

In this section, spectral efficiency of TH-CDMA is derived for different receiver
structures, and compared against consolidated results for DS-CDMA [6].

The section is organized as follows: we first analyze the case of optimum decod-
ing (Section 1.2.1), then proceed to linear receivers in sections 1.2.2 and 1.2.3 for
single-user matched filters (SUMF), and decorrelator/MMSE receivers, respectively.
Finally, Section 1.2.4 contains a synposis.

1.2.1 Optimum decoding

Theoretical framework

In general terms, a key performance measure in the coded regime is spectral effi-
ciency opt (b/s/Hz) as a function of either signal-to-noise ratio or energy per bit

-to-noise- 0, 0.
Referring to model of eq. (1.2), where the dimension of the observed process is ,

spectral efficiency is indicated as opt and is the maximum mutual information
between and knowing over distributions of , normalized to . opt

(b/s/Hz) is achieved with Gaussian distributed , and it is expressed by [6,22–24]:

opt T (1.3)

where noise has covariance 0 and is given by [25]:

E

E 0

E

0

opt (1.4)

where is the load, 0, is the number of bits encoded in for
a capacity-achieving system, and therefore coincides with spectral efficiency
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opt of eq. (1.3). Since is equal to the number of possible complex dimensions,
spectral efficiency can, therefore, be interpreted as the maximum number of bits per
each complex dimension. Note that the number of complex dimensions coincides in
our setting with the degrees of freedom of the system, that is, with the dimension
of the observed signal space.

Eq. (1.3) can be equivalently rewritten in terms of the set of eigenvalues
T of the Gram matrix T as follows:

opt F
T

(1.5)

where F
T

is the so called empirical spectral distribution (ESD) defined as [22]:

F
T

1 T (1.6)

that counts the fraction of eigenvalues of T not larger than . Being random,
so is the function F

T
, though the limit distribution F of the sequence F

T

, called limiting spectral distribution (LSD), is usually nonrandom [26]. In
particular, the regime of interest, referred to as large-system limit (LSL), is that
of both and while keeping finite. Spectral efficiency in
the LSL is:

opt F (1.7)

Therefore, finding the spectral efficiency of CDMA systems with random spread-
ing in the LSL regime reduces to finding the LSD F , that depends on the
spreading sequence family only; hence, in the rest of this section, we find the LSD
of TH-CDMA with s , which corresponds to a maximum energy concentration
in time, as well as asymptotic behaviors of TH-CDMA systems with generic s.

LSD and spectral efficiency of TH-CDMA systems with s

While for DS-CDMA, spectral efficiency can be computed directly from Marc̆enko
and Pastur result on the ESD of matrices with i.i.d. elements [11], it appears
that no analog result is available for neither TH-CDMA matrices nor dual matrices
describing frequency-hopping.

We hereby derive the LSD and properties of the ESD of synchronous TH-CDMA
when s .

Theorem 1. Suppose that R is a time-hopping matrix, as specified
in Definition 2, with s . Then, the ESD of T converges in
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probability to the distribution function F of a Poisson law with mean :

F
T

F 1 (1.8)

Proof. Denote by the nonzero element of the th column of . Then:

T T T

where , being the Kronecker symbol. Hence, T is diagonal, and the
th element on the diagonal, denoted T , is equal to:

The set of eigenvalues is equal to , and, therefore,
eigenvalues belong to non-negative integers. The ESD F

T
can be written as

follows:

F
T

1 1 T

(1.9)
where it is intended that the upper bound of the last summation is . In general,
when the th diagonal element of T is equal to , we say that users are in chip
. Therefore, the last equality indicates that F

T
is the fraction of chips with at

most users. We will find the generating function (GF) of:

A T (1.10)

and we will show that E F
T

F and F
T

, which in particular implies F
T

in the LSL, therefore proving
convergence in probability of F

T
to F .

In order to find the GF of A , we use the symbolic method of analytic
combinatorics [27, 28]. In our setting, atoms are users, and we define the following
combinatorial class:

Seq Set Set

where is the class containing a single atom, Seq and Set are two basic construc-
tions in analytic combinatorics, and marks the number of chips with at most
users, i.e., A . is mapped to the following bivariate GF:

(1.11)
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where . From , we can derive E A and E A ,
as follows [27]:

E A (1.12)

E A E A (1.13)

Hence, from eqs. (1.11) and (1.12), one has:

E F
T

(1.14)

while from eqs. (1.11) and (1.13), one has:

E F
T

E F
T

(1.15)

and, therefore, F
T

is:

F
T

The quantity in brackets is since:

Hence:

F
T

uniformly in .

In Theorem 2 we derive properties of the th moment of the ESD F
T
with

s , denoted by:

Tr T F
T
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in particular a closed form expression of E for TH matrices with s for
finite and , and we prove convergence in probability to moments of a Poisson
distribution with mean in the LSL.

Theorem 2. Suppose that R is a time-hopping matrix with s .
Then, the expectation of the th moment is:

E ETr T (1.16)

where denotes a Stirling number of the second kind. In the LSL,
converges in probability to the th moment of a Poisson distribution with
mean , i.e.:

that is .

Proof. See Appendix 1.B.

Lemma 1 (Verifying the Carleman condition). The sequence of moments
verifies the Carleman condition, i.e.,

Proof. We upper bound as follows:

(a)

(b)

(c)

(d)

where: (a) follows from the elementary inequality
; (b) from the inequality ; (c)

from upper bounding the term with ; (d) from extending the
summation over .
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From elementary relations between -norms, one has
, thus , and therefore:

which verifies the Carleman condition.

In terms of measures, TH-CDMA is thus characterized by the purely atomic
measure given by:

TH f (1.17)

being f , and the point mass distribution, i.e., if ,
and otherwise. Whence, F TH TH . The above
implies peculiar properties of TH-CDMA when compared against DS-CDMA. For
convenience, we report here the Marc̆enko-Pastur law, that is the LSD of eigenvalues
of DS-CDMA matrices (see Definition 2), which has measure:

DS DS
ac (1.18)

where , and DS
ac is the absolute continuous part of DS with

density (Radon-Nikodym derivative with respect to the Lebesgue measure ):

DS
ac 1 fMP (1.19)

where .
Fig. 1.2 shows Marc̆enko-Pastur and Poisson laws for . The Marc̆enko-

Pastur law has, in general, an absolute continuous part with probability density
function showed in solid line and an atomic part formed by a point mass at the
origin showed with a cross at height . The Poisson law has a purely atomic (also
known as discrete, or counting) measure with point masses at nonnegative integers
showed by dots with heights given by f (envelope showed in dashed line).

We use the Poisson LSD to find the spectral efficiency of TH-CDMA with s

in the LSL, i.e. (see eq. (1.5)):

F
T

F (1.20)

It is important to remark that the above convergence in probability does not follow
immediately; in fact, convergence in law does only imply convergence of bounded
functionals, but is not bounded on the support of F . We prove
eq. (1.20) in Appendix 1.A, and thus:

opt opt (1.21)
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Figure 1.2: Density function of the LSD for DS-CDMA in solide line, and infinitesimal
masses of atomic measures of DS-CDMA and TH-CDMA (Poisson law) for

in cross and dots, respectively. DS-CDMA and TH-CDMA with s

are governed by Marc̆enko-Pastur and Poisson laws, respectively.

The capacity of a TH-CDMA system with s can be interpreted as follows.
Rewrite eq. (1.21) as follows:

opt f (1.22)

where . Hence, opt is a sum of channel capacities ,
N, weighted by probabilities f . Since is the capacity of a complex

AWGN channel with signal-to-noise ratio , N, opt is equal to the capacity
of an infinite set of complex AWGN channels with increasing signal-to-noise ratio

paired with decreasing probability of being used f . Therefore, TH-CDMA
has the same behavior of an access scheme that splits the multiaccess channel into
independent channels, each corrupted by noise only, with power gain equal to , and
excited with probability f . Since f is also the probability that signatures
have their nonzero element in the same dimension, that is for TH-CDMA associated
with the event of waveforms having their pulse over the same chip, for small , that
is, , channels with high capacity (for a fixed ), that is, with , are less
frequently used than channels with low capacity; in general, channels with in a
neighborhood of are used most frequently.

One noticeable difference between DS and TH matrices is that in the former
the maximum eigenvalue max

a.s. [29], and thus also max ,
while in the latter max .

Moreover, there exists a nonzero probability f such that, also for
, the zero-capacity channel ( ) is excited. This probability, that is the
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amplitude of the Dirac mass at , is equal to F ; it equals the probability
that a chip is not chosen by any user or, equivalently, the average fraction of unused
chips; and, finally, it equals the high-SNR slope penalty, as we will detail below.

It is interesting to analyze the behavior of , that is a random
variable for finite . Figure 1.3 shows with marks E for TH-CDMA with

s and s , and for DS-CDMA, when : Monte-Carlo simulations
provide point data, represented by marks, with error bars showing one standard
deviation of . Solid lines represent the limiting value of as . We
will show in the below Theorem 3 that, for s , . Almost sure
convergence does hold for the Marc̆enko-Pastur law, hence for DS-CDMA one has

a.s. . For TH-CDMA with increasing s, one might expect of TH-
CDMA to tend to that of DS-CDMA, also suggested by the behavior of the s

case shown on figure. In the general s case, we were able to find the upper
bound s only, holding in probability, that is derived in the below
Theorem 4, and shown with the dashed line.

Theorem 3. Suppose that R is a time-hopping matrix with s .
Then: .

Proof. When s , each column of is nonzero in one dimension only, hence,
by indicating with T, one has . In
words, is equal to the number of nonempty raws of . Therefore,

F
T

, hence, by Theorem 1.8, F .

Theorem 4. Let s . An upper bound to is given by:

s (1.23)

which holds in probability.

Proof. Rewrite as follows: T T
s

T, where s are h matri-
ces, h s. Using the inequality , we can upper
bound as follows: s . Since s are independent,
by Theorem 3 one has s in probability. Moreover, since

surely, we also have , and therefore eq. (1.23).

Asymptotics

In the following, spectral efficiency, when expressed as a function of 0,
will be indicated by1 C (b/s/Hz), as suggested in [25], rather than (b/s/Hz),
that denotes spectral efficiency as a function of . While an expression of can
be found in terms of the LSD, the same is more difficult for C, given the nonlinear
relation between and C: C C (c.f. eq. (1.4)).

In order to understand the asymptotic behavior of Cin the low-SNR and high-
SNR regimes, i.e., as min C C and , respectively, Shamai and
Verdú [7] and Verdú [25] introduced the following four relevant parameters:

1
In this subsection, we drop the superscript “opt” for ease of notation.
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Figure 1.3: Normalized rank (solid lines) vs. load . The dashed line represents an
upper bound of for TH-CDMA with s . Crosses, circles, and squares
(generally referred to as marks), are obtained by evaluating E by
Monte-Carlo simulations of a finite-dimensional system with , for TH-
CDMA with s , TH-CDMA with s , and DS-CDMA, respectively.
Error bars represent one standard deviation of .

min: the minimum energy per bit over noise level required for reliable com-
munication;

: the wideband slope (b/s/Hz/(3 dB));

: the high-SNR slope (b/s/Hz/(3 dB));

: the high-SNR decibel offset.

In our setting, the low-SNR and high-SNR regimes also correspond to C (so
called wideband regime [25]) and C .

The minimum energy-per-bit min and the wideband slope (b/s/Hz/(3 dB))
characterize the affine approximation of C vs. dB as C :

dB dB
min C C C (1.24)

From eq.s (1.24) and (1.4), one can find min and as follows:

min
E

(1.25)

E

E
(1.26)
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Figure 1.4: Spectral efficiency Copt (b/s/Hz) of TH-CDMA vs. DS-CDMA with optimum
decoding as a function of 0 (dB) with load . Orthogonal multiple
access is reported for comparison (gray solid line). Analytical expression vs.
simulation are plotted for the s TH-CDMA case in blue solid line and
blue triangles, respectively. Blue dots represent the s TH-CDMA case
obtained by simulation only. DS-CDMA is shown with red solid line. Note on
figure that TH-CDMA with s and s have both similar performance
as DS in the wideband regime ( 0 ), while departing from it for high
SNR when s . Note on figure that the loss incurred with TH drops to a
very small value with as early as s .

where the expression in the last equality of both eqs. (1.25) and (1.26) is obtained
by differentiating with respect to under the integral sign.

The high-SNR slope (b/s/Hz/(3 dB)) and high-SNR decibel offset
characterize the affine approximation of C vs. as C :

dB C C C

Equivalently, the following relation holds in terms of vs. :

from which and are derived as:

C
C F (1.27)
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(1.28)

where the last equality in eq. (1.27) is obtained by differentiating
with respect to and applying the dominated convergence theorem to pass the
limit under the integral sign. As a remark, in Appendix 1.C it is shown that
F

T
, hence one should be able to prove that

in some mode of convergence. We can verify this result in the s case, where
F and , as shown by the above Theorem 3.

For TH-CDMA with s , it can be shown by direct computations that the
four above parameters are given by:

min (1.29)

(1.30)

(1.31)

(1.32)

For the generic case s , one can show that asymptotics in the wideband
regime are the same as above (see eq. (1.29) and (1.30)). More precisely, we show
in Appendix 1.D that E surely for any matrix ensemble where columns of
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are normalized, and that . Therefore, from eqs. (1.25) and
(1.26), one has min surely for any s and in probability as in eq. (1.30),
respectively.

Comparison with DS-CDMA results ( [6]), eqs. (1.29)-(1.32) show that TH-
CDMA has same wideband asymptotic parameters, min and , as DS-CDMA,
while different high-SNR parameters, and . In particular, in the high-
SNR regime, DS-CDMA achieves [6] while TH-CDMA achieves

, that is, TH-CDMA incurs in a slope penalty given by . At very
high loads, , this penalty becomes negligible, and TH-CDMA high-SNR slope
tends to that of DS-CDMA.

Figure 3.6 shows spectral efficiency C (b/s/Hz) of TH-CDMA with s (blue
solid line) vs. DS-CDMA (red solid line) as a function of 0 (dB) with load

; simulation for TH with s are also represented on figure (blue triangles)
to highlight agreement with theoretical values. Orthogonal multiple access is also
reported for comparison (gray solid line) and represents an upper bound on the
sum-rate of a multiuser communication scheme. In the wideband regime, where
C , both TH-CDMA and DS-CDMA achieve min and same wideband
slope . At the high-SNR regime, where 0 , DS achieves larger high-
SNR slope than TH. A simulated case of s was also considered in order to
understand the effect on C of increased s for TH-CDMA (see blue dots on figure).
While for any finite s the spectral efficiency gap between DS-CDMA and TH-
CDMA grows as 0 increases, figure shows that for common values of 0,
e.g. 0 dB, s pulses only are sufficient to reduce the gap to very small
values. Figure 1.5 shows spectral efficiency Copt (b/s/Hz) for TH with s (blue
solid line) and s (dotted line), and for DS (red solid line), for 0 dB.
It is shown that TH achieves lower spectral efficiency with respect to DS. However,
the loss is negligible for both and . The gap between the two spectral
efficiencies can be almost closed with increased, yet finite, s. Simulations suggest
that s is sufficient to significantly reduce the gap.

1.2.2 Single-User Matched Filter

The output of a bank of SUMF is given by eq. (1.2), that is, . Focusing
on user , one has:

y T

b b (1.33)

b

where T . As shown in [6], spectral efficiency for binary or spherical DS-
CDMA when each SUMF is followed by an independent single-user decoder knowing

is [6, 7]:
sumf
DS (b/s/Hz) (1.34)
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Figure 1.6: Probability density function of the real or imaginary part of the noise-plus-
interference term of eq. (1.33) for TH sequences with dB, , and

s (blue solid line), and comparison against a Gaussian PDF with same
mean and variance (red dashed line). This example shows that, contrary to
DS-CDMA, sumf as given in eq. (1.42) may be far from Gaussian.

This result is general, and in particular it does not assume that the PDF of neither
inputs nor interference term is Gaussian. Note, however, that, in this case, Gaussian
inputs are optimal. In fact, for long spreading sequences, by virtue of the strong laws
of large numbers, one has a.s. , and therefore the mutual information
per user in bits per channel use is:

y b y b

E
a.s. (1.35)

A similar result does hold for y b as well.

When interference is not Gaussian, we may expect spectral efficiency to assume
a very different form than above. This will prove to be the case for the mutual
information of TH-CDMA assuming Gaussian inputs, when s remains finite while

, as investigated below.

Theorem 5. Suppose that R is a time-hopping matrix with generic
s , and that the receiver is a bank of single-user matched filters followed

by independent decoders, each knowing . Assuming Gaussian inputs, mutual
information sumf

TH (b/s/Hz) is given by:

sumf
TH s y b s s

s

(1.36)
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Proof. See Appendix 1.E.
In particular, for the s case, mutual information is:

sumf
TH (1.37)

that can be compared to, and interpreted as, eq. (1.21).
Note that eq. (1.37) provides the mutual information of TH-CDMA with

s , and not the spectral efficiency, since Gaussian inputs, rather than optimal
ones, are assumed. Hence, we know that spectral efficiency will be larger than or
equal to sumf

TH . This mutual information expression is, however, sufficient to
catch a significant difference between DS-CDMA and TH-CDMA. By comparing
eqs. (1.34) and (1.37), we can claim that, while spectral efficiency for DS is bounded
at high , being:

sumf
DS (1.38)

spectral efficiency for TH is unbounded. We can indeed derive the below stronger
result:

Corollary 1. Under the hypotheses of Theorem 5, the high-SNR slope of the
mutual information (1.36) of TH is:

sumf
TH

s (1.39)

The maximum slope as a function of is achieved at s , for which
sumf

TH s . Since s , the global maximum is , and the optimum load
is . This behavior directly provides an insight from a design standpoint: at
high-SNR, the number of chips such that an increase in 0 yields a maximum
increase in terms of mutual information is equal to the number of users. As a
comparison, for optimum decoding, increases monotonically with , and its
supremum is .

Differently from DS, when decoders have no knowledge about cross-correlations
of signature sequences of other users, mutual information assumes a very different
form, as derived in the following theorem.

Theorem 6. Suppose that R is a time-hopping matrix with generic
s , and that the receiver is a bank of single-user matched filters followed

by independent decoders, each knowing the signature sequence of the user to
decode only. Assuming Gaussian inputs, mutual information sumf

TH s

(bits/s/Hz) is given by:

sumf
TH s y b sumf sumf (1.40)
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where sumf and sumf are the two following Poisson-weighted linear combina-
tions of Gaussian distributions:

sumf s s CN s (1.41)

sumf s s CN s (1.42)

Proof. See Appendix 1.F.
Despite decoders’ lack of knowledge on , a same high-SNR slope as that

achieved when decoders have knowledge of is verified in the s case, as
derived in the following corollary.

Corollary 2. Under the hypotheses of Theorem 6, and when s , the high-
SNR slope of the mutual information (1.40) of TH is:

sumf
TH (1.43)

Based on eq. (1.42), it can be checked that the kurtosis of the interference-plus-
noise , that we denote since it is independent of the user, is:

E

E s
(1.44)

that is always greater than , hence showing non-Gaussianity of for any ,
and s. This non-Gaussian nature is represented on Fig. 1.6, that shows the

interference-plus-noise PDF sumf (solid blue line on figure), as given by eq. (1.42)
when , dB and s , vs. a Gaussian distribution with same mean
and variance (red dashed line on figure). As shown by figure, sumf , that is a
linear combination, or “mixture,” of Gaussian distributions with Poisson weights,
cannot be reasonably approximated with a single Gaussian distribution; hence, the
Standard Gaussian Approximation does not hold in general. This is the reason for
the spectral efficiency gap between DS and TH.

The wideband regime is not affected by decoders’ knowledge about crosscorre-
lations between signature sequences, as summarized by the below corollary, which
proof is omitted for brevity.

Corollary 3. The wideband regime parameters derived from either eq. (1.37) or
eq. (1.40) are min and:

sumf
TH (1.45)

Differently from above, where s is finite and does not depend on , we now
investigate the case s with , while . We show, using an
approach similar to that developed in [6], that spectral efficiency of a TH channel
with s , , is equal to that of a DS system, irrespectively of .
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Figure 1.7: Spectral efficiency Csumf vs. Isumf (b/s/Hz) as a function of 0 (dB)
with load . Closed form expressions of spectral efficiency vs. mutual
information are plotted in solid vs. dashed lines. Simulated mutual
information is represented by dotted lines. On figure: SUMF, TH-CDMA,

s , s and s , blue dashed lines; SUMF, TH-CDMA , s ,
blue dashed line; DS-CDMA, red solid line; TH-CDMA with s when

, blue solid line, coinciding with red solid line; TH-CDMA with s

and s , blue dotted lines. Note on figure the crossover of SUMF, TH-
CDMA, s and SUMF, TH-CDMA , s , that shows an example of
mutual information becoming greater than conditional mutual information.
For reference, orthogonal multiple-access in gray line.

Theorem 7. Suppose that R is a time-hopping matrix with s ,
, and that the receiver is a bank of single-user matched filters followed

by independent decoders knowing cross-correlations and input distributions of
interfering users. Capacity sumf

b b of the single-user
channel of eq. (1.33), expressed in bits per user per channel use, converges
almost surely to:

sumf
b b

a.s. (1.46)

irrespective of .

Proof. See Appendix 1.H.
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line, and represent the worst performance on figure. Dashed lines correponds to
either TH knowing (large dashing) or TH where decoders know the spreading
sequence of the user to decode only (small dashing). Orthogonal access is
reported for reference (gray solid line).

Based on eq. (1.46), spectral efficiency coincides with that of DS sequences, as
given by eq. (1.34). As a matter of fact, Theorem 7 is a generalization of the result
of Verdú and Shamai [6], for TH matrices where the fraction of nonzero entries is
, to which it reduces for .

Figure 1.7 shows spectral efficiency Csumf vs. mutual information Isumf (b/s/Hz)
as a function of 0 (dB) for DS-CDMA (eq. (1.34), red solid line on figure), TH-
CDMA knowning cross-correlations between users (eq. (1.37), blue large-dashed
lines) and TH-CDMA without knowing cross-correlations between users, indicated
as TH-CDMA (eq. (1.40), blue small-dashed line), with unit load . Spectral
efficiency of TH-CDMA when s , , as , is equal to that of
DS (c.f. eq. (1.46), red solid line). As previously, the orthogonal case (gray solid
line) is shown for reference. Note that spectral efficiency is bounded in DS-CDMA
and in TH-CDMA when s , , as ; the value of the limit is

on figure (c.f. eq. (1.38)). On the contrary, mutual information is not bounded
for both TH-CDMA and TH-CDMA ; in particular, when s , both TH-CDMA
and TH-CDMA grow with similar slope as 0 increases. Mutual information
of systems using multiple pulses per symbol is shown for TH-CDMA with s

(small-dashed line) and for TH-CDMA with s (eq. (1.36), large-dashed line).
These s cases show that mutual information decreases with respect to the
one pulse per symbol case. Figure 1.8 shows spectral efficiency Csumf (b/s/Hz) as
a function of for fixed 0 dB. Similarly as on fig. 1.7, TH with s

outperforms other schemes, with and without complete knowledge of . As ,
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interference becomes increasingly Gaussian, and mutual information of TH reduces
to that of DS, tending to the same limit .

