Contribution au pronostic d'une pile à combustible de type PEMFC : approche par filtrage particulaire

par Marine Jouin

Thèse de doctorat en Automatique

Soutenue le 10-12-2015

à Besançon , dans le cadre de École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; Dijon ; Belfort) , en partenariat avec FEMTO-ST : Franche-Comté Electronique Mécanique Thermique et Optique - Sciences et Technologies (Besançon) (laboratoire) et de Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (laboratoire) .

Le président du jury était Bernard Yannou.

Le jury était composé de Noureddine Zerhouni, Daniel Hissel, Marie-Cécile Pera, Rafael Gouriveau, Bernard Yannou, Bruno Allard, Mitra Fouladirad, Audine Subias.

Les rapporteurs étaient Bruno Allard.


  • Résumé

    Le développement de nouveaux convertisseurs d’énergie, plus efficients et plus respectueux de l’environnement, tels que les piles à combustibles, tend à s’accélérer. Leur diffusion à grande échelle suppose cependant des garanties en termes de sécurité et de disponibilité. Une solution possible pour ce faire est de développer des solutions de Prognostics and Health Management (PHM) de ces systèmes, afin de mieux les surveiller, anticiper les défaillances et recommander les actions nécessaires à l’allongement de leur durée de vie. Dans cet esprit, cette thèse porte sur la proposition d’une approche de pronostic dédiée aux piles à combustibles de types PEMFC à l’aide de filtrage particulaire.Le raisonnement s’attache tout d’abord à mettre en place une formalisation du cadre de travail ainsi que des exigences de mise en. Ceci se poursuit par le développement d’un modèle basé sur la physique permettant une estimation d’état de santé et de son évolution temporelle. L’estimation d’état est réalisée grâce à du filtrage particulaire. Différentes variantes de filtres sont considérées sur la base d’une de la littérature et de nouvelles propositions adaptées au PHM sont formulées et comparées à celles existantes. Les estimations d’état de santé fournies par le processus de filtrages ont utilisées pour réaliser des prédictions de l’état de santé futur du système, puis de sa durée devie résiduelle. L’ensemble des propositions est validé sur 4 jeux de données obtenus sur des PEMFC suivant des profils de mission variés. Les résultats montrent de bonnes performances de prédictions et d’estimations de durée de vie résiduelle avant défaillance.

  • Titre traduit

    contribution to prognostics of fuel cells of PEMFC type : approach based on particle filtering


  • Résumé

    The development of new energy converters, more efficient and environment friendly, such as fuelcells, tends to accelerate. Nevertheless, their large scale diffusion supposes some guaranties in termsof safety and availability. A possible solution to do so is to develop Prognostics and HealthManagement (PHM) on these systems, in order to monitor and anticipate the failures, and torecommend the necessary actions to extend their lifetime. In this spirit, this thesis deals with theproposal of a prognostics approach based on particle filtering dedicated to PEMFCs.The reasoning focuses first on setting a formalization of the working framework and theexpectations. This is pursued by the development of a physic-based modelling enabling a state ofhealth estimation and its evolution in time. The state estimation is made thanks to particle filtering.Different variants of filters are considered on the basis of the literature and new proposals adaptedto PHM are proposed and compared to existing ones. State of health estimates given by the filter areused to predict the future state of the system and its remaining useful life. All the proposals arevalidated on four datasets from PEMFC following different mission profiles. The results show goodperformances for predictions and remaining useful life estimates before failure.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque universitaire électronique, Besançon.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.