Large solutions for fractional Laplacian operators

par Nicola Abatangelo

Thèse de doctorat en Mathématique

Sous la direction de Louis Dupaigne et de Enrico Valdinoci.

Le président du jury était Alberto Farina.

Le jury était composé de Louis Dupaigne, Enrico Valdinoci, Alberto Farina, Juan Luis Vázquez, Cyril Imbert, Kevin R. Payne.

Les rapporteurs étaient Juan Luis Vázquez, Cyril Imbert.

  • Titre traduit

    Solutions grandes pour opérateurs du type Laplacien fractionnaire


  • Résumé

    La thèse étudie les problèmes de Dirichlet linéaires et semilinéaires pour différents opérateurs du type Laplacien fractionnaire. Les données peuvent être des fonctions régularières [régulières] ou plus généralement des mesures de Radon. Le but est de classifier les solutions qui présentent une singularité au bord du domaine prescrit. Nous remarquons d'abord l'existence de toute une gamme de fonctions harmoniques explosant au bord et nous les caractérisons selon une nouvelle notion de trace au bord. A l'aide d'une nouvelle formule d'intégration par parties, nous élaborons ensuite une théorie faible de type Stampacchia pour étendre la théorie linéaire à un cadre qui comprend ces fonctions : nous étudions les questions classiques d'existence, d'unicité, de dépendance à l'égard des données, la régularité et le comportement asymptotique au bord. Puis, nous développons la théorie des problèmes sémilinéaires, en généralisant la méthode des sous- et sursolutions. Cela nous permet de construire l'analogue fractionnaire des grandes solutions dans la théorie des EDPs elliptiques nonlinéaires, en donnant des conditions suffisantes pour l'existence. La thèse se termine par la définition et l'étude d'une notion de courbures directionnelles nonlocales


  • Résumé

    The thesis studies linear and semilinear Dirichlet problems driven by different fractional Laplacians. The boundary data can be smooth functions or also Radon measures. The goal is to classify the solutions which have a singularity on the boundary of the prescribed domain. We first remark the existence of a large class of harmoni functions with a boundary blow-up and we characterize them in termsof a new notion of degenerate boundary trace. Via some integration by parts formula, we then provide a weak theory of Stampacchia's sort to extend the linear theory to a setting including these functions: we study the classical questions of existence, uniqueness, continuous dependence on the data, regularity and asymptotic behaviour at the boundary. Afterwards we develop the theory of semilinear problems, by adapting and generalizing some sub- and supersolution methods. This allows us to build the fractional counterpart of large solutions in the elliptic PDE theory of nonlinear equations, giving sufficient conditions for the existence. The thesis is concluded with the definition and the study of a notion of nonlocal directional curvatures


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de PicardieJules Verne. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.