Origine et physique d'annihilation des positrons dans la galaxie

par Anthony Alexis

Thèse de doctorat en Astrophysique, sciences de l'espace, planétologie

Sous la direction de Pierre Jean.

Soutenue en 2014

à Toulouse 3 .


  • Résumé

    Une émission gamma à 511\kev\ est observée depuis le début des années 1970 dans la direction du centre Galactique. Cette émission est la signature de l'annihilation d'électrons avec des positrons qui sont les antiparticules des électrons. Malheureusement, l'origine de ces positrons galactiques reste à l'heure actuelle un mystère. De nombreuses sources de positrons ont été proposées mais elles présentent toutes des difficultés à expliquer cette émission d'annihilation galactique. Celle-ci possède une distribution spatiale particulière. Depuis 2002, le spectromètre SPI à bord de l'observatoire spatial INTEGRAL révèle une émission fortement concentrée dans le bulbe galactique et une faible émission en provenance du disque galactique. Cette distribution spatiale est totalement atypique car elle ne ressemble à aucune distribution galactique connue, que ce soit d'une population stellaire ou d'un gaz interstellaire. L'hypothèse selon laquelle les positrons s'annihilent à proximité de leur source (c. -à-d. Que la distribution spatiale de l'émission d'annihilation est identique à la distribution spatiale des sources) a donc été remise en cause. Des études récentes semblent suggérer que les positrons pourraient se propager loin de leur source avant de s'annihiler. Ceci permettrait de résoudre éventuellement l'énigme sur l'origine des positrons galactiques. Cette thèse a été consacrée à modéliser la propagation puis l'annihilation des positrons dans la Galaxie, dans le but de comparer des modèles spatiaux de l'émission d'annihilation aux dernières données mesurées par SPI/INTEGRAL. Cette méthode nous permet en effet de poser des contraintes sur l'origine des positrons galactiques. Nous avons donc développé un code de simulation Monte Carlo de transport des positrons dans la Galaxie dans lequel nous avons implémenté toutes les connaissances théoriques et observationnelles de la physique des positrons (sources, modes de transport, pertes en énergie, modes d'annihilation) et du milieu interstellaire de la Galaxie (distributions du gaz interstellaire, champs magnétiques galactiques, structure des phases gazeuses). Dues aux incertitudes entourant de nombreux paramètres physiques (champs magnétique du halo galactique, structure des phases du milieu interstellaire, etc. ), nous avons implémenté plusieurs modèles pouvant potentiellement rendre compte de ces paramètres. Ces paramétrages différents de la Galaxie nous ont ainsi permis d'estimer leur impact sur la propagation et l'émission d'annihilation des positrons. Nous avons appliqué ce code à l'étude des positrons émis par la décroissance \betaplus\ de l'\alu, du \titan\ et du \nickel\ qui sont continûment produits dans la Galaxie au coeur des étoiles massives et des explosions de supernovae. Nous avons étudié ces sources car l'idée que celles-ci pourraient expliquer l'émission d'annihilation galactique est largement répandue depuis des décennies. Nous avons montré que, peu importe le paramétrage de la Galaxie, ces positrons permettent d'expliquer l'émission du disque mais pas la totalité de l'émission du bulbe. La raison est simple : ces positrons ne se propagent pas très loin de leur source avant de s'annihiler. Dans ce cadre, une source supplémentaire de positrons dans le bulbe est nécessaire pour rendre compte de la totalité de l'émission. Nous avons montré qu'une source transitoire de positrons (d'énergie \simMeV) située au centre de la Galaxie pourrait expliquer l'émission du bulbe.

  • Titre traduit

    Origin and annihilation physics of positrons in the galaxy


  • Résumé

    A gamma radiation at 511\kev\ is observed since the early 1970s toward the Galactic bulge region. This emission is the signature of a large number of electron-positron annihilations, the positron being the electron's antiparticle. Unfortunately, the origin of the positrons responsible for this emission is still a mystery. Many positron-source candidates have been suggested but none of them can account for the galactic annihilation emission. The spatial distribution of this emission is indeed very atypical. Since 2002, the SPI spectrometer onboard the INTEGRAL space laboratory revealed an emission strongly concentrated toward the galactic bulge and a weaker emission from the galactic disk. This morphology is unusual because it does not correspond to any of the known galactic astrophysical-object or interstellar-matter distributions. The assumption that positrons annihilate close to their sources (i. E. The spatial distribution of the annihilation emission reflects the spatial distribution of the sources) has consequently been called into question. Recent studies suggest that positrons could propagate far away from their sources before annihilating. This physical aspect could be the key point to solve the riddle of the galactic positron origin. This thesis is devoted to the modelling of the propagation and annihilation of positrons in the Galaxy, in order to compare simulated spatial models of the annihilation emission with recent measurements provided by SPI/INTEGRAL. This method allows to put constraints on the origin of galactic positrons. We therefore developed a propagation Monte-Carlo code of positrons within the Galaxy in which we implemented all the theoretical and observational knowledge about positron physics (sources, transport modes, energy losses, annihilation modes) and the interstellar medium of our Galaxy (interstellar gas distributions, galactic magnetic fields, structures of the gaseous phases). Due to uncertainties in several physical parameters (magnetic field of the galactic halo, structure of the interstellar medium, etc. ), we implemented several models accounting for these uncertainties. In doing so, we tested the impact of each of these parameters on the propagation and the annihilation emission of positrons. With this code, we studied the positrons produced by \betaplus-decays of \alu, \titan\ and \nickel\ which are continuously synthesised in the Galaxy within massive stars and explosions of supernovae. We first studied these sources because they have often been cited in the past as the major contributors of the galactic annihilation emission. Regardless of the configuration of the modelled Galaxy, we showed that nucleosynthesis positrons could explain the annihilation emission from the disk but not the emission from the bulge. The main reason is simple : these \simMeV positrons do not propagate far away from their birth sites. In our framework, an additional source is thus needed in the bulge to explain the strong bulge emission. We showed that a transient source of \simMeV positrons located at the Galactic centre could account for the bulge emission.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (193 p.)
  • Annexes : Bibliogr. p. 165-193

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2014 TOU3 0075
  • Bibliothèque : Observatoire Midi-Pyrénées. Centre de documentation Sciences de l'univers, de la planète et de l'environnement.
  • Non disponible pour le PEB
  • Cote : 2014/OMP/14070

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Observatoire de Paris (Section de Meudon). Bibliothèque.
  • Consultable sur place dans l'établissement demandeur
  • Cote : MMF-T857
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.