Géométrie de systèmes dynamiques stochastiques et modèles de second ordre pour les marchés financiers

par Thanh Thien Nguyen

Thèse de doctorat en Mathématiques fondamentales

Sous la direction de Tien Zung Nguyen.

Soutenue en 2014

à Toulouse 3 .


  • Résumé

    Cette thèse est consacrée à l'étude des propriétés géométriques qualitatives de systèmes dynamiques stochastiques: leur symétries, la réduction et l'intégrabilité, avec des applications au problème de la modélisation des marchés financiers. Il se compose de quatre chapitres. Le chapitre 1 est une brève revue des notions de base de la théorie des systèmes dynamiques stochastiques (SDS) écrites sous la forme de Stratonovich, et aussi des systèmes Hamiltoniens. Le matériel de ce chapitre n'est pas nouvelle, et est inclus dans cette thèse pour la faire plus indépendante. Dans Chapitre 2, nous étudions le problème de la réduction de la SDS par rapport à une propre action d'un groupe de Lie. Il s'agit d'un problème important dans la théorie des systèmes dynamiques en général. Pour SDS, il a également été étudié par de nombreux auteurs. Diverses fameux processus stochastiques dans le calcul stochastique, par exemple, le processu de Bessel, peut être considéré comme un résultat de la réduction. Mais il y a encore quelques résultats relativement simples que nous n'avons pas trouvé dans la littérature et ainsi nous les écrivions dans Chapitre 2. En particulier, on montre que si un SDS n'est pas invariant mais seulement invariant un termes de diffusion par rapport à une action de groupe, alors nous pouvons faire encore la réduction. On donne les conditions nécessaires et suffisantes pour un SDS soit réductible (c-a-d projetable) par rapport à une submersion donné. Dans Chapitre 3, nous introduisons et étudions la notion d'intégrabilité de SDS. Ce notion d'intégrabilité se situe entre la notion d'intégrabilité pour déterministe classique systèmes et la notion d'intégrabilité des systèmes dynamiques quantiques. L'un des les résultats les plus fondamentaux de la théorie des systèmes dynamiques déterministe classique intégrable est l'existence des actions toriques de Liouville qui ont la propriété de conservation structurelle. Ces actions toriques de Liouville impliquent le comportement quasi-périodique des systèmes intégrables propres, nous permettront de faire la moyenne et la réduction (aussi pour les perturbations de systèmes intégrables), chercher des variables action-angle et faire quantification. Nous étendons ce résultat fondamental de la existence des actions toriques de Liouville avec la propriété de conservation structurelle vers les cas des SDS intégrable. Nous montrons aussi comment SDS intégrable sont naturellement liées au problème de métriques Riemanniennes avec des flots géodésiques intégrables, qui est un problème très intéressant dans la géométrie avec de nombreux nouveaux des résultats dans la littérature. Dans Chapitre 4, nous arguons que le premier ordre modèles (différentielle stochastique) de stock marchés, par exemple le fameux modèle de Black-Scholes, est conceptuellement pas correct pour le description de ce qui se passe sur les marchés financiers, même si elles peuvent être utilisé pour les prix des produits dérivés financiers. Des modèles plus réalistes de la marché doit être de second ordre, c-à-d en tenant compte à la fois les variables de prix et les variables de momentum. Nous développons dans ce chapitre deux modèles simples de second ordre, à savoir l'oscillateur stochastique et n-oscillateur contrainte stochastique, ce qui peut expliquer beaucoup de phénomènes sur les marchés. Une notion clé introduit dans ces modèles est l'énergie de la spéculation (dans l'analogie avec l'énergie physique), et nous prétendons que c'est cette énergie de la spéculation financière qui déplace le marché

  • Titre traduit

    Geometry of stochastic of dynamical systems and second order models for financial markets


  • Résumé

    This thesis is devoted to a study of qualitative geometrical properties of stochastic dynamical systems, namely their symmetries, reduction and integrability, with applications to the problem of modelling of financial markets. It consists of four chapters. Chapter 1 is a brief review of basic notions from the theory of stochastic dynamical systems (SDS for short) written in Stratonovich form, and also Hamiltonian systems. The material in this chapter is not new, and is included in this thesis to make it self-contained. In Chapter 2, we study the problem of reduction of SDS with respect to a proper action of a Lie group. This is an important problem in the theory of dynamical systems in general. Various famous processes in stochastic calculus, e. G. The Bessel process, can be viewed as a result of reduction. But there are still some relatively simple results that we did not find in the literature and so we wrote them down in Chapter 2. In particular, we proved that if a SDS is not invariant but only diffusion-wise invariant with respect to a group action, then we can still do reduction. We also give necessary and sufficient conditions for a SDS to be reductible (i. E. Projectable) with respect to a given submersion map. In Chapter 3, we introduce and study the notion of integrability of SDS. This integrability notion lies between the integrability notion for classical deterministic systems and the integrability notion for quantum dynamical systems. One of the most fundamental results in the theory of classical integrable deterministic dynamical systems is the existence of so called Liouville torus actions which have the structure-preserving property. Those Liouville torus actions imply the quasi-periodic behaviour of proper integrable systems, allow one to do averaging and reduction (also for perturbations of integrable systems), find action-angle variables, and do quantization. We extend this fundamental result about the existence of structure-preserving Liouville torus actions to the case of integrable SDS. We also show how integrable SDS are naturally related to the problem of Riemannian metrics with integrable geodesic flows, which is a very interesting problem in geometry with many recent results in the literature. In Chapter 4, we argue that first order (stochastic differential) models of the stock markets, e. G. The famous Black-Scholes model, is conceptually not correct for the description of what is happening in the financial markets, even though they can be used for pricing financial derivative products. More realistic models of the market must be of second order, i. E. Taking into account both the price variables and the momentum variables. We develope in this chapter two simple second order models, namely the stochastic oscillator and the stochastic constrained n-oscillator, which can explain a lot of phenomena in the markets. A key notion introduced in these models is speculation energy (in analogy with physical energy), and we claim that it is this speculation energy which moves the financial markets

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (101 p.)
  • Annexes : Bibliogr. p. 97-101

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2014 TOU3 0093
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.