1.2.3 Decorrelator and MMSE

The output of a bank of decorrelators, following the discrete channel
(c.f. eq. (1.2)), is given by:

(1.47)

where denotes the Moore-Penrose pseudoinverse; if T is invertible, then
T T, otherwise , according to the Tikhonov regularization, exists

and can be computed as the limit T T as .
In DS-CDMA, for any fixed , is almost surely full rank as ,

and therefore, is almost surely invertible, in which case eq. (1.47) becomes:

(1.48)

where CN 0 . Assuming independent single-user decoders, spectral
efficiency is [6]:

deco
DS (1.49)

The output of a bank of MMSE filters observing (c.f. eq. (1.2)) is:

T T T

(1.50)

where T is defined as follows:

T T T T T (1.51)

Note that, as well known, MMSE and decorrelator coincide as .
In DS-CDMA, for any fixed , it was shown in [6] that:

mmse
DS (1.52)

where:

being as in eq. (1.19).
We can treat both decorrelator and MMSE as special cases of the linear operator:

T T T T T
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for and , respectively. Similarly as eq. (1.50), one has:

T (1.53)

where dependence on is now made explicit, and the output for user is:

b b (1.54)

For s , a closed form expression for the generic element of is derived in
Appendix 1.I, and reads as:

(1.55)

where is:

1 (1.56)

Denote with J the following set: J . Hence, J is the
cardinality of J . Denote with J J . Since J , one has J .
We can rewrite eq. (1.119) as follows:

b
J

b (1.57)

Note that b for is distributed as b , and given is complex Gaussian
with zero mean and conditional variance:

0

Known , and given b are both complex Gaussian, hence mutual information
expressed in bits per user per channel use is:

b b E
0

E

Since , in the LSL one has P . Therefore, we proved the
following:

Theorem 8. Suppose that R is a time-hopping matrix with s , and
that the receiver is a bank of either decorrelators or MMSE filters

followed by independent decoders, each knowing . Assuming Gaussian
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(b/s/Hz) as a function of 0 (dB) with load . Mutual information
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CDMA (red solid lines), for decorrelator and MMSE receivers, is shown. It is
also shown orthogonal access (gray line) for reference.

inputs, mutual information TH (b/s/Hz) is given by:

TH b (1.58)

Since eq. (1.58) does not depend on and is equal to eq. (1.37) for SUMF, one
explicitly has TH

sumf
TH

mmse
TH

deco
TH , thus we will write the above quantities

interchangeably. With minor modifications of the above argument, it is possible to
show that a similar result does hold for any linear receiver T , , under the
assumption s . Therefore, results for SUMF can be extended verbatim to both
decorrelator and MMSE receivers, when s . This result suggests a striking
difference with respect to DS, where spectral efficiency depends on the adopted
linear receiver: In TH with s , SUMF, decorrelator and MMSE all result in the
same mutual information.

In order to compare DS and TH for decorrelator and MMSE, we separate the
analysis for systems with and , to which we refer as underloaded and
overloaded, respectively.
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Underloaded system .
Decorrelation in DS allows to achieve the maximum high-SNR slope, deco

DS ,
that is equal to that of orthogonal multiple access. On the contrary, TH does not
fully exploit the capabilities of CDMA in the high-SNR regime, since deco

TH
sumf

TH . This behavior follows directly from cross-correlation properties
of signature sequences of DS vs. TH: In DS, the almost sure linear independence
of signature sequences, that holds for any , makes T almost sure
invertible, and thus interference can be mostly removed, which is not the case of
TH (c.f. Fig. 1.3 and Theorem 3). However, the optimal high-SNR slope in DS
comes at the expense of a minimum 0 equal to , that can be
much larger than that achieved by TH, namely ; in particular, as , the
minimum energy-per-bit for DS with decorrelator grows without bound. Therefore,
decorrelation with DS should to be considered in a very low load, high-SNR regime
only: in this region, it outperforms TH. It can be shown, by comparing eqs. (1.52)
and (1.49), that in DS spectral efficiency of MMSE is always larger than that of
decorrelator. In particular, it achieves a minimum energy-per-bit equal to ,
which is optimal, and also an optimal high-SNR slope.

Overloaded system .
Spectral efficiency of TH and DS with MMSE is similar in the low-SNR regime,

with same minimum energy-per-bit and wideband slope. At high-SNR, mutual
information of TH is unbounded, while spectral efficiency of DS is bounded, as
in the SUMF case. In particular, while the high-SNR slope of TH is equal to

sumf
TH for any , the high-SNR slope of DS with MMSE is:

mmse
DS 1 1 1

which implies that, as 0 , Cmmse
DS is infinite for , while it is finite for

, and equal to (c.f. eq. (1.52)) [6]:

mmse
DS (1.59)

By comparing this result with eq. (1.38), that refers to SUMF, one also notes that
the two limits are different, although as both tend to .

Figure 1.9 shows spectral efficiency Cmmse and Cdeco vs. mutual information
Immse and Ideco (b/s/Hz) as a function of 0 (dB) for DS (red solid lines) and
TH (blue dashed line), when . Orthogonal access is also shown for reference
(gray solid line). The choice of represents a scenario with high interference
where eq. (1.49) is still valid, and DS with decorrelation still comparable. MMSE
and decorrelator receivers achieve a same mutual information for TH: in the low-
SNR regime, Immse

TH Ideco
TH and Cmmse

DS have similar behavior, that departs as 0

increases. Decorrelator with DS achieves the maximum high-SNR slope, which is
equal to that of the orthogonal access: note that the two curves on figure are,
in fact, translated. This is not the case for TH, for is not full rank with high
probability, and the high-SNR slope is indeed lower. It is shown on figure that
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DS with MMSE outperforms linear receivers with TH: this is due to the particular
choice of . Figure 1.10 shows spectral efficiency Cmmse

DS and Cdeco
DS (red solid lines)

vs. mutual information Isumf
TH Ideco

TH Immse
TH (blue dashed line) as a function of ,

when 0 dB. This figure shows that MMSE with DS is outperformed by
TH for large : in particular, there exists a minimum value of , say , in general
depending on 0, beyond which the mutual information of TH is higher than the
spectral efficiency of DS, although both tending to a same limit as , that is,

. While it is difficult to study as a function of 0, the above discussion
on the high-SNR slope of DS suggest that marks a transition in DS behavior as

0 . Figure 1.11 shows Cmmse
DS (red solid lines) and Isumf

TH Ideco
TH Immse

TH (blue
dashed line) as a function of , for different values of dB

0 . Figure
shows that, as dB increases, spectral efficiency of DS grows linearly for , and
at about quickly drops towards the limit value given by eq. (1.59), while
spectral efficiency of TH remains smooth for any load in the neighborhood of
and increases monotonically with dB.

1.2.4 Synopsis of the TH-CDMA case

Figure 1.12 shows spectral efficiency C or mutual information I (b/s/Hz) vs.
0 (dB) for the two extreme cases of optimum decoding and SUMF receivers,

when . Curves derived from closed form expressions of spectral efficiency
are shown for optimum decoding when s (top blue solid line), and SUMF
when s as and (bottom blue solid line). Curves derived
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Figure 1.11: Spectral efficiency Cmmse
DS vs. mutual information Isumf

TH (b/s/Hz) as a function
of for DS-CDMA (red solid lines) and TH-CDMA (blue dashed lines), for
values of dB

0 dB. Asymptotic value of Cmmse
DS for dB

is also shown for reference (thin solid black line).

from closed form expressions of mutual information assuming Gaussian inputs are
shown for SUMF, TH-CDMA (blue dashed line, see label on figure) and SUMF, TH-
CDMA (blue dashed line, see label on figure), when s and s . Finding
closed form expressions of spectral efficiency of optimum decoding with generic

s finite remains an open problem. Simulations provide, however, insights into
the behavior of spectral efficiency for this particular case, as shown by Copt

TH with
s (blue dotted line). TH behavior is delimited by DS curves, with optimum

decoding vs. SUMF (top and bottom red lines). Both upper and lower curves
are approached by TH as s increases; in particular, we showed that the lower
curve describes, in fact, TH when s , , as . In between
these two extremes lie TH curves with optimum vs. linear receivers. In particular,
for s (maximum energy concentration), mutual information of a receiver as
simple as SUMF is not bounded, and also close to optimum decoding with s .
Furthermore, a lack of knowledge in cross-correlations of spreading codes provokes a
drop of performance that is, however, not sufficient to degrade mutual information
to DS spectral efficiency, with any finite s.

Figure 1.13 compares either spectral efficiency C or mutual information I

(b/s/Hz), as a function of , for DS and TH, when 0 dB. Both DS
and TH have similar behaviors when , for linear and optimum receivers.
Irrespective of , spectral efficiency of DS with optimum decoding is larger than
that achieved by TH, the gap being almost closed when s finite. Conversely,
among linear receivers and access schemes, it is shown that DS with SUMF has
the lowest spectral efficiency, which is equal to that of TH when the number of
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Figure 1.12: Spectral efficiency C vs. mutual information I (b/s/Hz) as a function of
0 (dB) with load . Optimum vs. linear receivers are shown. Top

curve shows Copt
DS for optimum decoding in DS-CDMA (red solid line). Bottom

curve shows C for SUMF, DS-CDMA (red solid line) coinciding with TH-
CDMA when s goes to infinity proportionally to , i.e., s

(red solid line). In between these two extremes: Copt
TH curve for

optimum decoding, TH-CDMA, s , simulated values (dotted blue line);
Copt

TH curve for optimum TH-CDMA, s (blue solid line); ITH curve for
linear receivers, TH-CDMA, s (blue large-dashed line); Isumf

TH curve for
SUMF, TH-CDMA , s and s (blue small-dashed line).

pulses is asymptotically a nonzero fraction of the number of chips. The largest
spectral efficiency in DS is obtained with MMSE, which is greater than the mutual
information of TH when load is lower than a threshold 0 , depending in
general on 0. At higher load, mutual information of TH is larger than spectral
efficiency of DS. This analysis is intrinsically conservative, since spectral efficiency
of TH will be, in general, larger than or equal to the mutual information obtained
assuming Gaussian inputs. Therefore, one should expect that the gap in spectral
efficiency between DS and TH with linear receivers is smaller and larger than that
showed on figure when and , respectively.
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1.3 Conclusions

Verdú and Shamai showed in [6] that optimum decoding provides a substantial
gain over linear decoding in DS-CDMA, with random spreading. In particular, a
bank of single-user matched filters followed by independent decoders is bounded in
spectral efficiency at high-SNR, and linear multiuser detectors are needed in order
to recover a nonzero spectral efficiency high-SNR slope. This behavior is partly due
to the “even” use of degrees of freedom—coinciding in our setting with chips—that
is intrisic of DS-CDMA [1].

The object of this paper was to analyze TH-CDMA with random hopping, and
compare its behavior against DS-CDMA; we interpreted time-hopping in the general
framework developed in [6, 7]. The present analysis allowed comparison of TH
vs. DS with same energy per symbol and same bandwidth constraints, and,
therefore, showed the effect of the energy “concentration,” that is typical of TH. The
degree of “unevenness” in TH-CDMA is directly related to the number of pulses s

representing each symbol. At one extreme, one has maximum “unevenness,” where
all energy is concentrated in one pulse ( s ), while the other extreme corresponds
to maximum “evenness,” s , where TH coincides with DS. Particular emphasis
has been put on the archetypal case of “unevennes,” that is s , and partial
results showing the general behavior when s have been derived.

A first result of our analysis was to derive a closed form expression for spectral
efficiency of TH-CDMA with optimum decoding when s , showing that, in this
case, DS-CDMA outperforms TH-CDMA, in particular in the high-SNR regime.
Same wideband behavior, but lower high-SNR slope, was observed for TH-CDMA
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vs. DS-CDMA, that is DS TH . A closed form
expression for generic s remains an open problem; results based on simulations
suggested, however, that the spectral efficiency loss at high-SNR may be consid-
erably reduced while maintaining the number of pulses finite, and we provided
evidences that the gap is reduced to a very small value with as low as two pulses
per symbol ( s ). This result indicates that the spectral efficiency gap may be
substantially reduced while only using a fraction s of degrees of freedom per
user, that asymptotically vanishes as grows.

A different behavior of TH-CDMA with respect to DS-CDMA was observed
with linear receivers. Contrarily to DS, spectral efficiency of SUMF for TH with

s was unbounded. As suggested, this asymptotic behavior may be traced back
to the non-Gaussian distribution of the interference-plus-noise variable observed by
each independent single-user decoder, that, in turn, depends on cross-correlation
properties of spreading sequences. The same high-SNR slope sumf

TH was
achieved by TH irrespectively of the knowledge that each single-user decoder had
about spreading sequences of all other users. It was interesting to note that the
maximum slope for TH, providing a hint on greatest energy efficiency, was reached
when the number of users was equal to the number of chips , i.e., , leading
to sumf

TH . On the contrary, for s , , same spectral
efficiency as DS-CDMA ( ) was obtained irrespectively of for .

The bounded nature of spectral efficiency with a SUMF bank in DS-CDMA is
overcome, as well known, by using more complex linear receivers, that also account
for interference, such as MMSE and decorrelator. Conversely, we showed that, in
TH-CDMA, mutual information assuming Gaussian inputs has the same expression,
irrespective of the linear receiver used, due to the peculiar structure of TH spreading
sequences. TH sequences are indeed “more” likely to be linearly dependent than
DS ones, in agreement with the intuition based on the cardinality of binary DS vs.
TH codes, that is vs. . This lack of independence led to the impossibility
of removing interference, which is instead almost surely feasible for DS, e.g. with
either decorrelator or MMSE receivers, as long as the load . Therefore, in a
low load, high-SNR scenario, DS outperforms TH. The opposite is true when .
In fact, while spectral efficiency in DS with MMSE rapidly drops, in particular with
large 0, as soon as becomes larger than one, mutual information of TH decays
softly when one keeps overloading the system, and tends to the same MMSE DS
limit. The absence of a spectral efficiency “transition” in the neighborhood of the
unit load, that is typical of DS, allows TH to outperform DS with any load larger
than for sufficiently high 0.

Beyond the natural extension of the present work to channels with fading,
where the effect of an “uneven” use of degrees of freedom typical of TH should
be investigated, we do stress that, from the single-user perspective, TH is a par-
ticular instance of impulsive signal. As such, the present theoretical setting, if
appropriately adapted to asynchronous links, may serve as a basis for refining the
understanding of the limits of impulsive communications.
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Figure 1.14: Signal model: in picture, s , h , therefore s h . Delays
are considered with respect to the first User, therefore .

1.4 Asynchronous channel

1.4.1 Model

As for the asynchronous channel model, we adopt the model proposed in [20] for
CDMA systems, where the received signal is:

y A b s n (1.60)

in which we introduce the possibility for the signature waveform to change from
one symbol to the next, and propose the following straightforward generalization:

y A b s n (1.61)

where the codeword of length is considered for each user, the spreading
waveform s of user in the th epoch may depend on , that is:

s s

is the th symbol of user , and indicates its delay. Users are
ordered according to increasing , that is, , and is set to .
As previously, A .

Note that in this case, the anaylis focuses on set of symbols per user vs.
of the synchronous case since this has proved to be necessary in order to derive a
sufficient statistic for b [20].

A procedure similar to the one adopted in [30] allows to derive a discrete channel
model equivalent to the continuous-time channel of eq. (1.61); the equivalence is
defined in terms of channel capacity, and also in terms of capability of producing
sufficient statistics leading to optimum inference of .
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To this end, define the th symbol vector C as:

b b T

and form vector by stacking the above vectors:

T T T (1.62)

This vector can be compactly written using the Kronecker product as follows:

(1.63)

where . Explicitly, the ( )-th component of is b . Note
that, according to the above notation, the asynchronous channel with users and
codewords length is equivalent to a synchronous channel with users and
codeword length one.

Now consider projecting the continuous-time process y onto the set of all
spreading waveforms:

s

(1.64)

that is, consider the inner product between y and the generic :

y

This is the output of a filter that is matched to the signature sequence of user at
symbol sampled at the corresponding epoch, that is, at time .

Stacking these projections as for , one has:

(1.65)

that is, a vector C providing a sufficient statistic for the optimum detection
of .

Based on eqs. (1.62) and (1.65), the equivalent discrete channel model can
therefore be expressed by:

(1.66)

where components of matrix R are given by:

R
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s s

s s

c c

T (1.67)

with: c

c

showing that is symmetric.
Since symbols are transmitted for each user and given eqs. (1.62), (1.65) and

(1.66), has the following block-matrix structure:

T (1.68)

where each block is with components:

Since is symmetric, one also has T. Given (1.68), the follow-
ing relation holds for :

(1.69)

Compared to CDMA systems where signatures do not change across symbol
periods, note that, as previously indicated, the proposed model releases this con-
straint, as reflected in the general block structure of . Note that the proposed
model reduces to its traditional form [20] when signatures do not vary across symbol
periods, for which one has:

T

having defined . In this case, is also block-Toeplitz.

Note that if the channel were synchronous, one would have T , with
is a block-diagonal matrix with the generic th diagonal block has the following
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block-diagonal structure:

...
...

. . .
...

(1.70)

Therefore, is:

T

T T

We may express in terms of chip-matched filter output sampled at epoch
s for user and symbol . To this end, note that the generic element of

can be written in terms of matrices:

R

as defined in eq. (1.67). Note that is Toeplitz and only depends
on difference rather than on and . Therefore, denoting by
the block matrix obtained by grouping the blocks

, that is:

T

it results that is block-Toeplitz. Finally, consider the matrix obtained by
grouping the blocks as follows:

T

By construction, is block-Toeplitz with respect to blocks
and also with respect to smaller blocks

.The generic element of can be expressed by:

R

having defined:
c

which also shows that is symmetric.
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We can express in terms of spreading sequences and matrix as follows:

T

This model duly reduces to the synchronous model when delays are null, as can
be derived in a straightforward way.

Note that a linear time-invariant, frequency-selective channel with impulse re-
sponse might be taken into account by substituting with . In this
case, would account for both asynchronicity and frequency-selectivity.

Note that the assumption of zero-excess bandwidth pulses was, as initially
indicated, introduced for mere simplification, and any orthonormal family of pulses,
as in particular time-limited waveforms, fit the model; UWB impulse-radio com-
munications are appropriately modeled.

1.4.2 Impulsiveness

A non-impulsive system occupying frequency band W W (Hertz) and using
a channel for (seconds) may transmit at most W orthogonal waveforms by
transmitting a waveform that occupies a bandwidth W every W seconds for
seconds. Symbol period is therefore W, and effective duration is W as well,
that is in non-impulsive systems these two quantities coincide.

Conversely, in impulsive systems, that is, systems using pulses with bandwidth
W W, while keeping fixed the symbol period, the channel may still used every

W seconds but transmission occurs over bandwidth W ; effective duration is thus
W . Impulsiveness can, therefore, be measured by ratio W W, that is, the ratio

of transmission bandwidth over minimum Nyquist bandwidth. We call this ratio
impulsiveness index ˚i�.

While spread-spectrum systems use a bandwidth larger than what is the min-
imum required to transmit at a given symbol rate, impulsive systems use a larger
bandwidth than the minimum required to transmit at a given chip rate. There-
fore, impulsiveness can be viewed as another way for spreading bandwidth. In
non-impulsive spread-spectrum systems, bandwidth spreading is described by the
number of chips in one symbol period, named spreading factor c N.
Similarly, impulsiveness index ˚i� specifies spreading as system bandwidth vs. chip
rate; impulsive systems may use bandwidth W c, i.e., e↵ c, therefore
transmitting pulses that are much shorter than the chip interval. The condition
˚i� N guarantees the Nyquist criterion to be satisfied.

In general, we propose to define impulsiveness resorting to the concept of effec-
tive duration akin to that of effective bandwidth as described in [31]:

˚i� c

e↵
(1.71)
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Figure 1.15: Illustration of the impulsiveness index concept. A non-impulsive system,
where ˚i� , and therefore c W, is shown in Fig. (a), while an impulsive
system, where ˚i� , and therefore c W, is shown in Fig. (b).

where effective duration is defined as to satisfy:

e↵
R

(1.72)

Note that for zero-excess bandwidth pulses occupying frequency band
W W , as used throughout this chapter for the sake of simplicity, one

has e↵ W, and therefore ˚i� cW. However, the impulsiveness index is well
defined also for the opposite case of strictly time-limited pulses; for example,
for rectangular pulses with duration (seconds), eq. (1.72) yields e↵ , as
intuitive.

Figure 1.15 shows an example of a spreading waveform for non-impulsive com-
munications (Fig. 1.15a), where pulse bandwidth is directly related to chip rate,
vs. impulsive communications (Fig. 1.15b), where pulse effective duration is shorter
than the chip interval, and thus bandwidth is larger than chip rate, specifically ˚i�
times c.

In the literature of the last fifteen years, the concept of peaky signaling arose
(e.g. [1,5,25,32]). Although related, the concepts of impulsiveness and peakdeness
are complementary, as we explain in the next section.
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1.4.3 Impulsiveness vs. Peakedness

The notion of peakedness of a random variable is strictly related to the limitedness
of its maximum absolute value or, in a relaxed sense, to the limitedness of its
fourth moment and kurtosis [1,5,32]. In general, a distribution with large kurtosis
is indicated as “peaky” [1].

As example of non-peaky distribution, consider a discrete binary r.v. uni-
formly distributed, A A; has kurtosis . On the
contrary, as example of “peaky” distribution, consider A

A; has kurtosis , that is increasingly “peaky” as . In
general, a “peaky” distribution has the zero value, or nearly zero values compared
to the standard deviation, with high probability with respect to the probability
under the tails, that is, for values greater than the standard deviation; therefore,
leptokurtic distributions are “peaky”. A r.v. drawn from a “peaky” distribution is
characterized by rare large and frequent mild deviations.

A communication system that transmits over bandwidth W W for
seconds is characterized by W degrees of freedom indicating that the channel
may carry W input symbols towards output; the capacity of the channel is the
maximum number of bits, that can be encoded in these W symbols, with a
vanishing error probability. Under fixed power constraint, the distribution of inputs
over these degrees of freedom determines peakedness. In particular, if the kurtosis
of inputs is “relatively” high, then the input distribution is “peaky”.

Increasingly “peaky” inputs lead to reaching the wideband capacity, i.e.capacity
for spectral efficiency tending to zero, for transmissions over fading channels when
the receiver has no a priori knowledge on fading coefficients [33–35]. Conversely,
in the same context, Gallager and Médard [1, 2] show that non-peaky inputs lead
to zero mutual information. In particular, these authors highlight a “bandwidth
scaling” property for multipath fading channels, that can be described as follows: as-
suming an infinite number of path scattering model, mutual information of spread-
spectrum signals tends to zero as bandwidth grows if energy and fourth moment
of inputs scale with W and W , respectively, that is, if degrees of freedom are
used “evenly”, in a typical non-peaky fashion. Finally, Verdú [25] defines the family
of input distributions, called flash, achieving capacity at the wideband regime. This
family encompasses inputs that are distributed as the mixture of two probability
distributions, the first tending to a Dirac mass in the origin, and the second that
vanishes as the signal-to-noise ratio per degree of freedom tends to zero.

Degrees of freedom can be exploited in time only, in frequency only, or in both
time and frequency.

As example of a system that is non-peaky neither in time nor in frequency,
consider DS-CDMA as in [1,2]. As example of a system that is “peaky” in frequency,
but not in time, consider -FSK with symbol duration and bandwidth W divided
into equal slices of width , hence W . For transmitting a message
with , one frequency slice only is used. Inputs present thus out of

nonzero value occurences, and therefore are distributed as
, with kurtosis . As example of a system that is “peaky” in both
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time and frequency, consider FSK with duty cycle, as in [3, 5]. As example of a
system that is “peaky” in time, but not in frequency, consider -PPM with symbol
effective-duration W, hence W . Inputs are distributed as above as in the
case of -FSK.

The last example is particularly significant to draw an analogy between peaky
inputs in time, that are those that present “many” occurrences of the zero value,
and impulsiveness.

Impulsive systems are intrinsically “peaky” since a subset only of the available
degrees of freedom is used; this is particularly evident in the time domain since
many occurrences of the zero value can be observed. Impulsiveness reshapes indeed
the input distribution of a non-impulsive signal with ˚i� by adding a Dirac
mass at the origin as follows: ˚i� ˚i� . Therefore, the intuition
may be that impulsiveness provides a mean that is complementary to duty-cycle in
order to achieve capacity at the wideband regime; as impulsiveness grows, inputs
become increasingly “peaky”, and may flash at the limit ˚i� .

Moreover, TH-CDMA signals, as opposed to DS-CDMA, are “peaky”; also, for
any fixed s, as grows, these signals are increasingly “peaky”, while tending to
flash at the limit .

