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Préface

This thesis consists of two parts. The first part is a general review of point
counting, and then a study of Kedlaya’s p-adic method (to curves with non-trivial
automorphism group). In the second part, I present a new approach to the study
of Sato-Tate groups and Galois representations, and analyze its advantages. The
study of point counting algorithms, which are used to determine the data of the
characteristic polynomial of the geometric Frobenius action, and the analysis of
its distribution, are a common thread.

Part I studies the decomposition of cohomology groups induced by automor-
phisms for a family of non-hyperelliptic genus 3 curves with involution, and I
investigate the benefit of such decomposition in the computation of Frobenius
action using Kedlaya’s algorithm. The involution of a curve C' in this family
induces a degree 2 map to an elliptic ¥, which gives a decomposition of the
Jacobian Jac(C) into F and an abelian surface A. The components in the de-
composition H,,(E) @V of the cohomology group H.,,,(C) give the Frobenius
actions on £ and A, from which the Frobenius action on C can be recovered. On
E, the characteristic polynomial of the Frobenius endomorphism can be compu-
ted using a suitable algorithm of Schoof-Elkies-Atkin, Satoh or Kedlaya, which
are efficient and fast in practice. By working with the cohomology subgroup V'
of Hl,;(C), we get a constant speed-up over a straightforward application of
Kedlaya’s method to C. To my knowledge, this is the first use of decomposition
of the cohomology induced by an isogeny decomposition of the Jacobian in Ked-
laya’s algorithm. In general, since the complexity of Kedlaya’s algorithm in the
genus ¢ is at least g%, a decomposition of the cohomological group into k& sub-
groups of almost equal dimensions will give a speed-up by a factor of k3. Since
we work with smaller dimensional groups, the precision required to recovery the
character polynomial is also reduced, which gives a further reduce of complexity.

In Part II, I propose a new approach to Frobenius distributions and Sato-Tate
groups, which uses the orthogonality relations of the irreducible characters of
the compact Lie group USp(2¢g) and its subgroups.

For the application to Sato-Tate groups, I first present a simple method to com-
pute the irreducible characters of USp(2¢). This work provides a set of invariants
and strategy which can be used in higher genus. Although the idea behind this
algorithm is simple, and it works well for small g, it is of theoretical interest to
develop a more efficient algorithm. In Section 4.6, I develop an algorithm (Algo-
rithm 1) based on the Brauer-Klimyk formula. Although applied in practice for
small d, the average complexity per character for this algorithm to compute all



the irreducible characters of USp(2¢g) up to a unweighted degree d > ¢ is O(?).

The advantages of the new approach to Sato-Tate groups are examined in se-
veral aspects : I study the error behaviour in the genus g, in the unweighted
degree d and in the sample size n. The results show that the error grows slowly
with respect to all these three factors, as far as the Sato-Tate group of the curve
has a small index in USp(2g). Moreover, I compared it with the classical use of
moment sequences. I also use the family of genus 3 curves studied in Part I as a
case study. This example demonstrates the principle that, for non-generic curves,
one should work with the character theory of the smallest group that is known to
contain the Sato-Tate group. The analyses and comparisons show that the cha-
racter theory approach is a more intrinsic and very promising tool for studying
Sato-Tate groups. Using this new approach, we need many fewer data points
of Frobenius (as character polynomials) to identify a Sato-Tate group. This pro-
vides further research topics. For example, extend Algorithm 1 to other compact
connected Lie groups. It is also interesting to study more exotic Sato-Tate groups,
e.g. the five exceptional simple Lie groups. A complete study of Sato-Tate groups
requires the additional analysis of the group of connected components, not trea-
ted in this thesis. In many cases the splitting field for this (finite) Galois group
can be inferred from the geometric context, but in general requires a study of
the character theory of finite groups.
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Chapitre 1

Introduction

The zeta functions of algebraic varieties over finite fields, in particular, those of
algebraic curves, are the main subject of this thesis, playing a central role in the
development of the modern algebraic geometry. The reason for the interest in
computing zeta functions comes from both theoretical considerations and prac-
tical applications to coding theory and cryptography, particularly elliptic curve
cryptography.

In this chapter we give a brief introduction to zeta functions. We first recall
their history then introduce their basic definitions and properties before conclu-
ding with an overview of point counting algorithms.

1.1 History of zeta function

The study of zeta functions in the setting of function fields (and varieties over
finite fields) dates back to Artin’s thesis in 1921 [Art21] [Art24]. He considered
quadratic function fields, i.e., degree 2 extensions of the rational function field
K (z) with K being a finite field. Although the main theme of Artin’s thesis is not
to focus on the zeta function but on the arithmetic of quadratic function fields
(decomposition of ideals, ramification, unit theorem, class number and recipro-
city law), but on the second part of thesis, Artin introduced the zeta function and
proved that it is rational, which is different from the zeta function in the num-
ber field case. Artin also tried to prove the analogue of the Riemann hypothesis,
which says the non-trivial zeros of the L-function lie on the line s = 1/2 in the
complex plane.

In 1933 [Has33], Hasse proved the Riemann hypothesis for elliptic function
fields. One of the essential step is to show that the endomorphism of an elliptic
curve over a finite field is quadratic imaginary. Thereafter, the study of zeta func-
tions, especially the efforts to prove the Riemann hypothesis, became more and
more active. André Weil [Wei48] proved the Riemann hypothesis holds for all
function fields in 1948. Bombieri [Bom74] gave a very short and elegant proof
in 1974, which can be found in the book of Moreno [Mor91]. This was based
on an idea of Stepanov of constructions of functions with prescribed numbers of
zeros at finitely many given points, which is a weak form of the Riemann-Roch
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theorem. Another part in Bombieri’s proof is the use of Galois theory to deduce
the lower bound for the number of points from the upper bound.

The proof of Weil involved higher dimensional algebraic geometry and leads
to the theory of abelian varieties. In 1949, he proposed the Weil conjectures about
zeta functions of algebraic varieties over finite fields [Wei49]. This led to a very
active development in modern algebraic geometry, especial in 1960’s and 1970’s.
This includes Dwork’s proof of the rationality of zeta functions [Dwo60], Gro-
thendieck’s proof of the functional equation [Gro95], and finally Deligne proved
the Riemann hypothesis in 1974 [Del73] [Del75] and [Del80].

1.2 Zeta functions of curves over finite fields

By a curve over a field K, we mean a geometrically integral smooth projective
algebraic curve defined over K. In this section, K will ba a finite field. We give
a brief review of the zeta function of algebraic curves over finite fields. We refer
to [Mor91] and [Sti09] for the details and a more thorough presentation.

Definition 1.1. Let C' be a curve over F,. The zeta function of C'/F,, is

Z(T) =Y 19 ¢ C[[1]], (1.2.1)

where the sum is taken over all effective divisors D in Div(C'), the divisor group
of C/F,.
Remark 1.2. We have a (formal) Euler product formula for the zeta function :
1
20 =T ——— (1.2.2)
Pl;[C 1 — Tdeg(P)

Proposition 1.3. The zeta function Z(7") of C'//F, converges absolutely on |T| <
1/qin C.

Remark 1.4. For |T'| < 1/q, the Euler product in 1.2 is absolutely convergent,
and its value is Z (7).

Proposition 1.5 (Rationality of Z(T")). Z(T') can be extended to a rational func-
tion on C which has simple polesat 7'=1and 7" = %

Definition 1.6. The L-polynomial of C/F,is L(T) = (1 = T)(1 — qt) Z(T).

Proposition 1.7 (Functional Equation of Z(7")). Let g be the genus of the curve
C'. The zeta function Z(T') of C satisfies the function equation

_ ogigga, (1 )
Z(T) = ¢* T Z(qT> (1.2.3)

11



Proposition 1.8. We have

M) Z(T) = =i
@ L(T) € Z[T].
(3) L(1) = h(C), the class number of C/F,,.

4 L

(T
(
(T) = ¢*T* L( )
(

(5) L(T) is of degree 2g. We write L(T) = ag + a1T + - - - + az, T*.

(6) L(0) =ap=1and ayy = ¢*.
(7) asg—; = q* "a; for 0 <i < g.

(8) Let oy, - - - , a9, be the reciprocals roots of L(T"), in other words,

2g

L(T) = [[(1 = a,T).

i=1

Then we can renumber «; such that o;ayy; = qfori=1,---
(9) LetC,, = Cxy,F4m and L, (T) be the L-polynomial of C,, /F». Then af, - - - | of,

are the reciprocals roots of L, (7).

) g-

(1.2.4)

The zeta function Z(7T) has a very close relation with the number of points on

a curve :

Proposition 1.9. Let N,, = #C (F,»), i.e. the number of I .-rational points of

C/F,. We have

2(T) = exp (Z N, 7;:)

n=1

and
2g
Nn:q"+1—2af.

Proof. We have

I
M2

3
I
e
m
Q

I
hE
]

3
Il
_

3
Il

I I
M8 10
3 /T
]
o,
%
E
~
=

3
Il

(1.2.5)

(1.2.6)

(1.2.7)

g



where N,, = > des(P)m deg(P). Hence

Z(T) = exp (i ij;:> : (1.2.8)

m=1

For m = 1, N, equals to the number of closed points of C of degree 1, so N; = N;.
For any positive integer n, let Z(7T',C,,) be the zeta function of C,, = C' xp, Fy»
As in 1.2.8, we write

Z(T,C,,) = exp (i M,, 1;:) (1.2.9)

m=1

The above argument shows M; = N,,. Combine 1.2.9 with the equality

zZ(T", C H Z((T,O), (1.2.10)
=1

see [Sti09, §5.3, Prop. 5.1.10], we obtain

exp (Z M,, T;m) = Z(T",C,) = exp (Z (Z gm) N, Tm) . (1.2.11)

m=1 ¢n=1

Compare the coefficients of 7", we find that A, which equals to N, as seen
above, equals to N,,. This shows N,, = N, for all n, and we complete the proof
for 1.2.5. For the proof for 1.2.6, consider the zeta function of C,, in 1.2.9 and
we have

exp <i M,, 7;:) =Z(T,C,)

- (1-T)(1—¢"T)

ﬁ(l o) (1.2.12)

=1

T (1-D)(1—¢'T)

:exp(z:l(q +1—Zoz>Tn).

Here we use the notations and results in (8) and (9) in 1.8. This implies

29
¢"+1-> a'=M =N,.

i=1
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The following theorem is important, which is an analogue of the (classical)
Riemann hypothesis.

Theorem 1.10 (Hasse-Weil). Let L(T) be the L-polynomial of a curve C'/F,. Let

ay,- -,y be the reciprocals roots of L(T). Then
loy| = ¢/ fori=1,...,2g. (1.2.13)
Proof See [Mor91, §3.4] or [Sti09, §5.2]. O

Corollary 1.11 (Hasse-Weil Bound). We have a bound on the number of rational
points on a curve C'/F, :

[N, — (" + 1) < 29¢"”. (1.2.14)

Proof. Itis from 1.2.6 and 1.2.13. O

1.3 Point Counting

In this section, we review a few point counting algorithms. It is impossible to
introduce all algorithms, and we refer to [Coh+06] for a more comprehensive
introduction. We begin with naive algorithms.

Naive enumeration

Given an equation f = 0 with f(z,y) € F, [z,y] which defines a curve C. The
most direct way to know the number of points |C'(F,)| is to check if f(«, ) is
zero for all (a,8) € F2 Since |F2| = ¢ the time required is O(¢?), where the
time for evaluate the polynomial f(z,y) is negligible comparing to the size of the
field .

Enumeration

Let C : y* = f(z) with f € F, [z] a squarefree polynomial of degree 29+ 1 be a
hyperelliptic curve over the prime field F,. For each a € F,, there are 1 + (%)

solutions of the equation y* — f(«a) = 0 for y in F,, where we use the Legendre
symbol. Hence the number of I, rational points on C' is given by

|IC(F,)| = :z_:: (1 + (Jc(;)» +1,

where the last 1 corresponds to the unique point at infinity of C. For any a € F,,
the Legendre symbol ( ) can be computed in time O((logp)?), or using the

a
p
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fast multiplication and Jacobi symbol algorithms, in time O(logp (loglog p)?).
Since |F,| = p, this enumeration algorithm runs in time O(plog p (loglog p)?).
This method can be generalized to extension field F, directly. The difference
between running times of this method and the naive enumeration is that the
latter one has running time quadratic in q. However, this method works only for
hyperelliptic curves.

Schoof’s algorithm

Consider an elliptic curve E : y* = z® + ax + b over F,. We focus on the case
that ¢ is a large integer. Let ¢ be the trace of the Frobenius action ¢ = F, on E.
We have #E(F,) = ¢ + 1 — t. Hence for elliptic curves, determining the number
of points of E is equivalent to determining the trace ¢. The Hasse-Weil bound
says that |t| < 2,/q. If we can determining ¢ mod N for some positive integer
N > 4,/q, then t equals to the unique integer ¢’ in [—2\/6, 2\/6] with ¢ = t mod
N. Unfortunately N > 4,/q is a large integer, and we don’t have an efficient way
to compute ¢t mod N directly. However, the Chinese remainder theorem make
this possible if we can compute ¢ mod /; for distinct small primes ¢; such that
N = TI[_, > 4,/q. It is clear that the number r of such primes is no more than
log,(4¢'/?) + 1, and we can just choose the first r primes.

Given a small prime number ¢/, we need to compute ¢ mod ¢. The Frobenius
action ¢ satisfy the equation ¢>—t¢+q = 0, which means ¢*(P)—t ¢(P)+qP = O
for all P = (z,y) € E(F,), where we use the addition and scalar multiplication
on the group F(F,). Again, since ¢ and ¢ are large integers, the generic points
t ¢(P) and ¢P are impossible to compute.

Schoof’s idea is to work out this computation with the /-torsion subgroup £ [¢].
On this (small) subgroup, we have ¢?(P) —t¢(P)+gP = O for all P € E [(] and
any integers t = t and § = ¢ mod ¢. Moreover, if for ¢ # p and an integer ¢ which
satisfies ¢*(P) +t ¢(P) —gP = O for all P € E [¢|, we have ¢t = mod ¢, since the
restriction of ¢ on E [¢] is invertible. So in order to determine ¢t mode ¢ for ¢ # p,
we only need to determine ¢ for which ¢? + g = 7 ¢ holds on E [{]. Of course, we
can consider only 7 and ¢ in the range [— “51), @

Finally, the relation ¢? + ¢ = ¢ on E [{] can be tested using the (-division
polynomial ¢ [z,y] € F, [z, y], which vanishes exactly at the nontrivial /-torsion
points P = (x,y). This leads to the computation being done modulo a polynomial
in IF, [x] of degree FT‘l, see [Sch85] for more details.

The complexity is O((logg)®) using fast algorithms for integer arithmetic and
polynomials. The improved algorithm by Noam Elkies and A. O. L. Atkin, which
is called Schoof-Elkies—Atkin algorithm (SEA), is probabilistic and has expected
running time O((logg)*), see [Atk92].

15



Satoh’s algorithm

The p-adic method is used in the study of zeta functions of algebraic varieties
by Dwork in 1960 to show that the rationality of the zeta function, see [Dwo60].
Kato and Lubkin [KL82] developed a p-adic algorithm to count points on elliptic
curves, however it has never been implemented.

In 1999, Satoh [Sat00] designed an p-adic algorithm based on the canonical
lifts of elliptic curves. For an elliptic curve £/F,, a canonical lift of £ is an elliptic
curve £/Q, defined over Z, such that the ring homomorphism EndQ,(£) —
Endr, (F) induced by reduction modulo p is a ring isomorphism. If £ is ordinary,
Deuring [Deu41a] showed the existence and uniqueness (up to isomorphism) of
the canonical lift. Lubin, Serre and Tate [LST64] proved that the j-invariant of £
is the unique solution in Z, of the equation

?,(X,X(X)) =0and X = j(£) mod p,

where ¥ : Z, — Z, is the lift of the p-th power Frobenius on F, to Z,, and
?,(X,Y) € Z|X,Y] is the p-th modular polynomial. This provides a way to com-
pute j(€) using a generalized Newton’s method, and thus an equation of the
canonical lift £. Let F, be the lifted Frobenius to £ of the Frobenius F;, on E,
and w be a holomorphic differential on &£, e.g. the invariant differential. Satoh
proved that the trace of Frobenius is given by c+ ¢ where ¢ € Z, is determined by
Fi(w) = cw. Satoh then found a way to compute c and turned the above ideas
into an effective algorithm. For a fixed prime p, the running time for £/F, with
q = p" is O(n?) and it requires O(n®) space.

Kedlaya’'s algorithm

In 2001, Kedlaya designed a point counting algorithm for hyperelliptic curves
using the Monsky-Washnitzer cohomology. We will devote to this method in
Chapter 2, but our target is the family of genus 3 curves with automorphism
groups Z/27Z. Hence we give an overview of Kedlaya’s algorithm in its original
form.

Let C be a hyperelliptic curve of genus g over F,, ¢ = p", defined the equation
y* = f(z) with f € F,[z] a squarefree polynomial of degree 2g + 1. We lift f
to a monic polynomial f € Z,, the unramified extension of Z, of degree n. The
equation y*> = f(x) defines a hyperelliptic curve C' over Q, whose reduction
modulo p is C.

It can be shown that z'dy, 2dy, . . . , x*9dy form a basis of the Monsky-Washnizter
cohomology of the affine scheme C'\{co} whose associated dagger algebra is
Qu(x,y)t/ (y* — f(x)), see Section 2.2 for more information. One can use this
basis and a lift of Frobenius on this dagger ring to compute the zeta function
of C. However, Kedlaya work with the curve obtained from C by removing the
point at infinity and the locus of y = 0. The corresponding dagger ring is then

16



Al = Q{z,y,y~ 1)/ (v* — f(x)). The advantage of using this larger ring is that
it admits a lift of Frobenius with a simpler form and can be computed very fast,
which is given by F,(z) = 2” and

F,(y) =9* (1 + F,(f(x)) — f(@p) |

Y%

Note that we invert y in this formula, which is the reason for which we work
with Af. This gives us a cohomology group whose dimension is bigger, however
we only need to work with a subspace for which {x’/y dz}?%;" forms a basis.

From the above formula, it is easy to see that the lifted Frobenius converges p-
adically in linear rate, see the definition of overconvergent series and dagger ring
in Section 2.2. Another important parts in Kedlaya’s work are explicit reductions
of differential forms and an upper bound of the lost of precision during the
reductions, see Section 2.3.2 and 2.3.3 respectively. This upper bound provides
an upper bound for the required precision to compute the lifted Frobenius.

The running time of Kedlaya’s algorithm for a hyperelliptic curve of genus g
over F,. is O(g*n®) and it uses O(y°n?) space for a fixed p. Its dependence on p
is O(p). In 2006, David Harvey improved this complexity to O(,/p), see [Har07].
In 2012, he also gives an average polynomial time algorithm to compute the
zeta functions for the reductions of any hyperelliptic curve defined over Q, see
[Har14].

1.4 Conclusion

The naive methods with clever use of Pollard rho or the baby-step, giant-step
algorithm in the group structure of the Jacobian play an important role in deter-
mining the zeta function in small to moderate characteristic (and low genus).

Schoof’s algorithm can be generalized to higher dimensional abelian varieties
over finite fields. However the complexity in g is exponential, and it is impractical
for genus > 2. Satoh’s algorithm is also theoretically general, but it requires the
computation of (an ideal of) modular relations, which limits both the genus and
the characteristic. Kedlaya’s algorithm is generalized to a wide class of curves.
In Section 1.3, we use this method for non-hyperelliptic genus 3 curves whose
automorphism group contains 7Z/27. The limitation of Kedlaya’s algorithm is the
complexity in the characteristic p is O(p), but this is reduced to O(\/ﬁ) after
Harvey.

In the application to the Sato-Tate conjectures, the simultaneous computation
modulo many primes can be optimized by work of Harvey [Har14], and Harvey
and Sutherland [HS16].

17



Chapitre 2

Point Counting for
Non-Hyperelliptic Genus 3 Curves

2.1 Introduction

Henn [Hen76] gave the table of the possible non-trivial groups which appear
as automorphism groups of a non-hyperelliptic genus 3 curves, which can be
found in Vermeulen’s thesis [Ver83]. The dimension of the set of moduli points
of non-hyperelliptic genus 3 curves whose automorphism group contain 7Z/27Z is
4 inside the moduli of genus 3 curves M3 of dimension 6. We thus obtain an
algorithm to compute the zeta function of a large family of genus 3 curves.

In [Ked01], Kedlaya used Monsky-Washnitzer cohomology to compute the zeta
functions of hyperelliptic curves over finite fields. This method could be applied
to general varieties, and there are already generalizations to superelliptic curves,
C,,» curves and non-degenerate curves, see [GGO1], [DV06] and [Cas06].

In this chapter, we use Monsky-Washnitzer cohomology for non-hyperelliptic
genus 3 curves with an involution (double covers of elliptic curves), but focuses
on a smaller dimensional space associated to an abelian surface in the jacobian
of C.

This chapter is organized as follows : Section 2.2 recalls the definition of
Monsky-Washnitzer cohomology and results in this theory. In Section 2.3, we
compute a basis of the cohomology and describe a way to do the reduction of a
differential form. Reduction means to write a differential form as a linear com-
bination of the basis. In particular, we give an upper bound of the denominator
after a differential form is reduced. This bound makes the algorithm practical
since it establishes a finite precision bound for the computation. Section 2.4 des-
cribes a way to compute a lift of Frobenius and Section 2.5 explains why the
computation splits into 2 eigenspaces. Finally, Section 2.6 gives the algorithm
and an analysis of its complexity.
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2.2 Monsky-Washnitzer cohomology

In this section, we recall the definition of Monsky-Washnitzer cohomology
which is introduced by Monsky and Washnitzer in [MW68] and Monsky [Mon68],
[Mon71].

Monsky-Washnitzer cohomology is a p-adic cohomology theory defined for
smooth affine varieties over finite fields. Let X be a smooth affine variety de-
fined over a finite field & := F, of characteristic p with coordinate ring A which
is a finitely generated k-algebra. In [Elk73], Elkik showed that there exists a fini-
tely generated smooth Z,-algebra A such that A/pA = A, here Z, is the valuation
ring of Q,, the degree n := log,q unramified extension of Q,.

In general, A does not admit a lift of the Frobenius endomorphism F on A ,
but its p-adic completion A> does. However, the dimension of the de Rham co-
homology of A may be too big. For example, if A = Z,[z], then 3-°° , p"aF" ~'dx
is not an exact differential form since >-°° ,z*" is not in A%, but each term of
this sum is exact. The problem is that this differential form does not converge
fast enough for its integral to converge as well.

Monsky and Washnitzer work with a subalgebra A" of A consisting of series
which converge fast enough to solve the above problem. For

A= Zylwr, o, xal [(frs for o5 ),

the weak completion or dagger ring of A is

AT = Zq<$1,l’2, T 7xd>/(f17f27 e afr)

where Z,(z1, 22, - ,z4) is the subring of A which consists of overconvergent
power series

vp(a
{Z a0 € Ly|[x1, 2, -+ ,x4)] | lim inf Up(2a) > O}
o
with a == (ay, -+, aq), % = 25" --- 25, |a| = %, o; and v, is the usual p-adic
valuation on Z,.

Definition 2.1. The Monsky-Washnitizer cohomology of X /F, is the de Rham co-
homology of A" ®;, Q,. More precisely, let D°(A') := Af, D!(A") be its universal
module of differentials

- af; ofi
DY (AT .= (AT coe AT Al
(A") ( dry + -+ da:d> / (; ( o dry + -+ e, dxd>)

and D(A") be the i-th exterior product of D'(A"). Let H'(A,Z,) be the i-th
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cohomology group of the complex
0 — D°(A1) & DY(AT) &y D2(AT) & p3(al) &

where d; is the usual differentiation. Then the i-th Monsky-Washnitzer cohomo-
logy group of X (or of A) is H'(4,Z,) ®z, Q,, which is denoted by H},,, (X/F,)
(or H'(A,Q,)).

The Monsky-Washnitzer cohomology has the following properties, see van der
Put [Put86].

Theorem 2.2. For a smooth finitely generated F,-algebra A, we have

(a) The map A — H'(A,Q,) is well defined and functorial.
(b) There exists a Z,-algebra homomorphism F, : AT — AP which lifts the
Frobenius endomorphism of A. Furthermore, any two lifts induce homoto-

pic maps on the complex D!(A"). Hence they induce the same map F,, :
H'(A,Q,) — H'(A,Q,) on the Monsky-Washnitzer cohomology.

The following Lefschetz fixed point formula allows us to compute the zeta
function of X = Spec(A) using Monsky-Washnitzer cohomology.

Theorem 2.3 (Lefschetz fixed point formula). Let X/, be a smooth affine va-
riety of dimension d. Then we have

i (X/E,)).

2.3 Cohomology of non-hyperelliptic genus 3 plane
curves with automorphism group 7Z /27

In this section, we consider non-hyperelliptic smooth projective plane curves
C' of genus 3 whose automorphism group contains Z/2Z over a finite field I, of
characteristic p # 2. Such curves can be written (up to isomorphism) as

C:F:=Y"4+G(X,2)X*+H(X,Z) =0,

with G(X,7) and H(X, Z) € F,[X, Z] which are homogeneous of degree 2 and
4 respectly. We assume that C' is smooth. Since the Monsky-Washnitzer cohomo-

logy is defined for smooth affine varieties, we also consider the affine part of
C

oo fi=yt +g(@)y’ +(z) =0,

where g(x) = G(z,1) and h(:c) = H(:c, 1) are the dehomogenizations of G(X, Z)
and H (X, Z) with respect to Z. In this section, we compute the Monsky-Washnitzer
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cohomology H:,,, (Cus/F,) of Cog and relate the zeta function of C/F, to the cha-
racteristic polynomial of the Frobenius action F,, on H’,, (Cug/F,).

