Physique de la dynamique mucociliaire : dispositif d'étude de la migration cellulaire 3D : application à l'asthme et à la BPCO

par Mustapha Kamel Khelloufi

Thèse de doctorat en Biophysique

Sous la direction de Annie Viallat.

Le président du jury était Jean-Marc Di meglio.

Le jury était composé de Philippe Le rouzic, Marc Jaeger, Isabelle Vachier, Pascal Chanez.

Les rapporteurs étaient Pierre-Regis Burgel, Olivia Du roure.


  • Résumé

    Ce travail consiste à apporter une approche différente basée sur la physique pour l'étude des maladies respiratoires.La première partie de cette étude concerne la dynamique mucociliaire avec une application à l'asthme sévère et la BPCO. Nous avons décrit les mécanismes physiques du transport de mucus basés sur l'analyse détaillée de l'activité ciliaire sur un épithélium reconstitué in vitro à partir de biopsies endo-bronchiques humaines. Nous avons montré que la distance à laquelle le mucus ou le fluide newtonien pouvaient être transportés dépendait directement du taux de couverture de l'épithélium par les touffes de cils actives. Nous avons ensuite mis en avant le rôle majeur du mucus viscoélastique sur la coordination de la direction des battements ciliaires pour un transport macroscopique. La fréquence de battement des cils joue sur la vitesse du transport du fluide. Enfin, nous avons montré que l'altération de la clairance observée dans l'asthme sévère et la BPCO est due au manque drastique de cils, tandis que les propriétés rhéologiques du mucus restent inchangées dans notre modèle.La deuxième partie traite de la migration cellulaire dans un environnement biomimétique 3D. Nous avons mis au point un microdispositif pour la caractérisation de la migration des cellules par chimiotaxie. Nous avons validé le modèle en utilisant des cellules immunitaires soumises à des gradients de substances chimio-attractantes et un premier test du rôle inflammatoire a été effectué.

  • Titre traduit

    Physics of mucociliary dynamics : device for studying the 3D cell migration : application to asthma and COPD


  • Résumé

    This work consists to bring a different approach based on physics to study the respiratory diseases.First, study of mucociliary dynamics with an application on severe asthma and COPD was investigated. We have described the physical mechanisms of mucus transport based on the detailed analysis of ciliary activity on an in vitro reconstituted epithelium obtained from human endo-bronchial biopsies. We have shown that the distance at which mucus or Newtonian fluid could be transported is directly dependent on the epithelium coverage rate by the active cilia tufts. Then, we raised the important role of the viscoelastic mucus on the coordination of the ciliary beat direction for a macroscopic transport. The cilia beat frequency plays on transport fluid velocity. Finally, we have shown that altered clearance observed in severe asthma and COPD is due to the drastic lack of cilia, while the rheological properties of mucus remains unchanged in our model.The second part of this work was to look at cell migration in a bio-mimetic 3D environment. We have developed a micro-device for characterization of cell migration by chemotaxis. We validated the model using immune cells under a chemo-attractant substances gradients and a first test of inflammatory role has been completed.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (194p.)
  • Annexes : bibliogr. p. 167-194

Où se trouve cette thèse ?

  • Bibliothèque : Université Aix-Marseille (Marseille. Luminy). Service commun de la documentation. Bibliothèque de sciences.
  • Disponible pour le PEB
  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.