Impulsive CDMA signals in general have increased peakedness with respect to
non-impulsive CDMA signals; therefore, for DS-CDMA, impulsiveness is a mean
towards peakedness, while for TH-CDMA signals it is a mean towards increased
peakedness.

1.4.4 First results

Spectral efficiency of the asynchronous channel can be derived, similarly to the
synchronous case, from the equivalent discrete channel model (c.f.
eq. (1.66)) as:

(b/s/Hz)

Since the covariance of and the conditional covariance of given are, respec-
tively:

0

E
T

0

being E , then:

(b/s/Hz) (1.73)

having denoted with 0 as previous.
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Figure 1.16: Spectral efficiency as function of (dB) for the asynchronous channel with
s .

When an impulsive communication is employed, then the bandwidth used is ˚i�
times larger than the minimum required, therefore eq. (1.73) generalizes to:

˚i� (b/s/Hz) (1.74)

Investigation of when either or for special families of
random spreading signatures in an asynchronous setting is the major challange.

For non-varying signatures across symbol periods, a prior work of Verdú [30]
reports the expression of capacity for asynchronous DS-CDMA channel with
and finite, once signature sequences are fixed and nonrandom. For random DS-
CDMA, Cottatellucci et al. [36] find the expression of the SINR achieved by an
MMSE receiver using the REFORM method proposed by Girko [37] and exploit
the celebrated relation between mutual information and mmse [38] in order to find
capacity with the optimum receiver.

Cottatellucci’s analysis of the DS-CDMA asynchronous channel in [36] proceeds
in two steps. In the first step, it is assumed that the maximum delay between users
is limited to a chip interval, that is c: the so obtained channel is called
chip asynchronous, symbol quasi-synchronous channel. In the second step, it
is shown that results obtained in the previous step continue to be valid also when

s: this is called symbol asynchonous channel.
In what follows, we limit our attention to the chip-asynchronous, symbol quasi-

synchronous TH-CDMA channel.
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Chip asynchronous, symbol quasi-synchronous channel

As in [36], the assumption of limitedness of to c implies that, in the large
system limit, ISI becomes negligible.

Therefore, we can study a channel where one symbol only is transmitted.
We further assume discrete delays, i.e., delays that are multiples of W:
W with ˚i� . This kind of “discrete-asynchronism” effectively turns

the channel into a set of ˚i� parallel channels, each populated by a number of users
equal to the number of users with same delay: therefore, capacity of the discrete-
asynchronous channel is the sum of capacities of these parallel channels.

Intuition behind this result lies on orthogonality of users with different delays.
When two users have indeed different delays, their waveforms are orthogonal irre-
spective of the signature sequences: this follows from the property of bandlimited
pulses to be orthogonal if delayed by multiples of W. Therefore, dividing the
set of users into equivalent classes where the equivalence is defined by having
the same delay and calling the number of users with delay W, the original
channel is decomposed into at most ˚i� orthogonal channels, since there are at most
˚i� delays, each channel having symbols of chips, using a bandwidth W, and being
populated by users, hence having load equal to . This construction implies
that ˚i� .

Now let prove these intuitions in light of the asynchronous channel model
developed in Section 1.4.1 and the general spectral efficiency expression given by
eq. (1.74), both specialized to the case .

Consider a composition of into ˚i� parts, that is, ˚i�, where
. If two users and have different delays, i.e., , then
:

c c

Therefore, when , and is a block-diagonal
matrix with at most ˚i� diagonal blocks of dimensions , , ˚i� ˚i� .

As defined in eq. (1.66), inherits this block-diagonal structure, with diagonal
blocks of dimensions , , ˚i� ˚i�. Call these diagonal blocks , . . . , ˚i� .
From eq. (1.74), we have:

˚i�

˚i�
˚i�

˚i�
˚i�

(b/s/Hz)

where each describes a multiple access channel with synchronous users and
chips having capacity (b/s/chip) as found in Section 1.2. Ensemble average
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of is therefore:

E ˚i�
˚i�

˚i�
˚i�
E

where the expectation is on , that is the number of users with delay equal to
W. Assuming uniform i.i.d. delays, Binom with ˚i�, irrespective

of , hence:

(b/s/Hz)

Assuming as previous spectral efficiency to be self-averaging, the large-system limit
yields spectral efficiency :

F (b/s/Hz) (1.75)

where:

F F (1.76)

having denoted with F the e.s.d. of a synchronous CDMA channel with load
averaged over the spreading sequences, and with F the large-system limit

e.s.d. that is found by averaging F with respect to and let .
In general ˚i� is function of . There are, therefore, different ways we can

approach the large-system limit depending on the behavior of as .

Case 1) ˚i�
This is case when , and ˚i� is constant, and thus

also the bandwidth is constant. The load of the system is:

users
DoF ˚i� (1.77)

Case 2) ˚i�
When ˚i� grows as , the number of DoFs grows as ; therefore, also the number

of users has to grow as in order to keep spectral efficiency nonzero.
This is the case when ˚i� . For the sake of simplicity, consider:

˚i�
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Note that in this case, as the impulsiveness index, also the bandwidth tends to
infinity in the large-system limit. The load of the system is:

users
DoF ˚i� (1.78)

Therefore we can actually call the constant factor .

TH-CDMA with s .
We find closed form expression of (1.75) for TH-CDMA with s in the two

cases specified above.
In general, spectral efficiency of TH-CDMA with s is given by:

E Ex x (b/s/Hz)

where the inner expectation is over x Pois and the outer expectation is
over Binom ˚i� .
Case 1) Quite surprisingly, although in this case the Binomial distribution does
not tend to a Poisson distribution, we can anyway regard the (unconditioned)
distribution of x as Poissonian:

fx f fx

hence, asymptotically, x Pois .

Case 2) In this case, the Binomial distribution tends to a Poisson distribution as
follows: Pois , x Pois and x Pois .

Therefore, in both cases, spectral efficiency is given by:

E x (b/s/Hz) (1.79)

as in a synchronous channel with load given respectively by eqs. (1.77) and (1.78).

1.5 Future work

In this section, several proposal for extending the analysis of previous sections are
presented in order to account:
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(E1) non-uniform power constraints over users;

(E2) fading channels;

(E3) multipath channels;

(E4) frequency-hopping;

(E5) asynchronism.

E1. We call non-uniform power constraint a constraint E b that depends
on , i.e.,

E b

that, when symbols of different users are independent, leads to:

E (1.80)

where is diagonal. Spectral efficiency is, therefore, given by:

0

T (1.81)

E2. The extension of model (1.2) to account channels with fading is straight-
forward. Denote with the diagonal matrix of the fading coefficients
A A . The flat-fading channel model reads as:

(1.82)

For the sake of simplicity, it is common to assume (e.g. [39]) that A

are i.i.d. with unit variance, E A . This corresponds to channels having, on
average, unit gain, that may be assumed w.l.o.g. (in the opposite case, the different
gains may be included in a non-uniform power constraint, such as in E1 ). Spectral
efficiency, when receiver has knowledge of the fading coefficients, is:

(1.83)

and, therefore, the analysis reduces to that of finding the eigenvalue distribution
of T, or equivalently T . In case a non-uniform power
constraint is set, one has, similarly to eq. (1.85):

0

T (1.84)

Suppose to set the maximum power consumption of the network, i.e., Tr

. If each transmitter has knowledge of , one can find the spectral efficiency as
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follows:

Tr

Tr 0

T (1.85)

where the optimum is expected to be non-diagonal, thus requiring cooperating
users, and follow a water-filling argument. It would be interesting to find a closed
form expression of eq. (1.85) and compare the resulting spectral efficiency vs. a
suboptimum uniform power constraint, as given by eq. (1.84) with diagonal .

E3. The multipath channel between user and the receiver may be modeled
with a convolution matrix of dimensions , where is the length of the
channel expressed in number of taps, corresponding to the delay spread W

seconds. The channel model becomes:

b b (1.86)

where:
T

Spectral efficiency is given again by eqs. (1.84) and (1.85) by formally replacing
with . In the present case, however, we may exploit the convolutional structure
of in order to attempt finding a closed form solution.

E4. Frequency-hopping may be regarded as the time-hopping dual modulation.
We present in the following the basic time-hopping signaling scheme, and analogies
and differences with frequency-hopping. Investigation of a further generalization
is proposed. Strictly speaking, several expressions below are valid asymptotically
only, as degrees of freedom in time and/or frequency tend to infinity; we do not
account this specific issue here.

In time-hopping, a waveform strictly bandlimited to is transmitted
with period for . By projecting onto the set ,
one has:

(1.87)

where is the vector symbol transmitted (or the set of transmitted symbols with
time-hopping), CN 0 , and assumes a different form depending on the
channel that is experienced. In particular, when the channel is time-selective, then

A A , with typically i.i.d. diagonal elements [39]; when the
channel is frequency-selective, is a convolution matrix, such that

, which is asymptotically circulant, and there-

fore diagonalizable with a Fourier basis, i.e., , where is diagonal
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with diagonal elements equal to the DFT of the first column of . In case where
both time- and frequency-selective fading are present, one has: .

On the contrary, in frequency-hopping (e.g. [3]), transmitted signals belong to
the orthonormal family

1

The presence of the term implies that . In presence
of a frequency-selective channel, the signal projected onto the above family is:

, where is diagonal. On the other hand, in case of time-selective
fading, is circulant, in a dual fashion with respect to frequency-selective fading
in time. The relationship between signaling expressed in time or frequency domain
is given by the Fourier matrix and its inverse .

A further generalization is not to divide the degrees of freedom
available in “slices” that occupies the whole frequency resource for a short time
(time-hopping) or the whole time resource in a narrow frequency band (frequency-
hopping). For the sake of clarity, consider time and frequency as two coordinate
axis on a plane: the time-frequency (TF) plane. Time vs. frequency resources
are not independent—there exist a coupling expressed by an uncertainty principle.
Indeed, one can divide the TF plane in rectangles with dimensions and

, such that . This partition can be obtained, for example, by
the Weyl-Heisenberg (WH) family. A suitable choice of and alongside
WH signaling is able to diagonalize a given channel—under the rather technical
assumption of being underspread, which is largely verified by most indoor and
outdoor channels. Several investigations of TF signals in connection with wireless
communications can be found in [40]. Future analyses may find closed-form
expressions of spectral efficiency, by starting from relations similar to eq. (1.85),
under the general perspective of a TF discretization, by further consider the effect
of pratical impairments due to imperfect channel knowledge and correlations in
channels coefficients.

E5. In symbol-asynchronous systems, where users may experience delay
, the general formula for the spectral efficiency is given by eq. (1.73). Find a

closed form as both and seems to be a formidable task in general;
on the other hand, a success in this direction, that could maybe rely on Girko’s
methods [37], would probably uncover a way to address several issues related to
asynchronism in spread-spectrum systems, as well as systems which can be formally
reconducted to a spread-spectrum description.

1.6 Conclusion

Verdú and Shamai showed in [6] that optimum decoding provides a substantial gain
over linear decoding in DS-CDMA, with random spreading. In particular, a bank of
single-user matched-filters followed by independent decoders is limited in spectral
efficiency at high SNR, and linear multiuser detectors are needed in order to recover
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a nonzero spectral efficiency high-SNR slope. This behavior is partly due to the
“even” use of degrees of freedom — coinciding in our setting with chips — that is
intrisic of DS-CDMA [1].

The object of this chapter was to analyze TH-CDMA with random hopping,
and compare its behavior against DS-CDMA; we interpreted time-hopping in the
general framework developed in [6, 7]. The present analysis allowed comparison of
TH vs. DS with same energy per symbol and same bandwidth constraints, and,
therefore, showed the effect of the energy “concentration”, that is typical of TH. The
degree of “unevenness” in TH-CDMA is directly related to the number of pulses s

representing each symbol. At one extreme, one has maximum “unevenness”, where
all energy is concentrated in one pulse ( s ); the other extreme corresponds to
maximum “evenness”, s , where TH coincides with DS.

A first result of our analysis was to derive a closed form expression for spectral ef-
ficiency of TH-CDMA with optimum decoding in the archetypal case of “unevennes”,
that is s , showing that, in this case, DS-CDMA outperforms TH-CDMA; same
wideband behavior, but lower high-SNR slope, was observed for TH-CDMA vs.
DS-CDMA, that is DS TH . A closed form expression
for generic s remains an open problem; results based on simulations suggested,
however, that the spectral efficiency loss may become negligible with as low as
two pulses per symbol ( s ). This result indicates that the spectral efficiency
gap between TH-CDMA and DS-CDMA may be substantially reduced to a very
small value, although only using a fraction s of degrees of freedom per user,
that asymptotically vanishes as grows. With respect to the non-asymptotic

s generic case with finite, we developed a systematic method for finding
approximations of spectral efficiency at the wideband regime (C ). In particular,
for small values of (example ), 0 (dB) vs. C was independent of s,
up to a second order approximation.

A different behavior of TH-CDMA with respect to DS-CDMA was observed
with a SUMF linear receiver. Contrarily to DS, TH-CDMA spectral efficiency with

s was unbounded for increasing SNR. As suggested, this asymptotic behavior
may be traced back to the non-Gaussian distribution nature of the interference-
plus-noise variable observed by each independent single-user decoder, that, in turn,
depends on cross-correlation properties of spreading sequences. The same high-
SNR slope sumf

TH was achieved by TH irrespectively of the knowledge that
each single-user decoder had about spreading sequences of all other users. For
generic s, we were able to show that, when s obeys the rule s , ,
same spectral efficiency as DS-CDMA ( ) was obtained irrespectively of for

. The unstructured generic s case, where each single-user decoder had no
knowledge on spreading sequences of other users, was analyzed by simulation, and
results showed that, for increased s, the high-SNR slope decreased although never
reaching zero (spectral efficiency tending but not reaching a horizontal asymptote).
It was interesting to note that the maximum slope for TH, providing a hint on
greatest energy efficiency, was reached when the number of users was equal to
the number of chips , i.e., , leading to sumf

TH .
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The bounded nature of spectral efficiency with a SUMF bank in DS-CDMA is
overcome, as well known, by using more complex linear receivers, that also account
for interference, such as MMSE and decorrelator. Conversely, we showed that,
in TH-CDMA, the introduction of complexity in the linear receiver led to only
small gains over SUMF, due to the structure of spreading sequences; TH spreading
sequences are “more” likely to be linearly dependent than DS ones, in agreement
with the intuition based on the cardinality of binary DS vs. TH codes, that is

vs. . Reinforcing this argument, note that, for TH with generic finite s,
we proved that same spectral efficiency was achieved with SUMF, decorrelator and
MMSE, when decoders had knowledge on cross-correlations of spreading sequences.

Beyond natural extensions of the present work to channels with fading, multi-
path, and asynchronism, where the effect of an “uneven” use of degrees of freedom
typical of TH should be investigated, we do stress that, from the single-user per-
spective, TH is a particular instance of impulsive signals. As such, the present
theoretical setting, if appropriately adapted to asynchronous links, may serve as a
basis for refining the understanding of impulsive communications bound laws.

56



Appendix

1.A Proof of opt opt

In order to prove eq. (1.20), we have to show that P opt opt

for all , that is:

P F
T

F

(1.88)
It is useful to rewrite integrals with respect to measures. In particular, let TH be
a measure such that F

T TH , and denote by TH its expectation.
Also, recall that TH is given by eq. (1.17). As already pointed out in the proof
of Theorem 1, eigenvalues of T belong to non-negative integers, therefore both
measures are discrete (i.e., purely atomic), and one has:

TH TH

TH TH

TH TH

TH TH

TH (1.89)

where (c.f. eq. (1.14)):

TH TH

and, for ease of notation, we write TH and TH for TH and TH ,
respectively. It can be shown by elementary methods that, in the LSL, the last two
terms in eq. (1.89) both tend to zero. Since:
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TH TH

F
T

eq. (1.88) holds.

1.B Proof of Theorem 2

This appendix is split in two parts. In the first part, we will find average moments
E for finite dimensional systems, where both and are finite. In the second
part, we will prove convergence in probability of to the th moment of a Poisson
distribution in the LSL, by showing that .

Part 1: Average Moments of TH-CDMA matrices with s .

The th moment of the ESD can be written as follows:

Tr T Tr T T T T

T T T (1.90)

where summations span over . By taking the expectation of eq. (1.90),
the following expression for the th average moment is derived:

E E T T T

P

P

1 (1.91)

Sums in eq. (1.91) span over all possible -uple and
. In order to derive a closed form expression, we partition the set as

follows. Consider nonempty subsets of indeces ; hence, .
Stirling numbers of the second kind enumerates the number of partitions of a set
of elements into nonempty subsets, therefore there are possible partitions.
Assign a (different) value in to each subset in the partition; the number of
possible assignments is . For any fixed , there are
free summations, hence each partition with parts is counted times.
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Therefore, eq. (1.91) can be rewritten as:

E 1

(1.92)

In the LSL, one has:

E (1.93)

that is exactly the Bell polynomial B providing the th moment of a Poisson
distribution with mean .

Remark 1. Interestingly, the th moment of the Marc̆enko-Pastur law (c.f.
eq. (1.19)) can be expressed as follows (see e.g. [22, 29]):

MP (1.94)

where is the number of non-crossing partitions of the set into blocks,
also known as Narayana number. As a remark, the sum of Narayana numbers over

is the th Catalan number, that has many combinatorial interpretations (see
e.g. [41, 42]).

On the other hand, eq. (1.93) is formally similar to eq. (1.94), with Stirling
number of the second kind in place of Narayana numbers. While the latter enumer-
ate non-crossing partitions only, the former enumerate all partitions, both crossing
and non-crossing ones. As a remark, the sum of Stirling numbers over , or,
equivalently, the value of E with unit load, is equal to the th Bell number.

Part 2: .

We will find E , from which E E . Proceeding as
for eq. (1.90) and (1.91), we have:

E E T T T T T T

P (1.95)

P (1.96)
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P (1.97)

where sums in eq. (1.96) and in eq. (1.97) are over indeces such that
and , respectively.

Suppose that . Hence:

P

P P

(1.98)

where, akin to the previous section, and are the number of parts of a partition
of and , respectively. Therefore, for disjoint subsets of
indeces, eq. (1.96) reduces to:

P

(1.99)

which remains finite in the LSL. Suppose now that:

In this case, at least for one it happens that , and therefore there
is only one long chain of equalities in eq. (1.95), i.e.,

P

where there are at most different RVs. Hence, for any fixed partition of
into parts, the above probability is , and

we can assign to each part a (different) value in in ways,
similarly as in the previous section. Therefore, each part accounts for , and
since the number of partitions remains finite, the overall sum in eq. (1.97) is .
Since eq. (1.99) is equal to E up to an term, we have
in the LSL.

1.C Relationship between Rank and high-SNR slope

From the definition of ESD, one has:

F
T

1
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and the number of zero eigenvalues is the geometric multiplicity of , that is
equal to the dimension of the associated eigenspace, which is the nullity subspace
of T. In general, from the Rank-Nullity Theorem, it results:

T T

T

and, therefore:
F

T

F

from which can be obtained as F .

1.D Asymptotics in the wideband regime for s

1) Minimum energy-per-bit.

We will show that:

surely. In fact, while are RVs, is not, for any . This follows from:

Tr T Tr T T

and therefore E since E . Hence, the minimum energy-per-bit is:

min
E

2) Wideband slope .

We will show that:

Denoting with T , since:

Tr T Tr T

(1.100)
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one has:
E E

Denote with:
T

s

T

where T T
s

T is an s h -sequence (see Definition 2). Indicate with
T . The moment generating function (MGF) of is:

E E s E s
s

where:

h s h h s

Hence:

h h s

s

(1.101)

and E , and also:

E

We will now show that , proving convergence in probability of
to . From eq. (1.100), one has:

E E

E E

hence .

1.E Mutual Information of SUMF when single-user decoders
have knowledge on cross-correlations.

The SUMF channel for user , as given by eq. (1.33), is:

y b b
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Assuming Gaussian inputs, b CN , the conditional mutual information on
expressed in bits per channel use per user is:

y b E (1.102)

where expectation is over , and . We find below the
PDF of in the LSL.

From eq. (1.101), the characteristic function (CF) of the generic RV is:

E
s

s

s

s
s s

s

s

s
(1.103)

and the CF of is:
E E (1.104)

The last expectation can be computed as:

E
R R

R

s s

In the LSL, eq. (1.104) becomes:

s
s

which is the CF of a Poisson RV with measure:

s s
s

Therefore, from eq. (1.102), mutual information converges to:

y b s s

s
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1.F Proof of Theorem 6

Consider the output of the SUMF of user , that is given by eq. (1.33), divided by
0:

where CN and we assume CN . The goal is to find mutual
information , that reduces to find and , both of which easily follow
from .

From eq. (1.103), one can write the CF of each term as:

E s
s

and, therefore, the CF of in the LSL is:

s s
s s s

which is the CF of:

s s CN s

Therefore, and are distributed as:

s s CN s (1.105)

and:
s s CN s (1.106)

Mutual information can be obtained as .

1.G Proof of Eq. (1.43)

The goal is to find the quantity sumf
TH , where (nats/s/Hz) is

given in Theorem 6. Assuming that a limit does exist, we will upper and lower
bound with bounds having the same first derivative as . Here
is a generic linear combination of Gaussian distributions with possibly different
moments and weighted by a real sequence w , that is,

w CN
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Upper bound. Apply the elementary inequality x x x x x x

x x with x and x , aptly generalized to a denumerable number of
summands, to the entropy of , that is:

C

w CN w CN

C

w CN w CN

w w w CN P G

where CN CN , irrespective of ; P is
constant in , while G , that is a weighted sum of entropies CN ,
may depend on via .
Lower bound. It is easy to show via variational calculus that the solution of the
following problem:

R

s.t.
R

for sufficiently well-behaved functions R is , this result
being a generalization of the Gibbs’ inequality to continuous functions. We can
apply the above result for CN , from which is bounded from
below as follows:

w
C

CN w CN

w CN G

Bounds. From above bounds, it follows that G G P , and
since P is constant in , one has:

G (1.107)

provided that the limit on the LHS does exist. By specifying upper and lower
bounds to Poisson weights, w , and equal to either or as
given by eqs. (1.41) and (1.42), respectively, it results:

sumf
TH

G G (1.108)
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and, by direct computations, it follows that:

G (1.109)

G (1.110)

hence sumf
TH .

1.H Spectral Efficiency of SUMF for s , , As
.

In this appendix we will show that spectral efficiency of the single-user SUMF
channel:

y b b (1.33)

b

for TH-CDMA with s , , is same as that of DS-CDMA, therefore
generalizing a previous result of Verdú and Shamai [6] to which we reduce when

. The argument below follows closely that developed in [6].

Part 1: Non-Gaussian capacity bounds.
Spectral efficiency of channel of eq. (1.33) is obtained by knowing cross-

correlations R and input distributions F fb . In general,
is non-Gaussian, and depends on both R and F , i.e., R F . We denote
with a Gaussian r.v. with same mean and variance as , and, for simplicity,

R F by . A classic result [43] allows to bound as follows:

D (1.111)

where is the spectral efficiency of a Gaussian channel with noise variance given
by:

R 0

that is,

R
(1.112)

and where D is the Kullback-Leibler divergence between the distribution of
the interference-plus-noise term and a Gaussian distribution with same variance;
we recall that the divergence D between two distributions and with
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densities and , respectively, is defined as follows:

D

and D with equality when .
We will prove below that D

a.s. when s with by
showing that is asymptotically Gaussian distributed.

We proceed by verifying the Lindeberg-Feller condition as proposed in [6]:

E b 1 b

for our purposes, it is sufficient to show that:

E b 1 b

E b 1 b 1 (1.113)

where the inequality is true .

Part 2: Verification of the Lindeberg-Feller condition. The first term in the
right-hand side of eq. (1.113) tends to zero, irrespective of s, since b is
finite while for any and .