Choose arbitrary lifts G(X, Z) and H(X, Z) € Z JX, Z]of G(X,Z) and H(X, Z)
such that degyG = degyG and degyH = degyH. Let g(r) := G(x,1) and
h(z) := H(X, 1) be the dehomogenizations. Consider the following two curves

C:F=Y'"+G(X,2)Y*+H(X,Z) =0,

and .
Cog: fi=v* +g@)y* +h(z) =0 (2.3.1)

Since the reduction of F' modulo the maximal ideal (p) of Z, is F’ which defines a
smooth projective curve C, the generic fiber C; := C Xz, Qq of C is also smooth.
Using the three facts that the reduction of f modulo the maximal ideal (p) of Z,
equals to f which is not zero in F [z, y|, that A := F,[z,y]/(f(z,y)) is an integral
domain and that p is a prime element in the unique factorization domain Z, [z, y|,
one sees that A is an integral domain and hence it is flat over Z,. This shows that
A is a finitely generated smooth Z,-algebra, so we can work with A to apply the
theory of Monsky-Washnitzer cohomology The above arguments also show that
the generic fiber Cg of C is a geometrically integral smooth projective curve over
Q-

Although we can compute the Monsky-Washnitzer cohomology of the affine
curve Cy/IF, by explicit reduction algorithms and the control of denominators,
we use the following theorem instead, see [Ked04], and compute the algebraic
de Rham cohomology H',(C¢.z/Q,) of the curve C; .¢/Q,, the affine part of the
generical fiber C¢. Note that we are concerned with curves, hence the divisors
are always normal crossings.

Theorem 2.4. Let Y/Z, be a smooth proper scheme, Z be a relative normal
crossings divisor and X := Y'\ Z is affine. Then there is a canonical isomorphism

HiR(Xﬁ/QQ) - H]Z\IW( P/FQ)7
where X, is the generic fiber and X, is the special fiber of X/Z,, namely, the
fibers of X at the closed point (p) of Spec(Z,).

2.3.1 Geometry

_ Before we compute the algebraic de Rham cohomology of the affine curve
Ce af, We need to study its geometry. The coordinate ring of C ¢ is

A= Qqlz, y]/(f(z,9)),
where f(z,y) = y* + g(x)y* + h(x) € Z,|x,y] with deg(g) < 2 and deg(h) < 4.
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We write g(x) and h(x) as following

g(7) = apx® + a1z + ag, a; € Z,

2.3.2
h(z) = baxt + byx® + box® + byz + by, b; € Z, ( )

There are four cases to consider :

Casel. by=0anday, =0

There is only one point at infinity which is P, := (1 : 0 : 0). Using the fact that
C; is smooth at P,,, one shows that b3 # 0. The dimension of the first algebraic
de Rham cohomology of C .i5/Q, is 2+ Noo — 1 = 2-3+1— 1 = 6, here g is the
genus of C¢, which equals to the genus of C, and N,, is the number of points at
infinity. We have vp_(z) = —4 and vp_(y) = —3. The local parameter at P, is
t := bzx?/y>. The expansions of x and y as Laurent series of the local parameter
tarex = —by/t*+--- and y = bg/t> + - -.

Case 2. by =0and ay, # 0

There are 3 points at infinity : P, := (1 : 0 : 0) and Py = (1 : £a : 0)
with a®> = —a,. Using the fact that C; is smooth at P,,, one shows that b; #
0. (The condition a; # 0 implies the smoothness at P, ; and P, .) We have
dimg, HYy(Ceat/Qy) = 2-3+3 -1 =8, vp__ (x) = vp , (y) = ~L, vp. () = —2
and vp,_(y) = —1. The local parameters at P, and P + are t := 1/y and ¢, :=
1/x. The expansions of = and y at P, and P, . as Laurent series of the local
parameters are x = 3/t* + v+ 0t? + - - - with § = —ay/bs, y = 1/t, and v = 1/t.,
y=taft+- .

Case 3. by # 0 and a2 — 4b, = 0

There are 2 points at infinity : Py 1 := (1 : +a : 0) with a = (—ay/2)'/2. Using
the fact that C‘g is smooth at P, one shows that a;ay — 2b3 # 0. We have
dimg, H.,(Cean/Q,) =2-3+2—1="7and vp__ (z) = vp_, (y) = —2. The local
parameters are ¢4 := y/x F . The expansions of = and y as Laurent series of the
local parameters are x = 3/t3 +v/ty +--- and y = +aB/t3 + (B L ay)/te + - -
with 8 = —(ajay — 2b3)/4ay and v = a(aias + 2b3)/2d3.

Case 4. by # 0and a2 — 4by # 0
There are 4 points at infinity which are P ;1 = (1 : £o; : 0) with +a; and
+ay are the four roots of y* + asy* + by = 0. We have dimg, H.,(Cer/Q,) =

2-3+4—-1=9and vp_,, (v) = vp_,,(y) = —1. The local parameters are
t := 1/x. The expansions of x and y as Laurent series of ¢ are x = 1/t and
y=ta;/t+---.

In order to analyze the control of denominators later, we need to impose fur-
ther assumptions on the choice of the lift (XY, 7).

Assumption 2.5. The coefficients a; and b; of g(x) and h(z) in (2.3.2) are either
0 or units in Z,. Furthermore, a3 — 4b, is either O or a unit in Z,.
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Remark 2.6. A lift which satisfies the above assumptions could be constructed
by using Teichmiiller lift. The choice of such a lift is to preserve the geometric
structure. Under these assumptions, we introduce some facts which will be used
later. The expansions of = and y as Laurent series of the local parameters have
integral coefficients. ! This means that = and y are in O((t)), here O is the integral
closure of Z, in a finite extension Q,(c) (Q4(c1,a2) in Case 4) of Q, and «
is the Y-coordinate of the points at infinity discussed above. Furthermore, the
coefficients of the lowest terms 2 in these Laurent series are units in ©. (In Case 3,
one shows that a;ay; — 205 is a unit in Z, by using C' is smooth.) C*g and C have

the same geometry. In Case 4, /a3 — 4b, is a unit in O.

2.3.2 The reduction algorithm and algebraic de Rham
cohomology
In this subsection, we present the reduction algorithm and use it to compute
H . (Ce o/ Q). First of all, since (i +1)27y'dy = d(a/y™") — ja/ 'y dx for all i >
0, the universal module of differential Q! of C; .4 /Q, is generated by {z7y’dx | i >
0,7 > 0}. From the defining equation (2.3.1), Q! is generated by {2/y'dr | 1 <
i <3,j > 0}. Since

0=df =d(y" +g(x)y* + h(z)) = (¢'(x)y” + W' (x)) de + (49" + 29(2)y) dy,
we have
o (¢ (2)y? + W (2)) y'de + 2* (4° + 2g(2)y) y'dy = 0.
Combine with the following equation
4 2 .
k(_2% l+4 2 +2\) .k 3 !
d (x (l Y 9@y )) o (4y° + 2g()y) y'dy

4 _ 2 _
= <l n 4k:mk Lyt 4 12 (k:xk Yo(z) + xkg/(x)) yl“) dz,

one gets

4 4, 2
1+47 T2

9
+4 1+2
vt 2g(ﬂf)y )

l
k / 2 / l o k—1
x <l+29(x)y +h(x))yd$ ka (
4

[+4

g(ﬂf):tf) y'da

= d(Sl,k), where S“C = —ZEk <

1. Use Hensel’s lemma. For Case 1, one needs a 2-variable version of Hensel’s lemma.
2. In particular, o, 8 € O* if we use the notations in the above classification.
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Using y* = —(g(z)y? + h(x)) and the explicit description of g(z) and h(z) in
(2.3.2), the above equation becomes

3 1
( Z Fk,l,O,j JIkJrjyl + Z Fk,l,Q,j .Z‘k+jyl+2> dx = d(Sl,k), (233)
j=-1 j=-1

here the coefficients I}, ; and [}, ; are defined as following

4k l
Toros =G+ 14— Vb1, Thio, = ——
k10 = (J+ 1+ l+4) i+t Dhizg =75

. 2k
+1+ m)%ﬂ.
In order to make things more clear, we use the following notation :

Definition 2.7. A family of matrices M, of size m x n with entries (M), =
my,i; € Qg is called a family of reduction matrices if

Z Z M.ij 2R3y de = 0 in QY for all k.
i=1j=1
For reduction matrices M}, we define M, dx to be
Do Mg g3y d,
i=1j=1

For example, from (2.3.3), we have reduction matrices of size (I +3) x 6 which
has non-zero entries only at the (I + 1)-th and ({ + 3)-th rows

0 0 0 0 0 0
Myy:=]0 0 0 0 0 0

0 INro-1 Likoo Tiror Iiko2 Iiko3

0 0 0 0 0 0

0 Ngo-1 Lig20 Iig21 0 0

and MpP,dz = d(S;x). The superscript O that appears in M}, means that it is
obtained from (2.3.3), without further reduction.

We have to consider I = 1,2 and 3, which give the reductions of z¥*3y%dz or
xk+2y2 dr :
[=1.
As mentioned above, we have reduction matrices of size 4 x 6

0 0 0 0 0 0
M _ L {0 12kby (12k+15)b; (12k +30)by  (12k +45)by (12K + 60)by
k=95 1o o 0 0 0 0

0 2kay (2k+5)a;  (2k+10)ay 0 0
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From Section 2.3.1, we know that one of b, and b is non-zero. Hence z*+3ydx or
2" 2ydx can be reduced to a linear combination of {z/y‘dxr} with i = 1 or 3 and
j<k+2(fby #£0)orj<k—+1(if by = 0), which have smaller degree in x.

[=2.

From (Section 2.3.2), we have reduction matrices of size 5 x 6, so y* is invol-
ved. Using the defining equation (2.3.1) to reduce the degree in y, one gets a
reduction matrix M, whose transpose is

0
k(a2 — 4b)

(2k + 3) (a0a1 — le)
(k + 3)(a? + 2apag — 4by)
(2]{/‘ + 9) (alag — 2b3)
(k +6)(a3 — 4bs)

1
ML, =—-
2.k 6

OO OO oo
OO OO oo
OO OO oo

This gives us the reductions of z*+3y2dz or ¥72y?dr depending on the nullity of
a% — 4b4

l=3.

As at the start of | = 2 (dealing with 3°), one gets M, whose transpose is

0 0 0 0
0 Gk’aobo 0 k(Ga% - 20[)0)
0 6]€(a1b0 + aobl) + 21&1[)0 0 (4]{3 + 7)(3@0@1 — 561)
1 0 6]{3(0,2670 + a1b1 + aobg) + 21a1b1 + 420,2[)0 0 (2]6 + 7) (3@% + 60,0(12 - 10b2)
_g . 0 6]{7(612[)1 + a162 + a0b3> + 21(111)2 + 42a2b1 0 (4k’ + 21)(3(11@2 — 5b5)
0 6k(a2b2 + a1b3 + a0b4) + 21&11)3 + 42@2[)2 0 (2k’ + 14)(3@% — 10b4)
0 (Gk + 21)(a2b3 + a1b4) + 21&2()3 0 0

Since we want to reduce z7y*dxz to those with smaller degree in z, Mj, is not sui-
table since it has (possible) non-zero entries which correspond to x#*+2y!, z*+4y!
and z*+3y'. We use [ = 1 to reduce z*+3ydx to {2/ ydxr, 2729 dx | j, < k +2,j2 <
k + 1} if by # 0, or reduce z**2ydx to {a/tydx, 272y3dx | j1 < k+ 1,70 < k+1})
if b, = 0. Then use this result to reduce z*"3ydx (if b, = 0), 2***ydx and 2" Pydx
@if by # 0) iteratively to {z/'ydx, v2y3dx | j; < k + 2, jo < k + 3}, depending the
nullity of b,. Finally, use these reductions in Mj,, we get reduction matrices in

Case 3 and Case 4 : by # 0

0000 O 0

N R R P ¥ 0

Mse=¢10 000 o 0
0 % % * x45 384(k+4)(k+5)(k+6)(k+7)b3(a3 — 4by)

with ¢ = —1/(2688(k + 4)(k + 5)(k + 6)b}) and

w45 = 9603 (k + 4)(k + 5)(k + 6) ((8k + 44)arazbs — a3bs — (16k + 84)bsb, )
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which equals to 38463 (k + 4)(k + 5)(k + 6)(2k + 11)(a1as — 2bs) if a3 — 4by = 0,
and

%95 = 36(k + 4)by ((6k2 + 136k + 285)asbi — 8(6k? + 56k + 125)asbsbs
+48(k* + 11k + 30)agb b3 + 16(k* + 6k)agbsb;
— 2(8K?* 4 58k + 105)a,b2by + 16(2k* 4 17k + 35)a1b2b§>
Notice that %, 5 may be non-zero, but it corresponds to z**?y and since by # 0,

one can use M, ;_; in the case [ = 1 to reduce z"*"?ydr and get a new reduction
matrices

00 0O0 O 0

. * x *x ok 0 0

Msp=c 4 o590 o 0
x ok & & kg5 384(k +4)(k+5)(k+6)(k+ T7)b(a3 — 4bs)

Notice that the reduction of z**2ydx using M, ;,_; only involve z7ydx with k—2 <
j < k+1and 27y® with k — 2 < j < k, the last two columns of Ms,, and M3,
are the same except the (2, 5)-entry, and M3, satisfies the condition in Definition
Definition 2.7, so they are indeed reduction matrices. The reduction involves
division by 12(k + 4)b,, hence ¢! M3, has integral coefficients.

Case 1l and Case 2 : b, =0

o O O

Mgﬁk =C-

* O % O
* O % O
* O % O

0
0
0
4

OO OO

*

15)(4k + 19)(4k + 23)52) and

5 20k +7)(2k + 11)(4k + 15)(4k + 19)52a2
with ¢ = -1/ (7(4k

+
%45 = (4k 4+ 15)b ( (32K 4 504Kk? + 2648k + 4641)ajazbs — (4k* + 52k + 168)asb,
— (64k> + 1008k* + 5276k + 9177)b§>

which equals to —(4k + 15)(4k + 19)(4k + 21)(4k + 23)b3 if as = 0.
~ Now we can compute the algebraic de Rham cohomology H,.(Cear/Q,) of
Cear/ Q-
Proposition 2.8. The algebraic de Rham cohomology H,(C¢ .z/Q,) has a basis
(D) {ydx,y*dz, y3dz, vydz, vy*de, vy3dr}, if by = 0 and ay = 0.
(2) {ydx,y*dz, y3dz, xyde, vy*de, vyPde, 2*y*de, 2*y*dr}, if by = 0 and
as # 0.
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(3) {ydz,y*dx,y*dx, vydz, vy*dr, vyPde, v*ydx}, if by # 0 and a3 — 4by = 0.
@) {ydx,y*dx, 2 dz, vyde, vy’de, vyide, v2yde, 22y?de, 22y3dx}, if by # 0 and
CL% — 4b4 7& 0.

Proof. We give the proof for (c). For other parts, the proofs are all similar. Sup-
pose by # 0 and a3 — 4b, = 0. The reduction matrices M, ;, shows that z"*"3ydz is
a linear combination of {#/' ydz, z212dx | k—1<j1 <k+2,k—1 < jo < k+1},
since by # 0. So each 2’/ydz with j > 3 can be reduced. The (3, 6)-entry of the re-
duction matrix M, . is (k+6)(a3—4b,) = 0, but its (3, 5)-entry is (2k+9)(a1a2—2b3)
which is non-zero by Case 3 in Section 2.3.1. So #%*2y2dx is a linear combination
of {z%y?* | k — 1 < j < k + 1} and hence each 27y*dx with j > 2 can be reduced.
The reduction matrix M;, in Case 3 has (k + 7)(a3 — 4b,) = 0 at the (4, 6)-entry,
but its (4,5)-entry is x5 = (2k + 11)(a1ay — 2b3) # 0. So z**?y3dx is a linear
combination of {x/'ydx, x2y3dr | k-2 < j; < k+1,k—2 < j, < k+ 1} and
hence each z7y* with j > 2 can be reduced. This completes the proof for (¢). [

The following table give a more clear description of these basis.

do | 1|z |a? do | 1|z |2? dv | 1|z |2? do |1 |z |2?
y [ X y L ] X y L N [ ] y | o [ ]
y2 o |0 X y2 e | o [ ] y2 [ ] X y2 o |0 [ ]
Y |e|e]| x yle|le| e y e e| x yle|e| e

(2.1.a) Case 1 (2.1.b) Case 2 (2.1.c) Case 3 (2.1.d) Case 4

Table 2.1 — Basis of H;R(ég,aff/(@q)

2.3.3 Control of the denominators in the reduction algorithm
and Monsky-Washnitzer cohomology

The reduction algorithm in Section 2.3.2 allows us to obtain a basis of the
cohomology H,,(Ce .a/Q,) of C .z By Theorem 2.4, this basis also forms a basis
of the Monsky-Washnitzer cohomology H),,, (Cas/F,). One can also prove this by
the following upper bound on the denominators that appear during the reduction
process. This bound provides the precision necessary for our algorithm.

Before stating the main result of this subsection, we fix some notations. For a
local parameter ¢ at a point at infinity P,,, we write the Laurent series expansion
of z, y and 27y’ with respect to ¢ as following :

x = Z Sty = Z 650t and 27y’ = Z RA (2.3.4)

s=vp(z) s=vp(y) s=vp (zIy?)
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If a subscript is used to denote a local parameter at some point, we use this
subscript in the coefficients of the above expansion. For example, in Case 3, we
write 7y’ = 3337 007, ¢} at P 4 and a’y’ = 32367 t° at P, . Recall that all the
coefficents 0%’ are in O in all cases that we are concerned, see Remark 2.6.

Proposition 2.9. Write

3 2 3
Fylde = Z Z a; ;77y'dx + dS, where S = Z Z bi 70y’ (2.3.5)

i=1j=0 i=0 >0
with @, ; and b;; € Q,, a;; = 0 if 27y’ is not in the basis in Proposition 2.8,
1 <l<3andk € N. Then

(a) One can choose S with the property that b, ; = 0if i — [ # 0 (mod 2).

(b) For any S in (2.3.5) which satisfies the property in (a), we have b, ;_; = 0
forall 0 <i < 3andj > k+ 5. Furthermore p™b,; ;_; € O forall0 <i <3
and j > 7, where m = [log,(4k + 8)].

(© p"*t4*la;; € Z,, where A := 11 |log,(63)] + 7(p)) with 7(3) = 5,7(5) =
3,7(p) =1forp="7,11,13 and 7(p) = 0 if p > 13.

Proof. (a) Using the automorphism y — —y, or by a direct analysis on the reduc-
tion process discussed in the previous subsection. (b) We prove this for Case 4,
proofs for other cases are all similar. From the expansions in Case 4, one obtains

dyt = > Lt (2.3.6)

s=—(i+j)

with 6%, - . = (+a,)" and p = 1,2. There is an integer M > 0 such that
b;; = 0 for all j > M. Hence

3 M 3 M ©

_ g . ij s
S=3 > by = > iy Y, Ot

i=0 j>0 =020 s=—(i+9)

M43 [ 3 . M43 /3 o .
_ 1,]—1 1,]) —1 —J]
= > Dbt e+ > (Z bi,j’—i‘s—j,u,i) bt

=0 \i=0 > \i=0

Since v, , (a;;27y'dz) > 7 and v,_,  (z*y'dz) > —(k + 5) and the expansions
of 2*y'dx have integral coefficients, we have

3 o M+3 7 3 o,
G (b0 S (Zbi,j,i(s%;,;g co (2.3.7)
1=0

§'>j \i=0

for all ; > 7 and it is zero if j > k + 5. Combine (2.3.7) with the property in (a)
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and the fact that a; and «» are units in O (Remark 2.6), we get

M+3 3
Jo (16— + ozi “biyoj—i—2 + Z Z x| €O

§'>7 i=0

fori=0,1, j>7and,u_12 and it is zero if j > k + 5. Since a? — o} = VD,
here D = a3 — 4b, # 0, one obtains

M+3 3
7" (1 “bi i+ VD- bitoj—i—2 + Z Z *) eO (2.3.8)

§'>j i=0

fori =0,1, j > 7, and it is zero if j > k+5, here * involves only b; ;,_; with j' > j
and elements in ©. Remember that v/D € O*. Apply j = M + 3 to (2.3.8), we
know that b; 5/+3-; = 0 for all 0 < i < 3. Repeat the same argument, one shows
that b, ;_; =0forall0 <i<3andj > k+5. Now apply j = k + 4 to (2.3.8), we
get p™b; pr4—; € O for all 0 < i < 3. Repeat the same argument and notice that
the terms « in (2.3.8) are in O in each step (since all the ¢2* and b, ;_; € O if
j' > j in each step),one proves that p™b,; ;_; € O forall0 <i <3 and j > 7. So
p"biji_i € ONQy=2Z,forall0 <i<3andj>T7.

(c) Consider

3 k+5
w = p" (az’“yld:v —d (Z > bi,jxjy’)) (2.3.9a)

i=0 j>7—i

3 6—1
(Zzal]xjy dﬂf—i—d (Zzbz];c] )) (2.3.9b)

i=1 j=0 1=0 j=0

From (b) and (2.3.9a), one knows that w has integral coefficients, so we can
choose ¢ (x,y) and ¢, (z,y) in Z,[z, y] such that w = 1), dz + ¢; dy. On the other
hand, from (2.3.9b), one knows that w = 1, dx + 3 dy for some 5 and v, in
Qq[x, y] with deg(p2) < 5, deg(1)2) < 5. Consider

fyw = fy (@Z)z dx + @i dy) = (¢zfy - S01f$) dz
Jew = fo (Widr +@idy) = (pife —Yify) dy

(using f, dz + f,dy = df = 0). Let \;(z,y) = ¢, f, — @i fs. It is clear that \; €
Zglw,y] and Ay € Qq[r,y] with deg();) < 8. Using the defining equation f to
reduce the degree of y in \;, we get f,w = N\ dz and f,w = —\ dy with )\1

Zylz,y), degy()\l) < 3, Ay € Qqlz,9], deg(X;) < 8 and degy()\g) < 3. Since (\; —

)\Q)d:c = fyw— fyw=0and degy()\l >\2) < 3, we have \; = \,. This means that
fyw = Mdz and f,w = —\dy with X\ :== \; = )\, whichisin Z mExT ofdeg( ) <8.
By Corollary 2.12, there exist o and § in Z, [z, y] with deg(a) < 5 and deg(5) <5
such that af, + ff, = 1in A. Sow = (afy + Bfe)w = (aX)dz — (B\)dy. Notice

(2.3.10)
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thatw = 37| 22 p™a;; 27y'dx, we can use the reduction of (a\)dz — (B\)dy to
get the denominators of p™a; ;. Since deg(a)) < 13 and deg(SA) < 13, we need
only to know the denominators of the final reductions of z/y'dx and 27y'dy with
0 <i+j < 13.Using 2/yidy = —j/(i + 1)z7 "'y *dx, the defining equation f,
and z/dx = 0, we only need to consider the reductions of z7y'dxr with 1 < i < 3
and 7 + j < 13, but if p = 3, the extra denominator 3 should be counted.

The reduction of z*y'dx (1 < | < 3) using the reduction matrices M, ; in
Section 2.3.2 involve divisions by some of the following : 12(k+2)b,, (12k+21)bs,
(k+3)(a% — 4by), (2k 4+ 5)(araz — 2b3), 384(k + 1)(k 4+ 2)(k + 3)(k + 4)b3 (a3 — 4by),
384(k+2)(k+3)(k+4)(2k+7)b3(arag — 2b3), 2(k +4)(2k +5) (4k + 3) (4k + T)b3a3,
—(4k +7)(4k +11)(4k +13)(4k + 15)b3, depending on each case, and the numbers
2, ag, by, b3, a3 — 4by and ajay — 2bs that we need to consider (depending on each
case) are units of Z,. So in each step, we get extra denominators which are at

most
ptlogp(4j+15)J +7(p) :

here 7(3) = 5,7(5) = 3,7(p) = 1 for p = 7,1,13 and 7(p) = 0 if p > 13. Since
we are concerned with 2 < j < 12, we need at most 11 reduction steps, so the
denominators of the reductions of x/y'dx with 1 < i < 3 and i+ j < 13 are at

most
p11 * (Llog, (63)]+7(p))

Hence p™*4*la, ; € Z,. O

Remark 2.10. Proposition 2.9 gives an upper bound for the denominators after a
differential form (with integral coefficients) is reduced to the linear combination
of the basis we found in Proposition 2.8. Along with the rate of convergence
of the Frobenius £}, (see Corollary 2.22), one can determine how much p-adic
precision we need to work with (and determine an integer N3 such that one
can work with modulo z"#), see Section 2.6. But one needs an upper bound for
all the denominators that will appear during the computation (in the reduction
step) in order to know how much precision of the reduction matrices A, ; are
required and to have an analysis of the bit complexity. It turns out that one has
a similar bound as in Proposition 2.9. The proof is completely similar.

Theorem 2.11. Let R be a field or a discrete valuation ring and m be the maximal
ideal of R. Let fy,..., fn € R[z1,...,x,| with degf; = d; and define

Denote the homogenization of f; by f for i = 0,...,n. Assume that there is no
point in P"(R/m) satisfies f}! = f' = ... = f" = 0. Then there exist polynomials
9oy -+, gn € Rlz1,...,x,] withdegg; < p+1—d; fori=0,...,n such that

> gfi=1.

i=0
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Proof. This appears as Theorem 2 in Denef-Vercauteren [DV06]. O

Corollary 2.12. There exist « and /5 in Z,[z, y] with deg(a) < 5 and deg(8) < 5
such that of, + 8 f, = 1 in A. Furthermore, one can find such « and j such that
a has only odd degrees in y and  has only even degrees in y.

Proof. Apply Theorem 2.11to R =Z,, fo = f, /i = fyand f, = f,.
Apply Theorem 2.11 to R = Z,, fo = f, f1 = f, and f, = f,. If o and 8 don’t
satisfy the last property, consider the equality

oz, —y) fy(z, =y) + Bz, —y) folz, —y) =1

in A. From (2.3.1), it is clear that f,(z, —y) = — f,(x,y) and f,(z, —y) = fu(z,y).
We thus have

(a(x,y) —204(907 —y)> i+ (5(%?;) +25(% —y)> £ 1,

which completes the proof. O

2.4 Lift of Frobenius

In this section, we describe a lift F}, of the absolute Frobeninus endomorphism
F, : @ — a” on the coordinate ring A of C,q to Al. This means that F), is a Z,-
algebra endomorphism on A' such that 7 o F}, = F, o w, where 7 is the reduction
modulo p. The lift F, of the ¢-th Frobenius endomorphism of A is F, hence one
can work with F, for the purpose of computation.

