Schémas numériques pour la simulation de l'explosion

par Nicolas Therme

Thèse de doctorat en Mathématiques

Sous la direction de Raphaèle Herbin.

Le président du jury était Pierre Sagaut.

Le jury était composé de Antonin Novotný, Jean-Claude Latché, Jean-Marc Hérard.

Les rapporteurs étaient Christophe Chalons, Rémi Abgrall.


  • Résumé

    Dans les installations nucléaires, les explosions, qu’elles soient d’origine interne ou externe, peuvent entrainer la rupture du confinement et le rejet de matières radioactives dans l’environnement. Il est donc fondamental, dans un cadre de sûreté de modéliser ce phénomène. L’objectif de cette thèse est de contribuer à l’élaboration de schémas numériques performants pour résoudre ces modèles complexes. Les travaux présentés s’articule autour de deux axes majeurs : le développement de schémas volumes finis consistants pour les équations d’Euler compressible qui modélise les ondes de choc et celui de schémas performants pour la propagation d’interfaces comme le front de flamme lors d'une déflagration. La discrétisation spatiale est de type mailles décalées pour tous les schémas développés. Les schémas pour les équations d'Euler se basent sur une formulation en énergie interne qui permet de préserver sa positivité ainsi que celle de la masse volumique. Un bilan d'énergie cinétique discret peut être obtenu et permet de retrouver un bilan d'énergie totale par l'ajout d'un terme de correction dans le bilan d'énergie interne. Le schéma ainsi construit est consistant au sens de Lax avec les solutions faibles entropiques des équations continues. On utilise les propriétés des équations de type Hamilton-Jacobi pour construire une classe de schémas volumes finis performants sur une large variété de maillages modélisant la propagation du front de flamme. Ces schémas garantissent un principe du maximum et possèdent des propriétés importantes de monotonie et consistance qui permettent d'obtenir un résultat de convergence.

  • Titre traduit

    numerical schemes for explosion hazards


  • Résumé

    In nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations which model the blast waves, then the buildup of reliable schemes for the front propagation, like the flame front during the deflagration phenomenon. Staggered discretization is used in space for all the schemes. It is based on the internal energy formulation of the Euler system, which insures its positivity and the positivity of the density. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance. High order, MUSCL-like interpolators are used in the discrete momentum operators. The resulting scheme is consistent (in the sense of Lax) with the weak entropic solutions of the continuous problem. We use the properties of Hamilton-Jacobi equations to build a class of finite volume schemes compatible with a large number of meshes to model the flame front propagation. These schemes satisfy a maximum principle and have important consistency and monotonicity properties. These latters allows to derive a convergence result for the schemes based on Cartesian grids.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.