The second term, thanks to the law of large numbers, tends a.s. to:

1 a.s.
E 1

therefore it is sufficient to show that:

E 1 (1.114)

Call ; the c.f. of is:

C
h h

s s

s

(1.115)

When s with fixed , we have s h h, hence h ;
as , eq. (1.115) becomes:

C h (1.116)
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therefore is asymptotically Gaussian distributed with zero mean and unit vari-
ance. Applying the Markov inequality:

E 1

eq. (1.114) is satisfied as .

1.I Closed form expression of eq. (1.53) for a General Class of
Linear Receivers.

The discrete synchronous multiple-access channel considered is (c.f. eq. (1.2)):

The output of a generic linear receiver T is as follows:

T T T

(1.117)

where T and CN 0
T . We consider the following linear

receiver structure parametrized by and :

T T T (1.118)

by setting , decorrelator and MMSE receivers are obtained as special cases for
and , respectively; by setting and , one obtains SUMF.

By focusing on user , the output of channel of (1.117) can be written as
eq. (1.119), which is reported here for reference:

b b (1.119)

As in the proof of Theorem 1, we say that users are in chip when the th
diagonal element of T is equal to . Since T is diagonal, one can write:

T

where is the number of users in chip ; since , one has
a for some a and , and therefore can be formally ex-

pressed as . The generic element in eq. (1.119) is ex-
plicitly given by:

T T

a T T a
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a a

where we denoted by , that is also equal to the number of spreading
sequences equal to either or , i.e.:

With similar computations, the generic element of the conditional covariance matrix
of the noise vector in eq. (1.117) given , and, therefore, given , is:

E T
0

T
0
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CHAPTER 2
Is A Large Bandwidth Mandatory to

Maximally Exploit the Transmit
Matched-Filter Structure?

Transmitted signals can be focused in time or space, i.e., at a particular receiver
location, by introducing a prefilter in the transmitter. Prefiltering also allows to
contain inter-symbol and multiuser interference. Performance bounds in terms of
signal-to-noise ratio gain, achievable by prefiltering, depend on both transmitted
signal bandwidth and channel characteristics. This chapter analyzes the above
dependence for transmit matched-filters, also known as time-reversal prefilters, and
channels with multipath.

Theoretical results show that single-cluster channels verify a condition by which
the gain is monotonic non-decreasing with bandwidth. Multi-cluster channels, such
as those described by the Saleh-Valenzuela model, seem to follow a similar behavior,
as suggested by simulation of the IEEE 802.15.3a channel model. As such, the
transmit matched-filter is particularly suitable for signals with large bandwidths,
as in acoustics and ultra-wideband communications.

The interplay between transmitted signals, that are under designer’s control,
and channel, that is set by Nature, has an impact on system performance bounds.
For systems with prefiltering, the dependence of performance bounds in terms of
signal-to-noise ratio (SNR) on both bandwidth and channel has not been specifically
addressed. For particular contexts, such as ultra-wideband (UWB) communica-
tions, the general claim is that the larger the bandwidth the higher the SNR. The
intuition is that, while bandwidth grows, the prefilter can take advantage of an
increased fraction of the channel; this intuition, however, has not been thoroughly
investigated.

The goal of this paper is to address the above issue by investigating whether
increased bandwidth implies increased SNR, when the channel is affected by multi-
path. To this end, two different transceiver structures are considered in the analysis.
In the first structure, a simple pulse, i.e., a zero-excess bandwidth pulse as will
be further defined, is transmitted. In the second structure, the same zero-excess
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bandwidth pulse is filtered by a transmit matched-filter [44–46], that has an impulse
response proportional to the time-reversed version of the channel impulse response.
In acoustics [47,48], and UWB [49], this prefilter is known as time-reversal, although
its first appearence may go back to [50, 51], where it was introduced as pre-Rake.
These two structures are compared based on the SNR gain , that is achievable by
introducing prefiltering.

The paper is organized as follows: Section 4.2 contains the two reference system
models and defines the system performance measure. Results are presented and
discussed in Section 2.2. Section 6.3 contains the conclusion.

2.1 System Model and Performance Measure

The two transceiver structures under analysis are shown in Fig. 2.1. No Inter-
Symbol Interference (ISI) is assumed, e.g. either one symbol only, or symbol
sequences with symbols modulating waveforms with vanishing crosscorrelations at
the receiver, are transmitted.

In Structure 1, the transmitted signal is , where has unit
energy and is the symbol to be transmitted, with E . The noiseless
received signal is, as a function of frequency, , where is
the channel transfer function.

In Structure 2, the transmitted signal is . As a function of frequency, one
has , where is a constant such that
and have same energy . Structure 2 requires a perfect knowledge of the
channel at the transmitter. The noiseless received signal is as a function of
frequency: .

In the two structures, is a White Gaussian Noise process with spectrum
height 0 , and the receiver is a matched-filter followed by a sampler. Based
on the no-ISI hypothesis, the channel can be modeled as Additive White Gaussian
Noise (AWGN). In the first structure, the received signal is
projected onto a waveform proportional to . In the second structure,

is projected onto a waveform proportional to . The projection of
the generic received signal onto , , is:

R

(2.1)

where is a real Gaussian random variable (r.v.) with
. The SNR at the receiver, after the sampler, is:

SNR
E

(2.2)

With reference to Fig. 2.1, one has SNR and SNR

.
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 ̂(f)|ĉ(f)|2 Sampler

x

1

(t) x

2

(t) y

2

(t) r

2

(t) SNR
2

Channel
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Figure 2.1: The two reference system models. Structure 1 corresponds to a traditional
transmission with no prefiltering at the transmitter and matched-filtering
at the receiver. Structure 2 corresponds to prefiltering at the transmitter
with transmit matched-filter, and matched-filtering at the receiver. In both
structures, is a zero-excess bandwidth waveform. It is assumed that
prefiltering does not alter energy, that is, and have same energy
.

Gain allows comparison of the two structures and is defined as follows:

SNR

SNR
(2.3)

For the sake of simplicity, is assumed as a zero-excess bandwidth waveform
with band , i.e., , where , for
which SNR and SNR become:

SNR (2.4)

SNR (2.5)

and gain is:

(2.6)

Gain also provides a hint on performance in the coded regime, as measured
by maximal mutual information SNR , , nats/channel use.
Since the system is baseband, the no-ISI hypothesis holds, for example, by making
the symbol period greater than the channel delay spread , by which

SNR nats/s. Similarly to the SNR gain , an information gain
can be defined as follows:

SNR

SNR

SNR

SNR

In the low-SNR regime (SNR , ) one has SNR SNR ,
hence reduces to . In the high-SNR regime (SNR ) one has
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SNR SNR SNR , and for channels with bounded , e.g.
multipath channels, reduces to unity as SNR . is, therefore, the most
important parameter to be analyzed to determine performance of systems in both
uncoded and coded regimes, under the no-ISI hypothesis.

2.2 System Analysis Based on Gain

In this section, we find the lower bound of and the asymptotic value of as
for multipath channels (section 2.2.1), and derive a necessary and sufficient

condition for to be a monotonic non-decreasing function of , also showing
examples and counterexamples of channels verifying the condition (section 2.2.2).

2.2.1 Gain Limit Values

1) Lower bound of .
By applying the Cauchy-Schwarz inequality to the denominator of eq. (2.3), one

has . Therefore, , implying that Structure
2 in Fig. 2.1 cannot underperform Structure 1. Equality is achieved iff ,
i.e. iff is constant for R , as can also be di-
rectly shown by methods of variational calculus. The minimum gain is thus
obtained when the magnitude of the channel transfer function is nonzero and flat,
for frequency intervals where the amplitude of the spectrum of transmitted signals
is nonzero. Typically, this is true when the channel is perfect (channel transfer
function with constant amplitude) at least within the transmitted signal bandwidth.
This condition easily holds for narrowband communications.

2) Asymptotic value of as .
Consider the following multipath channel:

(2.7)

where and R are delay and amplitude of ray . Eq. (2.7) also models
realizations of channels with clusters. Supposing that a same interarrival time
between two consecutive rays is not possible,1 it can be shown that [52], as ,
the gain is:

(2.8)

and, therefore, irrespective of channel amplitudes.

1
This hypothesis often holds with probability one for random channels, since interarrival times

are usually independent.
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Figure 2.2: Average gain E vs. for channel models CM1-CM4 of the IEEE
802.15.3a standard [53], and single-cluster models SM1-SM3, that refers to
channel of eq. (2.7), with parameters r equal to , and

, respectively, where and are expressed in nanoseconds.

2.2.2 Slope of vs.

From above, is bounded as follows: . In
this section, the condition by which is a monotonic non-decreasing function
is derived. For the sake of generality, the condition is derived for random channels,
but it can be applied to nonrandom channels as well. Suppose that is random,
with average E . The slope of E is nonnegative iff:

E (2.9)

where .
Figure 2.2 shows E vs. obtained by means of Monte-Carlo simulations

for UWB channels following the IEEE 802.15.3a standard model [53], where
is the average intra-cluster interarrival time between two rays, with values in the
range nanoseconds. Figure 2.2 suggests that channel models valid for very
large bandwidths, up to several gigahertz, verify eq. (2.9).

Also shown in Fig. 2.2 is when a signal can be considered as narrowband,
wideband or UWB, as a function of the statistical parameters of the channel it ex-
periences. In a multipath channel, most of the power lies in , i.e., ,
where is the coherence bandwidth. When , there is about only
one resolved path. may serve, therefore, to define narrowband signals, the
condition being . Similarly, may define UWB signals, the condition
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being , for which a significant fraction of the multipath components can be
resolved. For , the signal may be considered as wideband.

In general, a direct computation of E is a formidable task, even for simple
models that do not account for clustering. Therefore, a condition, that does not
require the explicit knowledge of E , for eq. (2.9) to hold, is derived below.

Proposition 1. Let be the frequency response of a realization of a random
multipath channel, and denote by its squared magnitude. Then
E is a monotonic non-decreasing function, i.e., condition of eq. (2.9) holds,
iff:

E

E (2.10)

Proof. Interchange differentiation and expectation operators in eq. (2.9), and com-
pute ; then discard the denominator, since it is always positive, and inter-
change the order of expectations and integrations.

Note on eq. (2.10) that is the derivative of E up to a positive factor
depending on .

An example of a channel model that verifies eq. (2.10) is the “Single-cluster
Model” (SM). This model is similar to the IEEE 802.15.3a-CM1 [53] when re-
stricted to the first cluster. In particular, the SM channel impulse response is
given by eq. (2.7), where and are random variables. Interarrival
times are independent and exponentially distributed with average
E . Conditioned on , the distribution of the path amplitude

is an even function, and follows a log-normal distribution. Even
conditional moments are E r for , where

is the ray decay factor, r is the standard deviation of the Gaussian r.v.
generating the log-normal r.v., and is the variance of . Odd conditional
moments are nil. In order to compute E , the approach proposed
in [54] for E is generalized here:

E E E

(2.11)

that, for and , provides E . In the right-hand side of
eq. (2.11), the inner expectation is over amplitudes conditioned on delays ,
and the outer expectation is over delays only. Inner expectations are nonzero iff
the set can be partitioned into subsets with even cardinal-
ity. With probability one, the set of indices can be equivalently
partitioned. Logical conditions ensuring the partition can be derived. In the
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with .
For , is not monotonic
non-decreasing: there exist lo-
cal maxima and minima, and a
global maximum (see dots) with
respect to (indicated by ver-
tical lines) depending on .

simple case of , there are four logical conditions, i.e., ;
; ; (see Appendix 2.A for a

detailed derivation). For , there are logical conditions, that are not
reported here for brevity. Once the conditions are set, the closed form expression
of E can be derived, since each inner expectation is equal to an even
conditional moment with appropriate order. Figure 2.3 represents , normalized
to its maximum, for different and r values, and shows that is positive for
any relevant .

A channel that does not verify eq. (2.10) is as simple as a two-paths nonran-
dom channel with impulse response , R, . Since
the channel is nonrandom, E . The channel frequency response squared
magnitude is:

(2.12)

The limit case reduces to the channel with constant spectrum (c.f. Sec. 2.2.1).
The value of as is , that is maximum for ,
for which . Figure 2.4 shows vs. for . Note that, for
any fixed , there exists an optimum that maximizes (see dots on figure
for and ). For example, for , the maximum gain is reached
for , and is equal to . Figure 2.4 shows that is not
monotonic non-decreasing with for any .

2.3 Future work

Three assumptions of the analysis thus far were: 1) no-ISI; 2) transmit matched
filter precoding; 3) multipath channel. In this section, we set the basis for a future,
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general analysis, where all three assumptions are removed, and thus accounting for
generic FIR channels, prefiltering schemes, and symbol rate . In particular,
the latter is not restricted to be lower than, or equal to, the coherence bandwidth,
given by .

Capacity of a deterministic channel with the following discrete representation:

Z (2.13)

is given by [55, 56]:

nats/channel use

where and are the spectra of the transmitted symbol sequence and
noise, respectively, and is the squared magnitude of the DTFT of the
sequence . When the channel is random and unknown at the encoder, capacity
is averaged over the channel (see e.g. [39]):

E nats/channel use

The above discrete representation can be derived from a continuous-time de-
scription as follows. Let the received signal be:

where is an AWGN with spectral height 0 , is the channel impulse
response, and is the unit energy waveform associated with the -th symbol.
In the present paper, can be either a zero-excess bandwidth waveform with
band , or the prefiltered waveform , where and

. In both cases, the bandwidth of is , and
the projection onto Z provides a sufficient statistic for optimum
inference of :
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that has the form (2.13) as , hence:

E
0

nats/channel use

where the expectation is taken over the channel spectrum, and 0 since
N 0 . The channel is used every seconds, therefore the capacity in

nats/s is:

E
0

nats/s (2.14)

For Structure 1, one has , E , and the capacity is given by:

E
0

nats/channel use

For Structure 2, one has , and the capacity is given by:

E
0

nats/channel use

It can be shown that:

A capacity gain can be defined as follows:

A careful analysis of the capacity gain in terms of (prefiltering) and
(channel), which also depends on the two parameters and , represents a future
line of investigation.

Let see how this reduces to the previous analysis in absence of ISI. Under
the hypothesis of vanishing crosscorrelation of waveforms modulating symbols, the
channel becomes an AWGN channel with multipath. This assumption holds, for
example, by transmitting symbols farther apart than the channel delay spread ,
i.e., the symbol period is such that , i.e., such that:
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There is, indeed, no ISI, and the channel can be represented (for ) by:

Hereinafter, we will write instead of for notation simplicity.
Equivalently, optimum inference of is based on:

N 0

For Structure 1, one has:

N 0

and the maximum mutual information is achieved with Gaussian
inputs and assumes the well-known AWGN capacity expression:

SNR nats/channel use (2.15)

where here the channel is used every seconds, and:

SNR
0

is that analyzed in the Letter, being .
Similarly, for Structure 2, one has:

SNR nats/channel use (2.16)

where:
SNR

0
SNR

being SNR SNR the SNR gain analyzed in the Letter.
Expressed in terms of nats/s, we have:

SNR nats/s

We adopted the notation and in place of and , respectively, to stress
that the above are mutual informations rather than capacities, that are derived
under the constraint of a symbol period larger than the minimum, i.e., .

Similarly to the capacity gain defined above, we can define the following (mu-
tual) information gain :

SNR

SNR

SNR

SNR
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In the low-SNR regime, that is, when SNR , , one has:

SNR

SNR

and therefore the information gain is equal to the SNR gain studied in the paper.
In the high-SNR regime, that is, when SNR , one has:

SNR

SNR SNR

In particular, for those channels (e.g. multipath channels) having bounded ,
for large SNR.

2.4 Conclusion

This chapter investigated whether a large bandwidth is mandatory to maximally
exploit the potential benefits of the transmit matched-filter, in the absence of
ISI. To this end, two transceiver structures, with and without prefiltering, were
compared based on a parameter indicating the SNR gain achieved by introducing
the prefilter. Performance depended on both transmitted signal bandwidth and
channel frequency response squared magnitude. Limit values of when the channel
is affected by multipath were derived, for and , and it was proven
that for reaches the minimum, and is equal to one. A condition for

to be a monotonic non-decreasing function of was also derived for generic
random channels. This condition was then specified for single-cluster multipath
channel models, and verified in the particular case of exponentially distributed
interarrival times and absolute path amplitudes following a log-normal distribution.
Simulation experiments of channels following the IEEE 802.15.3a standard channel
model showed a monotonic non-decreasing gain in for the four models of the
standard, suggesting that may also be monotonic non-decreasing for channels
with clusters. However, the analysis of a channel with two paths only was shown to
be a very simple counterexample, for which the gain was not a monotonic function
of .

In conclusion, a large bandwidth is not mandatory to achieve a maximum
gain with transmit matched filter, although this seems to be the case for models
describing realistic channels, such as the IEEE 802.15.3a model.

Results were obtained in terms of SNR gain . As discussed in Section II, an
information gain can be defined, similarly to , as the ratio between the mutual
information achieved with and without prefiltering. It was proven that, under the
no-ISI hypothesis, essentially reduces to . This would be no longer true if the
no-ISI hypothesis were removed, in which case an achievable “capacity gain” should
be analyzed. This will be the goal of future work together with two generalization:
1) channel models that expand beyond multipath; 2) prefilter structures that ex-
pand beyond transmit matched-filters. The former can be analyzed by specifying
fairly general channel models and studying when eq. (2.10) holds with respect to
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the parameters specified in the channel model. The latter can be investigated by
specifying a prefilter that is proportional to , that encompasses
both transmit zero-forcing and transmit MMSE, for particular values of .

The setting used in this chapter, therefore, may serve towards a deeper under-
standing of prefiltering effects beyond the transmit matched-filter case in multipath
channels.
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Appendix

2.A Derivation of the case of eq. (2.11).

The goal is to evaluate E when the channel is:

Therefore:

Note that, in the previous expression, both and are random. Then:

Since the expectation E is on both and , but conditional
moments of amplitudes are provided for fixed delays, we may split the expectation
in the previous expression by conditioning first on delays :

E E E

(2.17)

Since amplitudes for different delays are uncorrelated, the inner expectation is
nonzero when with both and
even numbers, and . For the case under analysis, the conditions
are:

;

, , and ;

, , and ;

, , and .
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Therefore, explicitly, eq. (2.17) becomes:

E E E

E E

E E

E E

(2.18)

Since, in the Letter, we assumed that:

E r

inner expectations are:

E r

and:

E E E

Therefore, eq. (2.18) becomes:

E (2.19)

E r

E

E

E

(2.20)
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Now expectations are only over delays. Assuming, as in the Letter, Poisson arrivals,
i.e., E , , and the possible presence of a line-of-sight (LOS)
component, it results:

E (2.21)

r LOS

LOS LOS

LOS LOS

LOS LOS (2.22)

when LOS when the line-of-sight component is present, and LOS otherwise.
These integrals can be solved in closed form, providing the following result:

E r LOS

LOS

LOS LOS

LOS LOS (2.23)
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CHAPTER 3
Some results on Time Reversal vs.
All-Rake Transceivers in Multiple

Access Channels

Time reversal, that is prefiltering of transmitted signals with time reversed channel
impulse responses, may be used in single user communications in order to move
complexity from the receiver to the transmitter, and in multiuser communications
to also modify statistical properties of multiuser interference. Imperfect channel
estimation may, however, affect pre- vs. post- filtering schemes in a different
way. This issue is the object of this chapter; Robustness of time reversal (TR)
vs. All-Rake (AR) transceivers, in multiple access communications, with respect
to channel estimation errors, is investigated. Results of performance analyses
in terms of symbol error probability and spectral efficiency when the receiver is
structured either by a bank of matched filters or by 1Rake, followed by independent
decoders, indicate that AR is slightly more robust than time reversal but requires
in practice more complex channel estimation procedures since all channels must be
simultaneously inferred in the multiuser communication setting.

Field equivalence principles [57–60] state that the radiated field within a volume
, with boundary , enclosing a source, can be computed by considering, in place

of actual source, an infinity of equivalent virtual sources placed on .
Suppose the source is pointwise, impulsive, and located in a point .

The electromagnetic problem of finding radiated field in can be solved based on
the Green function.

From a communication perspective, knowing the channel at all points of
would allow, in principle, to understand the nature of a source , that is, the
location of a pointwise source within volume , that radiated the field observed on

. Sensing the channel on would require a multiantenna system and a perfect
knowledge of impulse responses of channels between and all points on .

Time reversal is a technique that takes advantage of the above physical phe-
nomenon and that was also proposed in acoustics [47, 48, 61]. By prefiltering
transmissions with a scaled version of the channel impulse response, reversed in
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time, allows simplification of receiver design, since the channel is compensated by
precoding. Time reversal also focuses signals in space, given that there is only
one “correct” location of the receiver that experiences the specific “time reversed”
channel impulse response.

Pioneering work on single-antenna time reversal spread-spectrum communica-
tions dates back to the nineties, where the time reversal pre-filter was named pre-
Rake [50,51]. The basic idea was to pre-filter the transmitted pulse with the channel
impulse response reversed in time, therefore matching the transmitted signal with
the subsequent channel.

Precoding techniques for multiuser spread-spectrum systems were developed
along similar lines of receive filters: transmit Zero-Forcing (ZF) [62], that attempts
to pre-equalize the channel by flattening the effective channel formed by the cascade
of the pre-filter and the actual channel, is optimum in the high-SNR regime; transmit
matched-filter (MF), that has been recognized to be equivalent to the pre-Rake filter
in [44], that conversely is optimum in the low-SNR regime; and finally, transmit
MMSE (Wiener) filter minimizing the SINR was derived in [46] following previous
attempts [63,64].

In recent years, along with the fast developing of narrowband MIMO systems,
pre-coding techniques using multiple antennas at the transmitter were thoroughly
studied (for a complete overview on MIMO precoding see [65]). Since the math-
ematical formulation of multiuser spread-spectrum is very close to that of MIMO
communications (see [66] for an overview of this analogy), MIMO linear precoders
can be derived along similar techniques.

Time reversal was proposed in connection to UWB communications in [49], that
also addressed equalization through an MMSE receiver. In [67], early experimental
data, showing the feasibility of time reversal, were collected. Following, experi-
mental investigations on multiple-antenna systems with time reversal [68–70], and
performance analyses [71], were also pursued. In [72, 73], compensation for pulse
distortion in connection to time reversal was investigated. In [74], the trade-off
between the complexity of transmitter vs. receiver in terms of number of paths
was analyzed. In [75], the insensitivity of time reversal to the lack of correlation
between channels in a MISO system was investigated. Finally, in [76], the effect of
time reversal on statistical properties of multiuser interference in communication
vs. positioning was explored.

The above investigations were all carried out based on the hypothesis of perfect
channel estimation. This hypothesis, however, is strong, since it is unrealistic,
irrespectively of whether channel estimation is performed at the transmitter or at
the receiver. While previous works addressed the comparison of pre- and post-
channel filtering, the problem remains of realistic imperfect channel estimation
and of how this affects performance for time reversed vs. receiver-based channel
estimation schemes.

This chapter addresses the above problem, by comparing single-antenna sys-
tems using time reversal, against receiver-based equalization schemes such as the
exemplary case of an AR receiver.
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The adopted network model considers multiple access by user terminals (UTs)
communicating to one basestation (BS), where both UTs and the BS have one
antenna only, and communication between each UT and BS adopts ultra-wideband,
impulse-radio signaling.

Performance comparison of TR vs. AR transceivers will be carried out in terms
of effect of imperfect channel state information (CSI) on symbol error probability
of a generic information-bearing symbol for a given UT (see [77] for a work on a
close topic regarding CDMA systems). The analysis will further explore robustness
of TR vs. AR, by finding the maximum achievable rate for the uplink channel.
Finally, the maximum information rate, that takes into account channel estimation
overhead, will be explored.

The chapter is organized as follows: Section 3.1 contains the system model; Sec-
tion 3.2 is devoted to the performance analysis in terms of symbol error probability;
Section 3.3 contains results of comparison in terms of uplink rate of the network;
Section 3.4 suggests future works, and conclusions are drawn in Section 4.4.