Denote by ¢ the p-th power Frobenius endomorphism on I, and also its lift on
Z,. Any lift F), satisfies

F,(z) = 2” mod p, F,(y) =v’ modp, F,(f(z,y))=0.
From Corollary 2.12, we know that there exist a and  in Z,[z,y| such that
af,+ pf, = 1. Define ¢, := o*, §, := $” and consider the equation

G(Z) = Fy(f(z,y) = fo(aP + 6, Z,y* +6,Z2) =0 (2.4.1)

in AT[Z]. Then G(0) = f°(2?,y?) = f(2°,y°) = 0 mod p. We also have G'(0) =
F5 (P y)8, + (P, y?)o, = f5(27,y7)8, + f2 (a7, 476, = f20,+ f26, = fraP +
f2o? = (fya + fu5)? = 1 mod p. Hence by Hensel’s lemma, there is a unique
solution of (2.4.1) in A>. We will prove that this solution is in fact in A'. In fact,
Corollary 2.22 below gives an explicit lower bound on the rate of convergence,
which allows us (together with Proposition 2.8) to work with a finite and explicit
p-adic precision.
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We start with a series of lemmas. Given the following data of integers :

—1:A17_1<A170<A171<"'<A17j<"'
—1IA2,,1<A2’0<A271<"'<A27j<"‘

—12An’,1<An70<An71<"'<An7]’<"‘

we can define subsets (for each n > 1) of the power series ring Z,(z) :

Sy = {Z a; !
i=0

vp(a;) >n+j5+1 if izAw—i—l}-

Lemma 2.13. Let (p) be the ideal of Z,(z) generated by p, i.e. (p) = pZ,(z).
Then S,, C (p)".

Proof. Consider j = —1 in the definition of S,,. We see v,(a;) >n+ (—=1)+1=n
ifi >A,_1+1=(—1)+1=0.Hence S, C (p)". H

We first study several conditions on 4, ; for which the sets S, satisfy some
nice properties.

Lemma 2.14. For any fixed n, we have S; S,, C S, if

Apyry > max {Ay g+ A, ;) for all j. (2.4.2)
0<E<j

Proof. Assume the above condition (2.4.2) holds. Given f; = > a;2" € S; and
fo =332, brz* € Sy, we have

o0
fifn= Z cmx™, where ¢, = Z a; by.
m=0

i+k=m

Given m > A,;1; + 1 . Consider each summand a;b;, with ¢ + k£ = m in ¢,,. If
i > Ay; + 1, we have vy(a;) > 1+ j + 1, since f; € S;. We also have v,(b;) > n
for f, € S, C (p)", by Lemma 2.13. So v,(a;bx) > (n+ 1)+ j+1if ¢ > Ay ; + 1.

For i < A, ;, we can find some 0 < ¢ < j such that A, , ; +1 < i < A;,. Then
we get

k‘:m—zz (An_,_l,j‘l'l)—l.

> !/ s ! -
> (A1 +Anj—e+1)— Ay
== An,jfﬁ -+ 1
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Hence v,(by) > n+(j —{)+ 1 since f, € S,. We also have v,(a;) > 1+ ({—1)+1
since f; € S; and we are under the assumption ¢ > A; ,_; + 1. This shows that
vp(aiby) >n+(j—0)+14+14+({—-1)+1=(n+1)+j+ 1 for each summand
a;by, in ¢,,, with i < A, ;. The about arguments prove that v,(c,,) > (n+1)+j+1
if m > A, 41 ;+ 1, and thus f; f,, € S,,+1. This completes the proof. O

The following lemma gives a condition for which we have S,, C S;.
Lemma 2.15. Consider any fixed n. If A 4,1 > A, ,forall ¢ > 0, then S,, C 5.

Proof. Given f, = >°,a;z' € S,. From the definition of S, for j > n — 1, we
have v,(a;)) >n+(j—n+1)+1=1+j+1ifi > A, ;_,+1. By our condition
(for ¢ = j —n+1), we have A;; > A, ;_,41, and thus v,(a;) > 1+ 5+ 1 if
i > A;,. For j < n — 2, we have v,(a;) > n for arbitrary i by Lemma 2.13,
thus v,(a;) > n > j+2 =1+ j+ 1 for any 7. Hence f,, € S;. This proves that
S, C 5. H

Corollary 2.16. If the conditions in Lemma 2.14 and Lemma 2.15 hold for any
n > 1, then we have
ST C S, CSy.

Lemma 2.17. Given a polynomial g € Z,[x] with degree dy. Assume g € (p).
Then g c Sl if AI,O > d().

Proof. This is easy. ]

Lemma 2.18. Given a polynomial g € Z,[z] with degree d;, and f; € S;. Assume
g < (p). Then gfl € Sl if Al,j > Al,jfl + dl for all] > 0.

Proof. The proof is similar to Lemma 2.19 below However, there is a minor dif-
ference. In this lemma, we assume g € (p). However, in Lemma 2.19, we don’t
assume this condition. O

Lemma 2.19. Let n > 2 be fixed. Given a polynomial g € Z,[x] with degree d.
Then g Sn - Sl if A17n,1+g > Anj +d for all ¢ > 0.

Proof Assume the condition in the above statement holds. Write g = 3¢ a;2".
Given f, = 332, bpa® € S, write

oo
gfn= Z ™, where ¢, == Z a; by.
m=0

i+k=m,0<i<d

Since f, € S, C (p)", the values v,(by) >n>1+j+1forall0 < j <n—2and
all &, thus v,(c,,) > 1+ j+1forall0 < j <n — 2 and all m. Now consider the
cases where j > n — 1. If m > A, ; + 1, then by the condition (for ¢ = j —n+ 1),
we have m > A +1 > A,; 41 +d+ 1. Sincei+k =m,0 < i < dand
m > A, jnt1+d+1, wehave k > A, ;_,; + 1. Since f,, € S, by the definition,
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we obtain v,(a;by) > v,(by) > n+(j —n+1)+ 1 =1+ j+ 1. This implies that
vp(cm) > 1+ j + 1 under the condition m > A, ; + 1 for all j > 0. The case for
j = —1 is trivial, and by the definition of S;, we see ¢f,, €C S;. This completes
the proof. O

Lemma 2.20. Let H(Z) = Y hy(x)Z* € Z,|x][Z] and d;, := deg(hy). Assume
ho(%) = 0 mod p and h1<$) = 1 mod p. Let —1 = An,fl < An,g < An,l < -0 <
A, <---,forn>1and j > 0, be integers satisfy the following conditions :

1. Apii; > max {A+ A, 4} foralln > 1, j > 0.
0</<;

2. Ay > dp.

3. A — Ay ;-1 >d; forall j > 0.

4. Aipn14e > Ape+dy foralln > 20> 0.

Then the unique solution o = Y%, a;2" € Z,(x) of H(Z) = 0 has the property :
vp(a;) > j+2if i > Ay ; + 1. One can always find such 4, ;.

Proof. In Z,(x), we can use Newton method to compute « : ag = 0, a3 = —ho(x)
and ()
H(q; o k
I — O — 2= i — H i 1 1— Hl i .
vor = o g =g o) (143 (1= #a)')

The conditions on A, ; ensure that the result o; in the i-th iteration above is
in S;. We use induction to prove this. It is obviously true for i = 0. For i = 1, it
follows from condition 2 and Lemma 2.17. Assume «; € S; and we want to prove
a;+1 € Sy It is sufficient to show : H(«;) € Sy and (1 — H'(«;)) S1 C S1. H(ow) =
ho(x) + hy(x)a; + 3020, hy(2)al. We have seen hy(z) € S;. From condition 3 and
Lemma 2.18, we know (1 — hy(z))y; € Sy, thus hy(2)a; = o — (1 — hi(x)) oy €
Si. Similarly for n > 2, since o € S} C S, which is from condition 1 and
Lemma 2.14, we have h,(x)a} € S;, which is from condition 4 and Lemma 2.19.
This proves that H(a;) € 5.
For the proof of (1 — H'(a;)) S1 C S1, we use

(= (@) = (1= ) - 3% (oo™

n=2

The proof is exactly the same as above. We then completed the proof of o; ;1 € Sy,
and this implies that the solution o € 5.

For the existence of 4, ;, notice that the conditions 2, 3 and 4 are equivalent
to 1 Ay, > max{Ay, +di, Agpior +dp | 2 <k < n+2}foraln > 0.
Suppose one has determined A,, ;; for all n’ 4+ j* < n + 1. Use condition 1, one
can determine A, o forall 2 <k <n+2 (i.e. for A,y with n' + 7' <n+2
and n’ > 2). Finally, one determines A, ,;. Therefore, one determines all the
A, with n’ 4+ j < n + 2. This shows that one can find A4, ; recursively. O
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Lemma 2.21. Suppose deg(hi(z)) < (k+1)d in Lemma 2.20. Then 4, ; :=
(1 4+ 4j) d satisfy the conditions in Lemma 2.20 and all the inequalities are equa-
lities. In particular, A, ; = (45 + 1) d.

Proof. This follows by induction in i and j. O

Corollary 2.22. There exists a lift F,, of the absolute Frobeninus endomorphism
@ — a” on the coordinate ring A of C,x to AT such that F,(z) = a? + 0,7y and
Fp(y) = yp + 5yZ0 with ZO = Zi,j ai7j:1:jy", a;; € Zq and ordp(am-) > % Also the
coefficient of 27y" in F,(y) and F,(x) has p-adic order > %Z if 1 + j # p. Finally,
Fy(aty'de) = 327, 325 by jaly'da with ord, (bij) > T2 —

Proof. Using Corollary 2.12 and Equation (2.4.1), one can apply d = 4p to
Lemma 2.21. ]

Theorem 2.23. There exists a lift of Frobenius F, on A" which commutes with
the involution 7 : y — —y and has the rate of convergence in Corollary Corol-
lary 2.22.

Proof. We choose « and /3 such that o has only odd degrees in y and 3 has only
even degrees in y as in Corollary 2.12. Since ¢, = o” and §, = (7, they have the
same property as « and (. For solving G(Z) = 0 by Newton’s method, we use
Lemma 2.20 with H = G = f7(a? + 6,Z,y* + 0,Z). It is clear that G has only
even degrees in y, hence so does the solution Z,. From this, it is clear that the
lift of Frobenius F), : AT — A" commutes with the involution 7. O

2.5 Quotient by automorphism

We have study H},,,(Cug/F,). In this section, we consider the quotient of C by
the automorphism 7 : ¥ — —Y. We denote the quotient map by 7 : C' — E :=
C/(7). One can show that C'/(r) has genus 1 either by Riemann-Hurwitz genus
formula or from the affine equation directly, using the fact that C,s is stable
under 7 and C,g/(7) is smooth, hence the notation F is justified. The affine part
E.g of E is C,g/(7), which has the defining equation : v + g(u)v + h(u) = 0. We
have Cog = Eag, (z,y) — (7,%?), and the corresponding map on the coordinate
ring is 7 1 u — x, v — Y2,

Our goal is to study the followings : H},, (E.sz/F,), the induced map 7* :
H,  (Exq/F,) — H.,, (Cur/F,) and its interplay with Frobenius endomorphism.
Since Cog = Eaug, (x,y) — (x,y?) lifts 7, here E,g is the lift of E,q, whose
defining equation is v* + g(u)v + h(u) = 0, we can study H',, (Fa.z/F,) L
Hi, (Cog/F,) by Hi (Eage/Q,) = Hi (Cage/Q,). For i # 1, these are isomor-
phisms. For i = 1, since {7*(v/vdu) = z/y*dz} | 0 < j < 1 (resp. 0 < j < 2)}
are linear independent in Case 1 and Case 3 (resp. in Case 2 and Case 4),
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one sees that {w/vdu | 0 < j < 1 (resp. 0 < j < 2)} are linear independent.
Let dr be the number of points at infinity of £. We have 6 = 1,2,1,2 in
each case, hence dimqule(Eaff7€/Qq) =2-gg — 1+ g = 2,3,2,3. This shows
that {wvdu | 0 < j < 1 (resp. 0 < j < 2)} is the basis of H. (Fure/Q,)
which is isomorphic via 7* to the subspace V of H!,(C.z¢/Q,) generated by
{27y?dr |0 < j <1 (resp. 0 <j < 2)}.

As in Section 2.4, there is a lift F,  : A}, — Al of the Frobenius endomor-
phism F, z on the coordinate ring Ay of E. The left diagram below is not neces-
sary commutative, but its reduction mod p is commutative

At T Al A—" AL
Fq Fo.E Fq Fq,E
At AL A—r—Ap

™

Here AT <"~ Al is the natural lift of homomorphism A <~ Ay on the coor-
dinate rings which corresponds to the morphism 7 : Cup/Q, — FEare/Qy, SO

the reduction of A"« Al, modulo p is just the natural homomorphism on the
coordinate rings of Cog = Fag. Since F, o m* = 7* o I, p, we know that

HXIW(CA’%H/F(D s HiIW(EaH/Fq)

Fo,x Fyp

HXIW(CE%H/F(D

H]Z'VIW(EaH/]F(])

So the point counting on F.g is the same as computing on the subsapce of
Hipw (Co/F,) generated by {z7y*dz | 0 < j <1 (resp. 0 < j < 2)}.
From Lefschetz fixed point formula (Theorem 2.3), we have

#Cogt (Fyr) = Tr ((qF, ) [HYyww (Cas)) = Tr ((F, 1) [ H oy (Car)
#Eag (Fyr) = Tr ((¢F, ) | Hpw (Eagr) ) — Tr ((0F,1) [ Hiw (Eat))

Let Pp(X) = (X — 51)(X — 52) be the Weil polynomial of F and S, (E) := 5] + 3.
Then #E.4(F;) = ¢"+1—5,(FE) — dg, here g is the number of points at infinity
of E. Use #Co(Fyr) = #C(Fy) — dc, we get

#C(Fyr) = ¢" + 1= S.(E) = Tr ((¢F,})'|V) + (5¢ — di),
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here V' is the subsapce of H},,, (Cus/F,) generated by {z/y*dz |0 < j < 1 (resp. 0 <
j < 2)}, whose dimension is 4 + dc — dg. This implies that the Weil polynomial

P(X) of C/F, equals to Pp(X)Qv(X)(X —1)~c¢=%) here Qy(X) is the charac-

teristic polynomial of quj*l acts on V. The characteristic polynomial Py (X) of

Fuo = 0+ (aF) ™ is QuIX)(X = @) (X = 1)70), 50

P(X) = Pp(X)Py(X)(X — )",
Summary 2.24. The Weil polynomial P(X) of C'/F, is equal to
Pu(X)Py(X)(X — q)~ 7%,

where Pg(X) is the Weil polynomial of E/F, and P, (X) is the characteristic
polynomial of ¥, on V.

2.6 The algorithm

In order to compute P, (X ), one needs to compute Py (X) with a precision
Ny = |log,30 + 2n] + 1 with n = log,q, which is determined by the Weil bound.
Due to the fact that the matrix ), of the Frobenius action F,, ., may have denomi-
nators, we need M, with a precision N, := N; + (6n — 1)c with ¢ = [¢; +log,(c1 +
log,(2¢c1))] +1 and ¢; = 6 +10g,80 4 A. From this, we only need to compute (for
1 <l<3and 0 <k < 2) Zy, Fy(z), F,(y) and F,(y'z*dz) modulo (™3, p™4)
with N3 = [16p(cz +log,(2¢2))| + 1, Ny = [Na + ¢1 +log,(c2 +log,(2¢2))] + 1 and
cy = 6+ 1og,80 + A + N,. Finally, the above discussion is based on the reduction
matrices M, (1 < i < 3) introduced in Section 2.3.2. But since one can only
work with an approximation of M, , one need M;; modulo p™> with a slightly
higher precision N5 = N, + 8|log, N3] + 14 . We have N3 = O(pn), Ny = O(n)
and N5 = O(n). We work in Z,/p™s 3, whose elements can be stored in O(n?logp)
space and the arithmetic on it could be done in O(n?logp) bit operations. This
gives the algorithm :

Algorithm
Step 1. Compute « and 3 in Corollary 2.12 modulo p.*

Step 2. Compute Z, in Corollary 2.22 using Newton’s method, then F,(z*y'dx)
for/ =1,3 and 0 < k < 2, all of them are modulo (V2 p™4).>

3. More precisely, with p-adic precsion N, but with denominators at most p(Vs—N4),

4. In Corollary 2.12, we only need af, + ff, = 1 modulo p in order to compute the lift of
Frobenius.

5. In the proof of Lemma 2.20, we showed that the results during the Newton’s iteration all
have the same rate of convergence as in Corollary 2.22, so we can work modulo 2™* during the
Newton’s iteration.
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Step 3. Use reduction matrices M;; (1 < ¢ < 3,2 < 5 < Nj;) to reduce
F,(a*y'dz) and get M,,.

Step 4. Compute M, = M, M --- M‘g"*l by repeated squaring.
Step 5. Finally, compute the characteristic polynomial P, (X) modulo P,

Theorem 2.25. The above algorithm requires O(n’p) bit operations.

Proof. Step 1 consists of solving a system of linear equations over F, of size at
most 16. Hence it requires O(n?log p) bit operations. Step 2 requires O(log N,)
Newton’s iterations, and each iteration requires O(Nsn2log p) bit operations. Hence
this step requires O(pn?®) bit operations. Step 3 requires O(Ns) operations in
Z,/p"%, hence O(pn®) bit operations. Step 4 requires O(logn) squarings and the
application of the lift of the p-th power Frobenius o : Z, — Z, modulo p™** on
matrices of size 6 x 6. Squaring requires O(n*log p) bit operations. For o, we use
Newton’s method which needs to evaluate a polynomial of degree n with coeffi-
cients in Z,/p"*, which requires O(n)O(n?log p) bit operations. Hence we need
O(n®log p) bit operations in this step. Step 5 requires O(n?log p) bit operations.
Hence the algorithm requires O(n®p) bit operations. O

If one works directly on H),,, (C.g) and denote the precision needed by N/,

then N; ~ ZN/. Also the matrix M, is of size 6 x 6 and M is of size 9 x 9.
From these, we give a comparison of speed. Step 2 is reduced by a factor of
(2)> ~ 0.45. In Step 3, we have 6 differential forms F,(z"y'dz), | = 1, 3 and
0 < k < 2, to reduce. This contributes a factor of 2. (It is ? instead of 2 because
the reductions of F,(z"y?dx) involve fewer operations than the reductions of
F,(2*y'dx) and F,(2*y*dx). See the reduction matrices in Section 2.3.2.) Since
each of these F},(z*y'dx) is computed modulo (z™*, p™*) in Step 2, we work with
smaller powers on = and fewer p-adic precision in Step 3. This means that we
have fewer reduction steps and the basic arithmetic operations are faster, which
contribute a factor of (2)%. So Step 3 is reduced by a factor of 2 - (3)* ~ 0.36.
Step 4 is reduced by a factor at least of (2)* ~ 0.3, due to the smaller size of M,
and fewer precision.
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Deuxieme partie

Frobenius Distributions and
Character Theory
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Chapitre 3

Sato-Tate Groups

In the chapters of Part I, we study the characteristic polynomial of the Fro-
benius action for a single algebraic curve over a finite field F,. In March 1963,
the Japanese mathematician Mikio Sato arrived at a conjecture about the dis-
tribution of traces® of Frobenius actions for a family of elliptic curves E, over
(different) finite fields I, obtained from an elliptic curve £ /Q by reduction mo-
dulo primes p of good reduction. Sato found this conjectural distribution experi-
mentally based on computational data using computers. In the same year, John
Tate also discovered this distribution in his article “Algebraic cycles and poles of
zeta functions” [Tat65], but he gave a theoretical explanation based on another
conjecture. One can find some more historical details about Sato-Tate conjecture
in a web page of Ralf Schmidt [Sch] or on a slide of Tetsushi Ito [Ito].

In this chapter, we give a quick introduction to Sato-Tate conjecture. Sec-
tion 3.3 recalls the notion of moments of a random variable and gives some
moment sequences which can be used to distinguish different distributions. In
Section 3.4, we give the statement of the generalized Sato-Tate conjecture wi-
thout details. Finally, we demonstrate the advantage, over the use of moments,
of irreducible characters of compact Lie groups to the study of higher dimensio-
nal Sato-Tate conjecture in Section 3.5.

3.1 Sato-Tate distributions for elliptic curves
Let F/Q be an elliptic curve with short Weierstrass equation
v =2+ ar+b, a,bcQ.

Let p be a prime of good reduction of E, which means v,(A) = 0, where
A = —16(4a® + 27b?) is the discriminant of E. The reduction F, of E module p
is again an elliptic curve (over F)).

tp

1. Sato worked with Frobenius angle 6, = cos™! ( ) € [0, 7], rather then the trace ¢, of

2

3

Frobenius.
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The number of F,-points on F,, is
#Ep(Fy) =p+1—1t,,

where ¢, is the trace of Frobenius, which is an integer in the interval [-2,/p, 2,/p].

The Sato-Tate conjecture is concerned with the limiting distribution of —¢,/,/p €
[—2,2] as p varies over primes of good reduction.

Example 3.1. Consider the elliptic curve E : y*> = 2% + x + 1 defined over the
rational field Q. We compute the normalized trace —t,/,/p for prime of good
reduction p < 22°. The histogram of the probability density of this data is

0.35¢
0.30¢}
0.25¢
0.20}
0.15¢
0.10}
0.05¢

%]
]

bin width = 1/28

The probability density function of —¢,/,/p is

1
—V4 — 12,
2m
The aspect ratio of axes in the above picture is not 1 and its shape reflects the

V4 — t? part in the probability density function, which is a semicircle of radius 2.

Example 3.2. The elliptic curve F : y?> = 23 + x has complex multiplication by
Q(7). In this example, we regard E' as defined both over Q and over its CM field
Q(7).

The histograms of the probability density of the datas —t,/ ||p||"/* for ||p|| < 22°
(where p is a prime in Q or Q(¢), and ||p|| is the usual norm) are shown below.
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1 0 y 9 1 0 1 2

Q Q) : 775

For F/Q, it has trace zero for half of the primes. Thus we have a peak at zero
in the picture. Besides this fact, the distributions of the normalized trace are the
same in these two cases.

The following theorem summarizes the above facts.

Theorem 3.3 (Sato-Tate distributions for elliptic curves). An elliptic curve £/Q
without CM has the semi-circular trace distribution. An elliptic curve E/k with
CM has one of the two trace distributions shown in the above examples, depen-
ding on whether k contains its CM field.

The three possible (normalized) trace distributions are in fact the distribution
of traces in some closed subgroups of the unitary symplectic group USp(2) =
SU(2). The distributions are given by the Haar measure on these subgroups.
These closed subgroups are called Sato-Tate groups (of the corresponding elliptic

curve E). Only two of them arise for elliptic curves defined over Q.

G G/GY | example curve E | k
U(1) C, v =a+u Q(4)

N(U()) | C, V= +x Q

SU(2) o v=24+r+1 | Q

In Section 3.3.1, we explain more precisely the meaning of the above statement.

3.2 Probability space and random variables

In order to present the statements about the distributions of Frobenius ac-
tions, we have to recall basic notations and definitions from measure theory and
probability theory.

Definition 3.4. Let X be a set and X' be a collection of subsets of X. The collec-
tion Y is called a o-algebra (over X) if it satisfies the following three properties :
(1) X e .
(2) If A € X, then its complement X\ A is also in X.
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(3) Y is closed under countable unions : A4,, € X foralln €¢ N = G A, €.

n=1
Remark 3.5. Condition (3) can be replaced by Y is closed under countable in-
tersections : 4, € Y forallne N= N A4, € 2.

n=1
Example 3.6. For any X, we have the largest o-algebra 2% = {A | A C X} (the
power set of X) and the smallest o-algebra {@, X'}. For any o-algebra X over X,
we have {@, X} C ¥ C 2¥.

Definition 3.7. A set X with a o-algebra X is called a measurable space, and is
usually denoted by (X, Y'). An element A € X' is called a measurable subset of X
or measurable set in X, which is with respect to the o-algebra X.

Definition 3.8. Let (X, Y) be a measurable space. A function p : X — [0, 00 is
called a measure if it satisfies (@) = 0 and

n=1 n=1

if { A, }en is a collection of pairwise disjoint subsets of X in X'. A measure space is
a measurable space (X, Y') together with a measure p : X — [0, oo]. It is denoted

Remark 3.9. The condition (3.2.1) is called countable additivity or o-additivity.
Note that the measure i can take the value +oc.

Definition 3.10. A probability measure is a measure p on a measurable space
(X, ) such that u(X) = 1. A measure space (X,X, u) is called a probability
space if its measure y is a probability measure.

Proposition 3.11. Let (X, Y, u) be a measure space. We have :

(1) For members A and B in X with A C B, the complement B\ A of A in B is
in Y.

(2) For members A and B in X with A C B, we have u(A) < u(B). More
precisely, u(B) = u(A)+u(B\A), where B\ A € Y is from (1). In particular,
u(X\A) =1 — p(A) if p is a probability measure.

Remark 3.12. In probability theory, a probability space is usually a mathema-
tical (or called probabilistic) model of a real-word situation or experiment in
which the results occur randomly. Thinking a probability space (X, X, 1) as such
a model, the set X is the sample space, i.e the set of outcomes. A set in the o-
algebra Y is called an event. An event consists of a single outcome is also called
an elementary event or simple event. The value p(A) of the probability measure
for an event A € Y is the probability (frequency) that the event A occurs when
the experiment being modeled repeats.

43



We have defined some abstract notions above, e.g o-algebra and measure. In
order to give an (important) example for the case X = R, we still need some
knowledge about o-algebra.

Proposition 3.13. Let X be a set. The intersection of any number of o-algebras
over X is still a o-algebra.

