Towards less supervision in dependency parsing

par Seyedabolghasem Mirroshandel

Thèse de doctorat en Informatique

Sous la direction de Alexis Nasr.

Le président du jury était Francois Yvon.

Le jury était composé de Alexis Nasr, Francois Yvon, Matthieu Constant, Bernd Bohnet, Owen Rambow.

Les rapporteurs étaient Matthieu Constant.


  • Résumé

    Analyse probabiliste est l'un des domaines de recherche les plus attractives en langage naturel En traitement. Analyseurs probabilistes succès actuels nécessitent de grandes treebanks qui Il est difficile, prend du temps et coûteux à produire. Par conséquent, nous avons concentré notre l'attention sur des approches moins supervisés. Nous avons proposé deux catégories de solution: l'apprentissage actif et l'algorithme semi-supervisé. Stratégies d'apprentissage actives permettent de sélectionner les échantillons les plus informatives pour annotation. La plupart des stratégies d'apprentissage actives existantes pour l'analyse reposent sur la sélection phrases incertaines pour l'annotation. Nous montrons dans notre recherche, sur quatre différents langues (français, anglais, persan, arabe), que la sélection des phrases complètes ne sont pas une solution optimale et de proposer un moyen de sélectionner uniquement les sous-parties de phrases. Comme nos expériences ont montré, certaines parties des phrases ne contiennent aucune utiles information pour la formation d'un analyseur, et en se concentrant sur les sous-parties incertains des phrases est une solution plus efficace dans l'apprentissage actif.


  • Résumé

    Probabilistic parsing is one of the most attractive research areas in natural language processing. Current successful probabilistic parsers require large treebanks which are difficult, time consuming, and expensive to produce. Therefore, we focused our attention on less-supervised approaches. We suggested two categories of solution: active learning and semi-supervised algorithm. Active learning strategies allow one to select the most informative samples for annotation. Most existing active learning strategies for parsing rely on selecting uncertain sentences for annotation. We show in our research, on four different languages (French, English, Persian, and Arabic), that selecting full sentences is not an optimal solution and propose a way to select only subparts of sentences. As our experiments have shown, some parts of the sentences do not contain any useful information for training a parser, and focusing on uncertain subparts of the sentences is a more effective solution in active learning.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (110p.)
  • Annexes : ref. bibliogr. 107-110

Où se trouve cette thèse ?

  • Bibliothèque : Université Aix-Marseille (Marseille. Luminy). Service commun de la documentation. Bibliothèque de sciences.
  • Disponible pour le PEB
  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.