3.1 Reference Model

3.1.1 Network Model

A multiple access channel where independent sources transmit information-
bearing symbols to a common sink is considered (uplink communication channel).
Borrowing the terminology from the cellular network field, sources of information
are called user terminals (UTs) and the sink is called basestation (BS). However,
UTs and BS are intendend to designate more than what the name implies. For
example, in a typical WLAN, a BS is a fixed (e.g. desktop) or mobile receiver (e.g.
tablet, laptop, mobile phone) and UTs are peripherals or other fixed vs. mobile
devices. Figure 3.1 shows the adopted network model.

A generic UT transmits data, that is encoded into a sequence of information-
bearing symbols Z . This set of symbols is partitioned into blocks
of symbols each, Z where T. TheSUBMITTED TO THE IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 3

BS

UTk

UTKUT
1

FIG. 1: Network model: several user terminals (UTs) transmit information-bearing symbols to a common sink, i.e.,

basestation (BS).

comparison in terms of uplink rate of the network. Section V contains the conclusions.

II. REFERENCE MODEL

This section is organized as follows: II-A. Network model; II-B. Single User Channel; Multiuser

Channel; II-D. Channel Estimation and Data Transmission.

A. Network Model

A multiple access channel where K independent sources transmit information-bearing symbols

to a common sink is considered (uplink communication channel). Borrowing the terminology

from the cellular network field, sources of information are called user terminals (UTs) and the

sink is called basestation (BS). However, UTs and BS are intendend to designate more than what

the name implies. For example, in a typical WLAN, a BS is a fixed (e.g. desktop) or mobile

receiver (e.g. tablet, laptop, mobile phone) and UTs are peripherals or other fixed vs. mobile

devices. Figure 1 shows the adopted network model.

A generic UTk transmits data, that is encoded into a sequence of information-bearing symbols

{bk[m] : m � Z}. This set of symbols is partitioned into blocks of n symbols each, {bk[i] : i � Z}

where bk[i] = (bk[in], . . . , bk[(i + 1)n � 1])T. The length n of the block in terms of symbols will

be linked below with the coherence time Tcoh of the channel. Each block is transmitted by the

following signal:

sk,i(t; bk[i]) =
(i+1)n�1�

m=in

bk[m]gk,m(t � mTs), (1)

May 17, 2014 DRAFT

Figure 3.1: Network model: several user terminals (UTs) transmit information-bearing
symbols to a common sink, i.e., basestation (BS).
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Figure 3.2: System model. The transmitter is formed by modulators. Radiated signals
are a� eted by di� erent channels and white gaussian noise at the receiver.
Receveir consists in one demodulator shown on figure for the example case of
user .

length of the block in terms of symbols will be linked below with the coherence
time of the channel. Each block is transmitted by the following signal:

s (3.1)

where s (sec) is the symbol period and is the unit energy waveform
associated with the -th symbol of user . In general, is a spread-spectrum
signal at user prefilter output, and has band W W , that is, its spectrum is
nonzero for W . Assuming that s are
orthonormal, or very mildly crosscorrelated, the energy of in eq. (3.1)
is E ; Since the block has duration s, the average power is P

E s.
In the adopted model, demodulation at BS is performed on a block-by-block

basis. Index , that specifies the block number, is thus dropped. Consider for the
sake of simplicity in eq. (3.1):

(3.2)

Figure 4.1 shows the system model, including modulators producing transmit-
ted signals, , , affected by propagation within different channels
and corrupted at the receiver by white gaussian noise . The receiver consists in
one demodulator.
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Transmitted signal of each user propagates over a multipath channel
with impulse response and is distorted into :

(3.3)

where and are amplitudes and delays of the paths of ,
respectively.

The received signal is:

(3.4)

where is a white Gaussian noise with flat power spectral density 0 (W/Hz).
Throughout the chapter, the receiver estimates transmitted symbols of user ,

, on a symbol-by-symbol basis, by consider-
ing users as unknown interference over user ; for example, Fig. 4.1 shows the
demodulation of user . As detailed below, transmissions are symbol-synchronous
but not necessarily chip-synchronous, therefore the symbol-by-symbol demodula-
tion does not imply any performance loss. In the adopted model, the receiver is
a single user detector, and as such suboptimal, since it does not take into account
the possibility of joint multiuser detection. How channel is estimated and how
error affected estimated channels play a role in the model will be explained further
down in this section in association with the different modulation and demodulation
structures. Expliciting signals for the symbol at time epoch , and denoting
by , eqs. (3.2), (3.3) and (3.4) become:

(3.5)

(3.6)

(3.7)

3.1.2 Single User Channel

Since the system symbol-synchronous, analysis may refer to transmission of one
generic symbol, that is chosen as symbol , , denoted by . If transmission
does not foresee prefiltering, that is, a zero-excess bandwidth pulse with
bandwidth W and unit energy is transmitted to modulate , the received signal
is:

(a)
s c

(b)
s

˚i�
W c
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(c)
s

˚i�
˚i� W (3.8)

where in (a) the spreading sequence s s T and the chip period
c are made explicit; (b) follows from , and therefore also , being

bandlimited to W ; and (c) follows from assuming c ˚i� W, being ˚i� a positive
integer called impulsiveness index, that introduces a model to account for a pulse
duration shorter than chip duration, as common in UWB communications. In the
following, time-hopping is considered, for which all s are zero, but one.

By projecting eq. (3.8) onto W ˚i� , the
following discrete model is obtained:

˚i� (3.9)

where ˚i� T˚i� T is the first vector of the canonical basis of R ˚i�, is ˚i� ,
and is Toeplitz with dimensions ˚i� ˚i� and elements .
Since is causal, it is assumed that for , and since has finite
delay spread , it is assumed that for ˚i�, being c ˚i� W;
therefore, is banded Toeplitz.

In general, for a system with prefiltering, with prefiltering impulse response ,
eq. (3.9) generalizes to (see e.g. [66]):

(3.10)

where is a Toeplitz matrix with dimensions ˚i� ˚i� and
elements W .

Prefiltering is introduced in order to compensate channel effects; in particular,
prefiltering is based on an estimated version of the channel impulse response. In
other words, imperfect prefiltering may be matched to channel estimation error
patterns. If prefiltering is imperfect, as will be justified in Subsection 3.1.4, the
error due to the estimation process can be modeled as a white Gaussian process

, that is added to as follows:

(3.11)

where N , where accounts for estimation accuracy, and
is such that .

No prefiltering, All-Rake receiver.
The traditional (or conventional) receiver is a matched-filter, i.e., an AR receiver

in the case of a multipath channel. Knowing the time-hopping spreading sequence
and the resolved channel , a sufficient statistic for is obtained by projecting

the received signal onto , or, equivalently, onto :

T
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where N 0 .
As occurs in the prefiltering, also the AR receiver is affected by possible channel

estimation errors. If the AR is provided with imperfect channel state information
(CSI), that is, operates using an estimation of channel that is impaired by an
error N ˚i� , then the AR combines paths through instead of

, and inference of is based on:

T T T T

(3.12)

where T T T ˚i� T, being the nonzero dimension of .

Time Reversal prefiltering, 1Rake receiver.
The time reversal prefilter is represented by ˚i� , where

guarantees that prefiltered and non prefiltered transmitted waveforms have same
energy. Time-hopping implies , and ˚i� ˚i� . A
1Rake receiver is given by ˚i� . Denoting by the time-reversal prefilter matrix,
one has:

T ˚i� T ˚i� T ˚i� T ˚i� ˚i� (3.13)

being ˚i� N 0 .
If the transmitter is provided with imperfect CSI, then model of eq. (3.11) holds,

and eq. (3.13) becomes:

T ˚i� T ˚i� T ˚i� ˚i� (3.14)

AR vs. TR.
As well-known [76], TR is equivalent to a system without prefiltering and AR

in terms of the signal-to-noise ratio. From a single user perspective, there is no
performance difference in both uncoded (symbol error probability) and coded (chan-
nel capacity) regimes between the two transceiver structures. Moreover, previous
work [74] suggested that sets of equivalent systems can be obtained with partial
Rakes compensating for partial time reversal transmitter structures. In the case
of imperfect CSI, the comparison of the different structures is the object of this
chapter.

3.1.3 Multiuser Channel

A straightforward extension of eq. (3.9) to users is as follows:

(3.15)

93



where ˚i� and ˚i� models the chip-asynchronism by making i.i.d.
according to a uniform distribution. This extension holds based on the hypothesis
that all UTs are symbol-synchronous. This hypothesis is reasonable since, as further
discussed in Subsection 3.1.4, the BS broadcasts in a link setup phase a known
sequence to the UTs. Denoting by the spreading sequence after
transition in the multipath channel, and by:

T

the spreading matrix, eq. (3.9) can also be rewritten as follows:

(3.16)

where T. For systems with prefiltering, eq. (3.15) generalizes to:

(3.17)

where matrices and have same dimensions as and of eq. (3.10), respec-
tively, and eq. (3.16) holds with . In the presence of imperfect CSI,

in eq. (3.17) is substituted by , as defined in eq. (3.11), where estimation
errors are independent with respect to .

No prefiltering, All-Rake receiver.
The decision variable following the matched filter of user is:

T T

(3.18)

where , represents the MUI, and
T

N 0 .

If the AR is provided with imperfect CSI, then signal is projected onto
instead of , hence:

T T T

(3.19)

where
T

N 0 .

Time Reversal prefiltering, 1Rake receiver.
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Figure 3.3: Data transmission structured into blocks for UT .

With time reversal, the decision variable for user becomes:

T T T (3.20)

where ˚i� is the delay (in samples) to which the 1Rake is synchronized.
In the presence of imperfect CSI, the decision variable is:

T T T (3.21)

AR vs. TR.
As well-known [76, 78], time reversal usually increases the kurtosis of the inter-

ference at the output of Rake receivers. This follows from the fact that the effective
channel impulse response formed by the combination of prefilter and multipath
channel has a peaked behavior, whereas without time reversal the behavior is
non-peaked. While in the single user case the two schemes are equivalent, this
equivalence does not hold in the multiuser case. The impact of estimation errors
will be investigated below.

3.1.4 Channel Estimation and Data Transmission

For both AR and TR, the channel impulse response estimation takes place, at least
partially, both in the transmitter and in the receiver.

Actual transmission of the set of information-bearing symbols requires, there-
fore, additional symbols to be sent either in a preamble or in a postamble of the
block [79], as shown in Fig. 3.3.

Training is the simplest estimation process to evaluate the necessary channel
state information. Time-Division Duplexing (TDD) is assumed as commonly wit-
nessed in impulse-radio as well as common WLAN transmissions. Since precoding
of UT does not depend on channels experienced by users , feedback is not a
necessary feature, given that channel is reciprocal. Note that there is no dedicated
training since precoding is supposed to be disjoint, that is, the precoding vector of
each UT does uniquely depend on the channel between its transmitter and the BS
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and is in particular independent of channels and precoding vectors of other UTs
(see [80] for a thorough discussion).

Transmission follows a scheme that is shown at a glance in Fig. 3.4a and in
more detail in Fig. 3.4b. Figure 3.4 summarizes the organization of the different
links (downlink, i.e., broadcast, vs. uplinks) over time, where durations of data,
preamble and postamble are indicated in terms of number of chips ( , , d,

). In particular, Fig. 3.4b shows an information exchange between the BS and
each UT consisting in four phases:

1. Downlink Channel Training: the BS broadcasts a training sequence of
length ˚i� samples, known by the set of UTs, followed by a zero-padding
sequence of ˚i� samples (idle period), that allows each UT to receive the
training sequence smeared by the channel; each UT estimates the channel
based on the received samples and the knowledge of the transmitted training
sequence, as further detailed in the remaining part of this section. This
training sequence may be also used for network synchronization at symbol
level.

2. Uplink Channel Training: each UT transmits a training sequence of length
˚i� samples, known by the BS, followed by a zero-padding sequence of

length ˚i� samples; these training sequences are assumed pseudo-noise (PN)
sequences rather than orthogonal given that each UT chooses its sequence
independently from the others. The BS estimates channels through the ob-
servation of the superposition of training sequences, that have been distorted
by respective channels.

3. Data Transmission: each UT sends information-bearing symbols of a
block, corresponding to d ˚i� ˚i� samples;

4. Idle: each UT sends a zero-padded postamble of duration ˚i� samples.

During the downlink training, the BS broadcasts its training sequence to the
UTs. With reference to model of Section 3.1, and in particular to eq. (3.9) and
impulsiveness index ˚i�, the received signal at UT is:

˚i� (3.22)

where is the ˚i� ˚i� vector of received samples, is the ˚i�
˚i� ˚i� Toeplitz channel matrix, is the training sequence,

is the ˚i� training sequence accounting for impulsiveness, and is the
˚i� ˚i� white Gaussian noise vector.

Eq. (3.22) can be rewritten as follows:

(3.23)

where now is a ˚i� ˚i� ˚i� Toeplitz matrix and is the ˚i� channel
vector.
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(b) Detailed transmission scheme.

Figure 3.4: Transmission schemes. In (a): transmission scheme at a glance. In (b):
detailed transmission scheme. Phase 1 : the BS broadcasts a training sequence
of length ˚i� samples (corresponding to ˚i� W seconds) that is received
by each UT starting at time . Each multipath channel spreads the sequence
for ˚i� samples, hence each UT listens from time to time ˚i� ˚i� samples.
This training sequence may be also used for network synchronization at symbol
level. Phase 2 : Once the training sequence is received, each UT transmits its
own training sequence of length ˚i� samples to the BS (preamble). By
reciprocity, channels spread these sequences for ˚i� samples, therefore each
UT remains idle for ˚i� samples. Phase 3 : Each UT transmits a sequence
of information-bearing symbols for d ˚i� ˚i� samples. Phase 4 : Each UT
transmits a sequence of null symbols denoted with (postamble).
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In order to minimize the signal-plus-interference-to-noise ratio, UT may use
an MMSE estimation of , where the cause of interference is due to multipath.
However, the use of PN sequences as training sequences is very common, due to
their good autocorrelation properties. In fact, PN sequences have periodic ACF of
the following form [81,82]:

that is asymptotically impulse-like, as .
Asymptotically then, and dropping the superscript to unclutter notation,

T , and MMSE reduces to a matched-filter, and estimation is
as follows:

T T N N (3.24)

Dividing by the previous expression yields:

(3.25)

where N N . Note that, as well-known (e.g. [83]), the estimation
can be made as accurate as desired by increasing . For antipodal sequences,
say A A with A , the energy of the training sequence is A ;
therefore, can be increased either by increasing power spent on training, that
is, by increasing A , or by increasing time spent for training, that is, by increasing

, or both.

In the uplink training, the BS receives the superposition of the sequences of
users each filtered by the corresponding channel, that is:

(3.26)

having defined:

T (3.27)

As previously, the superscript is dropped to unclutter notation.
The goal of the BS is to linearly estimate by observing , knowing :

T T T (3.28)

where is the ˚i� vector of channel estimations, being the ˚i� vector
representing estimate, and T is the ˚i� ˚i� matrix representing the esti-
mator. All common linear estimators, that is ZF (Zero-Forcing), RZF (Regularized
Zero-Forcing), MMSE (Minimum Mean Square Error) and MF (Matched Filter),
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can be described by the following expression, parametrized by and :

T T T (3.29)

Indeed, MMSE is obtained with N ; ZF with ; MF with
; RZF with .

In the simple case of ZF, the form assumed by eq. (3.28) is as follows:

T T N N
T (3.30)

and, therefore, the -th tap of the channel of generic user is:

Here, is a correlated Gaussian random variable with variance coinciding with
the ˚i� -th diagonal element of N

T .
Assuming all UTs are transmitting the same power, i.e., is the same for

each , the approximation T allows to assume uncorrelated
estimation errors, since T , and thus:

N N (3.31)

3.1.5 Performance measures

In both system structures, the statistic for inferring the transmitted symbol of
user can be written in the following form:

where is a r.v. representing noise, and are r.vs. depending
on multipath channels, random time-hopping codes, random delays, and estimation
errors.

Two performance measures are considered.
In the uncoded regime, the probability of error as defined by:

P P

is considered.
In the coded regime, mutual information with Gaussian inputs and a bank of

matched-filters followed by independent decoders is considered; for the generic user
, this is given by:

nats/channel use (3.32)

where is the mutual information between the transmitted symbol and
the decision variable . Since a channel use corresponds to c ˚i� seconds,
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the sum-rate achieved by the set of users is:

˚i� nats/s (3.33)

having indicated with the mutual information (3.32) for a generic user.
Finally, a spectral efficiency equal to

R ˚i� (nats/s)/Hz (3.34)

is obtained.

3.2 Probability of Error

3.2.1 Single User

The main contribution of this subsection is to show that imperfect TR and AR
achieves the same probability of error, and, therefore, that the same accuracy is
needed for channel estimation at transmitter and receiver in order to achieve a
given error probability.

With reference to decision variables of eq. (3.14) and of eq. (3.12), the
probability of error, in both cases, is:

P A P A P A (3.35)

where the first equality follows from belonging to A A with equal probability,
and the second equality follows from the distribution of being an even function.
For the power constraint, it results A . Equivalence of for the two cases is
derived by showing that and have the same distribution.

To this end, rewrite the decision variable conditioned on A. Without
loss of generality, and for the sake of simplicity, consider . Then:

A T A T A T A T

Similarly, the decision variable conditioned on A is:

A T

where N N . By comparing the two expressions, is equivalent to ,
the equivalence being defined as producing the same , iff term T in is
distributed as in . This is, indeed, the case; by choosing an orthogonal
matrix such that , one has:

T T T T

where N N , hence the equivalence in terms of distributions, and, therefore,
probability of error is verified.
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Based on the described training algorithm, samples of the channel estimated by
are:

R (3.36)

where is the channel length in terms of samples ( , being the delay
spread of the channel); T is the vector of samples of the channel
impulse response, where:

N is a Gaussian random vector modeling the uncertainty of estimation,
being N

r where r is the energy of the training sequence received by
during the Training Phase I [83].

Focus on transmission of one symbol only, that for the sake of simplicity is
assumed binary, . Assume that the symbol period is formed of chips of
duration ; therefore, the symbol period has duration . The sampled
received signal is:

where is the trasmitted energy per symbol, is the convolution
matrix describing the channel, is the transmitted waveform, and

N N . In particular, for , and otherwise,
where are the elements of as in eq. (3.36). A 1Rake yields to the following
decision variable, upon which depends the decision on :

T (3.37)

and N N . Define:
T

(3.38)

then eq. (3.37) becomes:
(3.39)

The two performance measures analyzed are the signal-to-noise ratio SNR:

SNR
N

(3.40)

where is the SNR loss, that is a r.v. since is a random vector, and the symbol
error probability:

P (3.41)

As derived in Appendix 3.A, the PDF of is:

f f
T

(3.42)
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where fT is the Student T-distribution with degrees of freedom and non-
central parameter . Figure 3.5 shows simulated histograms vs. f for
different values of and . Values of corresponds, for example, to a channel
with delay spread of ns, and a signal with a bandwidth of GHz.
Values of depends on r , and, therefore, on the training sequence power
and the duration of the training. By comparing Fig. 3.5(a) vs. (b), it is shown,
as can be expected, that approaches when the estimation improves. It can
be shown that, as , i.e., for vanishing estimation errors, the PDF tends to

, and no loss in eq. (3.39) occurs. By comparing Fig. 3.5(a) vs. (c), it
is shown that departs from as increases. This can be intuitively justified
as follows: for a given accuracy, the total uncertainty on the channel increases
with the number of resolved paths , and, therefore, as increases, the
variance of the estimation error on each path must decrease to avoid reduced, or
even worse, performance. Moreover, physical multipath channels become more and
more sparse as bandwidth increases: the number of multipath components, that is,
the number of resolvable paths, is indeed limited, and so is the energy gain that
can be carried by the whole channel. Hence, as bandwidth increases, there are
no multipath components in an increasing fraction of the taps composing the
resolved channel, that, therefore, become a mere source of nuisance.

Note that, in eq. (3.42), is regarded as nonrandom since during each coherence
time the channel remains constant. This allows to derive, for example, the symbol
error probability that affects the system during a particular coherence time, as
studied below. However, if average performance over multiple coherence time is
of interest, then the PDF of must be regarded as the conditional pdf given .
Nonetheless, although depends upon , f depends upon only via . Not the
entire channel realization affects , but just its energy . Therefore, although in
the following is regarded as nonrandom, it is just to be nonrandom, that is a
fading coefficient.

There are two main detrimental effects that imperfect estimation implies on
SNR and .

The first effect is a reduction in the SNR. The variance of the useful term
in eq. (3.39) is, indeed, equal to : with perfect CSIT, ,

while with imperfect CSIT, , and therefore measures the loss
of variance in the useful term, and thus in SNR (see eq. (3.40)), due to the imperfect
knowledge of the channel.

The second effect is the presence of a symbol error probability floor depending
on , irrespective of the amount of power spent in transmission (Data Transmission
Phase), and only depending on the energy spent during the Training Phase I.
Accuracy of estimation can bound, therefore, the achievability of low (uncoded)
symbol error probability. The symbol error probability floor appears as N ;
in this asymptotic case, the decision variable tends to:

T
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Figure 3.5: PDF of : simulated histograms vs. theoretical expression of eq. (3.42).
Parameters: is the number of resolvable paths of the channel; is the
variance of the estimation error.
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and decision on is made based on the sign of , hence:

floor P

P T

The exact symbol error probability is (see eqs. (3.41) and (3.39)):

P

P

N
f (3.43)

where the dependence on and (see eq. (3.42)) is explicited in f .
Figure 3.6 shows vs. N for different values of and , and compares

the symbol error rate obtained through Monte-Carlo simulations (points with error
bars on figure) with the analytical expression of (solid lines) given by eq. (3.43).
Observe that, as expected, increased accuracy of the estimation yields to decreased

floor. Furthermore, for fixed and N, increased yields to increased :
increasing by a factor of two implies a loss of approximately dB for floor

(see N dB on figure), while the floor does not depend on ,
hence same performance is reached for high SNR irrespective of the bandwidth.

3.2.2 Multiuser

In the multiuser setting, although the expression for the probability of error remains
as in eq. (3.35), there are three sources of errors: thermal noise, imperfect CSI, and
multiuser interference (MUI). In particular, as N increases, the last two factors
both lead to a probability error floor, i.e., floor as N ,
being the load of the system.

Figures 3.7 and 3.8 show the probability of error vs. N (dB) for systems
with ˚i� vs. ˚i� , respectively, and for different values of and ,

. In particular, in both figures, the left-hand side plot
(Fig. 3.7a and 3.8a) refers to TR, while the r.h.s. plot (Fig. 3.7b and 3.8b) refers to
AR. Figures show that floors depend on a combination of both imperfect CSI and
MUI. For low-SNR, i.e., N, is not very sensitive to estimation errors: on
figures, systems with same load have similar at low-SNR, and leads to different

floor at high-SNR, N. On the contrary, for fixed estimation error variance
, increased implies increased for any SNR, and contributes to a higher error

floor. All figures are obtained by Monte-Carlo simulations of finite-dimensional
systems with chips. By comparing Figs. 3.7 (a) and (b), that both refer to
systems with ˚i� , AR is shown to outperform TR when imperfect CSI is the main
cause of error, and vice versa when the load is the main cause of error: compare, for
example, the two cases and . A similar behavior can be observed
with impulsive systems (Fig. 3.8) with even more emphasis. Figure 3.8 (a) and
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Figure 3.6: Symbol error probability vs. N for di� erent values of the number of
resolved paths and the estimation error variance .

(b) shows performance of systems with ˚i� , and indicates that performance of
TR is strongly limited by the presence of estimation errors, while when MUI is the
limiting cause TR and AR have similar performance (see for example curves with

and ).
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Figure 3.7: Probability of error vs. N (dB) for systems with ˚i� and
. Figure (a) refers to TR while (b) to AR.
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Figure 3.8: Probability of error vs. N (dB) for impulsive (˚i� ) systems with
. Figure (a) refers to TR while (b) to

AR.
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3.3 Mutual information, Sum-Rate, and Spectral Efficiency

In this section, mutual information (3.32) is derived for AR and TR. The other merit
figures (3.33) and (3.34) follows directly, although all the elements for a comparison
are already included in (3.32).