Definition 3.14. From Proposition 3.13, for any collection X' of subsets of X,
there is a smallest o-algebra o(X') containing X :

cX)= ) B
BOXY
B:o—algebra

The intersection is taken in 2%, since each B is a subset of 2%. We call o(X) the
o-algebra generated by ..

Definition 3.15. For a topological space X, the Borel o-algebra on X, denoted by
B(X), is the smallest o-algebra containing all open subsets of X (or, equivalently,
all closed subsets). Elements in B(X) are called Borel sets, or more precisely,
Borel subsets of X. Hence it is also common to call *B(X) the o-algebra of Borel
sets. The measurable space (X, B (X)) is called the Borel space associated to X.

Remark 3.16. In the above definition, 6 (.X) is also the smallest s-algebra contai-
ning all closed subsets of X.

Example 3.17. Consider the collection of open intervals (a,b) with a < b of
X = R. The Borel o-algebra on R is the o-algebra generated by this collection,
and it is denoted by B(R).

Remark 3.18. If we start with other kinds of intervals, like [a, b] or (o0, b], etc.,
or with the collection of all open subsets of R (with its usual topology), we get
the same o-algebra.

Definition 3.19. Let X be a locally compact Hausdorff space. A Borel measure is
any measure y on the Borel space (X,B(X)) associated to X.

Example 3.20. Consider the Borel space (R, B(R)). Let u be the function y ([a, b])
b — a for each bounded closed interval [a, b] of R. There is a unique extension of
w to B(R) such that this extension is a Borel measure on (R, B(RR)), see Example
1.4.4 in page 14 and Theorem 1.5.6 in page 18 of Bogachev’s book [Bog07]. This
is the “usual” Borel measure on the real line R.

As mentioned in Remark 3.12, the probability theory models an experiment
as a probability space (X, X, ). This model gives the complete probabilistic in-
formation of the experiment and it helps people to understand the statistical
aspect of the underlying experiment. Usually, we are interested in some quanti-
ties (numerical properties) of the outcomes, not other specific nature of them.
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For example, if the experiment is tossing two dice, we may be interested only in
the sum of their results, rather than the two results of each. Here is the definition
of random variables :

Definition 3.21. Let (X, Yx) and (Y, Xy ) be measurable spaces. A function ¢ :
X — Y is called a measurable function, with respect to the o-algebra Yy and
Xy, if &Y(B) € Yx for every B € Yy. The map ¢ is called an isomorphism of
measurable spaces if it is a bijection and both ¢ and ¢! are measurable functions.

Definition 3.22. Let (X, Xy, uy) and (Y, Xy, uy ) be measure spaces. A function
¢ : X — Y is called measure preserving if ¢ is measurable and ux(¢71(B)) =
wy (B) for every B € Xy. The map ¢ is called an isomorphism of measure spaces
if it is an isomorphism of measurable spaces and measure preserving.

Definition 3.23. Let (X, Y, 1) be a probability space. A random variable £ on
(X, X, ) is a measurable function on the sample space X :

£:(X, ) = (R, B(R)). (3.2.2)

If X and p are understood, we simply call £ a random variable on X. More gene-
rally, a random element (with values in S) is a measurable function ¢ : (X, Y) —
(S,8) to a measurable space (5, S).

Remark 3.24. A composition of measurable functions is still a measurable func-
tion. Given a measurable function n : (X, Y'x) — (Y, Xy ) and a random element
(Y, Xy) = (Z,X5), the pullback n'¢ = £ oy of € is a random element on X.

Proposition 3.25. Let ¢ : (X, Y, u) — (R,B(R)) be a random variable. It induces
a measure /i on the Borel space (R, B(R)) :

pe(A) = p(€H(A)), for all A € B(R). (3.2.3)

This induced measure i is called the probability measure, of the random variable
€. Together with f, the triple (R, B(R), 1¢) is a probability space.

Remark 3.26. Let n : (X, Xy, ux) — (Y, Xy, uy) be a measure preserving map
and ¢ is a random variable on Y. From Remark 3.24, we see n~'¢ is a random
variable on X. It it easy to see the induced measures j; and p, -1, are the same.

Let ¢ be an random variable and a € R. The probability of the event
{zr e X|¢{(x) =a}

is just (¢ (a)) = pe({a}) by the notation in Proposition 3.25. It is common to
denote this probability by ;(¢ = a). Similarly, we have notations p (¢ < a) for the
interval (—o0, a), or more generally, (¢ € A) for a Borel set A € B(R).
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Definition 3.27. Let £ be a (real valued) random variable. The cumulative distri-
bution function F¢ : R — R of ¢ is the function given by

Fe(z) = p(§ < o).

The following proposition says that the probability measures of random va-
riables ¢; and &, are the same if (and only if) they have the same distribution
function.

Proposition 3.28. Let & and & be random variables. Then

Hey = Mgy <:>F’£1 :FSQ'
We will restrict ourselves to the following class of random variables.

Definition 3.29. A random variable ¢ is called absolutely continuous if there
exists a non-negative, Lebesgue integrable function f; on (—oo, co) such that

Fe(z) = /u:m fe(w)du, x € R.

U=—00

The function f is called the probability density function (PDF) of the random
variable &.

Definition 3.30. For a random variable ¢ : (X, X, u) — (R, B(R)), its expectation
is

Blel = [_ €@n(da) (3.2.4)

when the integral exists, where the integral is the Lebesgue integral on the mea-
sure space (X, X, u). If £ is absolutely continuous with f; as its probability density
function, then its expectation can be computed by

/uu:oo u fe(u)du.

=—0

The n-th moment of ¢ is E[¢"].

3.2.1 Convergence of measures and equidistribution

In this section, we recall the notions and definitions related to equidistribu-
tion. We start with the definition of “uniformly distributed” of a sequence of real
numbers.

Definition 3.31. A sequence (x,,) of real numbers is said to be uniformly distri-
buted on an interval [a, 0] if for any subinterval [c, d] of [a, b] we have

, <i< _
hm#{ae[c,dHl_z_n}:d c
n— 00 n b—(l

(3.2.5)
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Example 3.32. Given an irrational number «. Consider the sequence ({nz}),
where {nz} is the fractional part of nz. Weyl’s Equidistribution theorem says
that this sequence is uniformly distributed on [0, 1].

Now We define equidistribution with respect to a measure. The above defini-
tion is a special case with the usual Borel measure on the interval [a, b].

Definition 3.33. Let i be a probability measure on [a, b] and (x,,) is a sequence
with z,, € [a,b] for all n. The sequence (x,) is said to be equidistributed with
respect to p if

n

i © 3" () = [ fou(dn) (3.2.6)

=a

for all bounded continuous functions f on [a, b].

Remark 3.34. In practice, we can not test (3.2.6) for all bounded continuous
functions f. A common choice is the function z — z*. Consider the probability
measure space ([a,b],B([a,b]), ) and the random variable ¢ : = € [a,b] — .
The quantity lim,_,o + Y7, ¥ is the k-th sample moment of the first n sample
points x1, xa, ..., x,. Thus we compute these numerical moments to see if they
converge to the expected values.

It is easy to see that an equidistributed sequence (z,) on an interval [a, b]
with respect to the Borel measure is uniformly distributed in the sense of De-
finition 3.31. The converse is also true. In fact, if (z,) is uniformly distributed,
3.2.6 holds even for all Riemann integrable functions on [a, b]. In the following,
we define convergences of measures. The definition of equidistribution is then
just the convergence of the average of a sequence of point measures. This helps
us to view the equidistribution of a sequence of numbers as the convergence of
probabilities.

We discussed measure spaces and measurable functions. If the sample space
X of a measure space (X, Y, ) is a topological space, we have the concept of
continuous functions. If X is the Borel o-algebra B(X), every continuous func-
tion is measurable. The Baire o-algebra is the smallest o-algebra such that all
continuous functions on X are measurable. If X is a metric space, the B(X) is
the Baire o-algebra.

Definition 3.35. Let X be a metric space, i and p1, ..., i, ... be a (sequence)
of finite measures on (X, B(X)). We say that (u,) converges weakly to p if

/ fdu, — / fdu, for all bounded continuous real function on X. (3.2.7)
X X

Theorem 3.36 (Portmanteau theorem). The sequence (1,,) of measures converges
weakly to a measure g if and only if lim,, . p,(A) = p(A) for all A € B(X) with
p(0A) = 0, where JA is the boundary of A.
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Proof See [Bil99, Thm 2.1, p.16] for the case of probability measure, [MSO1,
Prop 1.2.13, p. 11] for the case X = R", or a lecture note of Molchanov and
Zuyev [MZ, Theoremm 3.5, p.14]. [

In Definition 3.33, we require the convergence of u,(A) for a large class of
sets. However, Definition 3.31 only requires to check on closed interval.

Definition 3.37. Let A be a subset of the Borel os-algebra B(X). We call A
a convergence determining class if for every sequence (u,) of measures and u,
convergences i, (A) — p(A) for all A € A such that u(0A) = 0 implies that (u,,)
converges weakly to .

Theorem 3.38. For the space (R", *B(R")), the set of closed bounded n-dimensional
intervals form a convergence determining class.

Proof. See [Bil99, Theorem 2.4, p.18] and the Example 2.3 after it. O

By Theorem 3.38, the convergence of 1, () for those closed bounded inter-
vals with x(97) = 0 implies that (u,) converges weakly to p. Now assume (1)
converges weakly to p. Let A be the usual Borel measure on (R",B(R")). We
have A\(0]) = 0. If our measure 4 satisfies that A\(A) = 0 implies that p(A) =0
for all Borel set A. Then we have u(0I) = 0 for all /. By 3.36, we obtain the
convergence u, (/) — u(I) for all closed bounded intervals.

Proposition 3.39. Consider a measure x on the space (R™,8(R")). Let A be the
usual Borel measure on (R",B(R")). Assume p satisfies that A(4) = 0 implies
that ;(A) = 0 for all Borel set A. The sequence (1, ) converges weakly to p if and
only if lim,, ., 1, () = pu(I) for all closed bounded intervals.

Remark 3.40. The above condition on y is called u is absolutely continuous with
respect to the measure \. This is related to Definition 3.29. Hence Proposition 3.39
is valid if the measure  has a probability density function.

We close this section by a discussion of another version of convergence of
measures which is a natural analogue of pointwise convergence of function.

Definition 3.41. Let ;x and p, . . ., iin, . . . be @ (sequence) of finite measures on a
measurable space (X, Y'). We say that (y,,) converges setwise to p if j1,,(A) — p(A)
for all A € X. In this case, we write p, — L.

Proposition 3.42. The sequence (1, ) converges setwise to p if and only if
/ fdu, — / fdu, for all bounded measurable real function on X. (3.2.8)
X X

Proposition 3.43. Let X be a metric space, p and py, .. ., i, . . . be a (sequence)
of finite measures on (X, B(X)). The following statements are equivalent :
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@ pin = pu.
(b) lim, o 1, (U) = p(U) for all open subset U of X.
(©) lim, o0 1 (C) = p(C) for all closed subset C' of X.

Proof. See [FKZ14, Theorem 2.3, p.3]. [

Theorem 3.44. Let X be a metric space, u and 4, ..., ., ... be a (sequence)
of finite measures on (X, B(X)). If x, converge setwise to u, then y, converges
weakly to .

Proof. This is from Proposition 3.42. O

3.3 Moment sequences and Sato-Tate groups

In this section, we use the notions and definitions in the previous section for
the special unitary group SU(2). Then we state the Sato-Tate conjecture and
related results.

Definition 3.45. The special unitary group SU(2) is

SU(2) = {( g _f ) € GLy(C) : |a* + |B]* = 1} : (3.3.1)

SU(2) is a subgroup of the general linear group GL,(C), whose group ope-
ration is the matrix multiplication. In fact, it is a compact Lie group, which we
will define later, see Definition 4.1. There is a Borel measure ugy2) on SU(2),
which is translation invariant. This measure is called the Haar measure on SU(2).
The Haar measure is a normalized measure so that it is a probability measure,
thus we have a probability space (SU(2), B(SU(2)), ,USU(2)>: which is the proba-
bility space in the Sato-Tate conjecture, as we will see in Conjecture 3.49. But
we first study some probability-theory specific properties of this space. Consi-
der the trace map tr : SU(2) — I = [—2,2]. It is easy to see tr is a mea-
surable function from (SU(2),B(SU(2))) to (I,B([)), thus it is a random va-
riable on (SU(Q), B(SU(2)), MSU(Q)). Let t be the standard coordinate function on
I=1[-22].

Proposition 3.46. The random variable tr on SU(2) has the probability density
function

fie 1 [=2,2] = R, fi, = 217T\/4 —12. (3.3.2)

Its n-th moment M, (tr) is then

1 2 0
— [ Vi ed={",
/ U

2w J—2 —

if n is odd,

e . (3.3.3)
) if n is even.

n

n/2
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Definition 3.47. The special orthogonal group (in dimension 2) SO(2) is

S0(2) = {( cos —sinf ) € GLy(R) : 0 € [0, QW)} : (3.3.4)

sinf cos6

It is clear that SO(2) is a subgroup of SU(2).

Definition 3.48. The unitary group (of degree 1) U(1) is the unit circle {z € C | |z| = 1}
in the complex plane. The group operation of U(1) is the multiplication of com-
plex numbers. It is also called the circle group and often denoted by T.

The group U(1) has a standard parametrization, which is the restriction to
0, 27) of the exponential map exp : R — U(1), 6 + z = ¢. We have a standard
isomorphism ¢ : U(1) = SO(2) :

¢it 1y (0080 —sinfd (3.3.5)
sinf cos6

We have an embedding ¢ : U(1) — SU(2) given by

TN 0\ (€% 0 .
- Oé L0 e

Note that SO(2) ¢ SU(2) and «(U(1)) C SU(2) are two different subgroups of
SU(2), but they are conjugate by an element in SU(2) :

i -1\ cos) —siné 1 —1 e 0

(1 —i> ‘(sin9 cos ><1 —i):< 0 ew)EL(U(l))‘
(3.3.6)
As for the group SU(2), each subgroup mentioned above is a probability space
when it is equipped with its Haar measure. With the above explicit isomorphisms
between U(1), «(U(1)) and SO(2), it is easy to see that these are isomorphic
probability spaces. Moreover, the random variables tr (one for each of these
probability spaces) are the pullbacks of the other ones under these isomorphisms.
Hence they induce the same probability measure on I = [—2,2] (Remark 3.26),

and we will regard them as the same probability space and random variable.
One can (easily) compute the moments for the group U(1) and N(U(1)). These
are recorded in the following table. The normalizer N(U(1)) of +(U(1)) in SU(2)
have two connected components : one is «(U(1)), which consists of the diagonal
matrices in +(U(1)). The other component consists of the anti-diagonal matrices

0 —e
(eig 0 )eSU(2).
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The random variable tr on this component is identical 0. This explains

My, (’CY\N(U(U)) = ;M2n (tr‘U(1)> )

as we see in the table.

G G/G" | moments M, (1)
U1) | C; |L26,20,70,252,924, 3432 - -
N(U) | C» |1,1,3,10,35,126,462,1716 - - -
SU(2) Cq 1,1,2,5,14,42,132,429 . - -

Table 3.1 — Moments sequences

3.3.1 Sato-Tate conjecture for elliptic curves

After developing the necessary tools, we can give the precise statement of
Sato-Tate conjecture.

Conjecture 3.49 (Sato-Tate). Let £//Q be an elliptic curve as mentioned at the
beginning of Section 3.1. Assume that £ has no complex multiplication. Consider
the sequence of normalized traces ¢,/,/p € [—2, 2] of the reduction of £ modulo
p, where p runs over the primes of good reduction of E. Then the sequence?
(tp / \/1_9) is equidistributed with respect to the induced measure on [—2, 2] of the

random variable tr on the group SU(2) with its Haar measure jigy (o).

The induced measure of tr on I = [—2,2] is 5-1/4 — {2dt, see Proposition 3.46.
This measure is absolutely continuous with respect to the Borel measure on /,
see Definition 3.29 and Remark 3.40. From Definition 3.33, Definition 3.35 and
Proposition 3.39, Sato-Tate conjecture is equivalent to, for any interval [a,b] C
[_27 2]’

y #{p < X [t/ /b € [a,b]} m
Xtoo #{p < X} /

This may be the easiest form of Sato-Tate conjecture about the equidistribution
of the normalized traces.

In literature, Sato-Tate conjecture is stated using the Frobenius angle 6, €
[0, 7], which is given by cosf, = t,/(2,/p) € [—1,1]. The induced measure on
[—1,1] is given by sin? 6 do. The corresponding statement is then, for any inter-
val [ ,B] C [0, 7],

. #{p<X|O€la,Bl} P2 .
)}131)0 0 SpX} —/a ;smz@d&

2. Here, we give the set of primes the usual ordering.
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The above distribution can be looked in a more intrinsic way, as we will see in
Conjecture 3.50. Fix an prime number /. Consider the map

PE,L

Frob : Spec,, (Z [ﬁ}) — Gal(Qg/Q) —= Aut(Ty(F)) ®z, Q;

(p) % Oy ! F,

(3.3.7)
where Ng is the conductor of E, Spec,,(A) denotes the set of maximal ideals
of a commutative ring A, Qg, = Q (E [(*°]), o, is the Frobenius element of a
choice of place w over p, and pg is the (-adic representation attached to the el-
liptic curve F/Q. Consequently F,, is induced from the action of o, on E(Qg).
Subject to the choices of places w over primes p, the map is well-defined be-
cause p 1 /Ng is unramified in Qg . Different choices of w determine conjugate
Frobenius elements o,,, and hence conjugate actions F,,.

As in (3.3.7), for a prime of good reduction p # ¢ of E, we also have

PEp,L

Gal (k(w)/F,) = Gal(F,/F,) —= Aut(Ty(E,)) @z, Q
(3.3.8)

op F,

where x(w) is the residue field of w, o, is just the usual p-th Frobenius map on
F,, E, is the reduction of F modulo p. Hence F, is the induced action from the
Frobenius endomorphism on E,/F,,.

We have canonical isomorphisms such that the following diagram is commu-
tative :

Ty(E) ®z, Q@ —— Ty(E,) @z, Q
Frob(pﬁ TF,, (3.3.9)
Ty(E) ®z, Q¢ —— Ti(E,) ®z, Q

This means that the Frobenius actions F),, on different spaces Aut(7;(E,)) for
different p, can be put into a common space Aut(7;(£)) by identifying F, and
Frob(p). We have chosen a Frobenius element w for each p, and the Frob(p) is
determined only up to conjugacy, we come up with a conjugacy class for the lifts
F,, of the geometric Frobenius F,. The module 7;(F) is a free Z,-module of rank
2, thus Aut(7;(E)) ®z, Q; is isomorphic to GLy(Qy), after choosing a basis. In this
way, we obtain Frob : Spec,, (Z [ﬁb — GL2(Qp).

We have a space GL»(Q,) on which the Frobenius actions are realized. But
we can work with a simpler space. Remember that we choose a basis to identify
Ti(E) ®z, Q, with GL,(Qy). Hence it is the conjugacy class of F), is defined intrin-
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sic. We know that the characteristic polynomial of F;, has integer coefficients and
is monic. Thus F), is conjugate to an element in GL;(Q). The Hasse-Weil theorem
implies that the normalized Frobenius F,/,/p is in fact conjugate to an element

in SU(2). Hence we get a map

1
(Ng

NFrob : Spec,, (Z

) CI(SU(2))
(3.3.10)
() — Fp/\/ﬁ

where CI(G) is the set of conjugacy classes of a group G. In this way, we can
view the distribution of normalized Frobenius actions {NFrob(p)} in CI1(SU(2)),
which turns out to be the probability space of Frobenius distribution 3, as we will
explain now.

The quotient space X = CI(SU(2)) inherits the quotient topology from the
topology of SU(2). We then form a Borel o-algebra ®8(.X) on X using the quotient
topology. Now we push the Haar measure of SU(2) forward to X and obtain a
probability space (X, ux). Now we have a sequence (NFrob(p)) of normalized
Frobenius in X, according to the usual well-ordering of N. Now we can state the
Sato-Tate conjecture in an intrinsic way.

Conjecture 3.50 (Sato-Tate, Revised, cf. 3.49). Let £/Q be an elliptic curve
without CM. The sequence (NFrob(p)) C X of Frobenius is equidistributed with
respect to the induced measure ;. y of the Haar measure of SU(2).

It is easy to verify the trace map tr : SU(2) — I = [—2,2] induces a map on
X, and it is a random variable tr : (X,B(X),ux) — (I,B(I)). This is totally
the same as in the discussion after Definition 3.45. The induced measure of tr
on [ is %\/ 4 — t2dt as mentioned. From this viewpoint, Conjecture 3.49 is about
the distribution of the values of the random variable tr at the sample points
NFrob(p), for p € Sy, which are just the normalized traces t,/,/p.

In fact, each element of SU(2) has determinant 1, so its trace determines the
characteristic polynomial, and thus its conjugacy class. Hence the random va-
riable tr : X — [—2,2] is a isomorphism of measurable spaces. With the mea-
sures pux on X and ;-+/4 — t2dt on [—2,2], it is an isomorphism of probability
spaces. In this way, Conjecture 3.49 and Conjecture 3.50 are equivalent state-
ments about the (complete information of) Frobenius distribution, but the latter
one gives a quantity for the computation.

The study of Frobenius distribution for elliptic curves Q can be generalized
to elliptic curves over a number field K. In this case, we consider the limiting
distribution of Frobenius for the primes p of the ring of integers O of K with
|lp|l < X when X — oo. In 2006, Richard Taylor, building on earlier work with

3. If E/Q has no complex multiplication.
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Laurent Clozel, Michael Harris and Nicholas Shepherd-Barron, completed the
proof of the Sato-Tate conjecture :

Theorem 3.51 ([Tay08]). Sato-Tate conjecture is true.* Moreover, let K/Q be
a totally real field and E/K be an elliptic curve. If the j-invariant of F is not in
the ring of integer O of K, then Sato-Tate conjecture is true for F.

For elliptic curves with complex multiplication, their Frobenius distributions
are given by :

Theorem 3.52 (Sato-Tate distribution : CM case). For an elliptic curve E/Q
with CM, the distribution of non-zero > normalized traces is equidistributed on
I = [—2, 2] with respect to the induced measure from SO(2), which is 7T\/ﬁalt.
In terms of Frobenius angle 6, € [0, 7], it is £d6. This means that 6, is uniformly
distributed in the classical sense. ® See [Deu41b].

Definition 3.53. For F/K, its Sato-Tate group is a closed subgroup C' of SU(2)
such that the Frobenius distribution of £ is given by the (induced) Haar measure
of C. This measure is called the Sato-Tate measure of E.

The following table summarizes the discussion in this section.

G G/G° | example curve £ | K | moments Mo, (t)
U(1) Cy =1tz Q(i) | 1,2,6,20, 70,252,924, 3432 - -
NU®D) | Co | P2=ad+z Q |1,1,3,10,35,126,462, 1716 - - -
Su@) | ¢ P=ad+tr+1| Q |1,1,2,5,14,42,132,429 -

Table 3.2 — Sato-Tate groups for elliptic curves

The moment sequence determines each of these distributions. Here is a com-
parison of the expected moments and the moments computed with a data of 2!°
sample points for the elliptic curve F/Q : y?> = 23+ 2+ 1, whose Sato-Tate group
is SU(2).

n 1 2 3 4 5 6 7
M, 1 2 5 14 42 132 429
Sample Moments | 0.991 | 2.009 | 5.084 | 14.39 | 43.67 | 139.1 | 458.9

Table 3.3 — Sequence of sample moments for E : y? =23 + 2 + 1

4. The case for integral j-invariant is proved in 2011, see [Bar+11].

5. For a CM elliptic curve over Q, half of the primes are supersingular. Its Frobenius distribu-
tion is given by N(SO(2)). If we consider its extension Fx /K to a field containing the CM field
of E, then the Frobenius distribution of Fx /K is given by SO(2).

6. See Definition 3.31.
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One characteristic of moments is that they grow very quickly. Starting from
n = 4, the sample moments computed from this data don’t match the expected
values. Their differences become large quickly also. These situations become
more and more serious for higher dimensional abelian varieties. In Section 3.5,
we will propose a new approach to avoid this problem.

3.4 Generalized Sato-Tate conjecture

For a curve C/F, of genus g, its characteristic polynomial of Frobenius P(z),
called the Weil polynomial, is an integer polynomial of degree 2¢

P(z) =2* + ai2® ' 4+ + a1+ ¢°.

All of its roots have absolute value ,/q. Write P(x) = [, (z — o) (z — @;). The
normalized Weil polynomial is

g

P(\/qz)/q* = I;I(ﬁ —t;x + 1), where t; = NG

ai—l—di

We also consider the normalized real Weil polynomial

g
[[(z—t)=2a%—si29 "+ -+ (—=1)s,.
i=1

For g = 2, we have s, = —a,/,/q and s, = ay/q — 2.

For a curve C'/Q of genus g and a prime p, one can consider the Frobenius ac-
tion F}, on the Tate-module 7} (Jac(C,)). Its normalized Weil polynomial is a cha-
racteristic polynomial of an element in the unitary symplectic group USp(2g) 7,
hence the (matrix of the) normalized action F,/ /P is conjugate to an element
in USp(2g). We are interested in the distribution of F,/,/p, which is the same as
the study of the distribution of normalized (real) Weil polynomials.

In [KS99], the random matrix model of Katz-Sarnak predicts that, in gene-
ral, the distribution of normalized Frobenius should match the distribution of
the characteristic polynomial of a random element in a compact subgroup G of
USp(2g). This is true on average in certain families.

In general, Serre proposed a candidate for the subgroup G of USp(2g). This is
called the “Sato-Tate group” of C.

Conjecture 3.54 (Generalized Sato-Tate Conjecture). Let G C USp(2g) be the
Sato-Tate group of C'. The distribution of normalized Weil polynomials is deter-
mined by the Haar measure of G.

In 2012, Fité, Kedlaya, Rotger and Sutherland proved

7. See Example 4.3 for the definition.
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Theorem 3.55 (FKRS, [Fit+12]). Up to conjugacy, there are exactly 52 sub-
groups of USp(4) that are Sato-Tate groups of genus 2 curves. Among them, 34
Sato-Tate groups can be obtained from curves defined over Q.

