Données de base des ions atomiques et moléculaires de l'hélium et de l'argon pour l'optimisation des jets de plasmas froids utilisés dans le domaine biomédical

par Alexandre Chicheportiche

Thèse de doctorat en Ingénierie des plasmas

Sous la direction de Malika Benhenni et de Mohammed Yousfi.

Soutenue en 2014

à Toulouse 3 .


  • Résumé

    L'utilisation des jets de plasmas froids à pression atmosphérique (PA) pour des applications biomédicales est un sujet de recherche relativement nouveau, et en plein essor. De nombreuses espèces actives (photons, radicaux, particules chargées, champ électrique etc. ) sont produites par ces dispositifs et sont à l'origine des effets biologiques observés. Un des défis principaux est alors de pouvoir en contrôler la production. Pour cela, des modèles physico-chimiques ont été développés mais requièrent, en données d'entrée, les coefficients de transport, souvent indisponibles dans la littérature, des ions affectant la cinétique du jet de plasma. Ce travail de thèse se concentre sur les jets de plasma à base d'hélium ou d'argon. Ainsi, les coefficients de transport des ions He+ et He2+ ainsi que Ar+ et Ar2+ ont été calculés dans leur gaz parent. La nouveauté concerne les ions moléculaires (He2+ et Ar2+), déterminant dans la dynamique des jets car très majoritairement présents à la PA. Les coefficients de transport sont intimement liés aux sections efficaces de collision et donc aux courbes de potentiel d'interaction ion-neutre. Pour le système d'interaction He+/He, une méthode quantique 1D sans approximation a été utilisée pour le calcul des sections efficaces de collision puis, une simulation Monte Carlo a permis d'obtenir les coefficients de transport dans les barres d'erreur expérimentale. Par contre, pour les ions moléculaires He2+, deux méthodes de calcul ont été utilisées : une méthode quantique 1D et une méthode, qualifiée d'hybride, associant formulations classique et quantique. Un compromis entre les deux méthodes a finalement permis d'obtenir des mobilités réduites avec un écart relatif moyen de 5% par rapport aux mesures, puis de les étendre aux champs élevés. Les coefficients de diffusion et les constantes de réaction, non-disponibles dans la littérature, ont également été calculés. Pour les jets de plasmas à base d'argon, les coefficients de transport des ions atomiques à l'état fondamental 2P3/2 et métastable 2P1/2 ont été calculés, à l'aide des sections efficaces quantiques, jusqu'à 1500 Td (1 Td = 10-17 V. Cm²) avec un écart relatif moyen inférieur à 0. 2% par rapport aux mesures. Enfin, pour les ions Ar2+, la méthode hybride a permis d'obtenir les sections efficaces de collision menant à des mobilités réduites avec un écart relatif moyen de 2% par rapport aux mesures et de calculer les coefficients de diffusion et constantes de réaction.

  • Titre traduit

    Basic data of atomic and molecular helium and argon ions for optimization of low temperature plasma jets used in the biomedical field


  • Résumé

    The use of cold plasma jets at atmospheric pressure (AP) for biomedical applications is a hot research topic. Such devices produce many active species (photons, radicals, charged particles, electric field, etc. ) very useful for biomedical applications. The challenge for the plasma physics community is to tune such plasma devices to abundantly or selectively produce actives species beforehand identified for their biological effects. To reach this goal, physicochemical models have been developed but require, in input data, the transport coefficients (not always available in the literature) of ions affecting the kinetics of the plasma jet. In this thesis work we are interested in helium or argon plasma jets. Thus, transport coefficients of He+ and He2+ ions as Ar+ and Ar2+ ions have been calculated in their parent gas. The originality of the work concerns the molecular ions (He2+ and Ar2+) which play the main role in the plasma jet dynamics since they are overwhelmingly present at the AP. The transport coefficients are closely related to the collision cross sections and then to the ion-neutral interaction potential curves. For the He+/He interaction system, a 1D quantum method without approximation has been used for the collision cross section calculation and an optimized Monte Carlo code allowed us to obtained the transport coefficients in the experimental error bars. On the other side, for the molecular ions He2+, two calculation methods have been considered: a 1D quantum method and a hybrid method mixing classical and quantum formulations. A compromise between these two methods finally allowed us to obtain reduced mobilities with a mean relative deviation from experiments of 5% and to expand the latter to higher electric fields. Diffusion coefficients and reaction rates, not available in the literature, have been also calculated. For the argon plasma jet, the transport coefficients for atomic ions in the ground 2P3/2 state and metastable 2P1/2 state have been obtained, using quantum collision cross sections, up to 1500 Td (1 Td = 10-17 V. Cm²) with a mean relative deviation from measurements below 0. 2%. Finally, for Ar2+ ions, the hybrid method allowed us to obtain reduced mobilities with a mean relative deviation of 2% from experiments and to calculate the diffusion coefficients and reaction rates not available in the literature.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (194 p.)
  • Annexes : Références bibliogr. en fin de chapitres

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2014 TOU3 0095
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.