3.3.1 Derivation of Mutual Information

The decision variable for both the imperfect TR (c.f. eq. (3.21)) and AR (c.f.
eq. (3.19)) can be cast in the following form:

(3.44)

where N 0 .
Let specify and give an interpretation of the terms , , for both

TR and AR.

TR coupling coefficients.
For TR, the term is given by:

T T T

where R denotes a vector with same components of vector in reversed
order, i.e., , . The term , , is:

T T T

(3.45)

where T T T ˚i� T being the ˚i� autocorrela-
tion sequence of ˚i� , and, similarly, T T T ˚i� T with a
Gaussian random vector with non-identity correlation.

In order to provide an interpretation of the above expressions, it is useful to
start with the case of no estimation error. In general, the decision variable at the
output of the matched filter of user is given by the -th sample of the sum of both
intended and interference signals, plus noise. In the special case of no estimation
errors, is the square root energy of channel , i.e., the maximum tap
of the effective channel, while is either equal to zero if the effective channel of
user , that occupies ˚i� out of ˚i� degrees of freedom in a symbol period,
is not present at delay , or to a random resolved path of the effective channel of
user , the randomness owing to random hopping and asynchronism. In presence of
estimation errors, is smaller than, although in general in the neighbourhood of,
the square root energy of channel due to the mismatch between and , and
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is either equal to zero if the perturbed effective channel of user , that occupies
˚i� out of ˚i� degrees of freedom in a symbol period, is not present at

delay , or equal to a random path of the perturbed effective channel of user ,
the perturbation owing to the imperfect channel estimation of user .

AR coupling coefficients.
For AR, the set of coupling coefficients are:

T
T (3.46)

T

(3.47)

where , , and . We can think of as
the perturbed direction along which the received signal is projected in order to
decode user ; represents, therefore, the “mismatch” between the perturbed
and unperturbed channels of user ; represents the coupling between user
, that is perturbed, and another user . As in the TR case, a channel impulse

response occupies a fraction, that is approximately equal to , of the
available degrees of freedom in a symbol period; Opposite of the TR case, where
the perturbation affects user in , user is perturbed in the AR case (through

), user appearing with the true channel impulse response .

Derivation.
Being each term in the r.h.s. of eq. (3.44) independent from the other terms,

mutual information can be derived once the distributions of and
are known. The former depends on both the random channel impulse response
and estimation errors of user , and the latter on the random channel impulse
responses and estimation errors, and the random delays with respect to user .
Hence, the final form assumed by strongly depends on the channel model;
however, in the following, the effect of the time-hopping and random asynchronism
will be enucleated, without enter in the computation of a mutual information when
a particular channel model is adopted; this last task is addressed by simulations,
where the IEEE 802.15.3a model [53], that is valid for bandwidths up to several
gigahertz, is selected.

As for TR, since the effective channel of user occupies a fraction
˚i� ˚i� , and user , due to the assumptions on independence and uniformity of

hopping codes and asynchronism, selects uniformly at random one of the ˚i� samples
available per symbol period, then , , is equal to zero with probability ,
and is distributed as the generic path of the effective channel with probability
, that is:

(3.48)

where indicates the distribution of the generic path of the effective channel
of user (that is independent of ). In presence of estimation errors, the above
argument holds, that is, , , is equal to zero with probability , and is
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Figure 3.9: PDFs and of the variables , , and , respectively. Distributions
do not depend on the particular user . Figs. (a) and (b) correspond to a
variable , , in systems without estimation errors; Figs. (c) and (d)
correspond to a variable , , in systems with estimation errors with
variance ; Fig. (e) corresponds to a variable in systems with a
same error variance.
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distributed as the generic path of the perturbed effective channel with probability
:

(3.49)

where indicates the distribution of the generic path of the perturbed effective
channel of user (that is independent of ).

As for AR, let start by finding the distribution of , , i.e., the coupling
coefficient between two users in absence of estimation error. Each channel spans
a subspace of dimension ˚i� in a space with ˚i� dimensions1;
in other words, just ˚i� entries of are nonzero. From the hypotheses of
independence and uniformity of delays due to asynchronism between users and
time-hopping codes, there exists a probability such that the inner product T

is nonzero, and the remaining probability that the inner product is zero. We
may think of the “nonzero event” as the partial overlapping between two channels.
As , it results ˚i� ˚i� , where the assumption allows
to neglect border effects. Indicating with the distribution of conditioned
on the nonzero event, one has:

(3.50)

In presence of estimation errors, the above discussion remains valid, since an error
changes, in general, the direction of vector with respect to , i.e., and
are, in general, not collinear, but it does not change the subspace spanned by

the two channels, i.e., the subspace spanned by the true channel is equal to the
subspace spanned by the perturbed channel. Indicating with the distribution
of conditioned on the nonzero event, one has:

(3.51)

reduces to when the estimation error is nil.
Figure 3.9 shows the distributions , , and in eqs. (3.48),

(3.49), (3.50) and (3.51), respectively, and the distribution of the term ,
assuming the Channel Model 1 (CM1) specified in the IEEE 802.15.3a standard.
All simulations refer to a system with fixed chip duration c ns and bandwidth
W c. Power control is assumed; in particular, for all users,

. The delay spread of each channel impulse response is fixed at a value
ns that includes most of the energy of typical CM1 channels. For a given

bandwidth W, the length of the channel expressed in number of samples per channel
is W, i.e., is a W vector.

Figures 3.9 (a) vs. (b) show the distributions of the coupling coefficient ,
, in case of no estimation errors, for AR and TR, respectively. As may be expected,

the variance of the latter is larger than the variance of the former, as follows from
the property of time reversal to increase the total energy of the effective channel;
In the specific case, the while . In Fig. 3.9 (b)

1
The number of degrees of freedom in a symbol period is ˚i�; in the large system limit, as

, the difference between ˚i� and ˚i� due to the convolution is negligible.
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it is highlighted the presence of a strong interference ( ) that is not present
in the AR case; in the TR case, there is, indeed, among the ˚i� paths of
the effective channel, one path with amplitude equal to the square-root energy of
the channel, , that is, therefore, selected with probability ˚i� .

is also more leptokurtic than , showing a kurtosis approximately equal to
vs. reached by the AR variable. Figures 3.9 (c) vs. (d) show the distributions

of the coupling coefficient , , in case of estimation error with per sample
variance , for AR and TR, respectively. Both variance and kurtosis of
TR are still larger than those of AR; in particular, it results vs.

, and vs. . Figure 3.9 (e) shows
the distribution of the term , that is the same for both TR and AR, and is
represented for . Note that all variables can be regarded as normalized
cross-correlations, hence .

In terms of c.fs., eqs. (3.51) and (3.49) becomes:

E
R

being equal to either or in eqs. (3.51) and (3.49), respectively. In
general, given two independent r.vs. and and their product , it results

E E ; therefore, the r.v. has c.f.:

E E

where the expectation is with respect N , and is independent of .
Since with are independent, then has c.f.:

˚i�
˚i�

that, in the large system limit, where , , , converges to:

(3.52)

where ˚i� ˚i� is the effective load; without multipath ( ) and
one pulse per chip (˚i� ), reduces to the usual load as given by . The
interference-plus-noise variable has thus c.f. given by:

N

Figure 3.10 shows distributions , , , and , that correspond to c.fs.
, , , and defined above, for different values of and SNR N,

and fixed value of load . Figures 3.10 (a) and (b) show a noise-limited
scenario, where SNR dB, without and with estimation errors, respectively: sim-
ulations show that the interference-plus-noise variable is not significantly affected
by estimation errors (c.f. and curves), although , as well as ,
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Figure 3.10: PDF of interfering terms , , given , of the noise variable
, of interference , and of interference-plus-noise . Error

variance and SNR N are specified below each subfigure. The noise
variance N is normalized to . The load of the network is fixed and equal
to . Solid vs. dashed curves refer to TR vs. AR, respectively.
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Figure 3.11: Spectral efficiency R (solid curve) and lower bound assuming Gaussian
interference (dashed curve) vs. SNR N (dB) for di� erent values of load

and error variance . Impulsiveness index is fixed to ˚i� in Figs. from
(a) to (d), and to ˚i� in Figs. (e) and (f).
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becomes less leptokurtic in presence of estimation errors. Figures 3.10 (a) and (b)
show an interference-limited scenario, where SNR dB: in this case is far
from Gaussian, and so is the interference-plus-noise PDF ; the effect of the
estimation error is to decrease the kurtosis of , and so that of .

Knowing the distribution of conditioned on , or equivalently its c.f., mutual
information follows directly. Hence, the c.f. of given

is:

hence, the c.f. of is:

E E

where the expectation is over N . Explicitly, one has:

R R

and:

R R R

where denotes a Gaussian distribution with zero mean and variance , and:

R

The above derivation allows to find as a function
of the distribution of , , and the distribution accounting for the
loss of correlation incurred by the user to be decoded because of the estimation
error. Both and accounts for the channel model and the estimation error,
in particular its variance.

As baseline comparison, we also provide the following lower bound for
, that is achieved when the interference is Gaussian:

E

where the expectation is over . The corresponding spectral efficiency lower
bound is R ˚i� (c.f. eq. (3.34)).

Results are shown on Fig. 3.11, where R (solid curve) and R (dashed curve)
are presented as a function of N, for different values of and . The receiver
structure shows a mutual information floor at high SNR. By comparing Figs. 3.11
(a) and (b), one observes that R increases sublinearly as increases, while by
comparing Figs. 3.11 (a) and (c), or Figs. 3.11 (b) and (d), a reduction in spectral
efficiency due to the presence of an estimation error is observed. R scales with ˚i� as
shown on Figs. 3.11 (e) and (f).
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In each of these simulations, AR outperforms TR. However, note that the gap
R R may be viewed as a measure of the non-Gaussianity of and , and is
indeed higher in the TR case with respect to the AR case, because of the different
distribution of the interference term, that is more leptokurtic in the TR case. There
could be, therefore, a room for TR to outperform AR.

3.4 Future work

In order to generalize the analysis developed in this chapter, the following two
assumptions may be relaxed:

1. single user detection: different receiver structures that use multiuser detection
may be considered, in first place linear multiuser detection (RZF, MMSE),
that can be obtained by leaving eq. (3.29) in the general form;

2. unit gain of channel impulse responses: a complete characterization of the
wireless channel should include fading/shadowing.

The first generalization can proceed by projecting eq. (3.17) onto a filter as
specified by eq. (3.29) in the general form. Results are envisioned to be very different
with linear receivers that account for the interference, such as RZF and MMSE, in
constrast to the simple MF bank that is used above.

The second generalization can be obtained by removing the constraint
for each and every , that also implies that power transmitted by all users is

identical. In this case, performance is not envisioned to differ qualitatively from
the present analysis.

For both generalizations, a comparison of transceiver structures and fading
statistics with different degrees of sparsity of the signal transmitted by each user,
e.g. selecting DS-CDMA vs. TH-CDMA, will complete the above analysis.

Furthermore, the mutual information analysis can be extended by considering
the maximum net ergodic rate,

net
DL

DL

where the factor in paretheses, namely
DL

, accounts for the data trans-
mission fraction of time, and is the rate achievable during that period. Since
the latter depends on the former, i.e., , a maximum with respect to
is expected, as also suggested in [80] and confirmed by preliminary investigations.
The analysis of net is important from a practical viewpoint since it suggests the
optimal duration of training phases that maximize the data rate.
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3.5 Conclusions

In this chapter, the problem of characterizing system performance for single an-
tenna systems using time reversal in the case of imperfect channel estimation was
addressed. The analyzed setting included one BS and several UTs, and the uplink
communication channel was considered in the investigation. Each UT adopted
impulse-radio ultra-wideband communication with prefiltering, and the receiving
BS adopted a 1Rake; degrees of impulsiveness were reflected by an impulsiveness
index that ranges from ˚i� to ˚i� for ideal impulsiveness. In order to eval-
uate time reversal behavior, this communication scheme was compared against a
reference configuration with no prefiltering and AR at the receiver. The effect
of imperfect channel estimation on both transceiver configurations was analyzed.
Channel estimation error was modeled as an additive Gaussian noise based on
the output of a training phase that was used to tune transmitter and receiver
structures. The comparison was performed for both the single user channel and
the multiuser channel with power control. Modeling of the channels was obtained
based on the 802.15.3a CM1 model. The two communication schemes, TR and AR,
were compared based on two different performance parameters: probability of error
and mutual information as a function of signal-to-noise ratio.

Results highlighted that, for the single user channel, probability of error for TR
and AR coincided, while for the multiuser channel, AR outperformed TR when
imperfect CSI was the main cause of error, and the two schemes had similar
performance when the load, as measured by the ratio between the number of
terminals and the number of chips in a symbol period, , was the
main cause of error, irrespectively of the degree of impulsiveness.

In terms of spectral efficiency, we provided lower and upper bound expressions,
and analyzed the two structures with different impulsiveness index ˚i� and load .
Results expressed by spectral efficiency R (nats/s/Hz) as a function of signal-to-
noise ratio indicated that, for low-SNR, R was similar for the two systems, while
for higher SNR values, AR outperforms TR. However, remind that, in practical
scenarios, it would be simpler for a TR system to acquire a better estimation of
the channel with respect to an AR system, since the estimation error variance
depends on the energy of the training sequence only, and in the TR case the training
sequence is transmitted by a basestation rather than a device, and may require
weaker energy consumption constraints. Furthermore, in the presence of estimation
errors, a reduction in R was observed, due to both a mismatch with the user to
decode, and a reduced kurtosis of the interference term.

Both generalizations and extensions of the analysis developed in this chapter
are presented.
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Appendix

3.A Derivation of the PDF of and

1) PDF of .

An orthogonal transformation on greatly simplifies the expression of . We
can think of as the -tuple of coordinates of a vector in R with respect
to the canonical basis . A different orthonormal basis such that only the first
coordinate of the vector is non-zero can be found, for example via the Gram-Schmidt
orthogonalization. By denoting with the coordinates of the vector with respect
to , it results T. For convenience, we choose the first vector of
as , hence .

Call the matrix that changes coordinates from to ; then . It is
a well-known result that , that is the matrix that changes coordinates of vectors
between two orthogonal bases, is an orthogonal matrix, i.e., T. As a
consequence, is also an isometry, that is, vectors transformed under the action
of do not change their norm: .

We can rewrite as follows:

T T T T

Since T, one has:

where T, being a set of i.i.d. Gaussian
r.vs. Define:

N

and:

hence is as follows:

(3.53)
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therefore depends only on the ratio . It is useful to define the following
variable:

(3.54)

in fact, is distributed according to a known distribution, that is the non-central
Student T-distribution with degrees of freedom and non-central parameter

[84], that we denote by T and has the following canonical
form:

fT

where is the Hermite polynomial [84]. Then, since from eqs. (3.53) and
(3.54), it results:

the pdf of is obtained by a change of variables2 as follows:

f fT

2) PDF of .

Write as follows:

having defined . The pdf of can be traced back to a known distribution.
In fact, since and , depends on the ratio of two indepen-
dent chi-square distributions. It is known as (non-central) F (ratio) distribution
the pdf that describes the ratio of two independent chi-square distributions [84].
Precisely, if , , then has a doubly non-central F

ratio distribution of orders and non-centrality parameters ,

F

2
The pdf of can be obtained from that of by guaranteeing that fT f .
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In the present case, , , and , hence:

F

Since:

the pdf can be derived from that of by a change of variables from to , and
assumes the following form:

f 1

where is the Beta function and is the Kummer confluent hyperge-
ometric function [84].
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CHAPTER 4
Some results on MISO Time Reversal

In this chapter, we investigate Multiple-Input Single-Output (MISO) UWB com-
munications over a multipath channel. After introducing a tractable discrete-
time multipath MISO channel model accounting for correlation between multiple
channels, analytical results for single-user transmissions are drawn in the following
two cases: no precoding at transmitter with All-Rake receiver vs. time reversal (TR)
at transmitter with 1-Rake receiver. Channel state information at both transmitter
(CSIT) and receiver (CSIR) is assumed. Optimality of TR conditioned on 1-Rake
receiver structure is proved. Robustness brought by TR combined with 1-Rake
with respect to lack of correlation between channels vs. no precoding is shown.
Simulations with realistic reference channels show that combining time reversal
with multiple transmit antennas amplifies the performance improvement due to
each technique when used alone.

4.1 Introduction

Time reversal is a signaling scheme that focuses a signal in both time and space.
When transmitted signals have impulsive nature, as in Impulse Radio Ultra Wide
Band (IR-UWB), time reversal further increases impulsiveness thanks to the many
resolvable paths of UWB channels, even in the single-antenna setting [78,85]. When
multiple antennas at transmitter side are used, time reversal is a beamformer
focusing the wideband signal at receiver. Early experimental results for MISO
and MIMO time reversal are collected, respectively, in [67] and in [68–70]. MISO
beamforming with antennas in flat-fading channels provides SNR gain of [79].
On the other hand, in Single-Input Single-Output (SISO) multipath channels, a
prefilter, i.e., a filter at transmitter side, matched to the realization of the channel
impulse response (CIR), which corresponds to time reversal, can focus in time
the signal received: a transceiver using time reversal and 1-Rake achieves same
performance in terms of SNR as that obtained without time reversal and with All-
Rake [76]. This is useful when transmitter cost and complexity are not crucial as
opposed to receiver simplicity. However, time reversal can also provide SNR gain
when more complex receiver is used, that is when more than one finger is employed
in Rake.
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In this chapter we aim at providing theoretical results on MISO time reversal
and extending known analyses proposed for SISO time reversal [74, 76, 78, 86] to
MISO time reversal; in particular, we study the SNR gain due to time reversal
beamforming and investigate the impact of the presence of more fingers in the
Rake receiver when multiple antennas at transmitter are used.

The chapter is organized as follows. In Section 4.2 it is described the continuous-
time system with realistic channel model and it is proposed a simplified tractable
discrete-time channel model. In Section 4.3, analytical and simulation results are
derived. Finally, conclusions and future work are drawn in Section 4.4.

4.2 System model

The basic equation of a binary PAM-UWB signal is the following:

Z

b s (4.1)

where is the signal sent by the transmitter, is the pseudorandom user-specific
time hopping code, b A , where A , is the -th symbol sent at time
interval s, and is called chip period [87]. We have used here Pulse Amplitude
Modulation (PAM) but also Pulse Position Modulation [87] can be adopted. When
no time reversal is used, is a transmitted pulse of very short duration denoted
in this chapter by , typically a Scholtz pulse or a bandlimited pulse. Conversely,
when time reversal is used, is the output of a linear time-invariant filter called
time reversal precoder or prefilter with input waveform .

Single-user MISO communication with antennas at transmitter side is con-
sidered. We focus on the reception of one symbol only, where each symbol is
transmitted by amplitude modulating . Under this assumption, ISI is negligible
since symbol period s is typically longer than channel delay spread and time-
hopping code can ensure a time guard.

� ...

TR 1

TR Nt

...

Channel 1

Channel Nt

+ + RX
b

n(t)

y(t) ˆb

P = E/Ts

FIG. 1: System model: MISO-TR. Nt antennas are fed by Nt

time reversal prefilters, each of which is matched to the
corresponding multipath channel. A correlation receiver is
adopted in order to estimate the transmitted symbol. Partial
TR and Rake can be used in order to reduce complexity of
the transceiver.

symbol period Ts is typically longer than channel delay spread
and time-hopping code can ensure a time guard.

Received signal y(t) can be written as follows, where we
omitted the time-hopping code because of the one-symbol
assumption:

y(t) = b

�

R

hT(t � �) p(�)d� + n(t), (2)

where h(t) and p(t) are the Nt � 1 channel impulse response
(CIR) and transmitted signal real-valued vectors, n(t) is an
Additive White Gaussian Noise (AWGN) with power spectral
density �

2

N , and b is the transmitted symbol. Note that all
antennas transmit the same symbol during a symbol period.
The i-th component of h(t) and p(t) is denoted by hi(t) and
pi(t). Power constraint is intended as follows:

1

Ts

�

R

A2�p(t)�2

dt =
1

Ts

Nt�

i=1

�

R

A2

p

2

i (t)dt � P,

where Ts is the symbol period and P is the power spent by
the Nt antennas, and, therefore, by the transmitter.

Given the large bandwidth of UWB systems, the propa-
gation channel is resolved into multiple paths. In general,
knowledge of CIR realizations at transmitter side can be
exploited for prefilter design; MISO-TR design adopts a bank
of Nt prefilters, where each antenna element is fed by the
output of a prefilter modulated by b and matched to the CIR
between that antenna element and the receiver, hence:

pn(t) =

�

R

 (�)hn(� � t)d� = ( � h

r
n)(t), (3)

where h

r
n(t) = hn(�t); denoting by E the maximum energy

spent by the transmitter during a symbol period, power
constraint reads as:

A2

Nt�

n=1

�

R

��
 � h

r
n(t)

��2
dt � PTs � E .

Since the multipath channel hi(t) can be written as:

hi(t) =
�

k�0

a

i
k �(t � �

i
k),

partial time reversal prefilters can be also designed, where just
a subset of paths is considered [5].

Finally, receiver is assumed to be a matched filter that
projects y(t) onto the following template:

�

R

hT(t � �) p(�)d� �
�

k�0

ãk (t � tk).

where {ãk, tk : k � 0} represents the set of amplitudes and
delays of fingers in the Rake. However, we can also consider a
partial Rake receiver where only a subset of {ãk, tk : k � 0} is
known and used: when the strongest paths only are considered,
the receiver is known as Selective-Rake, whereas when all
paths are considered, it is known as All-Rake.

A. Channel Model: Continuous-Time

We consider for simulation results the channel proposed in
[8] that combines the standard SISO channel IEEE 802.15.3a
[7] with the Kronecker channel correlation model for MIMO.
We briefly summarize below this model in the special case of
MISO and uniform linear array.

Channel impulse response between the i-th transmit antenna
and the receiver is as follows:

hi(t) =
�

�,k�0

a

i
k,��(t�T� ��k,� ��i)�(�t ��

t
k,�)�(�

r ��

r
k,�) ,

where a

i
k,� is the signed amplitude of ray k in cluster �,

T� is cluster � delay, �k,� is the delay of ray k in cluster �
with respect to T�, �i = (i � 1)d/c is the incremental delay
due to antenna i position where d is the distance between
two antennas and c is the speed of light, and �

t
k,� and

�

r
k,� are the angle-of-departure and angle-of-arrival of ray k

in cluster �, respectively. Amplitude of ray k in cluster �
for CIR i has the form: a

i
k,� = zk,����

i
k,�, where zk,� is the

equiprobable ±1 amplitude sign due to random reflections,
and �� and �

i
k,� are lognormal distributed cluster and ray

fading, respectively. Amplitudes and delays statistics are in
accordance with the standard IEEE 802.15.3a SISO channel.
Multiple transmit antennas correlation is taken into account
by assigning a correlation structure to aT

k,� = (a1

k,�, . . . , a
Nt
k,�),

that is by requiring that E[ak,�a
T
k,�] = �a

k,�. Since only �i
k,� =

10(µk,�+⌫i
k,�)/20 in a

i
k,� depends on the antenna, we just need

to assign a correlation structure to (�i
k,�)

Nt
i=1

, and, in turn, to
�k,� = (�1

k,�, . . . , �
Nt
k,�)

T. Since �

i
k,� is Gaussian, then �k,� is

a zero mean multivariate normal distribution with covariance
matrix ��

k,� that can be derived once fixed �a
k,�. For further

details refer to [8].

B. Simplified Discrete-Time Channel Model

A more tractable channel model for analytical derivations
is described below under the assumption of unit-energy, ideal
baseband W-bandlimited pulse  (t) with band [�W/2, W/2].