They give explicitly these Sato-Tate groups. For each group G, they give a ge-
nus 2 curve that has G as its Sato-Tate group. For each example, they compared,
using the moments of the coefficients of the characteristic polynomial, the distri-
bution of Frobenius with the expected distribution predicted by the generalized
Sato-Tate conjecture, and found that they agree very closely. We list only a few
of them here.

G G/GY example curve £ K
SO(2)? C: |2 =a2+32"+22— 1| Q(i,V2)
SU(2)? C =2 +22+1 Q

N(SU(2)?) | C, yv=r+2"+r-1 Q
USp(4) C =2 —x+1 Q

Table 3.4 — Some Sato-Tate Groups for g = 2

3.5 Characters and Sato-Tate groups

In Section 3.3, we have seen the usage of moments (moment sequences) to
the study of Sato-Tate groups of elliptic curves. This is a classical tool in pro-
bability theory to understand different probability distributions. In the study of
Sato-Tate groups, the distributions we are interested in are the distributions of
(normalized) Frobenius for curves with different structure. This method is used
in the work [Fit+12].

In this section, we look again the Sato-Tate groups of elliptic curves again, but
from a different viewpoint. Instead of moments, we use irreducible characters of
Lie groups to distinguish the 3 distributions of Frobenius for elliptic curves.

3.5.1 Irreducible characters of SU(2)

The irreducible characters® (representations) of SU(2) are indexed by non-
negative integers : Xo = 1, X; = t, Xo = t? — 1, X3 = t3 — 2t, which satisfy a
recurrence formula

Xp=1-Xp_1—Xp_2. (3.5.1)

They are related to the Chebyshev polynomials of the second kind U, (z) by

Xo(t) = Un(t/2), n > 1.

8. See Definition 4.9 for the definition of (irreducible) characters.
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The argument ¢ here is the trace of elements in SU(2). Since characters on a Lie
group are class functions, they are determined by the conjugacy classes. As we
see in page 53, the conjugacy class of an element of SU(2) is determined by its
trace, we can express the characters X, in ¢.°

The restriction of an irreducible character of a compact Lie group G to a closed
subgroup H is not irreducible in general. A law of decomposition of irreducible
characters, when they are restricted to a subgroup, is called a branching rule.

In Section 3.3, we regard the trace map tr : SU(2) — [ = [—2,2] as a ran-
dom variable, and we study its moment sequence. Now instead tr, we look the
irreducible characters X,, of SU(2), and their restrictions on the subgroups SO(2)
and N(SO(2)). For any closed subgroup G of SU(2), each character X, |¢: G — C
can be regarded as a random variable on G. We can compute their moment se-
quences and use them to distinguish the 3 distributions of Frobenius.

But the actual advantages of using irreducible characters to the study of Sato-
Tate groups is to use the inner products of irreducible characters (which are
either 0 or 1), and the inner products of the restrictions of them on Lie subgroups,
which turn out to be small integers. For example, the inner product of X,, and
X,,, with respect to the Haar measure j on the compact Lie group G = SU(2),
is given by

Vi— 12

2

(o X = [ XX = | 22 Xon ()X (1) it (3.5.2)

Reall the definition of expection of a random variable ¢ in (3.2.4) :

Take the random variable ¢ to be X,,X,, on the space X = G = SU(2), it is clear
from (3.5.2) that the inner product (X,,, X,,)¢ is the expectation of £ = X,,X,,,
which is also the first moment (by definition) of X,,X,,. Thus the usage of irredu-
cible characters is a natural generalization of moments (moment sequence). It is
a well-known theorem that irreducible characters are orthonormal to each other,
see Theorem 4.10. This provides us the expected values of the random variable
X X, &

1 ifm=n,

| I={ e ’ {O if m # n.

For a Lie subgroup H, say H = SO(2), of G = SU(2), the restriction of the irre-
ducible characters X,, and X,, of G to this subgroup H are no longer irreducible
characters of H. This fact is the foundation of our new approach using characters
to the study of Sato-Tate groups :

9. If we express X,, in terms of functions on SU(2), we have X; = tr, Xy = tr? — 1, X3 =
tr® — 2tr, etc.
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1. Compute sample points of Frobenius.

2. Choose a set of irreducible characters {X,,} of the generic
group, e.g. SU(2) or USp(2g).

3. Compute the inner products of these irreducible characters
X,, using the sample points.

4. Compare the values with the expected values. This will indi-
cate the Sato-Tate distribution of Frobenius.

The work behind this general strategy is to find the possible candidate Sato-
Tate groups, and then compute the inner products of X,,, irreducible characters
of USp(2g), on these groups. The computation of such inner products is closely
related to the branching rule, i.e. how an irreducible character is decomposed
when it is restricted to a Lie subgroup.

The next subsection demonstrates these ideas with examples.

3.5.2 Examples
For G = SU(2) and H = SO(2), we have

Xplu = Z ()\n72k + )\—(n—Zk)) ;

k€Z, n—2k>0
where the irreducible character \; on SO(2) is
Aj 1 SO(2) — C*, e — .

Using this branching rule, we obtain the inner products on SO(2) and N(SO(2))
of the (restriction of the) irreducible characters X,, of SU(2). For example, for
H = SO(Z),m =2and n = 4, XQ‘H = )\2+)\0+)\,2 andX4]H = )\4+)\2+
Ao + A_o + A_4. Each of these ); is an irreducible character on H, hence they are
orthonormal to each other (with respect to the Haar measure on H). It is then
easy to compute the inner product (Xo, Xy) p :

Xo, Xa)m = (M2 + Ao+ Ao, M+ Ao+ Ao+ Ao+ Ay)
= (A2, A2) + (Ao, Ag) + (A2, Ag)
= 3.

The left side of Table 3.7 gives the inner products of X,, on the three Sato-Tate
groups for elliptic curves. The value of (¢, j) entry is the inner product (X;_;, X,_1)
fori,j > 1.

Instead using the moments of the trace, one can use these invariants to identify
the Sato-Tate group of an elliptic curve E. Here is a comparison of the inner
products of irreducible characters of SU(2) on the three groups and the values
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obtained from datas of 2!° sample points for each example in Section 3.1.

1[oJofofo 1.00 [ 0.03 [ 0.00 [ 0.02 | 0.03
of1]of0]0 0.03 [ 0.99 | 0.05 | 0.02 | 0.03
olo[1]0]0 0.00 [ 0.05 | 1.02 | 0.07 | 0.01
olofof[1]0 0.02 [ 0.02 | 0.07 | 1.01 | 0.14
ofofjolo]1 0.03 ] 0.03]0.01 [ 0.14 | 1.04
SU(2) SU(2)
1joJofof1 1.00 [ 0.01 [ 0.02]0.01 | 0.96
of1]of1]0 0.01 [ 0.97 [ 0.03]0.94 | 0.05
ojof[2]0]1 0.02 [ 0.03 | 1.94 | 0.07 | 0.90
of1]0]2]0 0.01 [ 0.94 | 0.07 | 1.90 | 0.11
1{o[1]0]3 0.96 | 0.05 | 0.90 | 0.11 | 2.84
N(SO(2)) N(SO(2))
1jof1]o0]1 1.00 [ 0.01 [ 0.99 [ 0.00 | 0.98
ol2]02]0 0.01 [ 1.99 | 0.00 | 1.97 | 0.00
1/0[3]0]3 0.99 | 0.00 | 2.97 | 0.00 | 2.93
o/2]0[4]0 0.00 | 1.97 | 0.00 | 3.93 | 0.02
1[0[3]0]5 0.98 [ 0.00 | 2.93 | 0.02 | 4.86
SO(2) SO(2)

Table 3.7 — Inner products of X,, on Sato-Tate groups for elliptic curves

This example shows that, even we use very few sample points (2'°), the nume-
rical values of these inner products match the expected values very well, unlike
the poor convergence of moments in Table 3.3. This justify the advantage this
new approach using characters to the study of Sato-Tate groups.

Our goal is to generalize the above ideas to higher genus : A recurrence for-
mula for irreducible characters similar to the usual Chebyshev polynomials, and
the usage of these characters to the study of Sato-Tate groups.
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Chapitre 4

Brauer-Klimyk Formula and
Computation of Characters

In Chapter 3, we introduce the idea of using irreducible characters to study
Sato-Tate groups, which is a natural generalization of moments (moment se-
quences) and has advantages over using moments (Section 3.5.1).

A natural question is how one can compute the irreducible characters. For
our purposes of studying Sato-Tate groups, we work mostly with the unitary
symplectic group USp(2¢) and some closed subgroups of it. In this chapter, we
present some ways to the computation of irreducible characters. Section 4.1 and
Section 4.3 provide a basic introduction to the theory of compact Lie groups
and their characters. In Section 4.2, we present a direct way to compute the
irreducible characters. Using the Brauer-Klimyk formula (Theorem 4.35) in Sec-
tion 4.3, we give a recursive algorithm to compute the irreducible characters
in Section 4.6. In Section 4.7, we use these irreducible characters to study the
Sato-Tate groups, and show the advantage of this new method over using mo-
ment sequences.

4.1 Compact Lie groups

Definition 4.1. A Lie group is a differentiable manifold G with a smooth map
G x G — G which makes G into a group such that the inverse map inv : G —
G, g — g~ ! is also a smooth map.

Example 4.2. The general linear group GL, (F) of degree n over a field F is the
set of n x n invertible matrices whose entries is in F'. The matrix multiplication
as group operation makes GL,, (F') a group. When F is the field R or C, it is easy
to verify GL,,(F') is a Lie group.

The Lie groups GL,(R) and GL,(C) are not compact. There are many (and
classical) compact Lie groups. For our purpose, we give the following example.
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Example 4.3. The unitary group is U(n) = {g € GL,(C)|g-g* = I,}. The sym-
plectic group Sp(2n, F'), F =R or C, is

Sp(2n, F) = {g € GLo(2n, F) | g-J - g' = J}, J = ( Fa ) L @1

The unitary symplectic group is USp(2n) = Sp(2n,C) N U(2n), which is also de-
noted by Sp(n). It is compact and simply connected.

Remark 4.4. From now on, the letter ¢ is mainly used to indicate the genus
of an algebraic curve, e.g. a genus g curve or the “rank” of a Lie group, e.g.
USp(2¢g) = Sp(g). In some case, we will use the letter g to mean an element in
a group, e.g. g € (G, which may cause confusion, but the meaning is still clear
from the context.

Definition 4.5. A compact torus is a compact connected Lie group that is Abelian.
The simplest case is the circle group T = {z € C||z| = 1}.

Every compact connected Lie group G contains a torus. By considering the
dimension, there is a maximal torus, but not unique.

Example 4.6. For the unitary symplectic group USp(2¢), a maximal 7" torus is
given by matrices of the form

ei91

iy
o—it

o—ifs

For a compact Lie group G, there is a unique (regular Borel) measure ;. on G
which is invariant under left and right translation, i.e. u(g- X) = u(X - g) = u(X)
for all measurable sets X, such that ;(G) = 1. This is called the Haar measure of
G.

The existence of Haar measure on a compact Lie group is one thing, but to
“see” what it is (or compute it) is another. Before discussing it further, we turn to
another important part of the theory of Lie groups, which will demonstrate the
motivation for an explicit knowledge of the Haar measure.

Definition 4.7. Let G be a compact Lie group. The Hilbert space L*(G) is the
space of functions on G that are square-integrable with respect to the Haar mea-
sure ug of G, whose inner product is given by

(i fda = [ f1(9)Fa9) duc(9)
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The inner product defined in (3.5.2) is a special case of the general definition
Definition 4.7 with G = USp(2) = SU(2). We use a fact that the Haar measure,
when one changes from the space G to the space I = [—2, 2] via the trace map tr :
G — 1, is given by i\/ 4 — t2 dt. For our new approach to the study of Sato-Tate
groups, we need to compute inner products of characters, as demonstrated in
Section 3.5.2. In general, we have to know how to integrate a class function * on
a compact Lie group with respect to its Haar measure. The following proposition
is a consequence of the Weyl integration formula.

Proposition 4.8. Let G = USp(2g) and u¢ be its Haar measure. Let T be its
maximal torus given in Example 4.6 and t;, = ¢ + e % ¢ | = [-2,2], for
k=1,...,9.Lett = (t,...,t,) € I9 and dt = dt,dt, .. .dt, be the usual measure
on it. For a class function f, we have

42 ’
. (H(tj—tk)) dtidty...dt,. (4.1.2)

j<k

| f@duc@) = [ 0

Proposition (4.1.2) gives us a way to compute integrals of class functions on
USp(2g). Examples are the trace function tr : USp(2g) — C,z — tr(z), and the
power tr" of the trace map. This is used in the approach using moment sequence
to study Sato-Tate groups. But there are far more class functions than tr and its
powers : we have characters of representations of a Lie group.

Definition 4.9. A representation of a Lie group G is a continuous homomor-
phism p : G — GL(V), where V is a finite dimensional (complex) vector space.
The character X, of a representation p is the function X, : G — C, g — tr(p(g)).
A representation (p, V') is called irreducible if V has no proper nonzero invariant
subspaces. A character X is called irreducible if X = X, for an irreducible repre-
sentation p.

We have the following important theorem :

Theorem 4.10 (Schur orthogonality). Let G be a compact Lie group and X, X
be 2 irreducible characters of G. Then

{1 if X, = Xy, 413)

(X1, X2)& ¢=/GX1(9)X2(9) duc(g) = 0 otherwise.

4.2 A first approach to computation of characters

In this section, we present a way to obtain a sequence of characters of irredu-
cible representations of the compact Lie group USp(2g).

1. A function on a group G which is invariant under the conjugation map on G is called a
class function.
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Recall that our focus is on the coefficients s; of the normalized real Weil poly-
nomial defined in Section 3.4, and they can be regarded as a class function on
the Lie group USp(2¢). The computations with class functions can be done in the
quotient of USp(2¢g) by conjugacy. Now each element A in USp(2g) is conjugate
to a 2g x 2¢g diagonal matrix of the following form

€i01

e—i91

ci%

o=t
Taking ¢, = e + e = 2cosf, € [-2,2], our work will be presented on
the space t = (t1,---,t,) € [—2,2]9. Our computation is based on the Weyl
integration formula, which is a restatement of Proposition 4.8 :

Corollary 4.11. The induced measure on [—2, 2]’ of the Haar measure on USp(2g)
is given by

,U/g(tla e ’

2
H\/ —t2( t—tk) dty dty -+~ dty .

|
gg <k

Using Corollary 4.11, one can compute the inner product of two class functions
on USp(2g) : Let f; and f, be 2 class functions on USp(2g), then their inner
product is given by

2
2 2 9 /1
/ / Al 11 (\/4—@2) (H(tj —tk)> dty dty---dt, (4.2.1)
-2 -2 D1 N\2T j<k

with f; and f; as functions on the space (¢, --- ,t,) € [-2,2].

The (Hj <k(tj — 1tk))2 part in the above integration is not separable, but it is a
combination of monomials [], ¢;"*. The functions that we will compute the inte-
gral with respect to 4, are also polynmoials in these ¢;’s (in fact, in s;’s). If we
know about the value of

/ / ( i 4—t2>dt1dt2--~dtg,

we are able to compute the integrals of class functions. Now the above integral
is separable : using Proposition 4.12 below (which is just the case of ¢ = 1) for
each variable ¢; will give the result. We state it as a proposition.
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Proposition 4.12. For non-negative integer n, let a,, be 5- f t"v/4 — t2 dt. Then
a, = 0if n is odd, and az, = (*')/(n + 1).

Proposition 4.13. Let a,, be defined as above. We have

/ / <t”1 4 — t2) dtydty---dty = p, Gny -~ G, -

Example 4.14 (¢ = 1). Using (4.2.1) and Proposition 4.13, one can compute a
sequence of orthogonal polynomials

Xo =1
X; =t
Xo=t>—1
Xg =13 — 2t

X, =t*—3t2+1
X5 = t° — 413 + 3¢
Xeg =10 —5tt+6t2— 1

We have recurrence relation : X,, = t-X,,_; — X,,_». All of these X,, have length 1
(with respect to the inner product in (4.2.1)).

One way to obtain the sequence of polynomials in Example 4.14 is to start
with ¢" for X,,, then apply the Gram-Schmidt process. But there is another way
to obtain it, and which turns out to be more efficient : We start with ¢-X,,_;
then apply the Gram-Schmidt process. In ¢ = 1 case, this may seem to have no
difference, but it is crucial when one works on ¢ > 2 cases.

The function X; = ¢ in the above example is in fact the character (the trace) of
the natural representation of the Lie group USp(1) = SU(2) :

t:SU@2) — = C

A:(O‘ 5) s trace(A).

From the description, in the above paragraph, of the way in which this sequence
is obtained, these functions are the characters of the irreducible representations
of SU(2). The recurrence relation X,, = ¢- X,,_; — X,,_» means that the correspon-
ding irreducible representations p,, have relations : p; ® p,_1 = pn_2 D pn.

Now I am going to present a systematic way to construct the irreducible cha-
racters of the (representations of) Lie groups USp(2g).
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Algorithm 4.15. The input are positive integers ¢ and d. The output is a se-
quence of polynomials X,, in the variables s;,---,s,, where the index m =
(my,---,my) € N, such that X,, are the characters of the irreducible repre-
sentations of highest weight® m of the Lie group USp(2g), with 3_, m; < d.

Step 1. Set Xo = 1, here 0 = (0,--- ,0). Set I = {0}. Seti =1 and d = 1.

Step 2. If i < g, set X, = s;, here ¢; is the element (---,0,1,0,---) with the
only non-zero element 1 appearing at the i-th position. Then apply the Gram-
Schmidt process to obtain a polynomial which is orthogonal to X, and to all of
the X., with j < 4, and having length 1. Set this new polynomial to X.,. Append
e; to I. Set i to i + 1 and run this step again.

Step 3. Set S; to be the set of solutions (my,---,m,) € N%, of >7_m; = d.
Sort the set S; using the reverse order of the usual lexicographical order.

Step 4. Set m = (my,--- ,m,) to be the first element in S;, and set i = 1.

Step5. If i < gand m +e¢; ¢ I, set X = X, - X, Apply the Gram-Schmidt
process to obtain a polynomial which is orthogonal to all of the polynomials X,
with n € I and having length 1. Set this new polynomial to X, .,. Append m+e;
to /. Set i to i + 1 and run this step again.

Step 6. If m is not the last element in S, set m be the next element in S5; after
(the current value of) m, set i = 1 and run Step 5 again.

Step 7. Setd = d+1.If d < d, go to Step 3. Otherwsie terminate the algorithm.

Remark 4.16. We don’t give a complexity analysis here. However, in Step 5 of
Algorithm 4.15, we start with X = X,, - X, then each step in the Gram-Schmidt
process computes the inner products of X with one of the previously computed
irreducible characters X, n € I, and updates the value of X. This process is done
for each n € I. If n is orthogonal to X, then it won’t change the value X. Hence
the computations of (X, X,,) in such steps waste the time.

On the other hand, Algorithm 1, which we will present later, is based on the
Brauer-Klimyk formula (Theorem 4.35). Essentially, it determines which irredu-
cible characters X,, is in the decomposition of X, - X,;, : They are related to the
weights of X.,. Thus Algorithm 1 is faster than Algorithm 4.15.

Using Algorithm 4.15, one can compute all the irreducible characters of USp(2g)
up to any degree. Here are the first few irreducible characters for g = 2 and g = 3.

2. See Definition 4.20 for the definition of weight, and Proposition 4.33, Theorem 4.34 toge-
ther with the partial order defined before them for the meaning of highest weight.

3. The correctness of Algorithm 4.15, in particular about the claim of highest weight, will be
apparent after a further study of the character theory of USp(2g) in the following sections.
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Example 4.17 (g = 2, USp(4)). We have

2,1) — 5%82 — S% — 352 -1
1,2) = 5153 — § 4 25182 + 281
03) = Sy — 28789 + Bs3 — 7 + Tsa + 2

X0 =
X(1,0) = $1
X(0,1) = S2 + 1
X(2,0) = 3% —S9— 2
X(1,1) = $152
X0,2) = 82 81 + 389 + 2
X(3,0 = 31 — 25189 — 383
(
(
(

X(0,00 = 1

X(1,0,0) = S1

X(01 )—52+2

X(O 1) = S3 + S1

X(2,0,0) = S%—82—3

X(1,1,00 = S152 — S3
X(101)—8183—|—81—82—2

X(0,2, )—82—8183—231+582+6

X(Q]_ )—8283+81+383

X(0.0.2) = 3 + 35183 — 85 + 257 — 4sy — 4

4.3 Character theory and Brauer-Klimyk formula

In Section 4.2, we present a direct and simple way to compute irreducible
characters of the compact Lie group USp(2g). The idea is to apply the Gram-
Schmidt process on a sequence of characters of USp(2¢g). We explain how to
compute the inner products after Corollary 4.11. Although it is simple and works
well for the first few irreducible characters and for small ¢ (e.g. g < 6), it is not
practical if one wants to go further.

It is always a non-trivial result in mathematics, a simple idea or a difficult
theorem, to make the magic. It turns out that there is a much faster way to
compute the irreducible characters of USp(2¢), and other compact Lie groups as
well. The tool is Brauer-Klimyk formula, which might be seem as a recurrence
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relation that generalizes (3.5.1).
In this section, we present Brauer-Klimyk formula and the basic background
to state it. The main reference for this section is [Bum13].

Definition 4.19. Let GG be a compact connected Lie group. The (virtual) character
ring R(G) of G is the free abelian group generated by irreducible characters of
complex representations of GG. The ring structure comes from the direct sum and
tensor product of representations of G. It contains all characters of G.

Every element of R(G) is of the form

anx, nx € Z, (431)
X

where X are irreducible characters of G and ny = 0 for all but finitely many X.

Let G be a compact, connected Lie group and 7" be a maximal torus. A linear
character \ of 7' is a continuous homomorphism \ : 7" — C*, which are just the
characters of irreducible representations of 7' (since 7 is compact Abelian, all
irreducible representations are of degree 1). In fact, such characters takes values
in the Lie group T of complex numbers of absolute value 1. The group of linear
characters of T is denoted by X*(7'). It is a commutative group and we write its
group operation additively. It forms a lattice and we also denote it by .

Definition 4.20. The elements of A are called weights, and A is called the weight
lattice.

We discuss virtual character ring R(G) and give the form of its generic element
in (4.3.1). In the case of G = T, we prefer to use the notation of weights to
describe the ring R(7"). Hence an element in R(7') is of the form

Zn,\e)‘, ny € Z, (4.3.2)
)

where A\ € A are weights n, = 0 for all but finitely many A. We have an em-
bedding of A into R(T') given by X — e*. The symbol e is just a notation of the
image of A under this embedding, and should not be confused with the exponen-
tial map. The multiplication in R(7") is then written as

(2; mA@A> (%: nw“) = ( 3 mmu> e (4.3.3)

v A+M:V

Definition 4.21. Let 7 : G — GL(V') be a complex representation. We can res-
trict 7 to T, which is a representation 7|y = moi : T — V of T. It decomposes
into one-dimensional (hence irreducible) characters, i.e. elements in A. These
will be called weights of the representation 7. In other words, a weight of 7 is just
an eigenfunction of a simultaneous eigenvector of the linear maps {7 (v)},er.
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The multiplicity my = m(\) of a weight A\ € A in 7 is the multiplicity of this ei-
genfunction, if X is the weight of 7. Otherwise, we define m(\) = 0. Notice that
the restriction X|r (to T) of the character X : G — C of the representation 7 is
the “sum of the weights of 7 (with multiplicities)”. When X|r is regarded as an
element in R(T'), we have X|7 = 33 yeignt of » Ma€”", Using the notation in (4.3.2).
This gives a ring homomorphism R(G) — R(T'). We also call m, the multiplicity
of the weight A € Ain X.

Given a Lie group G, its Lie algebra g is its tangent space T.(G) at the point
e = idg. The distinction between the notion of the Lie algebra g and the tangent
space T.(G) is that g admits a special bilinear map called Lie bracket which have
to be considered as part of the Lie algebra g. We don’t need the abstract definition
of Lie bracket of the Lie algebra of G for our exhibition here. For ' = R or C
and G = GL(n, F), its Lie algebra gl(n, F') is the ring M,,(F') of n x n matrices,
with the Lie bracket defined by [X,Y] = XY — Y X for X|Y € M,(F). When GG
is a matrix Lie group, its Lie algebra g is a subspace of gl(n, F') with Lie bracket
inherited from gl(n, F).

Given g € G, we have an inner automorphism of G which is Inn, : G —
G,h +~ ghg~!. It is a smooth map of smooth manifolds, hence it induces an
(invertible) linear map on the tangent spaces Ad, : g — g. In fact, it is a Lie
algebra homomorphism (i.e. preserving the Lie bracket). The map Ad : G —
GL(g), g — Ad, is a representation of G on its Lie algebra g. This representation
Ad is called the adjoint representation of GG. It can be extended to a representation
of G on the complexification gc of g, which is also denoted by Ad.

Definition 4.22. A root of G, with respect to 7, is a weight of the adjoint re-
presentation Ad : G — GL(gc) of G. The set of roots of G with respect to 7' is
denoted by .

It is clear that ¢ is a finite subset of A = X*(T"). It has many properties that
we won't exhibit here, that make it the so-called root system.

In Definition 4.20, we defined the weight lattice A = X*(7). We can regard it
as in the real vector space V := A ®7;R. We will assume that the set ¢ spans V. In
order to talk further about the weights and roots, it is necessary to discuss extra
structures on the space V.

Consider the normalizer of N(T) = Ng(T) = {g€ G | gTg~ ' =T} of T in G.

Proposition 4.23. N (7)) is a closed subgroup of GG. The connected component
of the identity in N(T") is 7. The quotient N (7)/T is a finite group.

Proof. See [Bum13, Proposition 15.8, p.106]. U

Definition 4.24. The quotient W = N(T')/T is called the Weyl group of G with
respect to 7.
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Given w € N(T), the maximal torus 7 is invariant under the inner automor-
phism Inn,, (this is just the definition of normalizer). This means we have a Lie
group homomorphism Inn,|r induced by Inn,, and hence it induce a map on
the weight lattice X*(7"), which sends a weight A : 7" — C* to A o Inn,|r. If
w € T, it is clear that Inn,|r = Idy. Hence the Weyl group W = N(T')/T acts
on A = X*(7T'), and so on the real vector space V = A ®; R. Since W is a finite
group, one can give ) an inner product ( -, - ) which is invariant under the action
of .

In the statement of Baruer-Klimyk formula, the action of W on certain weights
appear. This means that we need to know how to compute this action if we want
apply Baruer-Klimyk to compute irreducible characters of G. For a given root «,
there is an associated element w, € W whose action on V = X*(T') ®z R is the
reflection :

2 (z,a)

(o, o) 4.3.4)

Sa V=2V, x—2x—

Hence the quantity 2(55359 is important for the understanding of the action w,. Let

aV be the linear functional on V
2 (7, )

a’(z) = o, 0) . (4.3.5)

The W-invariant inner product is given implicitly, so (4.3.5) doesn’t give any
actual information about oV and hence the action w,. We need to discuss roots
from the viewpoint of Lie algebra.

Recall that a weight A € A = X*(T) is a linear character A : " — C* of T,
which can be seen as a Lie group homomorphism. It is not difficult to see that its
differential map d\ : t — C takes values in :R (the Lie algebra of the Lie group T
of complex numbers of absolute value 1, if we identify the Lie algebra of C* as
C as usual). One can extend d\ to the complexification of h := t¢, and then it is
a linear functional on h. The linear functionals on h are called weights (from the
viewpoint of Lie algebra). Similarly, we can talk about a weight of a Lie algebra
representation of g¢ and roots of the Lie algebra gc.

If o : T — C* is aroot of the Lie group G, its differential da (or more correctly,
its extension to gc), which is a weight as mentioned in the above paragraph, will
be a root of its (complexified) Lie algebra gc. We have explained (see here in
page 67) a root is a eigenfunction of a simultaneous eigenvector for the adjoint
representation (Ad or ad). If X € g¢ is such a simultaneous eigenvector for (the
restriction to 7' of) the adjoint representation Ad of G and « is the associated
root (i.e. Adi(X) = a(t)X,Vt € 1), then it is easy to show that X is also a
simultaneous eigenvector for (the restriction to h of) the adjoint representation
ad : gc — gl(gc) and da is the associated root (i.e. ady (X) = da(H)X,VH € b).

From now on, when we say weights or roots, we don’t specify the viewpoints
with which we look at them. It depends on the context.
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As in Definition 4.20, Definition 4.21 and Definition 4.22, a root of gc is just
one of the eigenvalue functions of the adjoint representation ad := d(Ad) of g¢
with respect to b.

Definition 4.25. For a root «, the root space gc o, or simply denoted by g, (with
the caution that it is not a subspace of g but of gc¢), is the space of all X in g¢ for
which ady (X) = a(H)X for all H in b, where ady (X)) is [H, X].

Theorem 4.26. For a root «, —« is also a root. We can find nonzero elements
X, ing,, Y,ing_, and H, in b such that

[Ho, Xo] = 2X,, (4.3.6)
[HOmYa] = —2Y,, (4.3.7)
(X, Y] = H.,. (4.3.8)

The element H, is independent of the choice of X, and Y,,.
Proof. See [Bum13, Proposition 18.8, p.138]. ]
Definition 4.27. For a root «, the elements H, € h are called the coroots.

Proposition 4.28. Let A € V and « € @ be a root as defined in Definition 4.22.
Then
d\(H,) = a”(N). (4.3.9)

Proof. See [Bum13, Proposition 18.13, p.141]. O

In (4.3.4) and (4.3.5), we explain the relation of the linear functional o and
the action of an element w,, in the Weyl group W, but they didn’t provide compu-
tation information (without knowing explicitly the W -invariant inner product).
(4.3.9) is a tool to compute o¥ and hence w,. The only task is to find the element
H,, in Theorem 4.26.

The set @ of roots is a finite set in the inner product space V. So it can be
partioned into two parts ¢+ and ¢~ which are the two sides of a hyperplane
through the origin with no point of ¢ on it.

Definition 4.29. Fix a choice of ' and @~. Let X' be the set of elements in ¢
that cannot be expressed as a sum of other elements in ¢*. Elements of ¢ are
called positive roots. Elements of ¢~ are called negative roots. Elements of Y are
called simple positive roots. They are linear independent and form a basis of V if
¢ spans V. The positive Weyl chamber is

Ci={xeV|(r,a) >0forall « € X}.

A weight A € A = X*(T) is called dominant if A € C,..
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Definition 4.30. Assuming the set ¢ of roots spans ). As mentioned in Defini-
tion 4.29, the set X of simple positive roots form a basis of V. For each o; € X,
the linear functional ) is in V*. The fundamental dominant weights are the dual
basis w; € V of o, i.e. o/(w;) = J;;. These w; are not necessary in the weight
lattice A, but the terminology “fundamental dominant weight” is standard. If G
is simply connected, then these w; form a basis of the lattice A (hence also of
V).

Definition 4.31. The Weyl vector is

1
p= 3 Z aec). (4.3.10)

acdt

Under the assumption that ¢ spans V, it can be shown that p = w; + --- + @,
which is in the interior CS of the positive Weyl chamber C... In particular, p is a
dominant weight.

As discussed in Definition 4.21, we have a map R(G) — R(T) by restriction
of characters of G to 7. Use the notation in Definition 4.21, we write X|; =
>\ weight of = 2€” for a character X of a representation 7 of G. From now on,

we will identify a character X € R(G) as its restriction X|r and just write X =

Sy mael.

Definition 4.32. Let A defined by

A=Y (-1)®evl) € R(T), (4.3.11)

weW

where p € A is the Weyl vector defined in (4.3.10), w(p) is the action of w € W
on p € A which is described after Definition 4.24 and [(w) is the number of
a € ¢ such that w(a) € @~. Similarly, for A € ANC,, i.e. a dominant weight,
consider

=Y (—1)!Wer™0) e R(T). (4.3.12)
weWw
It turns out that ¢ is divisible by A in the ring R(7T'). Define
() = e R, (4.3.13)

We define a partial order on V by \ = pif A — yp = Y ¢, with all the ¢, > 0
for all simple positive roots « € 3.

Proposition 4.33. Let A\ be a dominant weight, i.e. A € ANC,. Let n) be the
multiplicity of A in X(\) € R(T). Then n, = 1. For any x whose multiplicity in
X()\) is non-zero, we have A — p is in the lattice A,,.s C A generated by roots
and \ = p.
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Proof. See [Bum13, Proposition 22.4, p.179]. O

The following theorem is the highlight of the above theory. It says that the
irreducible characters of G are parametrized by dominant weights of G, which
are the highest weight of the corresponding irreducible representations by Pro-
position 4.33.

Theorem 4.34. Let G be a compact connected Lie group. Assume the set ¢ of
roots spans V. For a dominant weight A € A N C,, the element X(\) € R(T)
defined in (4.3.13) is the restriction of an irreducible character of GG. Moreover,
each irreducible character of GG is obtained this way. Since the dominant weights
parametrize the irreducible characters of GG, we will use the notation X, for the
irreducible character whose restriction to 7" is X(\). But as mentioned after Defi-
nition 4.31, we don’t distinct X, € R(G) and X(\) € R(T).

Proof. See [Bum13, Theorem 22.3, p.182]. O

Finally, we are able to state the main theorem, Brauer-Klimyk formula, which
provides a recursive way to compute the irreducible characters of G.

Theorem 4.35 (Brauer, Klimyk). Let A be a dominant weight and v be any
weight. There is an element w of the Weyl group W such that w(v+ X+ p) € C,.
The point w(v + A + p) € C, is uniquely determined. If it is on the boun-
dary of C,, we define £(v,\) = 0. Otherwise w is also uniquely determined,
w(v+ X+ p) —p € C4, so it is a dominant weight, and we define {(v,\) =
(—1)" ™)X (s 14 p)—p» where [(w) is the same as in (4.3.11). For a dominant weight
pwith X, =Y m(v)e” € R(T), we have

X Xo =D m(v)E(v, ). (4.3.14)

Proof. See [Bum13, Proposition 22.9, p.185]. ]

4.4 Examples : USp(2g)

In Section 4.3, we introduce many notions quickly in order to state the Braure-
Klimyk formula Theorem 4.35. Before presenting an algorithm to compute the
irreducible characters of the unitary symplectic group USp(2g), it is good to see
an example that demonstrates the notions in Section 4.3 and a picture of the
algorithm in Section 4.6. We use USp(6) as our example, which corresponds to
g=3.

From the paragraph where (4.3.4) is to the paragraph after Proposition 4.28,
we explain the action of the Weyl group W on the weight lattice A = X*(7)
(and on its underlying space V = A ®z R), the reflection s, on V with respect to
a W-invariant inner product on it, the quantity oV that appear in s,, an element
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H, € b = t¢ that gives a way to compute oY, see Proposition 4.28, and a charac-
terization of this element H, (Theorem 4.26). Hence we begin with the task to
find the elements X, Y, and H, in Theorem 4.26.

For1 <i# j <g,let £ 9) be the matrix of dimension g whose (k,[) entry is 1
ifk=iand [ = j, 0therw1se it is 0. Let X;; be the matrix of dimension 2g which
is given by the following block from :

&f_<0 —Eﬁ)' (4.4.1)

Similarly, let Y;; be the matrix of dimension 2g

_( Ei O
Y, = ( 0 —E; ) . (4.4.2)
Let
uy 0 0 0
0 uwp, 0 O
u = v (1) ) where U = ? , Uy € (C, ]ul\ = 1, (443)
0 - 0
0 0 0 vy

be a generic element in the maximal torus (of our choice) 7" in USp(2g). Then by
direct computing, we get

ug

—=en Y, (4.4.4)
Inn, (') = u-e¥.u~ " = e Vi (4.4.5)

Inn, (eX9) = u-eX . y~!

This is translated to Ad,(X;;) = %« o X and it means that X;; is a simultaneous

eigenvector of the restriction Ad\T of the adjoint representation Ad, and the
eigenfunction a;; : T — C*,u +  is thus a root by Definition 4.20 and Defini-

tion 4.22. As explained in this paragraph in page 69, X,; is also a simultaneous
eigenvector for ad|, and da;; is the associated root. This means that X;; € g,,,,
the root space of the root «;;, see Definition 4.25. Similarly, Y;; € g_,,, after
one sees that the map u € T — J_ is indeed the inverse of O‘w in the group
A= X*(T). If we define H;; = [XU, YU] one can easily verify that the the triple
(Xi;,Yi;, Hy;) satisfy the relations in Theorem 4.26, with o = «;;. Theorem 4.26
says that such H is uniquely determined for each «;;. And Proposition 4.28 can
be used to compute the aivj from H,;. As explained in (4.3.4) and (4.3.5), «;; is
related to s,,; and hence to the action of a certain element w;; = w,,, of the
Weyl group W. We are mostly interested this action on the roots of G. We have

not determined the roots completely, neither a complete set of simple positive
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roots. But we can compute

wij (k) = Way, () (4.4.6)
= Say,; (k1) (4.4.7)
g — A0 Qi) (4.4.8)
(aij, i)
= ay — agj(am) oy (4.4.9)
= ay — ((daw) (Hij)) o (4.4.10)

So in order to know the action of w;;, at least at the roots ay,;, we have to know
the value of day; at H;;. We have known that H;; = [X};,Y;;], but we have not
compute this Lie bracket yet (hence we don’t konw H;; explicitly yet). The follo-
wing lemma gives the result.

Lemma 4.36.

_x vl = B B 0
where FE, , is the same as in (4.4.1). If we use the notation in (4.4.12), H,;
corresponds to the case h; = 1, h; = —1 and otherwise 0.
It just left to know day; which is fairly easy, as demonstrated in the following
lemma.

Lemma 4.37. Let

hi 0 0 0
%0 0 hy 0 0
H= , where H = . h; € C, (4.4.12)
(5 %) 0 0
0 0 0 h

be a generic element in §. Let ayy : T — C*,u — Z—’; be the root as described
after (4.4.5) , where v is the same as in (4.4.3). Then

dOékl (H) = hk - hl. (4413)

Proof. Assume that H € t C . This means that h; € iR forall j =1,2,...,¢. Let
exp : t — T be the exponential map from the Lie algebra of the Lie group 7" to
the Lie group T itself. In our case, exp(H) = e is just the matrix exponential.
We have

el 0 0
H 0 ez 0 0

et = ( 60 eOH ) , where e’ = o o0 - o I’ (4.4.14)
0 0 0 et
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where e”i is just the usual exponential of a complex number, which is the expo-
nential map from the Lie algebra C of the Lie group C* to itself (if we choose the

. . h .
“natural” paramatrization). Hence «ay, (eH ) = ZT’; = e~ It is from a general

fact that ay,(e’) = edx(1) Hence we have ed*() = ¢h+~hiand from this we
have day, (H) = hy — hy, if we take into account the facts that day(0) = 0 and
t is connected. Since b is the complexification of t and doy, is obtained by the
natural (linear) extension from t to h = t¢, the above result implies (4.4.13) is
true for all H € b. Il

After knowing explicitly H;; and doy,, it is a direct and easy to compute doy, (H;;)

Proposition 4.38. We have

Proof. As mentioned in (4.4.11),

hy 0 0 O
[ Hij 0 _ 0 hy 0 O
H;; = ( 0 —Hy ) , where H;; = 00 - o0 |’ h, € C, (4.4.16)
0 0 0 h
where
1, ifn=1
0, ifn#ij

Here we use the fact that ¢ # j, see the definition of Ei(jg) before (4.4.1). Use
(4.4.13), we have

dOékl (HZJ> = hk — hl = (51 — (Sj ) — <5zl — jl)' (4418)
In particular, if we restrict to the roots of the form «y, :== a1 fork =1,2,...,g—
1, and hence to the corresponding coroots H; .= H,;4; fori =1,2,...,9 — 1, we
have
dCYk (Hl) = damﬂ (Hi,i+1) (4419)
= (0 — 0iv1) — Qi1 — Sit1ht1) (4.4.20)
2, ifk=i
=<¢ -1, iflk—i|=1 (4.4.21)
0, if |k —1i]>2

]

We have consider the case where i # j, see (4.4.1). Next we consider the case
where i = j but skip the details, since we have demonstrated how to work out
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the computation. Fori = 1,2,... ¢, let

0 Ej (0 0
XZ-Z-—<O 0),3@—(% 0). (4.4.22)
The corresponding formula to (4.4.4) is
Inn, (e¥%) = u-eXii .yt = i X, (4.4.23)
Inn, (e¥) = u-e¥ . u™! =% Vi (4.4.24)

This means that Ad,(X;;) = u?X;;. The corresponding root is o;; : T — C*, u
u?. The coroots H;; are given by

Hy =X, Yl = ( %Z _%ﬁ > , (4.4.25)

where F, . is the same as in (4.4.1). If we use the notation in (4.4.26), H;;
corresponds to the case h; = 1 and otherwise 0. The following lemma is similar
to Lemma 4.37.

Lemma 4.39. Let

hi 0 0 0
90 0 hy 0 0
H = , where H = , h; € C, (4.4.26)
( 0 —H ) 0O 0 "-. 0
0O 0 0 A

g

be a generic element in h. Let ag; : T — C*,u — u? be the root as described
after (4.4.24) , where v is the same as in (4.4. 3) Then

dagy, (H) = 2. (4.4.27)

The results from Lemma 4.36 to Lemma 4.39 can be summarized in the follo-
wing proposition :

Proposition 4.40. We have

dou(Hyj) = (3 — ) — (8 — 61) (4.4.28)
dakk(Hw) ( ik — 5]k) (4429)
dakl(Hm) zk — (4430)
dog(Hyi) = 25m (4.4.31)
We have defined the roots a, = ay ;41 for k = 1,2,..., g—1, see this paragraph

on page 75. Define furthermore that o, = o,y and H, := H,,. It can be shown
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that ' == {ay, }1<k<, is the set of simple positive roots (under a choice for the set
@™ of positive roots which we won'’t specify here).

Proposition 4.41. We have

9, ifk=1i
) -1, dflk—il=1butk#£g
dos(H) =4 25 ik — sandiw g1 (4.4.32)

0, if |k —i|>2

We have certain elements w;; € W in the Weyl group, for 1 < i # j < g.
These w;; are not defined explicitly, but are given by the relations in (4.4.6). In
particular, we can look at w; := w;; for 1 < i < g — 1, which correspond to the
roots «;. Similarly we have a w, € W corresponding to the root «,. Just as in
(4.4.6), we write again these relations for all the simple positive roots :

w;(ag) = o — ((dag) (H;)) a;. (4.4.33)
We want to express the action of w; € W, 1 =1,2,..., g, with respect to the basis
Y ={ai, a9,...,a,} which is represented by a matrix (of size g x ¢g) denoted by

[w;]s. Its (I, k)-entry, i.e. the entry in the [-th row and k-th column and denoted
by [wi|s.k is just the coefficient of «; in the vector of w;(ay). By (4.4.33), we
have

[wi]g,w = 6kl — ((dOék) (HJ) 5@'!- (4434)

Using Proposition 4.41, it is easy to compute [w;]x ;. Now we restrict ourselves
to the case g = 3 for visualizing the examples more easily.

Example 4.42 (The action of w; on X' for ¢ = 3). The actions are represented by
the matrices

-1 10
0 01
1 0 0

[wols = 1 —1 2 (4.4.36)
0 0 1
1 0 O

[wsls=[ 0 1 0 (4.4.37)
01 -1

We have worked with the simple positive roots «; € X' defined after Proposi-
tion 4.40. More precisely, we try to understand the action of the Weyl group by its
action on Y. But Our goal is to compute irreducible characters of USp(2¢) in the
next section using Brauer-Klimyk formula in Theorem 4.35. These irreducible
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characters are parametrized by dominant weights as shown in Theorem 4.34.
Moreover, in the Brauer-Klimyk formula, we need to compute the actions of cer-
tain elements w € W of the Weyl group at certain weights, i.e. w(v + A + p) in
Theorem 4.35. So it is reasonable to work with the weighs and hence with the
fundamental weights w; introduced in Definition 4.30.

Definition 4.43. Let V; and V5 be finite dimensional vector spaces over a same
field, and B, be a basis of V; for i = 1,2. Let f : V — W be a linear transforma-
tion. Then [f]5 is defined to be the matrix representation of the f with respect
to the basis By and B,. If V; = 1, =V is the same space and f = Id = Idy is the
identity map, [Id] gf is just the matrix of basis change from B; to Bs.

Let w = {w;,ws,...,w,} be the set of fundamental weights (for our choice
of simple positive roots «;), which forms a basis of V. As mentioned at the end
of the paragraph before Definition 4.43, our goal is to find the matrix represen-
tation |w;] for the elements w; € W. The fundamental weights w; € A C V are
defined to be the dual basis of a; € V*. This means that o, (w;) = §;;. By Propo-
sition 4.28, this means dw;(H,,) = dw;(H;) = 0;;. One can use Proposition 4.41
to determine w; in terms of the fundamental roots «;, and thus the basis change
matrix [Id]Z , which is (for any given fixed g) just an easy exercise of solving a
system of linear equations. But instead of doing this directly, we will use a third
basis @ of ), obtain [Id]F through ®. This will give [w;],. But we will also com-
pute [w;]s, which is helpful to demonstrate how to find a certain element w € W
which satisfies the condition w(v + A + p) € C; as required in Theorem 4.35.

Define @; to be @, : T — C*,u — u;, where u is the same as in (4.4.3). Let
® = {0, ®2,...,0,}. Recall thata; = v ;41 : T — C*,u ™ forl1 <i<g-1

Ui41 ’
and a, = oy, : u +— u}. This means that we have :
Proposition 4.44. We have
o = { o, ifi— g (4.4.38)
This gives the basis change matrix
1 0 0 0 0 0
-1 1 0 0 0 0
0 -1 1 0 0 0
0 0 -1 0 0 0
[Id]l; — 0 0 O -c-ccenen 0 0 0 . (4.439)
0O 0 0 1 0 0
0O 0 O -1 1 0
0O 0 0 0 -1 2
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Proposition 4.45. For 1 < i < g— 1, the action of w; permutates @; and @, ; and
fixes other m; for j # 4,7 + 1. For the action of w,, we have w,(®,) = —m, and
wy(m;) = @; for j # g. The basis change matrix [w;] is then very easy to obtain.

Proof. From the paragraphs where (4.3.4) and (4.3.5) locate, and also Proposi-
tion 4.28, we have

wi(A) =X —a)(\) oy

)

= A — (dA\(H;)) as,

for all weight . This is used in (4.4.6) but with more details there. For A = @,
and a generic element H € h, as in Lemma 4.37 and in Lemma 4.39, it is easy to

show
dw; (H) = h;. (4.4.40)

In particular,

iy ) 0 =0y forl <i<g-—1
do; () = { 5, ifi—g (4.4.41)
Hence we have
v = (6 = bipry) o for1<i<g-—1
wi(®@;) = { D — Ogj Ui ifi=g (4.4.42)
Using (4.4.38), the proof is a direct and easy computation. u

Example 4.46 (The action of w; on @ for ¢ = 3). We have

010 1 00 1 0 0
[wl]m = 1 00 , [wQ]m = 0 0 1 , {w3]m = 0 1 0 .
0 01 010 00 -1

Proposition 4.47. For all 1 < j < g, we have
J
w; = Z O (4.4.43)
k=1

This means that the matrix of basis change [Id]” from the set @ of fundamental
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weights to the set m is given by

o O O =
O O ==
O~ =
— =
— = =
— = =

e = . . | R (4.4.44)
000 111
000 011
000 00 1

Its inverse, which is the basis change from ® to w, is

1 -1 0 0 0 0
0 1 -1 0 0 0
0 0 1 -1 0 0
0O 0 0 1 0 0
[Id]g — 0 O 0 O ......... 0 O . (4.445)
0O 0 0 0 -1 0
0 0 0 1 -1
0O 0 0 0 0 1
From the definition of m;, we see that
J
w;: T —-C* u— Huk (4.4.46)

k=1

Proof. In the paragraph on page 78, we see that the fundamental irreducible
characters w; are determined by the relations

Combine this with (4.4.41), we obtain, for2 < j < g

dw; (H;) = J 7 J J e 4.4.48
i () { 0gj — 0g.j—1 = (dw; — dw;1)(Hy) ifi=g ( )
= (dw; — dw;1)(H,;). (4.4.49)

Note that we have 6, ;_; = 0 since j — 1 < g. The above equation is also true for
j = 1 with an easy extra argument and set w, = 1. The equation holds for all
1 <1 < g, and this implies that

dUJj = dwj — dwj,l, for 1 Sj < g. (4450)

80



Hence we have the relations w; = Ziﬂ @y. The rest statements follow easily. [J

Finally, we can compute the matrix representation of w; with respect to the
basis w. The reason to do so is mentioned in this paragraph on page 77.

Corollary 4.48. For w € W, we have
[w], = [1d]g - [w], - [d]Z. (4.4.51)

The matrices [Id]7 and [Id] are given in Proposition 4.47. For w = w;, [w;] is
given in Proposition 4.45.

Example 4.49 (The action of w; on w for ¢ = 3). We have

—1 0 0 1 1 0 1 0 0
[wﬂw = 1 1 0 s [wg}w = 0 -1 0 s [wg}w = 0 1 2
0 0 1 0 1 1 00 -1

We give a general description of [w;]_ for USp(2¢) without proof.

Proposition 4.50. For 1 < j < g — 1, let v; be the column vector of length g
whose entry at i-th row, denoted by v, is given by

1, ifi=j—1
—1, ifi=j

0, othewise

Let v, be the (column) vector (0,0,...,0,2,—1)" of length g. Then [w;]_ is the
same as the g x ¢ identity matrix except that the i-th column of [w;]_ is replaced
by v;. It is best to see examples for g = 6 to have a picture of these matrices :

100000 1 10000 100 00
1 10000 0 -1 0000 01 1 00
o] =] 0 0L 000 p [0 L1000 L, 00 100
@ 000100 | "= 1o 00100 =T loo 1 10
0 00010 00 0010 00 0 01
0 00001 00 0001 00 0 00
100 0 00 1000 0 0 10000
010 0 00 0100 0 0 01000
g = |00 L L 00 g 00100 0, 00100
= looo 100 = " fooo1 1 opT® 00010
000 1 10 0000 ~10 00001
000 0 01 0000 1 1 00000

We have given enough information to state the algorithm for computing irre-
ducible characters for USp(2g) in the next section. The Weyl vector p appears
in Brauer-Klimyk formula in Theorem 4.35, so it is used in the algorithm. It is
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defined in (4.3.10) and we have p = >°7_, w;, so with respect to the basis o, it is
the (column) vector [p]_ = (1,1,...,1)!, where ¢ means the transpose.

4.5 Fundamental irreducible characters of USp(2g)

In this section, we use the notation Sp(g) for the group USp(2g). In previous
section, we have studied the fundamental dominant weights of ;. As mentioned
in Theorem 4.34, each dominant weight )\ corresponds to an irreducible charac-
ter which is denoted by X,. The corresponding irreducible characters X, of the
fundamental dominant weights c; are called the fundamental irreducible cha-
racters and are also denoted by X;. Every dominant weight is a linear combina-
tions of these w; with positive integers as coefficients. If A = >-Y_; n,w;, then we
denote its corresponding irreducible character by X,, where v = (ny,no, ..., n,).
In particular, we have X, = X; = X,,, where ¢; are just the standard basis of Z9.