Figure 4.1: System model: MISO TR. antennas are fed by time reversal prefilters,
each of which is matched to the corresponding multipath channel. A correlation
receiver is adopted in order to estimate the transmitted symbol. Partial TR
and Rake can be used in order to reduce complexity of the transceiver.
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Received signal can be written as follows, where we omitted the time-
hopping code because of the one-symbol assumption:

b
R

T (4.2)

where and are the channel impulse response (CIR) and transmitted
signal real-valued vectors, is an Additive White Gaussian Noise (AWGN) with
power spectral density N, and b is the transmitted symbol. Note that all antennas
transmit the same symbol during a symbol period. The -th component of and

is denoted by and . Power constraint is intended as follows:

s R

A
s R

A

where s is the symbol period and is the power spent by the antennas, and,
therefore, by the transmitter.

Given the large bandwidth of UWB systems, the propagation channel is resolved
into multiple paths. In general, knowledge of CIR realizations at transmitter side
can be exploited for prefilter design; MISO TR design adopts a bank of prefilters,
where each antenna element is fed by the output of a prefilter modulated by b and
matched to the CIR between that antenna element and the receiver, hence:

R

r (4.3)

where r ; denoting by the maximum energy spent by the transmitter
during a symbol period, power constraint reads as:

A
R

r
s

Since the multipath channel can be written as:

partial time reversal prefilters can be also designed, where just a subset of paths is
considered [74].

Finally, receiver is assumed to be a matched filter that projects onto the
following template:

R

T

where represents the set of amplitudes and delays of fingers in the
Rake. However, we can also consider a partial Rake receiver where only a subset of

is known and used: when the strongest paths only are considered,
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the receiver is known as Selective-Rake, whereas when all paths are considered, it
is known as All-Rake.

4.2.1 Channel Model: Continuous-Time

We consider for simulation results the channel proposed in [88] that combines the
standard SISO channel IEEE 802.15.3a [53] with the Kronecker channel correlation
model for MIMO. We briefly summarize below this model in the special case of
MISO and uniform linear array.

Channel impulse response between the -th transmit antenna and the receiver
is as follows:

t t r r

where is the signed amplitude of ray in cluster , is cluster delay, is
the delay of ray in cluster with respect to , is the incremental
delay due to antenna position where is the distance between two antennas and

is the speed of light, and t and r are the angle-of-departure and angle-of-
arrival of ray in cluster , respectively. Amplitude of ray in cluster for CIR

has the form: , where is the equiprobable amplitude sign
due to random reflections, and and are lognormal distributed cluster and
ray fading, respectively. Amplitudes and delays statistics are in accordance with
the standard IEEE 802.15.3a SISO channel. Multiple transmit antennas correlation
is taken into account by assigning a correlation structure to T ,
that is by requiring that E T . Since only in
depends on the antenna, we just need to assign a correlation structure to ,
and, in turn, to T. Since is Gaussian, then is a zero
mean multivariate normal distribution with covariance matrix that can be
derived once fixed . For further details refer to [88].

4.2.2 Simplified Discrete-Time Channel Model

A more tractable channel model for analytical derivations is described below under
the assumption of unit-energy, ideal baseband W-bandlimited pulse with band

W W .

SISO model

Single-Input Single-Output frequency-selective continuous-time AWGN channels
can be described by the relation:

b s
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where b is the set of transmitted symbols, is the ban-
dlimited waveform, s is the symbol period, is the channel impulse response,
and is a realization of the continuous-time AWGN process with power spectral
density N.

In impulse-radio ultra-wideband communications, adjacent symbols are sepa-
rated in time by an interval much longer than W: in fact, W is shorter than
the chip period and each symbol period counts usually tens of chips. Therefore,
called sW, previous relation can be written as follows:

b W

where b b for , and b when is not a multiple of .
Since one symbol only is considered, the channel model is as follows:

b W

At receiver, projecting this signal onto W Z yields the following
discrete-time channel:

Z

where b , Z is a set of i.i.d. Gaussian random variables with
variance N, and

W R

W

Typically, most of the energy is included in the first paths, say . Without
loss of generality, since can be made as large as needed. Since
for and , then

and this relation can be written in vector form as follows:

where is a Toeplitz matrix with first column equal to
T, and . One-shot communication

implies that b , therefore b , where is the vector with
all zero entries but -th element equal to . Note that b is equal to b of eq. (4.2),
therefore hereinafter we will denote it with b. Power constraint is expressed as
E A .

Note that we can consider as the concatenation of two vectors, and , such

that T T T, where is and is . Similarly,
T T T and
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T T T, where is and is . Since , we can neglect .
Prefiltering can be accounted by a matrix as follows: . With
prefiltering, transmitted vector is , therefore power constraint is E

A , being the first column of . Since the prefilter is a linear time-
invariant system, is Toeplitz and is the vector containing projections of the
prefilter impulse response onto W .

In order to provide a tractable model for the MISO channel, we propose first
a simplified channel model for the SISO channel, which helps in illustrating the
behavior of the system with and without TR. For SISO NLOS channels, it seems
reasonable to consider independent, zero-mean Gaussian random
variables with variance profile , i.e., . Therefore, the
simplest model we propose is: , where are i.i.d.
unit variance Gaussian random variables. Furthermore, when the channel has also
a LOS component, we propose a generalization that reads as follows:

where , similarly to the “Ricean factor” in flat-fading channels, accounts for the
fraction of energy in the LOS component with respect to the NLOS component
in the first path, and accounts for the fraction of energy of the first path with
respect to the sum of the energy of all paths, namely G, where G

is the total channel gain.

MISO model

The discrete-time model is as follows:

T

where is a vector where the -th element is the channel impulse response
between the -th transmit antenna and the receiver projected onto W W,
and b , where is a vector of ‘ ’. Stacking
in a vector, , the previous relation can be written as:

with b (4.4)

where is a vector of symbols and is a block-Toeplitz channel
matrix structured as follows:

T T (4.5)

where is a matrix with ones on the -th subdiagonal. Power constraint
is: E A . Prefiltering can be accounted by a block-
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Toeplitz matrix structured as follows:

(4.6)

Thus, the channel assumes the following form: ; from eq. (4.4), we
have:

b (4.7)

where:

having denoted . In general, jointly precodes symbols for
all antennas; in MISO TR prefilters are decoupled, that is, each antenna is fed by the
output of a prefilter knowing the channel impulse response between that antenna
and the receiver only. This structure implies that is diagonal, therefore also
uniquely defined by a vector that we call , that is consistent with previous
notation:

Power constraint reads:
E A (4.8)

In order to derive analytical results, we propose the following tractable simplified
channel model for MISO channel, that similarly to SISO channels is defined as:

T hT T

where matrix is introduced as in the Kronecker model in order to account
correlation between channels of different antennas, h is a deterministic compo-
nent that account for the line-of-sight path, and N . We want that
E , therefore we set Tr and h . In this way,
correlation matrix of is as follows:

E T h hT (4.9)

A generalization to MIMO would be straightforward, taking into account also
correlations at receiver antennas with a matrix . However, since in this chapter
we investigate MISO channels, we denote hereinafter by , being the subscript
redundant.
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4.2.3 Performance measure

The key performance measure that we are interested in is SNR. The problem is
to estimate b from eq. (4.7) through a linear receiver, that is a vector
onto which is projected. We want to compute the SNR of the decision variable

T , that is:
T b T

where T b and T . Therefore, SNR of is as follows:

SNR
E

E

A

N

T

where expectations are taken conditioned on the channel realization. This quantity
is, therefore, still a random variable, since the channel is a random process. We are
primary interested in its mean value, E SNR .

4.3 Results

4.3.1 Analytical Derivations

We derive expressions of SNR in terms of channel correlation, receiver number of
fingers and transmitter number of antennas. In particular, we compute the two
opposed cases of strongly correlated and independent channels, characterized by

T and , respectively.

All-Rake ( ), General Precoder

SNR
A

N

A

N

T

intending that the sum is extended over .

All-Rake ( ), No Precoding

With no precoding, , therefore . According to the power
constraint, it is sufficient to specialize the general relation for SNR to:

A
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that yields:

SNR
N

T (4.10)

Note that, in the SISO case, this reduces to the well-known result SNR

N .
Using the tractable proposed channel model, the average SNR is:

E SNR
N

TE T

that, using eq. (4.9), is:

E SNR
N

hT T

G

N
H (4.11)

having set H hT , T and G .
Let analyze particular cases. Assume deterministic LOS component equal for

all antennas, that is h , then H . For strongly correlated channels, namely
for T, we have . In this case:

E SNR
G

N

For independent channels, that is , we have , and therefore:

E SNR
G

N

1-Rake, time reversal

A 1-Rake is , where in the case of time reversal . Time reversal is
the use of the precoder:

A r
r

where r and is the -th row of . We can prove that this
precoder maximizes the SNR when 1-Rake is used.

In fact, consider 1-Rake , . Since T T , where is the
-th row of , the problem is that of finding the precoding vector:

SNR T

subject to power constraint A . This problem is solved, using for instance
the Cauchy-Schwarz inequality, by , that is time reversal. Each
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Table 4.1: Parameters used in simulations.

Channel Model IEEE 802.15.3a-CH1
Pulse Scholtz, ps
Antenna distance ( ) m
Angle spread ( )

is sufficient for taking into account the whole delay spread of channels, therefore
exploiting the whole gain offered. For the sake of simplicity, we choose .

With the time reversal precoder, achieved SNR is:

SNR
N

r

N
(4.12)

A well-known result in SISO channels is that this SNR is equal to that obtained
with All-Rake receiver and no precoding. This is no longer true with MISO, since
eq. (4.12) is not equivalent to eq. (4.10).

Using the tractable proposed channel model, the average value of (4.12) is:

E SNR
G

N
(4.13)

The meaning of this relation is that time reversal is insensitive, on average and
in terms of SNR, to many parameters characterizing the channel as in (4.11). In
particular, time reversal is robust to the lack of correlation as opposed to All-Rake
without precoding: in fact, 1-Rake, time reversal systems average SNR is larger than
that achieved by systems with All-Rake receiver and without precoding, beiung
equal only when channels between different transmit antennas and receiver are
identical.

4.3.2 Simulation Results

In addition to analytical derivations and comparison of performance (in terms of
SNR) of systems using time reversal with 1-Rake vs. All-Rake without prefiltering,
we investigate through simulations performance dependence on number of antennas,
type of receiver (1-Rake vs. All-Rake) and number of taps in the time reversal
prefilter. In fact, transmitter may also select a subset of channel paths to form TR:
when one tap only is employed, we have no prefiltering; when the whole channel
impulse response is taken into account, we have full TR; between this two extrema,
when the number of taps in the precoder is limited, we have in general partial TR,
and paths are selected with decreasing amplitude. Simulations are performed with
the realistic channel described in Subsection 4.2.1. Parameters used in simulations
are reported in Table 4.1.

In Figs. 4.2a and 4.2b it is shown the energy collected by an All-Rake and by a 1-
Rake, respectively, normalized to the average energy collected without time reversal
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(a) Energy collected by an All-Rake
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(b) Energy collected by a -Rake.

Figure 4.2: Energy collected with two di� erent receivers normalized to the average energy
collected without time reversal, with single antenna, as a function of the
number of taps of precoder.

with single antenna, as function of the number of paths considered in time reversal.
In both cases, time reversal can be used for reducing the number of antennas while
maintaining fixed the energy collected by the receiver. For instance, in Fig. 4.2a, a
system with antennas without time reversal collects the same energy of a system
with antennas employing time reversal with taps. Note that, moreover, energy
gain due to time reversal remains roughly constant as function of the number of
antennas, therefore the total gain due to multiple antennas and time reversal is
roughly the product of each gain. A relative increase of focusing, although of small
entity, is observed on Figs. 4.3 showing the percentage of collected energy as function
of the number of fingers in the Rake receiver with time reversal. We confirmed by
simulations the better performance of time reversal with 1-Rake with respect to no
time reversal with All-Rake, as expected from the analyical derivation.
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Figure 4.3: Fractional energy: time reversal

4.4 Conclusion and Future work

In this chapter we studied combination of time reversal and multiple transmit
antennas providing theoretical arguments for robustness of communications using
TR and simulation results emphasizing focusing properties of TR and possible
trade-offs in system design. In general, thanks to its focusing properties, time
reversal allows to use a 1-Rake receiver in place of receivers requiring multiple
fingers in systems without prefiltering. We proved that MISO TR is optimum
when a 1-Rake receiver is used and that systems with no time reversal and All-
Rake receiver are less robust to channels correlation with respect to systems with
time reversal and 1-Rake receiver, which performance in terms of average SNR is
better. Simulation results with realistic channel model and analytical derivations
with a more tractable channel model we proposed were presented. We observed
that combination of MISO and TR amplify performance of both techniques used
independently as well as increased focusing of MISO TR with respect to SISO TR;
we might expect higher gains with a channel model considering a more realistic
propagation model.

A future generalization may consider multiuser beamforming, in particular re-
laxing the assumption on the bank of separate time reversal prefilters, one per
antenna, and by studying a joint TR design. Another development may be towards
understanding the broadcast time reversal channel: in its simplest form, two users
have to be served simultaneously by a transmitter with multiple antennas using a
time reversal prefilter. It may be studied how to optimally combine the two channel
impulse responses in the joint time reversal prefilter, and compare these results
against different prefiltering schemes, such as RZF, by taking into account the
correlation between the two channels. Finally, we suggest to study how the antenna
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configuration, i.e., geometry, impacts the performance of TR-based transmitters,
which may be relevant in distributed antenna setups.
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CHAPTER 5
Some results on SISO Time Reversal

In this chapter, a comparison between two optimum prefilters for frequency-selective
SISO channels under different assumptions on the receiver is drawn. The first design
foresees a jointly optimized transceiver (optimum prefilter and all-Rake receiver)
while the second constrains the receiver to be minimum complex (1-Rake) and
consequently uses the optimized prefilter, that is, time reversal. Assuming an
802.15.3a channel model, analytical results based on the description of the channel
as a doubly stochastic point process are proposed for the latter case. Simulations
provide performance comparison with the former design showing the maximum
prefiltering gain gap and the minimum Rake complexity required by the optimum
prefilter for a performance improvement.

Notation

absolute value (element-wise if is a vector)
-norm where is a vector ( if not specified)

N set of natural numbers ( , , )
N set of non-negative integers (N N )

Heaviside theta (or unit-step) function
D is distributed according to the probability

density function
E expectation of where is a function

of random variable (r.v.)

For notation simplicity, the expectation takes no precedence over any other operator.
For example, the following holds:

E E

E E E E
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Figure 5.1: System model: block diagram.

5.1 Introduction

Communications over frequency-selective channels benefit from pre-equalization of
transmitted waveforms. The optimum receiver in absence of interference is the
Rake receiver, but its complexity grows with the required number of fingers –
that is ideally equal to the number of paths– and the performance gain provided
by adding a new finger is always below a prediction based on a linear improve-
ment. Furthermore, prefiltering optimality is conditioned on the structure of the
receiver. Therefore, much work [66] has focused on finding sub-optimal receiver
and transceiver joint optimum design.

When the receiver is constrained to one finger only, time reversal is the optimum
prefilter (see Appendix 5.A for a simple proof). We compare the design composed of
time reversal and 1-Rake with the joint optimum transceiver, assuming an 802.15.3a
channel model. The channel is described as a doubly stochastic one-dimensional
point process, that is a simplification of previous works on the topic [89–91]. We
find the average prefiltering gain brought by time reversal, and compare it with
the maximum gain reached with the optimum prefilter. Driven by the underlying
motivation of simplifying the receiver, we compute the minimum number of fingers
required by the Rake receiver to guarantee an average performance improvement
with respect to time reversal.

The chapter is organized as follows: Section 5.2 is devoted to the description of
the system model; Sections 5.3 and 5.4 present time reversal vs. Optimum Prefilter
theoretical performance; Section 5.5 introduces the channel model and analyzes the
performance of time reversal for this specific case. Finally, simulation results and
conclusions are presented in Section 5.6.

For clarity of presentation, complex analytical derivations and descriptions are
included in Appendices. In particular, Appendix 5.A provides a proof of the
optimality of time reversal when the receiver is constrained to one finger only.
Appendix 5.B contains the derivation of an expression for the time reversal pre-
filtering gain. In Appendix 5.C and 5.D we describe the point process model of
the channel and in Appendix 5.E we specialize the time reversal prefiltering gain
to this channel family.
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Figure 5.2: System model (continuous-time): is the useful signal and
the received signal corrupted by the AWGN with variance N . The receiver
is implemented by a filter with impulse response followed by a
sampler at .

5.2 System model

We consider a point-to-point communication through a frequency-selective channel.
The system is represented in block diagram form in Fig. 5.1. We model each block
as a linear time-invariant system with impulse response shown in Fig. 5.2. We
assume:

(a1) a signaling scheme based on the two normalized waveforms , being
the information-bearing symbol;

(a2) a power constraint at the transmitter, that is, independent of the prefilter,
the power of the transmitted signal is constant and equal to (w.l.o.g. we
can set );

(a3) independent inter-arrival times between paths in the multipath channel.

For the sake of simplicity we consider PAM as the modulation technique, that is
, where is the unit-energy pulse and is the information-

bearing symbol, being the bit of information.
The optimum demodulator is the filter matched to the whole useful received

signal . In the case of a multipath channel, it is known as Rake correlator [92,93].
This is depicted in Fig. 5.2 that shows the continuous-time model of the system.
We can derive an equivalent discrete-time model (see Fig. 5.3): the optimal decoder

is the one that maximizes, having fixed , the SNR of the correlation metric, and
it is the matched filter to the effective channel :

SNR
E H

E H H

H

N

The resulting SNR H H
N E N depends only on the energy of

the useful received signal.
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Figure 5.3: System model (discrete-time): represents the symbol to be transmitted,
R the prefilter sampled impulse response, the transmitted signal,
R the linear convolution channel matrix, the received signal
with useful component and AWGN R , and R the correlator.

5.3 Time Reversal SNR in SISO Frequency-Selective Channels

We describe the SISO frequency-selective channel as

where and are amplitude and delay of the th path, respectively.

Note 1. Delays are taken in ascending order, .

Note 2. In practice, we would take only a finite number of paths, say .
Given a channel realization, we can design the prefilter according to different

criteria. One criterion is the maximization of the at the 1-Rake receiver. Under
this assumption, the optimum filter is time reversal, represented by a special choice
of , that is

Proof. See Appendix 5.A.

Note 3. We do not address the issue of the causality of this filter; however, it is
evident that in order to model a real system we need to introduce a delay of at least

.

Remark 2. Normalization is required by the power constraint assumption (a2).

Definition 3. We call prefiltering gain the quantity .

Remark 3. The prefiltering gain is absent without prefiltering, that is when
.

Proposition 2 (Prefiltering gain of time reversal). Assume that (a3) holds.
Then, having fixed the continuous-time channel impulse response , it re-
sults almost surely (that is, with probability ) that

(5.1)

where .

Proof. See Appendix 5.B.
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Remark 4. This result is no longer true in the discrete-time model. However,
it is an excellent approximation if the discrete-time channel impulse response is
represented by a sparse vector. In the case of multipath channel, the higher the
bandwidth of the receiver, the better is the approximation.
Remark 5. This result is a property of the continuous-time channel impulse re-
sponse (CIR) and it remains valid if and only if the temporal duration of the
pulse is lower than the minimum distance between two paths, that is,

. Conversely, due to the presence of inter-pulse interference
(IPI), the wider the pulse, the worse is the approximation.

Now, the aim is to bound . Since , a trivial upper bound of
is given by . A lower bound follows from the Cauchy-Schwarz inequality once

we accept a rather technical assumption verified numerically by simulations (see
Fig. 5.3 for more details):

Lemma 2. Assume that
E

E

E

then the following inequality holds:

E E
E

E

E

E
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Figure 5.3: This plot suggests that assumption of Lemma 2 is verified with IEEE 802.15.3a
(CM1). Here we denote with a discrete-time CIR sampled at GHz.
Furthermore, is the ensemble average of (see Def. 3) over a set
of channel realizations, , and the accuracy of the mean
estimator within , that is one standard deviation, is represented by the
filled region. As , tends to the expectation of (computed over
discrete-time channels). Since Prop. 2 is valid only in continuous-time, we
show a di� erent curve for the average of the RHS of eq. (5.1), that is, a .
The dashed curve shows the asymptotic value of a . This value is below the
asymptotic value of , that means that, in discrete-time, the estimation of

with a is conservative, at least asymptotically. The dot-dashed curve shows
that it is conservative to replace the expectation of the ratio with the ratio of
expectations, verifying the assumption of Lemma 2. Finally, the thick solid
curve show the lower bound that derives from the Cauchy-Schwarz inequality.

5.4 Optimum SNR in SISO Frequency-Selective Channels

The optimum prefilter is designed to maximize SNR under the power constraint:

R

H H

Tr H

having set . This is also optimum from an information theoretic point of
view as it maximizes the capacity of the link.

The solution of this optimization problem is given by the eigenvector of matrix
H corresponding to the maximum eigenvalue , or equivalently by the right

singular vector of matrix corresponding to the maximum singular value
. In turn, it results that .
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Remark 6. The optimum prefilter tries to focus the power at the neighbourhood of
the channel spectrum peak frequency. We can justify informally this behavior not-
ing that is a convolutional matrix, thus it is at least asymptotically diagonalized
by a Fourier matrix (like a Toeplitz matrix):

H
H

H H H
H H

H
H

where H H H , being H the th sample of the -
points DFT of , say H H , and emphasizing the asymptotic nature
of the equality. The last diagonal matrix is intended to be generated from
H H H with the absolute value on the matrix acting
element-wise. With this diagonalization, we can simply read the eigenvalue
spectrum of H as the power spectrum of , H . Therefore, the
maximum eigenvalue occurs at the discrete-frequency that maximizes the
discrete power spectrum of the channel. Conversely, the optimum prefilter tries
to focus the energy where the channel attenuation is the least, that is in the
neighbourhood of . This behavior is shown in Fig. 5.4(d).
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(d) Received signal: amplitude spectrum.

Figure 5.4: Example of (a) prefilter impulse response, and transmit and received signals
(b)–(d) with a fixed channel realization drawn from the IEEE 802.15.3a
standard.
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5.5 The Case of IR-UWB Channels

In line with previous works on the topic [89–91], we use point process theory to
model the channel impulse response. Hence, the channel is described as a doubly
stochastic point process, that is formally derived from a Cox process (doubly
stochastic Poisson point process).

The starting point is the channel model proposed by Saleh and Valenzuela in [94]
and further adapted to UWB by Foerster et al. in [53]. The expression for the
channel impulse response is

where is the th cluster start time and is the delay of the th path in the th

cluster relative to . According to the model in [53]

C N is a Poisson process of intensity , and

N is another independent Poisson process of intensity .

Therefore, defining R N, we have that R is a Poisson process
of intensity R . The idea is now to model the (deterministic)
presence of the first path of each cluster at the cluster start time using generalized
functions in the intensity function. Thus, in order to model that (in LOS
environment) and almost surely, we define:

C N that is a point process of intensity C , and

R that is a point process of intensity R .

By the independence of the latter processes, also their superimposition

R C R

is a point process with intensity function given by

R C R

Remark 7. In NLOS environments it results that C .
Thus, regarding N as random, this intensity function becomes a random

field

C

This means that R conditioned on is a point process with intensity function ,
therefore it is a doubly stochastic process with random intensity measure and
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intensity function:

R E

Lemma 3. The intensity function of the point process representing the channel
is

R

Proof. See Appendix 5.C.