In Brauer-Klimyk formula (4.3.14), the multiplication X, X, of irreducible cha-
racters X, and X,, where ;. and A\ are dominant weights, are computed using
the information of how X, is decomposed into irreducible characters of 7'. For
our algorithm, we only need to consider the case where ;1 = w; is one of the
fundamental irreducible weight of Sp(g). This means that we need to know how
the fundamental irreducible characters X., = X; = X, of Sp(g) decompose on
the virtual character ring R(7") of T'. Its virtual character ring G

Consider products of Lie groups G = G x Gy --- x G,. Its virtual character
ring R(G). We have a multi-linear map

01 R(Gy) x R(G2) x -+ x R(Gy) R(G)

(X1, Xa, ..o X)) X:G—C, X(g) = ITi= Xi(9:)
(4.5.1)
where X, are characters of GG; (not the fundamental irreducible characters X;
define in the previous paragraphs. Note that the symbol X is in bold font, which
indicates the difference), and g = (g1, 92, ..., 9,) € G. We define ¢ for characters
only, but it extends to the whole domain. This gives an isomorphism (we omit
the proof), also denoted by ¢,

¢ : R(G1) ® R(Gy) ® --- @ R(G) —— R(G)
(4.5.2)

X1®X2®®Xn X

For the group Sp(1) = SU(2), its fundamental irreducible character is the trace
map ¢ = tr on SU(2). Its virtual character ring is isomorphic to the polynomial
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ring Z[t]. Now consider n = ¢g and G; = Sp(1) for all 1 < i < g and their
fundamental irreducible characters ¢;. We then have R(Sp(1)?) = ®7_,Z[t;] =
Zlt1,ts, ..., t,]. Let s; be the i-th symmetric polynomial in ti,t,,...,t,. Their
images in R(Sp(1)¢) are in fact in the subring R(Sp(g)) of R(Sp(1)?) under a na-
tural embedding Sp(1)? < Sp(g). Furthermore, under this embedding of virtual
character rings R(Sp(g)) < R(Sp(1)?) = Zl[t1, 1o, ..., t,|, we have Z[sq, s, . .., 5,].

We have mentioned we need to decompose the fundamental irreducible cha-
racters X; of Sp(g) into weights (i.e. irreducible characters of 7") in this para-
graph on page 82. This decomposition can be done through Sp(1)? by 7" —
Sp(1)? — Sp(g). Hence we first state a result of the decomposition of X; in the
ring R(Sp(1)¢). In some sense, this is equivalent to find the polynomial expres-

sions of X; in ¢y, s, ...,t,, and these can be obtained easily after the polynomial
expressions of X; in sy, So, ..., s, is known. The following proposition gives this
relations.

Proposition 4.51. Identify R(Sp(g)) with Z[sy, s2, . . ., s,4] as explained above. Let

X, be the trivial character of Sp(g). Let sy = 1, as an element in Z[sq, so, . .., 54].
It is easy to see X, corresponds to s, under the identification. For all 0 < i < g,
the fundamental irreducible character X; of Sp(g) is linear in sy, s1, So, ..., 5.

Let A, be the matrix of size (¢ + 1) x (¢ + 1) whose i-th row v,_; is obtained
recursively from v;_; by the following rules :

vo = (1,0,0,0,0,0,...,0,0)
v; = (0,1,0,0,0,0,...,0,0)
ve = (1,0,1,0,0,0,...,0,0)
v3 = (0,2,0,1,0,0,...,0,0)
vy = (2,0,3,0,1,0,...,0,0)
vs = (0,5,0,4,0,1,...,0,0)
V; = (Uz'o, Vi1, Vi2y -« 5, Vig—1, Uig) y Vg = Vi—1-1 + Vi—1541

Let [Idg;,]5 be the matrix of size (g + 1) x (g + 1) that represents these linear
relations. Then for 1 < 4,5 < g+ 1, the (4, j)-entry of [Id,4,]} is given by the
(9+1—1i,9+1—j)-entry of A,;,. For example, for g = 5, we have

100000 104050
010000 01030 2
101000 s 001020

Ag = 020100  [dg]y = 000101 (4.5.3)
203010 000O0T10
05040 1 0000GO0 1

83



Proof. Consider the natural embedding Sp(¢g — 1) x Sp(1) < Sp(g), where the
factor Sp(1), embedded into Sp(g) has (t,,t,") as coordinates. We write the trivial

and fundamental irreducible characters of Sp(g—1) and Sp(1) by X&g D and x(1¥
respectively, to indicate this choice of embedding, where 0 < j < ¢ — 1 and
k = 0, 1. For other indices, they are defined to be zero. From a general branching
rule* from Sp(g) to Sp(g — 1) x Sp(1), one can deduce that, for 0 <i < g,

X = x5 @D o gt (4.5.4)
where X9 = 1 and x{"9 = t,. Similarly, we have

s — glo=1) + 8(3*11) . 35159)7 (4.5.5)

where s = t, and 597 and s\ are the i-th symmetric polynomialsint,, ... , ty—1

and ty,...,t, respectively. Using (4.5.4) and (4.5.5), the relations of {XEQ)}?_O

and {sgg)}?’_o can be determined by induction on g. This leads to a proof of the
proposition. L

Now we know the (linear) expression of X; in sy, s, . .., 54, and hence the po-
lynomial expression in ¢4, ¢, . . . , t,. The monomials that appear in the expression
of X; have the form [T{_, t;” with each n; € {0,1}. In order to know the decompo-
sition of X; in R(T"), we only need to know how these monomials are expressed
in R(T).

Recall T = {z € C||z| = 1}. Consider the irreducible character T — C*,z + 2
of T, and we denote it by 2, which can be thought as the coordinate function of
T. Similar we have the irreducible character T — C*, z — %, which is denote by
L. Consider the embedding

The fundamental irreducible character ¢ of Sp(1) is the trace map, hence the
restriction of ¢ on T is given by z — z + 1. Use the above notation, we can write
t = z+ %, where z and ! are irreducible characters of T defined above. They are
elements in the virtual character ring R(T) of T, and ¢ is an element in R(Sp(1))
and also in R(T) since we have an induced embedding R(Sp(1)) — R(T).

The maximal torus T" of Sp(g) is chosen explicitly, see (4.4.3) for the generic
element in 7. We have the embedding TY — Sp(1)¢ which is the product of the
embedding T — Sp(1) defined in the previous paragraph. It is easy to give an
isomorphism TY = T and embeddings 7' < Sp(1)? and Sp(1)? — Sp(g) such

T — Sp(1)

z

e

v = O

4. See [Lep71, Theorem 2].
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that the following diagram is commutative :

—— T
k///l (4.5.6)

Sp(1)? —— Sp(g)

T9

Apply (4.5.2) for G; = T and G = TY, we get isomorphisms ®/_; R(T) = R(TY).
The embeddings of R(Sp(1)) — R(T) induces ®7_, R(Sp(1)) — ®7_, R(T). Com-
bined these with the induced diagram of (4.5.6) on virtual character rings, we
have the following commutative diagram :

Zia, L,z L] 2 Q7,1 — & R(T) —— R(TY) «—— R(T)

) <g>
& i=1 i=1

]

Zltr,... ) —— Q] — @ R(Sp(1)) = R(Sp(1)?) — R(Sp(g)

=1
(4.5.7)
All the ring homomorphisms above are in fact Z-algebra homomorphisms, and
the most left map in the above diagram is determined by t; — z; + Z%

Now given an element of R(Sp( )9, identified with [T/_, ¢}’, n; € Z. Its image
inZ[z, L S 2 —] is [TI=y (z5+ ” L)ni, As mentioned here in page 84, for the fun-
damental 1rreduc1ble characters of Sp(g), we just need to consider n; € {0, 1}.
In this case, [T]_,(z; + - Lyn is very easy to expand as monomials (whose powers
may be negative integers) in z;. We have defined weights @; : 7" — C* in page
78. It is easy to see the restriction of @; to T under T — TY — T is just the irre-
ducible character z; : T — C* define here in 84. Here the embedding of T — TY
is the j-th component. This means that the monomial []; z;’ corresponds to the
weight >°; n;m;. Thus the weighs (and their multiplicities) of the fundamental
irreducible characters X; of Sp(g) are completely determined. Finally, we have to
change to the basis of fundamental dominant weights @y, ..., w, using (4.4.45).

Example 4.52. Consider ¢ = 3 and X3 in Proposition 4.51. We have X35 = s + s3.
From the definition, we have s; = ¢; + t5 + t3 and s3 = ¢;t»t3. Hence

si=(a+a)+(2+z)+ (st
The corresponding weights are

mla _mla m27 _m27 m?n —@3.
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Similarly, we have

s3=(z1+2 )=+ 2 )z+2")
= n2pzs + 212025 1 + 2125 T2s + 212y tag T

—1 -1, -1 —1_-1 —1-1_-1
2y Zoz3t 2y ZoZy T t 2 2y 3tz 2y Z3 .
The corresponding weights are

®; + ©y + @3
W, + Oy — Oy
™, — Oy + 05
™, — My — 05
—; + Wy + @3
—; + Wy — @3
—0; — 02 + @3
—W; — W2 — W3

The 14 weights above are thus the weights of the fundamental irreducible cha-
racter X3 and each of them has multiplicity 1.

We summarize the results in this section in the following proposition (which
follows from Proposition 4.51) :

Proposition 4.53. Let X; be the fundamental irreducible character of Sp(g) cor-
responding to the fundamental dominant weight w;, as mentioned in page 82.
Then X, is linear in sy, . . ., s,, see Proposition 4.51. Write X; = Z?:1 m;;s;, where
mj; is the (j,7)-entry of [Id,]; in Proposition 4.51. We have m;, = 1. Let v € A
be a weight whose vector representation, with respect to the basis @ introduced
in page 78, is [v], = v = (v1,v,...,v,) With exactly j non-zero coordinates.
Then v is a weight of X; if and only if v, € {—1,0, 1} for all £ and m;; # 0. More
precisely, the multiplicity of v in X; is m;. Using (4.4.45), we see that the vector
representation [v]_ of a weight v of X; with respect to the basis w has the form
(Ul — V2,V2 — V3,...,Ug—1 — Vg, Ug) with all Vg € {—1, 0, 1}

4.6 Computation of irreducible characters

In this section, we present an algorithm to compute the irreducible charac-
ters of USp(2¢g). More precisely, our task is to express an irreducible character
X of USp(2g) as a polynomial expression in si,...,s,, under the isomorphism
in (4.5.7). For the fundamental irreducible characters X;, the answer is given
in Proposition 4.51 in the previous section. Furthermore, we also discussed the
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weights of X;. These extra information are used in the algorithm, as explained in
page 82.

Every irreducible character corresponds an dominant weight A. We will use
the set of fundamental dominant weights w as the basis for weights. Our task
is to compute the irreducible character corresponding to a dominant weight in
a recursive way. More precisely : Fix an integer 1 < [ < g. The Brauer-Klimyk
formula (4.3.14) involves X, X, for another dominant weight ;, which will be
the fundamental dominant weight w; in our algorithm. We will compute X,
from X, X, and other terms. The weight ) and the other terms are “smaller” than
A + i, which will be defined later (but it is not the partial order we defined in
page 71). This is what we mean by “in a recursive way” above. In fact, we don’t
define an order on the set of dominant weights, but on its coordinate space with
respect to the basis w, see Definition 4.60.

In Proposition 4.53, we give a description of the weights v of X, = X, = X;.
In order to apply the Brauer-Klimyk formula, we need to find a certain element
w € W in the Weyl group such that w(v+ A+ p) lies in the positive Weyl chamber
C, defined in Definition 4.29, where p = Y7, w; is the Weyl vector in Defini-
tion 4.31. The Weyl group W of USp(2¢) has order (2¢)!! = 29¢g! (double factorial
of 2¢), which grows extremely fast : For 1 < g < 10, we have

g |12 3| 4 ) 6 7 8 9 10
(W1 |2|8|48 | 384 | 3840 | 46080 | 645120 | 10321920 | 185794560 | 3715891200

Thus a naive approach to find a required element w € W is not feasible for g > 8
and it is already very slow for ¢ = 6. Hence before we present our algorithm, it
is necessary to address this question about efficiency.

It follows the definitions of positive Weyl chamber C, (Definition 4.29) and
of fundamental dominant weights (Definition 4.30) that every element = € C,
have positive coordinates with respect to the basis @ : For x € C,, we have [z]_ =
(1,29, ...,2,) With z; > 0 for all 4. If  is a dominant weight, i.e. x € ANCy,
then [z]_ = (z1,29,...,2,) € Z%,. Since USp(2g) is simply connected, w form a
basis of A (Definition 4.30) and the set A N C,. of dominant weights is identified
as 7%, via x — [z]_.

Back to the question of finding w € W such that w(v + A + p) € C,.. We work
with the basis w. Let [\]_ = (z1,22,...,7,4) € ZL,. We have [p]_ = (1,1,...,1),
as explained in page 81. For a weight v of an fundamental irreducible character
X;, we have [v]_ = (v1 — V2,02 — U3, ..., V51 — Uy, vy) With all v, € {—1,0, 1}, see
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Proposition 4.53. So the question is translated to find w € W such that

1+ 1+ (v —vg)
.CE2+1+(U2—U3)
[wl, - v+ A+pl, = [w], - :

€7%, (46.1)

Tg-1+ 1+ (vg-1 — )
g+ 14 (vy)

where x; € Z2, and v; € {—1,0,1} for all i. We will answer this question, but
before that, we discuss a more general question.

Let A € A be any weight (not necessary dominant) with [A|_ = (z1,22,...,24) €
Z9. How one can find w € W such that w(\) € Cy, i.e. [w]_ - (z1,29,...,74) €
7%,? We have seen that ANC, = Z%,, = — [z]_. Using the basis change of w
and @ given in Proposition 4.47, we see that ANC. = Z4, x — [z], where Z¢
is

25 =y, y2, - yg) €EZ° |yp 2y 2 -+ Z yy = 0} (4.6.2)

Hence the question is equivalent to find w € W such that [w] - (v1,y2,...,y,) €
75, for any given [A|; = (y1,¥2,...,Y,) € Z7. This equivalence is both theoreti-
cally and computationally : If one question is solved, the another is also solved by
changing the basis, which is very easy since we know explicitly the basis change
matrix. Finally, we don’t actually need to know w € W such that w(\) € C, : We
just need to find a vector v € C, such that v = w(\) for some w € W.

Proposition 4.54. Given [\, = (y1, %2, .- .,Yy) € Z9, there is (41,2, ..., Yy) € Z5,
such that there is w € W for which we have [w], - [\], € Z9. To find one such

(U1, 92, -..,Yy) € Z9, it takes at most g steps to take absolute values of each y;
and then at most @ steps to sort the g non-negative integers in the sequence
(ly1ls |2l - - - |yg|) to obtain an element in Z9,.

Proof. In Proposition 4.45, we computed w;. We see that w; permutates m; and
;41 but fixes other @;, for 1 < i < g — 1. Moreover, w,, just changes @, to —®,.
Using the coordinates with respect to the basis @, this means that [w;]; - (y1,- .., Y,)
exchanges y; and ;4 for 1 <i < g—1,and [wg], - (Y1,---,Yg) = (W1, Y2, - - - s —Yg)-
Combine these two facts, we know that we can find an element in W, for each
pair (4, ), to exchange y; and y;. Also, for any i, there is an element in W to
change y; to —y; : Just exchange y; and y,, change y; (which is at the g-position
now) to —y; using [w,]_, and finally exchange —y; and y, again. We mentioned
that we don’t have to compute w € W, so we don’t have to know the elements in
W mentioned above. Now it is clear that the operations mentioned in the propo-
sition correspond to actions of elements in the Weyl group . The claim about
the number of steps is clear. O

Remark 4.55. The (at most) g steps to take absolute values y; is optimal and fast.
For the sorting, it can be done much faster using well-known sorting algorithms.
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Although we want to make our algorithm of computing irreducible characters
fast so we can deal with the cases beyond, say, ¢ > 10. But we still consider
only small g, say g < 20. So the faster sorting algorithms are not necessary at
all in these cases. Also, the question of finding some particular element in C, for
our algorithm is a special version of the question solved in Proposition 4.54, see
(4.6.1). In this case, we will see that we can solve the question in time O(g).

After solving the above general question, we go back to the special question
mentioned in (4.6.1). Contrary to the solution for the general question for which
we work with the basis @, we work with the basis w for the special question. As
we mentioned in the discussion of the general question, we don’t need to know
w € W, but just a vector (g1, s, . . ., §y) € Z, such that

I1+1+('U1—U2)
I2+1+<02—U3)
(91,9255 Gg) = (Wl - [V + A+ ply = [wl, - : )
Tgo1 + 1+ (vg_1 — vy)
Tg + 14 (vg)
(4.6.3)
for some w € W. Recall that we have z; € Z%, and v; € {—1,0,1}, see (4.6.1).
Let Yi = T; + 1+ (Uz’ — 'U,L'+1), where Vg+1 = 0. -

Lemma 4.56. We have y, > 0and y; > —1for1 <i < ¢g—1.Ify; = —1 (hence
i<g-—1),wehavey,_y >1(f7>1)and y;, > 1.

Proof. It clear that y; = =; + 1 + (v; —vip1) > 0+ 1+ ((—1) — (1)) = —1, for
1<i<g-1,and y; = —1 if and only if ; = 0,v; = —1 and v;;; = 1. Hence if
y; = —1, we have

Yir=via+ 1+ —v) =z +1+ (v —(=1) 20+1+(-1-(-1)) =1,
Yisr = Tig1 + 1+ (Vi1 —Vig2) =i+ 14+ (1 — (vig2)) 20+ 14+ (1 — (1)) =1,

where the first inequality is valid for ¢ > 1. Similarly, we have y, = z,+ 1+ (v,) >
0+1+(=1)>0. 0

Recall that we want to transform the vector [v + X+ p|_ = (y1,¥2,...,Y,) tO
72, using the matrices [w] with w € W.

Corollary 4.57. Let y; as above. Assume y; < 0 (hence i < g, as shown above).
Let

(gjla y~27 s 7y~g) = [wl]w ) (yh Y2, ... 7?/9)' (464)
Then §; = 1, ;-1 > 0 (if ¢ > 1), 4,11 > 0 and g; = y; for all other j.

Proof. From Proposition 4.50, we see that (41, %2, . .., Uy) = [wil_ - (Y1, Y2, -+, Yg)
is given by s = —vi, Ji-1 = Yi—1 + Yi> Yiy1 = ¥i + ¥ir1 and §; = y; for all other
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j. Since we assume y; < 0, Lemma 4.56 implies y; = —1, y;_; > 1 and y; .1 > 1.
The corollary follows easily. O

The above corollary says that we can transform

(- c i, Vi1, Yi = — 1 Vit Yiga - )

to (... ¥i—2,¥i-1 — L, 1,yis1 — L, yiy2...) where g,y —1 > 0 and y;41 — 1 > 0.
If 9, o < 0 or y;,o < 0 (hence it must be —1), we get y;_; — 2 Or ¥, 1 — 2
after applying Corollary 4.57 again, and this time we don’t know anymore if
Yi—1—2 > 0ory;11—2 > 0. These cases occur when we have (..., —1,y,_1,—1,...)
or (...,—1,y;11,—1,...). The following lemma shows that in this situation, we
have y; 1 > 3 or y;.1 > 3 respectively. Hence we never fall into an infinite loop
of changing sign.

Lemma 4.58. Let y; as in Lemma 4.56. If 4, ; = —1 and y;.; = —1, we have
Y > 3.

Proof. As proved in Lemma 4.56, y;_1 = —1l if and only if ;1 = 0, v;_1) = —1
and v(;_1);1 = 1. Similarly, ;41 = —1 if and only if ;11 = 0, v441) = —1 and
Vit1)+1 = 1. Hence y; = o + 1+ (v; — vigq) = 2 + 14+ ((1) — (1)) > 3. [

Proposition 4.59. Let y; as in Lemma 4.56. Let y; defined by

Y =0y, —1Yi
Ui = Uiy + |l + T

Then (§1,72,...,7,) € Z%,, and it is the image of (y1,¥»,...,y,) under [w]_ for
some w € W.

Proof In Lemma 4.56, we proved that y; < 0 if and only if y; = —1. Hence 7j; = 0
ify, >0andy; = y; if y; < 0. If y;_1 < 0, Corollary 4.57 says y; > 0, hence
ly;l = v;. In this case, the value 5, , = y;_1 is added to |y;| = v; (and y;_»),
as shown in Corollary 4.57, which corresponds to the action of [w;_4]_ (which
changes the sign of y;_; also). The same arguments apply to y;, . This shows that
the value y; is the result of applying [w;_,|_ and/or [w;1]_ when y;_; < 0 and/or
yir1 < 0. Now assume that y;_; > 0 and ;.1 > 0. We have 37,1 = 7;;1 = 0. If
y; > 0, we don’t change the value of y;, hence §; = y; = |ys| = 0+ |y;| + 0 =
Yic1 + |yi| + yior. Finally, if y; < 0, we use [w;]_ to change the sign of y;, and
we still get §; = wi—1 + |yi| + yi—1. Hence the (1,92, ...,9,) is obtained from
(Y1, 92, - - -, ¥yy) under [w]_ for some w € W. (1,8, ...,7,) € ZL, is the result of

Lemma 4.56, Corollary 4.57 and Lemma 4.58. O
Definition 4.60. For x = (21, 22, ..., 1,), we define o(z) = >_7_, z;. We define an
well-ordering on Z%, as follows : For x = (z,%s,...,2,) and y = (y1,¥2,...,Y,)

in 7%y, x < y if and only if one of the following two conditions are satisfied :
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(1) o(x) <o(y), or
(2) o(z) = o(y) and there exists 1 < i < g such that z; = y; for all j < i and
Be careful that, for the definition = < y, the condition in (2) is x; > ;.

Example 4.61. For g = 3, we have

0 1 0 0 2 1 1 0 0 0

O < |0f < |1] < |0] < [0] < [1| < |0 < |2] < |1] < |0] <
0] 0] 0] 1] 0] 0] 1] 0] 1] 2]

[3] [2] [2] 1] 1] [1] [0] [0] [0] [0]

O < |1 < |0] < |2] < [1] < |0l < (3| < |2] < |1]| < |O

0] 0] 1] 0] 1] 2] 0] 1] 2] 3]

Example 4.62. For g = 2, the order can be visualized as :

A

(=
\e/

SN

G\ (DB N

N

(\ () () (= (1

A\

CONNAA AR
C g U\

L\ U

AN

~

P\ U\

~

(N AN D L)
NZERANARANY
63\ (N Y N D

<

For 2 grid points = with label ¢ and y with label j, we have : x < y if and only if
1< 7.

Let A\ be a dominant weight and v be a weight of the fundamental irreducible
character X;, which corresponds to the (fundamental) dominant weight u = o,
whose coordinate is [u]_ = ¢;. As in 87, let [\]_ = (21, 22,...,2,) € Z%, and
W] = (v1 — vy, 09 — v3,...,0, 1 — vg,v,) with all v, € {~1,0,1}. The weight
Ap+v has coordinate (A + p + v]_ = (y1, 42, . .., Y,), Where y; = z;4+14+(v;—v;11)
with the convention v,;; = 0. Brauer-Klimyk formula Theorem 4.35, says that
we can find w € W such that w(\ + p + v) is a dominant weight, which is uni-
quely determined although such w is not unique. Proposition 4.59 tells us the
coordinate [w(A+p+v)|_ = (41,01,...,Yy) € ZL,. If there is y; = 0, which
means that w(\ + p + v) is on the boundary of C., then Brauer-Klimyk formula
says that such » has no contribution to the decomposition of X, X, in (4.3.14).
Hence we will look only those v such that [w(A + p+v)]_ = (41,91, .., 7,) has
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the property : y; > 1 for all 1 < i < g. In this case, the weight w(A + p+v) — p
is dominant and its corresponding irreducible character X, ,+x+,)—, appears in
the decomposition of X, X, with multiplicity (—1)"“)m(v), where m(v) is the
multiplicity of v in X, = X;. The dominant weight X,,44,)-, has coordinate
[XM(HMP)_,,L = (0 —1,52—1,...,9, — 1). We will study these vectors in ZQZO,
which eventually shows that we have a recurrence formula for irreducible cha-
racters of USp(2g). To simplify the presentation, we fix the following notations

and conditions (discussed above) :

= (21,22,...,%4) = [N,

y= W, yg) = A+ o+,

J= (1,92 -,Yg) = [wA+p+v)],,
§= (01,92, ,9g) = [wA+p+v) —pl,,

{-1,0,1} with v,; = 0. All of these are integers. Finally, since v is a weight of
X;, Proposition 4.53 also implies that there are at most [ non-zero elements in
these v;.

WherexiZO,yizxi—l—l—i—(vi—viH),Qi> ]_,gzzgz—l ZO,andviE

Lemma 4.63. We have (7)) = o(y) and o(9) = o(x) + v;.

Proof. In the proof of Corollary 4.57, we change (..., 41, ¥, Yit1--.) O (..., yi—1+
Yi, —Yi, Yir1 + Yi - . .), if y; < 0, and the other coordinates are not changed. Since
(yi1 + i) + (—vi) + (Y1 + ¥i) = Yi_1 + Yi + yiv1, the first claim follows. We have
o) =0(f) —g=0y) —g=o0x)+g+Xi(vi —viy1) — g = o(x) + v1. O

Lemma 4.64. We have o([w(A+p+v) —p]_) < o([A+p]_), and the equality
holds if and only if v; = 1. In particular, [w(A+ p+v) — p|]_ < [A+p]_ if v; < 1.

Proof. Recall that ;1 = w;, we have o([A+ p]_) = o(x) + 1. This implies that
o([wA+p+v)—pl ) =0@) =0o(x)+v <o(x)+1=0c(A+pl_). The claim
about the equality and the last statement are easy. Il

The above discussion focus on a generic weight of the irreducible character
X;. In this paragraph, we focus on a particular one. From Proposition 4.33 and
Theorem 4.34, we know that y = w; is the highest weight of X; = X, whose
multiplicity is 1. The sequence (vy, vy, ..., v,) for w; is just [w;], which is v; = 1
for i < [ and otherwise 0. This can be seen easily from [w;]_ = ¢; and the basis
change matrix in (4.4.44). It is clear that A + p + =, is a dominant weight and
not on the boundary of C,, so we can take w to be the identity element of the
Weyl group W, and thus w(A+ p+ @;) — p = A+ @w; = A\ + p appears in the right
side of the Brauer-Klimyk formula with multiplicity 1. We restrict ourselves here
to the group USp(2g), but this is true in general, by the same reason.

Lemma 4.64 says that the weight w(\ + p 4+ v) — p, which contributes to the
right side of the Brauer-Klimyk formula (4.3.14), is “strictly smaller” than the
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wight A + 4 = A + @ for those v with v; < 1. Our next task is to study the
situation for those v with v; = 1.

Lemma 4.65. Assume that v; = 1. Let j = max{1 <¢ < g |v; =1}. Then j <.
There is only one v for which we have j = [, which is v = w,. For any other v,
we have [w(A+p+v) —p]_ < [N+ 4.

Proof. Sincev; = 1, wehave o([w(A + p+v) —p|_) = o([A + p]_) by Lemma 4.64.
For1l << ]—1, we have Vi = Uiyl = 1, hence Yi = xi+1+(vi—vi+1) =x;+1> 1.
For i = j, we have y; = x; + 1 + (v; — vj41) > z; + 2, since v; = 1 but
vjy1 < 1. If y;41 > 0, then g; = y;. Otherwise y;1; = —1, v;4; = —1 and we
have y;, =y; — 1 =2; + 14 ((1) — (—1)) — 1 = x; + 2. These show that §; = z;
forl1<i<j—1landgy; =z;+1.1f j <[, we have § < x + ¢; from the definition
Definition 4.60, which proves the last claim. The claim about j < [ and the uni-
queness of v such that j = [ is mentioned in page 92, which is a consequence of
Proposition 4.53. [

The Brauer-Klimyk formula (4.3.14) can be written as

Xpr = X0 — > (D" ™) Xwrs prv)—p- (4.6.5)
VAL

The multiplicity of A + p is 1 is discussed in the paragraph after Lemma 4.64. For
the group USp(2¢) and p = w;, we have shown that w(\ + p + v) — p is “strictly
smaller” than A + 4 in the sense [w(A + p+v) — p|_ < [A + p]_. We can present
our main algorithm in this chapter now :

Algorithm 1 Compute Irreducible Characters of USp(2g) in Z[X;, ..., X,]

1: def CHI(x) # X, for [\ ==z
2. ifx¢Zl: # X\ must be a dominant weight.
3 return (

4: ifo(x)=0: #x=(0,...,0)
5: return 1

6: Find smallest 1 <[ < g such that x; > 1

7. ifo(z)=1: #x=e¢
8 return the symbol X; # Recursive computing
9: SetX =3, 0, (1) m(v)CHI([wA + p+ 1) — p] )

10: return CHi(e;)) CHI(z — ¢)) —X

Here v runs over the weights of X; except w;. These weights and their mul-
tiplicity m(v) in X, are determined by Proposition 4.51 and Proposition 4.53,
which are easy to compute. The dominant weight [w(\ + p + v) — p|_ is compu-
ted using Proposition 4.59. We don’t have to find w € W explicitly, but it is easy
to compute using Corollary 4.57. The power [(w) is the number of —1 in the
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entries of [\ + p+ v|_. The algorithm terminates is proved by Lemma 4.64 and
Lemma 4.65.

Algorithm 1 computes the irreducible characters of USp(2¢g) as polynomials
in X4, ..., X,. Using Proposition 4.51, we obtain their polynomial expressions in
S1,...,58g-

After developing a general recursive algorithm for computing the irreducible
characters of USp(2g), we can present explicit formulas for the cases ¢ = 2 and
g = 3. The proofs are the results of computations in the previous sections. In
following, we define x,, = 0 if any of the m; in m = (m4,--- ,m,) is negative.
We also define e : Z — {0, 1} by

{0 if 2 =0,
e(r) = :
1 ifz #0.

Proposition 4.66. Let x(; ;) be the characters computed using Algorithm 1 for
g = 2. We have

X(i41.4) = X(1.0) * X(id) — 2 X(i)+v

vEST

X(i,j+1) = X(0,1) " X(irj) — Z X(@i,5)+v — E(Z) X(i,5) »
VES2

where (we use both the row and column notation for the indices of x)

[ ()+(2)
s~ ()+(2)

Proposition 4.67. Let x(; ;) be the characters computed using Algorithm 1 for
g = 3. We have

X(i+1,5,k) = X(1,0,0) " X(i,5,k) — Z X(i,5,k)+v
vEST

X(ij+1k) = X(0.1,0) * X(ik) — D X(igk)+v — (€(0) + €(5)) Xk »
VES2

X(i,5,k+1) = X(0,0,1) igk) — Z X (i,5,k)+v
vES3

- 6(@) X(i,5,k)£(0,1,—1) — E(j) X(4,4,k)%£(1,0,0)
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where (again, we use both the row and column notation for the indices of )
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Define 7'(g, d) to be the total number of summands in Step 9 of Algorithm 1
for the computation of all the irreducible characters of USp(2¢) with o(z) < d. It
is a straightforward computation that

roa- S (et Lo (TR ra))

where C'"" = (Tg) is the binomial coefficient. Here the summation over d starting
with d = 0 is just for the simpleness of formula. One can prove the inequality, for
d> g2
I'(g+2,4+
Pigud) < e ot 28 40)
I'(g+2)

where ['(s, z) is the incomplete gamma function, which satisfies

lim [(s,2) _

T—00 IS—l e~z

The number of = = (z1,,,...,z,) for which o(z) < d is C4"". We define the
average complexity per character for Algorithm 1 to compute all the irreducible
characters of USp(2g) up to a unweighted degree d > ¢* by

T(g,d)
Cvcsll-l-d :

t(g,d) =

Using the above results, we obtain

1-g 49
d—oo (g + 1)'

We have proved
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Proposition 4.68. For any fixed genus g, the average time ¢(g, d) per character of

Algorithm 1 is O(d). Furthermore, the “constant” factor behind this Big-O, which

27rel_ggg\/§ ~ €

depends on g, is at most T

4.7 Explicit computation of Frobenius distributions

In Section 4.5, we apply the Brauer-Klimyk formula (Theorem 4.35) to de-
velop an algorithm to compute the irreducible characters of USp(2g), in terms
of the symmetric polynomials sy, ss,...,s, in t1,%s,...,t,. See Section 4.5 for
these notations, in particular the paragraph above Proposition 4.51. The moti-
vation comes from using irreducible characters to study Sato-Tate groups, see
Section 3.5.2. In this section, we work with some examples of families of genus
2 and genus 3 curves.

4.7.1 Generic curves : heuristic behavior in the genus

In this section, we consider a generic hyperelliptic curve of genus g whose
Sato-Tate group is USp(2g). We consider the trivial character and the fundamen-
tal irreducible characters of USp(2g). These are the irreducible characters corres-
ponding to the dominant weights whose vector representation m = (my, - - - ,my)
with respect to the fundamental dominant weights satisfying m; +mqy+...4+m, <
1. For g = 2 and ¢ = 3, their expressions in s; can be found in Example 4.17 and
Example 4.18.

Assume we have a Frobenius action F, for a genus g curve over F, whose
characteristic polynomial is given by

P(x) = 2* + a12* ' + - agg 1w+ ¢ (4.7.1)

For g = 2, we then have s, = —a,/,/q and s, = (a2 — 2¢)/q. For g = 3, we have
s1 = —a1/\/q, s2 = (a2 — 3q)/q and s3 = (—az + 2a:q)/¢**. For an irreducible
character X, which is expressed in s;, we then define X(F}) to be the value of X
when s; are assigned the above values.

Let {F, }.cx be the sample space of Frobenius that we are interested. For two
irreducible characters X; and X, of USp(2¢) and a finite subset A of X, we define
e(X1, X, A) = ﬁ > wea X1(Fy)Xo(F,). This is the sample mean of the inner pro-
duct of X; and X, over the subset {F}, },c 4 of samples. For an closed subgroup H
of USp(2g), we define erry (X1, Xo, A) = €(X1, Xa, A)— (X1, X2) g, Where (X1, Xo)  is
the inner product of the restriction X; |y and X, |y with respect to the Haar mea-
sure of H. If H is the Sato-Tate group for the Frobenius distribution {F,}.cx,
then we expect that lim,_, y erry(Xq, X9, A) = 0 for any X; and X,, where the
limit is taken over the subset of X under the partial order of inclusion. Given
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a set of irreducible characters {X;};c;, we define Erry (I, A) to be the maximum
max; jerlerry (X;, X, A)|.

Assume that we consider curves over the rational field. Let (p1,po,...,pn,--.)
be the sequence of primes of good reduction for a curve, determined by the usual
order on N. For a positive integer n and two irreducible characters X; and X,, we
define (X1, Xo,n) = = 370, X1(F},, )Xo(F), ). Similarly, we define erry (Xy, X2, n) =
€(X1,Xo,n) — (X1, X2)y. We also have Erry (7, n) for a set of irreducible charac-
ters {X;}icsr, and we simply write Err(n) when the subgroup H and the set I is
understood.

In this section, we are interested in the Frobenius distributions which are
determined the by Haar measure of G = USp(2g), hence the inner product
(X1,X2)g = 1if Xy = X, otherwise (X1,X3)g = 0. We also restrict ourselves
to the trivial and fundamental irreducible characters.

We will investigate how Err(n) converges to 0 when n — 0. We also consider
the (sample) standard deviation of errors

SErr(n) = —22:1 Err(k)” ,

n

which is just the (sample) standard deviation of the points in the sequence
(Err(k))r_,. This quantity measures the stability of the convergence.

For ¢ = 2,3,4,5 and 6, we choose the hyperelliptic curve y?> = 229! + z +
1. We plot Err(n) and SErr(n) for n = 1,2,...,4096. These data demonstrate
empirically that the errors don’t increase when g grows.
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4.7.2 Moment sequences vs. orthogonality relations

In this section, we compare the approach using inner products of irreducible
characters to moment sequences.

Let P(X) be a Weil polynomial as in (4.7.1), we write its normalized Weil
polynomial P(,/qz)/q? as P(z) = 2% + @a® ' + @292 + - + Ggy_12 + 1.
We have a; = ay,_; for all 1 < i < 2¢g — 1. When the Frobenius distribution is
determined by a subgroup H of USp(2¢g), we can study the moment sequences of
ai, as, ... and a, with respect to the Haar measure on H. For g = 2, a complete
list of these moment sequences can be found in Sutherland’s webpage [Sut]. For
the group USp(4), the moments is given in the left side of Table 4.6.

We work with the hyperelliptic curve y? = 2° + z + 1. For a positive integer N,
we compute the sample moments of a; and a, using N sample points of Frobe-
nius. Table 4.6 gives the comparison of the expected values and the numerical
values for N = 22 and N = 2'°. It shows that beyond n = 5, even for 2! sample
points, we don’t have useful approximations of M,[a,] and M,,[as].
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n | N=22| N=26 | N=x n | N=272 N=2% | N=c
1 0.002 0.006 0 1 0.989 0.999 1

2 0.984 0.996 1 2 1.964 1.992 2

3 0.046 —0.001 0 3 3.815 3.966 4

4 2.833 2.970 3 4 9..250 9.853 10
) 0.196 —0.128 0 ) 23.747 26.423 27
6 12.306 13.743 14 6 67.907 79.611 82
7 0.397 —1.487 0 7 | 205.367 257.730 268
8 66.441 81.446 84 8 | 658.293 893.546 940
9 | —3.853 | —14.304 0 9 | 2192.789 | 3257.407 3476
10 | 409.298 | 565.972 594 10 | 7550.758 | 12387.749 | 13448

Mn[&l] Mn[@g]

Table 4.6 — Moments for g =2, USp(4), y* =2+ + 1

Now we consider the inner products of the irreducible characters of USp(4)
whose weight vector representation m = (mq,ms) satisfy m; + my < 2. There
are 6 such characters and they are given in Example 4.17. Using the order given
in Example 4.62, we use X; for 0 < i < 5 to denote them, rather than using the
vector m. The expected value of (X;, X;) is d;;. We use N sample points of Fro-
benius of the same curve to compute the sample mean of (X;, X;), and compare
them with the expected values. For N = 21° and N = 2'2, the results is given
in Table 4.7. Compared with Table 4.6, we see the numerical inner products ap-
proximate very well to the expected values, even using only 2!° sample points.

0 Xo X; Xs X; X4 Xs

Xo | 1.000 | —0.037 | 0.003 | 0.004 | —0.021 | —0.050
X; | —0.037 | 1.007 | —0.058 | —0.095 | —0.057 | —0.017
X2 | 0.003 | —0.058 | 0.954 | —0.006 | —0.091 | —0.038
X5 | 0.004 | —0.095 | —0.006 | 0.928 | —0.054 | —0.071
Xy | —0.021 | —0.057 | —0.091 | —0.054 | 0.879 | —0.075
X5 | —0.050 | —0.017 | —0.038 | —0.071 | —0.075 | 0.947

N =210

0 Xo X; Xs X; Xy Xs

Xo | 1.000 | —0.002 | —0.010 | —0.004 | —0.012 | —0.009
X; | —0.002 | 0.984 | —0.015 | —0.028 | —0.049 | —0.014
Xz | —0.010 | —0.015 | 0.986 | —0.040 | —0.030 | —0.059
X5 | —0.004 | —0.028 | —0.040 | 0.959 | 0.008 | —0.046
Xy | —0.012 | —=0.049 | —0.030 | 0.008 | 0.898 | —0.019
X5 | —0.009 | —0.014 | —0.059 | —0.046 | —0.019 | 0.980

N =2

Table 4.7 — Inner products for g = 2, USp(4), y? =2° + 2 + 1
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4.7.3 Generic curves : heuristic behavior in the degree

In this section, we continue to consider the representative hyperelliptic curve
y? = 2%+ x + 1 over Q. Let d > 1 be an integer. We consider the trivial character
and the irreducible characters of USp(4) whose corresponding dominant weights
have vector representation m = (my, ms) satisfy m; + ms < d. We study how the
errors behave when the (total) degree d grows.

We use the same notation Err(n) as in Section 4.7.1, however here we use
more and more irreducible characters, when Section 4.7.1 focus only on d = 1.
The following table demonstrates that the errors do increase when d increases,
but in a rather slow speed. Let #(d) be the number of irreducible characters for

which m; + my < d, we have #(d) = %. We obtain :

d 1 2 3 4 5 6
#(d 3 6 10 15 21 28
rr(212) [ 0.0155 | 0.1010 | 0.1893 | 0.2105 | 0.2105 | 0.2105
rr(2) 10.0060 | 0.0256 | 0.0378 | 0.0711 | 0.0988 | 0.1425

E
E

Table 4.8 — Error’s behavior in d for g = 2

The following table demonstrates the relation between the error function Err(n)
and the degree d in a global view.
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4.7.4 Generic curves : heuristic behavior in the sample size

The behavior of errors in the sample size n is nontrivial to determine expe-
rimentally. In particular, we need to compute many samples in order to obtain
a more confident guess of the answer. Hence we choose the elliptic £ : y* =
23 + x + 1 as our example. We compute 2?° Frobenius and plot the function
Err(n) forn = 219, k = 1,2,...,2'%. The following table shows the pictures of
Err(2'°%) and SErr(2'%) :
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It is difficult to have a clear idea how Err(n) behaves in n, but the “average” er-
ror SErr(n) provides an insight. The table below is for the functions of Err(2!° k)
and SErr(2'° k), multiplied by v/k.

0.25
04
0.20

0.15

02
0.10
0.05 o

10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000

g=1, VEErr(2'0k) g =1, VEkSErr(2'°k)

The picture on the left side still has oscillation, but the picture of v/& SErr(2'° k)
suggests that it converges to a constant. After a change to the variable n, one
may guess SErr(n) ~ 3—\/25 If this is correct and can be proved, since SErr(n) is the

standard deviation of Err(n), we should have the same order of magnitude for
Err(n).

4.7.5 Strategy for non-generic curves

Given a curve of genus g, we can always compute a set of Frobenius and use
the irreducible characters X of USp(2g) to make a table as we did above. If C
has a proper subgroup H of USp(2g) as its Sato-Tate group, the table gives ap-
proximated values of the inner products (X;|y, X2| )z, where the inner product
is given by the Haar measure on H. The inner product is determined by the de-
composition of X |y into irreducible characters of H, i.e the branching rule from
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USp(2¢g) to H. For different groups, they must have different tables of expected
values.

On the other hand, instead of using the irreducible characters of USp(2g), we
can work with the irreducible characters of the subgroup H directly. This gives
a matrix whose entries are small integers, and usually it is a diagonal matrix or
even the identity matrix. Instead of using the irreducible characters for USp(2g),
we propose to precompute the irreducible characters for each potential group H
and verify empirically that their inner products converge to the expect matrix of
orthogonality relations for H.

A natural question is raised : Which strategy is better ? We will answer this
question by an example in this section. Consider the family of genus 3 curves that
we consider in Chapter 2. The automorphism groups of such curves contain an
involution, and they admit a representation y*+g(z)y*+h(z) with deg(g) < 2 and
deg(h) < 4. Let C be a curve in this family. It admits a degree 2 map to the elliptic
curve E defined by y? + g(z)y + h(z). The map is given by 7 : C — E, (1,y) —
(z,y?). See Section 2.5 for more information. This gives a decomposition 0 —
A — Jac(C) = E — 0 of abelian varieties, where A is the kernel of r,. For any
Frobenius action F), - on C, we obtain a pair (F} g, F}, 1) of Frobenius on E and
C' and their characteristic polynomials satisfy P, o« = P, g P, 4.

The Frobenius distribution of C' gives Frobenius distributions on the elliptic
curve E and the abelian surface A. In this section, we consider the distribution
of Frobenius for the family of curves, not just a single particular curve, and we
use only primes of good reduction less than or equal to 47.

For the elliptic curve factor, we use the irreducible characters of SU(2) to pro-
duce the table, and we obtain

1.00 0.07 | —=0.01 | 0.00 0.00 0.00
0.07 0.99 0.07 | —=0.01 | 0.00 0.00
—-0.01 | 0.07 0.99 0.07 | —=0.01 | 0.00
0.00 | =0.01 | 0.07 0.99 0.07 | —0.01
0.00 0.00 | —0.01 | 0.07 0.99 0.06
0.00 0.00 0.00 | =0.01 | 0.06 0.92

Table 4.14 — Using SU(2)

For the abelian surface factor, we use the irreducible characters of USp(4) to
produce the table, and we obtain
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1.00 | 0.00 | —0.06 | 0.07 | 0.00 | 0.02
0.00 |1.01 | 0.00 0.00 | 0.01 | 0.00
—0.06 | 0.00 | 1.09 | —0.01 | 0.00 | —0.09
0.07 |0.00 | =0.01 | 1.02 | 0.00 | 0.07
0.00 | 0.01 | 0.00 0.00 | 1.06 | 0.00
0.02 |0.00 | =0.09 | 0.07 | 0.00| 1.08

Table 4.15 — Using USp(4)

The above 2 tables suggest that the 2 distributions on elliptic curve factor and
abelian surface factor are determined by SU(2) and USp(4), i.e. both of them are
the generic cases.

If we consider the distribution of F, - and use the irreducible characters of
USp(6), we obtain

1.00 0.07 094 | -0.27 | 0.07 | —0.16
0.07 201 | =035 | 0.95 | —0.06 | 2.04

094 | -035| 3.00 | -0.31| 1.06 | —1.16
=027 095 | =031 | 213 | —=0.70 | 2.05

0.07 | -0.06 | 1.06 | —=0.70 | 3.07 | —1.16
—-0.16 | 2.04 | —-1.16 | 2.05 | —1.16 | 6.24

Table 4.16 — Using USp(6)

110] 1 0 0 0 110[1]0[0]0
0/12] 0 1 0 2 0/2]0|1/0]2
110] 3 0 1 | -1 11013]0[1]0
01| 0 2 | -1 2 0]1]0|2|0]2
0jo0] 1 -1} 3 |-1 0j(0(11013]0
0oj2-112 | —-1| 6 012(012/0|6
(4.17.a) Rounded values (4.17.b) Expected values

We obtain negative numbers on the left side of the above table, which should
not appear, and they are caused by the very few primes used to produce the
samples. However, the distribution of F}, ~ should be determined by SU(2) x
USp(4), as we have seen that this is true on both factors. However, the above
verifications is not sufficient to support our guess. We need to verify that the
distributions on elliptic curve factor and abelian surface factor are independent.
Hence we use the products of the first 4 irreducible characters of SU(2) and
USp(4) as our test functions. These are the irreducible characters of the Lie group
SU(2) x USp(4). We then obtain a table :
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1 0.1 0 0 0 0 0 0 -0.1|-0.3 0 0 0.1 0 0 0
0.1 1 0.1 0 0 0 0 0 -03|-01] =03 0 0 0.1 0 0
0 0.1 1 0.1 0 0 0 0 0 -03]-01|-03 0 0 0.1 0
0 0 0.1 1 0 0 0 0 0 0 —-0.3 | -0.1 0 0 0 0.1
0 0 0 0 1 -0.2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 —-0.2 1 —-0.2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -0.2 1 -0.2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -0.2 1 0 0 0 0 0 0 0 0
—-0.1| -0.3 0 0 0 0 0 0 1 0.1 0 0 0 -0.3 0 0
-03 | -0.1] -0.3 0 0 0 0 0 0.1 1 0.1 0 -0.3 0 -0.2 0
0 -03 | -0.1] =03 0 0 0 0 0 0.1 1 0.1 0 —-0.2 0 —-0.2
0 0 -0.3 | =01 0 0 0 0 0 0 0.1 1 0 0 —-0.2 0
0.1 0 0 0 0 0 0 0 0 -0.3 0 0 1 —0.2 0 0
0 0.1 0 0 0 0 0 0 -0.3 0 —-0.2 0 -0.2 1 —0.1 0
0 0 0.1 0 0 0 0 0 0 —0.2 0 —-0.2 0 —0.1 1 —0.
0 0 0 0.1 0 0 0 0 0 0 —-0.2 0 0 0 —0.1 1

Table 4.18 — Using SU(2) x USp(4)

This supports that the Sato-Tate group for the family of curves in Chapter 2 is
SU(2)x USp(4). Moreover, this example demonstrates that the irreducible charac-
ters of a subgroup H gives a much good convergence than using the restriction
of irreducible characters of USp(2¢) to H.

Our family admits a decomposition of the Jacobian of curves. But in general,
we may not have such decomposition. However, the Frobenius distributions for
curves with real multiplications behave like a totally split Jacobian, but there is
no splitting in general. In this case, we should use the character theory of SU(2)9.

Conclusion : We should use the character theory for the smallest group we
know containing the Sato-Tate group.

4.8 Conclusion

We have developed a systematic way for the computation of irreducible cha-
racters of USp(2g) in terms of the coefficients s; of the real Weil polynomial as
defined in Section 3.4. The main tool is the Brauer-Klimyk formula (see Theo-
rem 4.35), which we express as the recurrence relation (4.6.5). Hence we obtain
the recursive Algorithm 1 for the computation of irreducible characters, which
is much faster than the naive Algorithm 4.15 in Section 4.2. Although we work
with USp(2g), the algorithm can be modified to compute the irreducible charac-
ters of other compact Lie groups. In fact, the Brauer-Klimyk formula is already
used in Sage to decompose tensor products of two irreducible representations
into direct sum of irreducible representations, and it works with a wide collec-
tion of classical and exceptional Lie groups (see the Sage documentation [BSS]).
However, using the Brauer-Klimyk formula in the form of Algorithm 1 is new.
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The use of orthogonality relations of irreducible characters provides a new
perspective to the study of Sato-Tate groups. Even for elliptic curves, Table 3.3
and Table 3.7 already show that the approach using moment sequences needs
more sample points to obtain good approximations of moments. The approach
using orthogonality relations of irreducible characters has very good approxi-
mations to the expected values even with only 1024 sample points, as we see
in Table 3.7. However, there are only three Sato-Tate groups for elliptic curves,
so moment sequences can be used to identify the Sato-Tate groups quickly. Mo-
reover, the point counting for elliptic curves is very fast, in particular in time
O(log(q)®) where ¢ is the cardinality of the base field. So the advantages of using
irreducible characters is not significant for g = 1.

However, since the moments become large when ¢ increases and the number
of Sato-Tate groups also become numerous, we need much more sample points to
identify the Sato-Tate groups of curves with genus g > 2. Furthermore, for g > 2,
the point counting using Monsky-Washnitzer cohomology is in exponential time
in log(p) where p is the characteristic of the base field. Thus the time required to
understand the Sato-Tate groups become much greater for higher genus.

Our new approach using inner products of irreducible characters of USp(2g)
shows significant advantages for ¢>2. In Section 4.7.1, the analysis of empirical
data shows that the errors of the expected values and experimental values do
not increase when the genus ¢ increase. In Section 4.7.2, we show that our new
approach requires many fewer sample points (4096 is enough) to identify the
Sato-Tate group USp(4) in contrast to the approach using moment sequences.
The examples in Section 4.7.3 show that the errors increase very slow when the
number of irreducible characters increases. Moreover, we obtain an empirical
upper bound of the errors between the numerical values and expected values in
Section 4.7.4, which is O(ﬁ), where n is the number of samples. The empirical
results that a surprisingly small sample size suffices to characterize the Sato-Tate
group, as shown in the previous subsections, is consistent with this complexity
estimate.

In Section 4.7.5, we demonstrate that it is better to use the character theory
of the smallest group we know containing the Sato-Tate group. When we study
families of curves with particular structures, like RM curves, this is very useful.
This way, the tables of inner products we obtain always have small integer en-
tries. Combine the results in Section 4.7.4, we believe that a small size of sample
points is enough not only for the generic case, but also for all of the possible
connected (components of) Sato-Tate groups. Furthermore, in the cases where
we don’t know the structure of a target curve or family, we can start with the
irreducible characters of USp(2g). It is very likely that we get useful information
from them, but without a very good convergence to distinguish the Sato-Tate
group from just a few possible candidates. Then we use the character theory for
these possible groups to find out the actual one.

We have established the necessary tools in this thesis and we have seen the
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heuristic advantages of this new method. I expect to complete a further study of
Sato-Tate groups using this method, in particular for ¢ = 2 and ¢ = 3, along with
more interesting applications.
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