The statistical properties of the channel amplitudes N are described
in [53]. We recall them in Appendix 5.D and use them in Appendix 5.E in order to
find the following result:

Proposition 3 (Bounds to prefiltering gain of TR). Assume that the channel
is described as previously, then

E (5.2)

Proof. See Appendix 5.E.
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Figure 5.5: Prefilter impulse responses optimized with respect to the number of fingers of
Rake receivers. The impulse responses are obtained by maximizing numerically
the SNR at the receiver. This is an empirical study, since there is no proof that
each of these impulse responses actually maximize the SNR, but the prefilter
optimized for the All-Rake receiver matches the theory.
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Figure 5.6: Prefiltering gain as a function of the number of fingers of the Rake receiver. The
asymptotically optimum precoder (crosses) is optimum under the condition
that the receiver is an All-Rake. The optimum precoder (diamonds) is obtained
empirically by using prefilters as shown in Fig. 5.5. Performance of systems
with no precoding (pluses) and time reversal (circles) at the transmitter side
is shown for comparison. The receiver bandwidth is GHz; however, the
qualitative behavior of the curves is loosely dependent from the bandwidth.
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Figure 5.7: Estimation of the PDF of that number of fingers such that di� erent prefilters
have same performance (see also Fig. 5.6). The histogram on the left (with the
lighter background) refers to Optimum Prefilter (All-Rake) and No-prefiltering;
the histogram on the right (with the darker background) refers to Optimum
Prefilter (All-Rake) and time reversal.
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5.6 Conclusion

In this chapter we compared optimum prefilters operating in SISO frequency-
selective channels. The SISO channels are characterized by a complexity feature
that we define in association with the number of fingers of the Rake receiver.
The analysis is carried out in the absence of MUI. Figures 5.4(a)–(d) showed the
behavior in time and frequency of different prefilters. It is shown that the optimum
prefilter focuses the energy in a neighbourhood of the frequency corresponding to
the maximum channel gain (see Fig. 5.4(d)). A drawback is the spreading in time
of both the impulse response of this filter (see Fig. 5.4(a)) and the received signal
(see Fig. 5.4(b)), implying that a larger number of fingers is required in order to
collect the same energy that would be collected with other prefilters. Eventually,
further analysis is required in order to verify compliance with UWB masks.

A comparison of the gain of different prefiltering schemes is shown on Fig. 5.6.
The prefiltering gain is the value that the curves tend to asymptotically, as the
number of fingers grows to infinity. Other points on the curves show the energy
normalized to the channel gain as a function of the number of fingers of the
Rake receiver. For the simplest Rake receiver (one finger only), time reversal is
optimum: it allows to collect the maximum energy with a -Rake, that is equal
to . At the other extreme, the optimum prefilter, that is joint-optimized with
the optimum receiver (All-Rake), allows to collect the maximum energy. Figure 5.6
further shows that the asymptotically optimum prefilter, i.e., optimum only when
the receiver is an All-Rake, outperforms time reversal only if the receiver has a
number of fingers larger than a threshold, that is a random variable whose pdf is
estimated in Fig. 5.7. Conversely, this analysis suggests that it is mandatory to
require receiver complexity if a prefilter that is optimum when the receiver is an
All-Rake is employed.

Future work may investigate analytically optimum prefilters as a function of
the number of fingers of the Rake receiver. In general, a deeper investigation of
prefiltering techniques with multipath channels is of interest. Moreover, extension
to multiuser communications is possible and may reveal peculiar properties of
prefilters operating in time over multipath channels.
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Appendix

5.A Time Reversal is Optimum if the Receiver is 1-Rake

This appendix aims at providing a quick proof of the optimality of time reversal
when the receiver is constrained to one finger only. The problem can be stated in
continuous-time as follows: Given the channel impulse response (CIR) , find
the function solution of the problem:

We can constrain w.l.o.g. the solution to provide the maximum at ; the
problem becomes

R

Defining , the last integral is the inner product and the solution
derives from the Cauchy-Schwarz inequality: , that implies , that
is, time reversal.

5.B Proof of Time Reversal Gain.

The received useful signal is as follows:

The assumption (a3) implies that with and , one has
; therefore, almost surely, all previous are located at

different times. The energy of considering only the firsts paths tends
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asymptotically (as ) to:

where . It follows that

5.C Proof of Lemma 3: Channel Process Intensity Function.

The aim is to compute E . This can be accomplished by applying the Campbell’s
formula that allows to determine expectations of functions evaluated on the point
process. Precisely, given a point process R with measure , mean measure

E and intensity , and a function R, it holds that:

E E

where the integral is extended over the domain of .
We recall that

C

and that C . Therefore

E E

152



5.D Statistical Description of IEEE 802.15.3a Channel Path
Amplitudes

Let us summarize the statistical properties of the channel amplitudes proposed
in [53] as the following three constraints:

(c1) exponential decay : E

being and the intra-cluster and cluster decay factors, respectively;

(c2) independent cluster fading : each cluster is affected by a Log-Normal fading
(cluster fading) independently from other clusters, that is, the paths within
the th cluster, say N, are scaled by (the same) log-normal r.v.
statistically independent from ;

(c3) independent ray fading : each path is affected by a Log-Normal fading (ray
fading) independently from other paths, that is, the generic path is scaled
by a r.v. statistically independent from

Remark 8. The generic , C, R can be
viewed as the mark of the point located in .

In line with [53], the generic channel amplitude can be decomposed as follows:

where D takes into account the path sign due to reflections and
and follows from the natural extension of Remark 8 to and ,

respectively. We further decompose the term in a deterministic part, say
, and a random part, say :

and call .

Remark 9. In this way and are i.i.d. while dealing with leads just
to independence. Furthermore, if we were dealing with , we would only have
conditional independence of with respect to , that is, the amplitudes are
indepedent only once conditioned to the cluster.

Constraints (c1)–(c3) uniquely define the channel process. Nevertheless, it
remains a freedom in the formal description and we use it to slightly simplify the
analytical formulation found in [53]. We recap the latter in A and propose the
former in B . Hereinafter, we use the following notation:

stands for a Normal process such that D ,

is the standard variation of the Normal r.v. associated with the cluster
fading,
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is the standard variation of the Normal r.v. associated with the ray fading,

is the conversion factor from dB to Np, thus [dB] [Np].

A In [53] it is assumed that

D

D

and is such that it is satisfied (c1). Therefore, having defined
, they impose that

E

thus

In this formulation, we have

E E

E

From a pragmatic point of view, the paths within a cluster, prior to be affected
by cluster fading, are thought with a (conditional) second moment lower than the
second moment that they have to exhibit to be compliant with (c1), that is, after
the cluster fading. Therefore, the cluster fading has the effect to rise the conditional
second moment.

In general, we can write the moments as follows:

E

E

E E

B We define differently and introducing a gauge parameter such that
E and E :

D

D
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With the same of , we find that

thus:

In this formulation, we have

E E

E

From a pragmatic point of view, the paths within a cluster, prior to be affected by
cluster fading, are thought with a (conditional) second moment equal to the second
moment that they have to exhibit to be compliant with (c1). Therefore, the cluster
fading has no effect on the second moment.

In general, we can write the moments as follows:

E

E

E E

Note that the last equality holds either in A and B .

5.E Proof of Proposition 3: TR Gain Lower Bound.

Notation. For a given realization of C, we write and similarly
for R. All summations over or are understood to be over C or R ,
respectively.

We want to compute

E E

with and , where is the amplitude of the path occurred at the
time belonging to the cluster begun in . Let us start reducing the expectations
only over the point process:
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E

EC ER C C E C C R C R C C

EC ER C C E E R R

E EC ER C C E

and further decomposing :

E EC ER C C E

E E EC ER C C

Now we can rely on the independence of each cluster process to obtain:

E E EC ER

and the last expectation can be handled with the Campbell’s formula. From
Appendix 5.D, using the formulation B , we can explicitly write

EC ER

EC ER

The process R has an intensity given by R , see
Section 5.5, thus

ER
R

R

Now, the previous expression becomes

EC

whose expectation can be solved also recurring to the Campbell’s formula, this time
with C , see Section 5.5:

EC
R

C

We then arrive at the final expression of the expectation:

E
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having set .
Specializing this formula to and respectively we obtain

E

E

that are the required formulas to compute the ratio.
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CHAPTER 6
Closed Form Asymptotic Expression

of a Random-Access Interference
Measure

A model describing the cumulative effect of the independent access of users to
a shared resource, formed by elements, is proposed, based on which an integer
interference measure is defined. While traditional cases can be reconducted to
reference well-known results, for which is either Gaussian or Poissonian (see,
for example, Appendix 1.H and eq. (1.37), respectively, and also eq. (3.52) for a
Poisson-mixture distribution), the proposed model provides a framework that offers
the tool for understanding the different nature of . In particular, an asymptotic
closed form expression ( , , ) for distribution is
provided for systems presenting constructive vs. destructive interference, and as
such is applicable to characterizing statistical properties of interference in a wide
range of random multiple access channels.

6.1 System Model

When many users access a common resource independently, they may interfere with
each other. A resource can be viewed, in general, as a set of elements that are used
to transmit information. For example, at the physical layer, the resource is the
set of degrees of freedom that carry the information-bearing signal: a system using
bandwidth for time with antennas can access degrees of freedom
belonging to time, frequency and space domains; at the medium access layer, the
resource is usually time supporting either continuous or slotted packet transmission.

In the proposed model, the resource is a discrete set of elements1 ,
i.e., slots. This description holds when the resource is discrete, or can be aptly
discretized. Resource is shared independently by users: user chooses a subset

1
In this chapter, two common notations in combinatorics are used: the set

is denoted by , and, when , it is simply written as .
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Figure 6.1: Abstract setting: a resource composed on parts (slots) is randomly accessed
by users. Each user assigns to the accessed slot a numerical value (label),
randomly and independently from other users.

of (irrespective of ) slots, ignoring the other users choice, and assigns a label
to each accessed slot .

Figure 6.1 illustrates the abstract setting, where a resource is made up of
slots and users access randomly to a subset of slots, which is shown for .

Let for , and otherwise, that is, is zero for the
non-accessed slots of user , while it is equal to the assigned labels for the accessed
slots. Therefore, , where is the set of possible values that the label may
assume, and , where and may or may not be equal.

Let be the sum of labels assigned to slot by all users but user , that is:

(6.1)

By specifying and , the proposed model encompasses the problem of statis-
tically describing multiple access interference for communication systems in which
interference has a quantal nature, or can be reconducted to the model of eq. (6.1).
Let present four examples: the first three address well-known problems, and are
intended to clarify concepts and notations defined above, while the last addresses
a novel problem, that is solved thanks to results proved in this chapter.
Example 1. This example may refer to throughput of Slotted Aloha at the medium
access layer [95]. Assume that resource is time, that is slotted in equal parts,
and that users, each willing to transmit a single packet, independently choose
one of the slots. In this setting, and can be interpreted as the binary
variable indicating the presence or absence of packet of user

within slot . The goal is to find the number of colliding packets with user
packet, i.e., the number of packets in the slot selected by user . Given , it
results . Moreover, and . in eq. (6.1) indicates
the number of packets in slot that are transmitted by all users but user , and,
therefore, the goal is to find . In the large-system limit, that is, as ,
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, and , both and are distributed according to
a Poisson distribution with mean .
Example 2. This example may describe demodulation of direct-sequence spread-
spectrum (DSSS) signals with a single-user matched filter bank. Assume that
resource is time, that is slotted in chips of duration , and supports transmission
of synchronous random DSSS signals [6]. Let the received signal be

(6.2)

where is the number of users, is the set of unit energy transmitted
spreading waveforms, is the set of transmitted antipodal symbols, and

is a white Gaussian noise process with power spectrum N. Direct-sequence
implies , where
are i.i.d. r.v.s assuming values in with equal probability (see
e.g. [6]). In this scenario, , , , ,
and is the signal interfering with that of user , within chip , at the output
of a chip-matched filter. The goal is to find the distribution of , that can be
used, for example, in order to find the capacity of the system. In the large-system
limit, is Gaussian distributed with zero mean and unit variance. Generally,
a Lindeberg condition suggests that if a fixed fraction, however small, of degrees
of freedom is “uniformly” used, then is Gaussian distributed; otherwise, if few
degrees of freedom are used in the large-system limit, e.g. a finite number, then
the asymptotic distribution may be not Gaussian, as is usually the case.
Example 3. This example may describe demodulation of binary PPM time-hopping
spread-spectrum (THSS) signals with a single-user matched filter bank, where
interference is at physical rather than medium access layer compared to Example
1, and can only be constructive. Assume that resource is time, that is divided in

chips of duration , and supports transmission of synchronous binary PPM
THSS signals (see e.g. [96]). Let the received signal be

(6.3)

where is the number of users, is uniformly distributed over
assuming an integer, is the set of binary transmitted symbols, and,
for the sake of simplicity, is a zero-excess bandwidth waveform with band

, and . In this model, there are slots of duration
, , , and may be regarded as the interference of the

output of a filter slot-matched to slot . In the large-system limit, is distributed
according to a Poisson distribution with mean , as in the first example.
Example 4. Example 4 is similar to Example 2, except for the random spreading
sequences that now belong to the time-hopping family (see e.g. [97,98]), i.e., for any
fixed , , with equal probability, for only one chip .
In this case, is the interference, to which contribute both constructive and
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distructive terms for , at the output of a filter chip-matched to chip ,
, and . Moreover, is the interference at the output

of the single-user matched filter of user . The distribution of is unknown,
and can be found thanks to the result presented in this chapter.

As hinted by Example 4, this chapter finds, in the large-system limit, the closed
form distribution of:

(6.4)

The chapter is organized as follows: in Section 6.2 the main result is presented
and proved; essential analytic combinatorics are recapped in Appendix 6.A. Con-
clusions are drawn in Section 6.3.

6.2 Main Result

Theorem 9. Let be the number of slots of a resource, that is shared by
users. The generic user selects one slot only , and

assigns to this slot a label that is a r.v. taking value in with equal
probability. Then, , as defined in eq. (6.4), is distributed in the large-system
limit, that is, for , , and , as:

Z

(6.5)

irrespective of , where is the modified Bessel function of the first kind.

Proof. We provide two proofs. The first proof is probabilistic: is regarded as
a r.v. and the pdf of is derived straightforwardly via algebraic manipulations.
The second proof is based on results of analytic combinatorics: the probability
P is derived by considering all the ways, and the associated probability, a
particular value of can be obtained; the law of large numbers guarantees that
the so obtained result holds with probability one in the large-system limit.

First Proof.
For fixed , is the sum of i.i.d. random variables , each

of which is distributed according to:

(6.6)

Denoting by , one has:
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Figure 6.2: Two simple lattice walks are shown. In the two cases, , and therefore
the walk length is , and steps are , as shown in the box at
the north-east corner. Both walks start from and end at : the
darker corresponds to the sequence , while the lighter
corresponds to .

In order to obtain the asymptotic pdf, rewrite the previous relation as follows:

where this time the contribution to the amplitude of each Dirac mass is isolated
in the term in parentheses, that is defined as . In the
large-system limit, the Binomial distribution tends to a Poisson distribution with
mean , , and the term in parentheses reduces to

, being:

Finally, becomes:

Z

irrespective of . The theorem follows since when Z.
Second Proof.
As expressed by eq. (6.4), is a sum of the form:

where subscript is discarded. In order to find P , the number of ways
can be obtained as sum of elements of a sequence is counted, and let
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the probability each that sequence appears be:

(6.7)

Sequence can be regarded as an unconstrained, simple walk of length
in the lattice Z Z (refer to Appendix 6.A for definitions and theorems of

analytic combinatorics that are used in this chapter). Figure 6.2 shows two such
walks with possible steps, , where notation for simple walks
is adopted. Associated with these steps are weights and (see box
at north-east corner of Fig. 6.2) such that the characteristic polynomial of is:

Thanks to weights, the probability a particular point in Z Z is reached can be
computed. In order to find P , summation in eq. (6.7) is over walks starting
from and ending at , and the probability within the sum is that
associated to each walk, that is the product of probabilities associated to steps
composing the walk. The generating function of these walks is:

the coefficient giving the probability to reach :

In the large-system limit, the quantity in brackets converges to:

with . In order to find and
therefore , Cauchy’s integral formula can be used as follows:

Therefore, assumes the integer value with probability , hence the
theorem.
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Figure 6.3: Theoretical envelope (red dashed line) vs. simulated histogram (filled circles)
of for (subfig. (a)) and (subfig. (b)). A Gaussian PDF with
same mean and variance is shown for reference.

Figure 6.3 shows simulations (filled circles at integer values) vs. theoretical
envelope , R (red solid line) of , for (Fig. 6.3(a)) and
(Fig. 6.3(b)). Simulated values are drawn from Monte-Carlo simulations of
finite dimensional systems with . A Gaussian r.v. with same mean and
variance (black dashed line) is reported for reference. As hinted by figures, the
envelope of the distribution is increasingly Gaussian as increases. In particular,
odd moments of are null, while the two first even moments are E and
E , hence the kurtosis is . Since , is always
leptokurtic, and as , suggesting that a Gaussian approximation may
hold for .
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6.3 Future work and Conclusion

In this chapter, a model describing systems where users access a resource inde-
pendently was proposed. Each user assigns labels to accessed slots: the label is a
numerical value with sign, i.e. accounting for polarity. Based on this model, an
interference measure called for the generic user that considers the cumulative
value of other users labels in terms of their sum was considered. In particular, the
case where each user accesses one slot only and assigns a label or with equal
probability to the accessed slot was addressed. A closed form expression of the
distribution of this cumulative value was found in the large-system limit: it was
shown that, if the cardinality of the population of users is a fraction of the number
of available slots, then the distribution converges to a novel expression that is in
general far from Gaussian, and may be approximated by a Gaussian distribution for

. Two proofs, one probabilistic and the other based on analytic combinatorics,
were provided.

The second proof presents a potentially fruitful framework that can be used to
derive several generalizations. Firstly, the labels are restricted to be binary in this
work: by removing this constraint, conditions under which the interference does not
follow neither a Gaussian nor a Poisson distribution can be studied. Secondly, the
number of slots accessed by each user is here constrained to one, as both the total
number of slots and the population grows at the same rate . This
constraint also can be removed, and the maximum number of slots, as a function
of , that each user may access without reducing the interference to behave as
a Gaussian random variable can be studied. Lastly, as a third generalization, the
relation with so-called “stable distributions,” that represent distributions describing
the sum of an infinite number of properly scaled i.i.d. random variables, can be
investigated.
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Appendix

6.A Basics on Analytic Combinatorics of Lattice Paths

We refer mostly to the seminal work of Banderier and Flajolet [99].

Definition 4 (Lattice Path or Walk). A lattice path (or walk) is a sequence
where is the length of the path and

Z Z

is the set of steps. A path is:

directed if ;

simple if (in this case the set of steps is written as );

unconstrained (resp. constrained) if Z Z (resp. Z Z ).

We can assign a weight to each allowed step, that is R. The
following definition is the starting point of the analytic approach:

Definition 5 (Characteristic Polynomial). Let be the set of steps of a simple
walk and the weight associated to . The characteristic polynomial of is:

The ending point of a walk is that, for simple walks, assumes the form
, where is called final altitude. Denote by the class of walks with

length and final altitude , and let .

Definition 6 (Generating Function). The generating function of is defined
as:

where C is a mark for the length and C is a mark for the final altitude.

The following theorem links with :

Theorem 10. The generating function of a simple walk is:

(6.8)
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Proof (sketch). Rewrite as follows:

where is a Laurent polynomial in where is the
(possibly weighted) number of ways to reach the final altitude in steps. Since
the only altitude reachable in steps is , then ; at step , the reachable
altitudes are described by . In general , and therefore a
summation over yields to eq. (6.8).
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CHAPTER 7
Conclusion and Future works

Impulsive communications belong to the subset of communications that are sparse
in time. Impulsiveness is, therefore, strictly related to both sparsity in time of the
transmitted signal and properties of the physical medium that the signal passes
through. Impulsive communications are those where the received signal occupies a
fraction of the received signal space. The typical example in the wireless commu-
nication field is represented by impulse-radio ultra-wideband, where transmissions
occur at bursts and the transmitted signal occupies a small fraction of the symbol
period.

In this thesis we addressed several issues concerning impulsive communications
and the effect of interference on their performance. In particular, we formalized es-
sential characteristics of multiuser impulsive communications, namely sparsity and
random hopping, and we identified their information-theoretical limits in multiple
access channels with power-control. We then investigated the interplay between the
transmitted signal bandwidth and the statistical properties of a multipath channel,
when transmitter uses a prefiltering scheme called transmit matched-filter (also
known as time reversal in ultra-wideband and speech communities). Several works
on the analysis of performance of systems using time reversal is then presented,
for both SISO and MISO systems, and in presence of imperfect knowledge of the
channel. Finally, the interference of a general multiple access model accounting for
constructive vs. destructive events is investigated: we showed that several systems
can be described with this model, and a new asymptotic distribution formula for
the interference is derived.

7.1 Conclusion

We summarize below the main conclusions that can be drawn from each chapter of
this thesis.

In Chapter 1, information-theoretical limits are derived for impulsive vs.
non-impulsive multiuser communications, represented by time-hopping vs. direct-
sequence CDMA, that are prototypes of sparse vs. dense multiple access formats.
We compared spectral efficiency of random time-hopping with consolidated results
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regarding direct-sequence. We found that there is a regime where time-hopping
allows to achieve spectral efficiency higher than that achievable by direct-sequence,
namely when the system is overloaded and the receiver is linear. This result
provides a hint for and a partial justification to designing networks with nodes
that transmit bursty signals in time: this signaling scheme is appropriate whenever
the network load is high, , while keeping the receiver design simple, e.g.
owing to very large bandwidths: the performance gain with respect to traditional
direct-sequence networks is increasingly relevant as 0 increases.

In Chapter 2, we investigated the interplay between transmitted signal band-
width and statistical properties of a multipath channel, when transmitter uses a
prefiltering scheme called transmit matched-filter (also known as time reversal in
ultra-wideband and speech communities). We derived a necessary and sufficient
condition for the performance of the system to increase as bandwidth increases.
We showed that multipath channels that are described by or strictly related to the
Saleh-Valenzuela model, satisfy the condition, therefore suggesting a theoretical jus-
tification for the wide adoption of time reversal in ultra-wideband communications.

Chapters 3–5 are dedicated to detailed study of time reversal in various settings.
In Chapter 3, we analyzed performance of two different transceiver structures,
namely transceivers with time reversal prefiltering and -Rake receiver vs. no pre-
filtering and All-Rake receiver. Performance is analyzed in terms of error probability
in both single-user and multiuser settings; preliminary mutual information analyses
has been also conducted. It was shown that in the single-user setting the two system
designs are equivalent in terms of error probability and sensitivity to perturbations,
while behaving differently in the multiuser setting, where the system using time
reversal shows higher error probability. Partial results on mutual information do
not change qualitatively the conclusion drawn from the comparison based on the
error probability metric. In Chapter 4, we analyzed MISO ultra-wideband with
time reversal, in particular showing that performance is not affected by the the lack
of correlation between channels from each transmitting antenna to the receiver. In
Chapter 5, we compared SISO time reversal with other prefilters, as a function
of the number of fingers of a Rake receiver, and we showed the gain that can be
obtained by the different transceiver structures.

Finally, in Chapter 6 we analyzed a general multiple access model where users
can interfere with each other antipodally in either a constructive or destructive
fashion. We detailed few settings of practical relevance that are described by this
model, but several others, including queues in particular regimes, may be aptly
described as well. We found the asymptotic distribution of the interference in
closed form, that cannot be reduced to any known probability distribution.

7.2 Future works

In several chapters of this thesis, we already detailed future works that are related
to the content of the chapter. The kind of detailed works aims at extending results
obtained under certain sets of assumptions, and can form the basis for investigations
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that either complete or extend the scope of the works that are presented in the
thesis. We hope also that several other works, different from the ones that we
explicitly proposed, will be inspired by this thesis.

In this section we briefly discuss future works that necessitate models that are
either more general or intrinsically different with respect to those presented in this
thesis. Firstly, although this thesis is focused on impulsive communications, that
are sparse in time, it is interesting to investigate more general cases of sparsity
across dimensions of the signal space. Secondly, it is interesting to investigate the
sum-rate of a random ad hoc network where each node uses sparse spreading, and
compare results with those achieved with dense spreading. Different scaling laws
are envisioned in the sparse case. Finally, we believe that the most ambitious future
work lies in embracing a different perspective, namely the possibility to formalize
impulsive communications as those that regard time not as a mere support of the
communications, but as the resource within which coding information through inter-
arrival times between events, such as signal receptions. In this regard, [100–102]
are seminal contributions that may form the basis for this ambitious project.
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